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Abstract

The cosmic time dependencies of G, α, ~ and of Standard Model parameters like the

Higgs vev and elementary particle masses are studied in the framework of a new dark

energy interpretation. Due to the associated time variation of rulers, many effects

turn out to be invisible. However, a rather large time dependence is claimed to arise

in association with dark energy measurements, and smaller ones in connection with

the Standard Model. Finally, the dark energy equation of state and a formula for

the full size of the universe are derived in an appendix.
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I. Introduction

Dirac was one of the first to suggest that fundamental physical constants may vary

in time due to the expansion of the universe[1]. Dirac concentrated on Newton’s

constant G, but since then a time dependence of c, α, ~ and so on has been considered

possible as well ([2]-[18]).

From the 21st century perspective it is clear that if fundamental constants are time

dependent in this way, the observed dark energy effect must have to do with it,

because dark energy dominates the present expansion of the universe.

In the course of the present work time dependencies will therefore be partly

reduced to a (dark) energy dependence of physical quantities and constants.

This energy dependence is completely separate from and not to be confused with

the usual energy dependence from the renormalization group.

The framework of the article will be the ordinary FLRW cosmology with a scale

factor a(t) and a spatial curvature k, the latter assumed to be tiny (in accordance

with observations). Furthermore, the so-called ’cosmic coordinate system’ will be

used, i.e. cosmic time t and proper distances r as parameters. This will prove to be

optimal for the presentation.

It is well known that the fundamental spacetime constants c, ~ and G can be used

to define the Planck length, time and mass L, T and M which describe the basic

properties of space[m], time[s] and matter[kg]

L(t) =

√
~(t)G(t)

c3
T (t) =

√
~(t)G(t)

c5
M(t) =

√
~(t)c

G(t)
(1)

One may invert these relations to obtain

c =
L(t)

T (t)
~(t) = E(t)T (t) κ(t) =

L(t)

E(t)
(2)

where E = Mc2 is the Planck energy and κ = G/c4 the Einstein constant.

A time dependence of these quantities has been anticipated here. t = 0 to be the

present, so we have the present day values L0 = L(0) = Planck length, T0 = T (0) =

Plan and E0 = E(0) = Planck energy. Numerical values are

L0 = 1.6× 10−35m M0 = 2.2× 10−8kg T0 = 5.4× 10−44s (3)
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No time dependence of c is indicated, because in the present model there is none -

at least if one uses the above mentioned cosmic coordinates t and r, in which case

the FLRW solution of the Einstein equations has the line element

ds2 = −c2dt2 + a(t)2 [
dr2

1− kr2
+ r2dΩ2 ] (4)

with a constant i.e. time-independent speed of light.

c being constant, one only needs to consider time dependencies of G and h.

Equivalently, since one has T(t)=L(t)/c one only needs to consider time dependen-

cies of the Planck length L(t) and Planck energy E(t).

Rewriting eq. (2) as

~(t)c = E(t)L(t) (5)

G(t) = c4L(t)/E(t) (6)

one sees that there are 2 really fundamental time dependencies to be considered:

-L(t)=the time dependence of the fundamental measure of space

-E(t)=the time dependence of the ’physically active’ quantities - the ’quantities

of motion’, as Isaac Newton called them.

The cosmic time dependence of elementary particle couplings like the fine structure

constant α, the elementary particle masses and so on is a different story. It will be

treated in section V and will boil down to determine the time dependence of one

other quantity:

-J(t)=the time dependence of the ’internal exchange energy’ to be defined in section V.

In order to determine L(t), E(t) and J(t), in sections II, III and V equa-

tions (7), (14) and (35) will be introduced.

II. Measure-of-Space Equation

For L(t) the following equation is suggested:

L̈ = −4π

3
GρL− ω2(L− Ls) +

�
�
��@

@
@@

Λ

3
c2L (7)
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Figure 1: Schematic depiction of the universe as an elastic medium made of tiny

constituents. Shown are the binding lines between nearest neighbour constituents.

The 2 lattices represent the expanding universe at 2 times t1 < t2.

Note, in the full tetron model, the ’constituents’ are actually tetrahedrons composed

out of ’tetrons’ and extending into internal dimensions. However, since internal

particle physics interactions do not play a role here, we can take the tetrahedrons

to be pointlike constituents as depicted in the figure.

The idea behind this is that the universe is an elastic medium which consists of

elementary constituents called tetrons[19, 20], and the bond length of these con-

stituents is given by the Planck length L(t), while the Planck energy E(t) mea-

sures the binding energy of every 2 bound constituents. It is to be noted that the

tetrons are invisible to us. All (ordinary and dark) matter particles and radiation we

know are quasi-particles/wave-excitations of them and can propagate on the elastic

medium.1 We ourselves are wave-excitations, too, and because of this, the world

appears Poincaré invariant to us, without a preferred rest system.

