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Abstract

This thesis explains the solution to the problem of finding all of the

integer pair solutions to the equation x! +x = xn. A detailed explana-

tion is given so that anyone with high school mathematics background

can follow the solution. This paper is a translation of my diplom work

in Vaasa Lyseo Upper Secondary School.
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1 Introduction

“Mathematics is the queen of science,

and number theory is the queen of mathematics.”

-Carl Friedrich Gauss

In this thesis, I investigate the integer solutions to the equation x! + x = xn.

x! + x = xn (†)

Both sides of the equation can be divided by x (x 6= 0), which gives the

following.

(x− 1)! + 1 = xm (‡)

I set m := n−1. These notations stay the same through out the whole thesis.

The reader is not assumed to have knowledge beyond high school mathe-

matics curriculum, but we are going to deal with number theory, which may

not have been covered in any obligatory course.

3



2 Reducing the set of possible solutions

We will start searching for the answer to the problem by reducing the number

of possible solutions to the equation. It is easy to see that x and n cannot

be negative. If x is negative then x! is not defined (Γ(x + 1) = ±∞). On

the other hand, if n is negative, the right side of the equation x! + x = xn is

rational while the left side is integer. Thus we arrive at a contradiction, so n

cannot be negative.

Also, x and n cannot be zero. If x = 0 then the equation becomes 0!+0 =

0n ⇐⇒ 1 = 0, which is false. If n = 0 then the left side is xn = x0 = 1. But

the right side is divisible by x so x must divide 1 also or x = 0. We saw that

x = 0 is cannot be a solution, so that leaves us with x = 1. Let us substitute

(x, n) = (1, 0) to the equation (†):

1! + 1 = 10

2 = 1,

which is false.

We conclude that x, n ∈ Z+.

2.1 Modular arithmetic

Next we will inspect the equation using modular arithmetic, which is a nat-

ural approach when finding integer solutions to equations. If some x satisfies

the equation (x− 1)! + 1 = xm, it must also satisfy the following equation.

(x− 1)! + 1 ≡ xm (mod x) (1)

Since x ≡ 0 (mod x), the right side of the congruence is zero.

(x− 1)! + 1 ≡ 0 (mod x) (2)
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One must note that we are dealing with an implication, not an equevalence.

If x is a solution to the equation (1), it is not necessarily a solution to the

equation (‡). But using this approach, we can at least reduce the number of

possible solutions.

Lemma 1. Integer k divides (k−1!), if and only if k is composite and k 6= 4.

Proof. Let us assume that its possible to factor k so that k = ab. Let us

also assume that a 6= b, in other words k is not a square of a prime number.

Integers a and b are smaller than k − 1 because they are factors of k, and

neither is exatly k. Since the factors of (k − 1)!, given by the definition of

factorial, are all smaller than or equal to k−1, a and b are divisors of (k−1)!.

Let us assume that k is a square of a prime number. In other words k = q2,

where q ∈ P. Let us also assume that k − 1 = q2 − 1 ≥ 2q. It follows that

also q2 − 1 ≥ q. Because q and 2q are smaller than or eaqual to q2 − 1, they

are divisors of (q2 − 1)! = (k − 1)!.

If we instead assume that q2 − 1 < 2q, the inequality can be solved.

q2 − 2q − 1 < 0

⇐⇒ 1−
√

2 < q < 1 +
√

2

Since q is a positive integer, it can only be 1 or 2. 12 = 1 is not a composite,

and 22 = 4 is the only exception.

If k is prime, it does not divide any number that is smaller than it

(∀l < k : k 6 | l). Thus k does not divide any one of the factors of (k − 1)!.

In conclusion, we have proved that the statements is satisfied by compos-

ites that are not squares of prime numbers. Then we proved it for squares of

prime numbers (not including the number 4). Finally we proved the statement

for prime numbers. Thus the statement is proved for all positive integers.
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Theorem 1. The integer x must be a prime number.

Proof. Let us assume against the satetment that x is composite.

(2) =⇒ 1 · (x− 1)! + 1 ≡ 0 (mod x)

x
(x− 1)!

x
+ 1 ≡ 0 (mod x)

Based on Lemma 1, (x−1)!
x

is an integer, so x (x−1)!
x
≡ 0 (mod x).

x
(x− 1)!

x
+ 1 ≡ 0 (mod x)

0 + 1 ≡ 0 (mod x)

This is a contradiction. Therefore x cannot be a composite number.

3 An upper bound for x

It’s possible to find an upper bound for x by first inspecting m.

3.1 An upper bound for m

Let us find the upper bound for m with respect to x.

Theorem 2. The equation (x− 1)! + 1 = xm has the upper bound m < x.

Proof. When x > 1,

(x− 1)!

xx−1
=

(x−1)︷ ︸︸ ︷
(x− 1)(x− 2)(x− 3) · · · 3 · 2 · 1

x · x · x · · ·x · x · x︸ ︷︷ ︸
(x−1)

< 1,
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because each x in the nominator is greater than the corresponding factor of

(x− 1)!. The inequality can be manipulated in the following way.

(x− 1)!

xx−1
< 1

(x− 1)! < xx−1

x · (x− 1)! < x · xx−1

1 + (x− 1)! ≤ x · (x− 1)! < x · xx−1,

when x 6= 1.

Thus we get (x − 1)! + 1 < xx. From the equation (‡) we know that

(x− 1)! + 1 = xm. Thus we get the following.

xm < xx

The function logx(n) is strictly increasing when x > 1, so

logx(x
m) < logx(x

x)

⇐⇒ m < x.

3.2 Carmichael’s theorem

The following theorem is an important one in modular arithmetic:

xϕ(n) ≡ 1 (mod n),

where x and n do not have common factors, and where ϕ(n) is Euler’s totient

function. This theorem is called Euler’s theorem.

ϕ(n) denotes the number of positive integers, which are smaller than n and

which do not share any factors with the number n. For example, ϕ(8) = 4,

because 8 does not share any factors with the numbers 1, 3, 5 and 7.
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Using Euler’s theorem, we get the following.

3ϕ(8) = 34 ≡ 1 (mod 8)

The totient function has an important property: its value is easy to cal-

culate when n = pr, where p is prime:

ϕ(n) = pr−1(p− 1)

Euler’s theorem and the totient function are not perfect. An improved

version of the theorem is called Carmichael’s theorem. The theorem is the

following:

xλ(n) ≡ 1 (mod n)

The theorem reminds of Euler’s theorem, but ϕ is replaced by Carmichael

λ-function. The λ-function is a better version of Euler’s totient function,

because it gives the smallest possible positive integer m that satisfies the

equation

xm ≡ 1 (mod n).

For example, ϕ(8) = 4, but λ(8) = 2. The reader can check that the

following statement holds.

3λ(8) = 32 ≡ 1 (mod 8)

The value of Carmichael λ can be calculated using the following equation.

λ(n) = lcm[λ(pr11 ), λ(pr22 ), . . . , λ(p
rk−1

k−1 ), λ(prkk )],

where n = pr11 · pr22 · · · p
rk−1

k−1 · p
rk
k is the prime factorization of n, and lcm is a

function that gives the lowest common multiple of the values.
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The value of the λ-function for powers of prime numbers can be calculated

in the following way.

λ(pn) =

ϕ(pn) , when p is odd or pn = 2, 4

1
2
ϕ(pn) , when p is even, but n is not 1 or 2

The value of the Euler totient function is easy to calculate for powers of

the primes, so we can simplify the value of the λ-function further.

λ(pn) =

p
n−1(p− 1) , when p is odd or pn = 2, 4

2n−2(2− 1) , when p = 2, but n is not 1 or 2

3.3 A lower bound for m

From the equation (‡) we get the following equation.

(x− 1)! = xm − 1 (3)

This equation can be inspected through modular arithmetic the same way as

in the last chapter, but this time the modulus is (x− 1)!.

(x− 1)! = xm − 1

=⇒ (x− 1)! ≡ xm − 1 (mod (x− 1)!)

xm ≡ 1 (mod (x− 1)!)

We learnt that m can be solved using the Carmichael’s theorem, if x and

(x − 1)! do not share any divisors. Because x < (x − 1)! when x > 1, using

Lemma 1 we can note that they do not have any common divisors (except

when x = 1). Thus

m = λ((x− 1)!).
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But we arrived at the result in the context of modular arithmetic, which

must be taken into consideration:

1 = 1k ≡ (xm)k = xmk (mod (x− 1)!)

It is important to note that m needs a coefficient outside the context of

modular arithmetic. So we get the following.

m = kλ((x− 1)!),

where k is a natural number. If (x,m) is a solution to the equation (‡), m

must be of the form kλ((x− 1)!).

Let us consider the λ-function next.

Lemma 2. The following inequality holds for the λ-function, when x ≥ 4.

λ(x!) ≥ x!

2 · x#

Proof. Let us recall the definition of the λ-function.

λ(n) = lcm[λ(pr11 ), λ(pr22 ), . . . , λ(p
rk−1

k−1 ), λ(prkk )]

Thus you need to know the factorization of a number to calculate the value

of the totient function. If we want to figure out the value of λ(x!), we must

find the factorization of x!. It’s not necessary, in this proof, to find the exact

factorization. But one must note that every prime that is smaller than x

appears in the factorization of x!, because every integer less than or equal

to x is a divisor of x!. Hence we can note the value of λ(x!) in the following

way.

λ(x!) = lcm[λ(2r1), λ(3r2), . . . , λ(p
rk−1

k−1 ), λ(prkk )],

where pk is the gratest prime number less than or equal to x.
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The value of the totient function for a power of prime can be calculated

in the following way.

λ(pn) =

p
n−1(p− 1) , when p is odd or pn = 2, 4

2n−2(2− 1) , when p = 2, but n is not 1 or 2

If we assume that x ≥ 4, then r1 (the exponent of 2 in the prime factorization)

is always greater than 2, because x! = 2·3·4 · · ·x and 2·4 = 23 always divides

x!. Thus λ(2r1) = 2n−2(2− 1) = 2n−2 and we get the following equation.

λ(x!) = lcm[2r1−2, 2 · 3r2−1, . . . , (pk−1 − 1)p
rk−1−1
k−1 , (pk − 1)prk−1

k ]

Each power of an odd prime is multiplied by some cofficient (p − 1). If we

ignore the coefficient, we get an expression that is smaller than the value of

the totient function.

lcm[2r1−2, 2 · 3r2−1, . . . , (pk − 1)prk−1
k ] ≥ lcm[2r1−2, 3r2−1, . . . , prk−1

k ]

Based on the definition of the least common multiple, it’s clear that the

following equality holds.

lcm[2r1−2, 3r2−1, . . . , prk−1
k ] = 2r1−2 · 3r2−1 · · · prk−1

k

=
1

2
· 2r1 · 3r2 · · · prkk

2 · 3 · · · pk

=
1

2
· x!

2 · 3 · · · pk
Each prime less than or equal to x are multiplied together in the denomina-

tor of the fraction. This can be expressed using the primorial function: n#

denotes the product of all primes less than or equal to n.

When all of the observations are combined, we get a lower bound for

λ(x!).

λ(x!) ≥ x!

2 · x#
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Using the lemma, it is easy to figure out a lower bound for m.

Theorem 3. If (x,m) is a solution to (‡), then m has the following lower

bound, when x ≥ 5.
(x− 1)!

2(x− 1)#
< m

Proof. We showed previously that m = kλ((x − 1)!), where k is a natural

number. If k = 0, then m = 0. Let us sumbstitute m = 0 to the equation (‡):

(x− 1)! + 1 = x0

(x− 1)! + 1 = 1

(x− 1)! = 0

There is no integer, for which x! = 0 holds, so let us concentrate on the case

when k > 0.

It is clear that λ((x − 1)!) < k · λ((x − 1)!) = m, for all k > 0. The

following inequality follows from the Lemma 2.

(x− 1)!

2 · (x− 1)#
≤ λ((x− 1)!) < m,

when x− 1 ≥ 4 ⇐⇒ x ≥ 5. Thus the lower bound of m is

(x− 1)!

2 · (x− 1)#
< m.

3.4 The upper bound

Theorem 2 gives an upper bound of m < x. Theorem 3 gives a lower

bound (x−1)!
2(x−1)#

< m, when x ≥ 5. If (x,m) is a solution to the equation (‡),

then the following inequality holds.

(x− 1)!

2(x− 1)#
< m < x

12



We can note that x is a solution only when the following inequality holds

(and x ≥ 5).
(x− 1)!

2(x− 1)#
< x

It is possible to solve the inequality, whereupon we get an upper bound for

the possible values x can have.

Theorem 4. The variable x has the following upper bound.

x ≤ 6

Proof. Let us expand the factorial function in the inequality, which we got

above.
2 · 3 · 4 · 5 · · · (x− 2) · (x− 1)

2 · 2 · 3 · 5 · 7 · · · pk
< x,

where pk is the greatest prime, for which pk ≤ x − 1. The primes in the

numerator and denominator can be cancelled. In addition, the coefficiont 4

of the numerator can be cancelled with the extra 2 in the denominator. The

number 4 is in the numerator, because x ≥ 5.

�2 · �3 · ���
2

4 · �5 · · · (x− 2) · (x− 1)

�2 · �2 · �3 · �5 · �7 · · ·��pk
< x (4)

2 · 6 · 8 · · · (x− 2) · (x− 1) < x

The inequality is most of the time false, because 2 · (x− 1) < x is intuitively

false for positive integers x > 1.

We will build a more precise argument and find the solution to the in-

equality. If x− 1 is prime, it is also in the denominator of the fraction in (4).

Thus, x− 1 will get cancelled, and the inequality becomes the following.

2 · 6 · 8 · · · (x− 3) · (x− 2) < x

If x− 1 is not prime, then x− 1 doesn’t get cancelled. If x− 1 is prime and

the inequality is true, then 2(x− 2) < x ⇐⇒ 2x− 4−x < 0 ⇐⇒ x < 4. If
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it is not prime and the inequality holds, then 2(x−1) < x ⇐⇒ 2x−2−x <

0 ⇐⇒ x < 2. But we assume that x ≥ 5, so the inequality does not hold

for any integer in the domain.

But we must take into consideration the cases, when x = 5 and x = 6.

When x = 5, the inequality is the following.

�2 · �3 · ���
2

4

�2 · �2 · �3
< 5

2 < 5

Thus the inequality is true when x = 5.

When x = 6, the inequality is the following, and it too holds.

�2 · �3 · ���
2

4 · �5
�2 · �2 · �3 · �5

< 6

2 < 6

Thus the upper bound of x is 6.

When the upper bound for x has been found, the solution is near. The

factorial is not defined for negative integers, so the lower bound of x is 1.

Based on Theorem 1, it is enough to check primes between one and six.

The solutions can be checked in the following way. We get n = logx(x! + x)

from the equation (†). If logx(x! + x) is an integer for some integer x, then x

is a solution to the equation.

Let us check all the primes 1 ≤ p ≤ 6.

log2(2! + 2) = 2 ∈ Z

log3(3! + 3) = 2 ∈ Z

log5(5! + 5) = 3 ∈ Z

Thus the only integer pair solutions (x, n) to the equation x! + x = xn are

(2, 2), (3, 2) and (5, 3).
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A Generalizations

After solving the problem, I wanted to investigate its generalizations. How-

ever for lack of time, I haven’t found any satisfactory results but I want to

share my discoveries more freely in the appendix.

I have studied the general form of the equation (†):

ax! + bx = cxn,

where a, b and c are non-zero integer coefficients.

A.1 ax! + x = xn

I have approached the equation by simplifying it. I began by changing the

equation to the form ax! + x = xn.

The equation is equivalent with the following equation.

a(x− 1)! + 1 = xm (5)

There are two possibilities: either gcd(a, x) 6= 1, or gcd(a, x) = 1. If gcd(a, x) 6=

1, then the following equation holds.

a(x− 1)! + 1 ≡ xm (mod gcd(a, x))

0 + 1 ≡ 0 (mod gcd(a, x))

This equation is true only if gcd(a, x) = 1, which contradicts the assumption.

Therefore gcd(a, x) = 1.

The equation (5) can be inspected from the perspective of modular arith-

metic with modulus x:

a(x− 1)! + 1 = xm

a(x− 1)! ≡ −1 (mod x)

(x− 1)! ≡ −a−1 (mod x)
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In this case, we can use Wilson’s theorem, which states that x is a composite

number if and only if (x− 1)! 6≡ −1 (mod x).

Thus, if a−1 6≡ 1, then x is composite. On the basis of Lemma 1, either

x = 4 or (x− 1)! ≡ 0 (mod x). x = 4 can be substituted in the equation (5):

a(4− 1)! + 1 = 4m

2(3a) + 1 = 2(2 · 4m−1)

The LHS of the equation is odd and the RHS is even (m 6= 1). Thus the only

solutions would be the trivial family of solutions: (a,m) = (0, 0).

Let’s, therefore, assume that (x− 1)! ≡ 0 (mod x).

(x− 1)! ≡ −a−1 (mod x)

0 ≡ −a−1 (mod x)

0 · a ≡ −a−1 · a (mod x)

0 ≡ −1 (mod x)

The equation is true only when x = 1. Let us substitute it to the equation

(5).

a(1− 1)! + 1 = 1m

a+ 1 = 1m

a+ 1 = 1

=⇒ a = 0

Thus the solution is (a, x,m) = (0, 1,m0), where m0 is any non-negative

integer.

Lastly, one must inspect the case, where a−1 ≡ 1, when x is a prime by

Wilson’s theorem. If a 6≡ 1, then 1 cannot be the inverse of a. Therefore a ≡ 1

16



(mod x) ⇐⇒ x | a − 1. When searching the solutions, one must check the

prime factors of a− 1.

For example, let’s solve the equation 7x! + x = xn. The primefactors of

7− 1 = 6 are 2 and 3. Let’s check the possible solutions in the same way as

when solving the equation (†).

log2(7 · 2! + 2) = 4 ∈ Z

log3(7 · 3! + 3) = 3, 464 . . . 6∈ Z

Thus the equation has exactly one solution: (x, n) = (2, 4).

A.2 x! + bx = xn

The variable b can be isolated in the same way, and we get the following

equation.

(x− 1)! + b = xm (6)

Let us assume that x is a prime. The (6) can be inspected through modular

arithmetic, once again.

(x− 1)! + b ≡ xm (mod x)

(x− 1)! ≡ −b (mod x)

Because x is prime, the equation (x − 1)! ≡ −1 (mod x) holds by Wilson’s

theorem. Therefore b ≡ 1 (mod x). So, outside of modular arithmetic, the

following holds.

b = kx+ 1

for some integer k.

17



Therefore we assume again that x is not prime. Based on Lemma 1,

(x− 1)! ≡ 0 (mod x), if x 6= 4.

(x− 1)! + b ≡ xm (mod x)

0 + b ≡ 0 (mod x)

Thus x divides b.

For example, if we want to find the integer solutions to the equation

x! + 15x = xn, we must check the divisors of 15, the number 4 and the prime

factors of 14. The divisors of 15 are 1, 3, 5 and 15. The prime factors of 14

are 2 and 7. We can check the possible solutions:

log2(2! + 15 · 2) = 5 ∈ Z

log3(3! + 15 · 3) = 3, 578 . . . 6∈ Z

log4(4! + 15 · 4) = 3, 196 . . . 6∈ Z

log5(5! + 15 · 5) = 3, 276 . . . 6∈ Z

log7(7! + 15 · 7) = 4, 391 . . . 6∈ Z

log15(15! + 15 · 15) = 10, 302 . . . 6∈ Z

Thus our equation has exactly one solution: (x, n) = (2, 5).

A.3 x! + x = cxn

We can simplify this equation too.

(x− 1)! + 1 = cxm (7)

Let’s inspect all the possible values of c with respect to x. Thus, we’ll tem-

porarily think of x as a constant, and c as a variable.
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1. Let’s assume that 0 < c < x. Then it follows that c | (x− 1)!.

(x− 1)! + 1 ≡ cxm (mod c)

0 + 1 ≡ 0 (mod c)

This is a contradiction, so c 6= 1.

2. If c = x, the equation becomes x! + x = xn+1. Its solutions correspond

to the solutions of the equation (†).

3. If (x − 1)! + 1 < c, then c 6 | (x − 1)! + 1. The larger number cannot

dived the smaller. But the RHS of the equation (x − 1)! + 1 = cxn is

divisible by c. This is a contradiction.

The following figure illustrates what is stated above.

0 x (x− 1)! + 1
c

There are no solutions on the red area. The solutions on the blue dot are

known. But I have not yet studied closely the area that is not colored.

The blue point gives three solutions to the problem. If c corresponds to

an x of some solution to the equation (†), then the solution of the equation

x! + x = cxn is (x, n − 1), where (x, n) is the corresponding solution to (†).

For example, one solution to the equation (†) is (x, n) = (2, 2). Thus, if c = 2,

then the solution to the equation x! + x = 2xn is (2, 2− 1) = (2, 1).

Because I haven’t found more precise results about the interval x < c ≤

(x − 1)! + 1, we must check all of the possible values of x that satisfy the

inequality.
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For example, let’s solve the equation x! + x = 6xn. The values of x, for

which x < 6 ≤ (x − 1)! + 1 hold, are 4 and 5. Let us therefore check the

solutions.

log4(
4! + 4

6
) = 1, 111 . . . 6∈ Z

log5(
5! + 5

6
) = 1, 886 . . . 6∈ Z

Thus the equation x! + x = 6xn has no integer solutions.

I encourage the reader to investigate the solutions of the general form, and

to come up with new general forms. For example, I have myself considered

the equation x! + p(x) = xn, where p(x) is some polynomial with integer

coefficients. The search for solutions of the general forms continues.
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