Since the medium is assumed to be elastic, in (7) a harmonic ansatz L̈ = ...−ω2(L−
Ls) seems reasonable, cf. the discussion after eq. (13), in connection with (17) and

at the end of this work. Within such a picture, in an expanding universe, L and E

will vary with time (and so will h and G as well as all particle physics constants),

1In the tetron-model[19] our universe is embedded in a higher-dimensional space, and as an

elastic medium it can thus acquire the full 3+1 GR curvature within this space, including the

timely curvature related to expansion.
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and the next step is to make the most straightforward ansätze for these variations:

First of all, when the universe (=the elastic medium) expands, the variation of the

Planck or bond length L(t) must reflect the general expansion as described by the

FLRW expansion parameter a(t). Eq. (7) relies on the simple assumption that on

the average the bond length between 2 tetrons is always proportional to the scale

parameter, i.e. a ∼ L or equivalently

a(t)

a0
=
L(t)

L0

(8)

At first sight this equation may not seem reasonable to all readers. After all, the

FLRW scale a(t) describes changes at cosmological distances, while the bond length

L(t) between tetrons is microscopic in origin. The idea behind (8) is depicted

schematically in Figure 1. The 2 lattices represent the expanding universe at 2

times t2 > t1. a(t) corresponds to the full extension of the lattice, while L(t) is the

lattice spacing, i.e. the distance between 2 nearest neighbors. In Figure 1 the ratio

a(t2) : a(t1) is given by 2. The same is true for the ratio L(t2) : L(t1), because the

average bond length between the lattice points grows in the same way as the lattice

as a whole. This simple consideration is at the heart of (8) and also (through the

FLRW equation) of (7).

Thus, the first term in (7) arises from the general relativistic deceleration of the

universe through its matter content ρ, while the second term accounts for the dark

energy phenomenon, however, not quite in the usual form of a cosmological constant

(crossed out, because not utilized in the present work), but of a harmonic force

−ω2(L − Ls), that expands the elastic medium towards an equilibrium value Ls of

the bond length L.

Eq. (7) tells us that linear forces are acting, one induced by (ordinary and dark)

matter and driving the system towards L = 0, the other induced by the (’dark

energy’) tetron binding and driving it towards the equilibrium binding distance

Ls. Presently we are in the region L0 < Ls, so that −ω2(L − Ls) really is an

expanding force. The value of ω can and will be determined from a fit to dark

energy measurements.

In the course of time, i.e. with increasing L, the matter force becomes smaller

because the matter density dilutes according to ρ = ρ0L
3
0/L

3. This is a well known
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effect and makes the first term on the RHS of (7) behave like ∼ 1/L instead of ∼ L.

The differential equation (7) can be solved using initial values

L(0) = L0 L̇(0) = H0L0 (9)

where L0 is the (present day) value of the Planck length and H0 the Hubble constant

(=present day value of the Hubble parameter H(t) = ȧ/a = L̇/L). The solution

will be given later in (22).

From the initial conditions (9) it is immediately clear that ω is naturally of the

order of H0, In section IV this will be confirmed by fitting with observations. ω and

H(t) are extremely small frequencies corresponding to an approximately harmonic

movement of the universe as a whole and a priori have little to do with the Planck

frequency 1/T0 which is the local response frequency of a single tetron in the elastic

medium.

H0 T0 ≈ 1.18× 10−61 (10)

So seemingly, there are 2 very different fundamental scales in the universe: one is

the single tetron binding energy/Planck energy E and the other is the collective dark

energy of the universe as a whole, which drives it to its equilibrium value.

However, due to the homogeneity of the elastic medium, the time behavior of the

microscopic single tetron binding energy E(t) and that of the cosmological dark

energy turn out to be related. The important point is that the universe is in a

breathing mode and its collective drive is just a reflection of the microscopic

tetron binding energy having a minimum at bond length Ls. This becomes

even clearer within the simple spring model described in the appendix, where one

can relate ω, the frequency of the universe introduced in (7), to the Planck time

T (t) via

ωT (ts) =
1

N
(11)

to be compared to (10). N is the number of springs connected in a series from one

end of the universe to the other. While the natural frequency of a single tetron

spring is the Planck frequency f(t) = 1/T (t), when bound to form the universe, the

series connection of N springs vibrates with a much lower frequency ω = f(ts)/N .
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It may be noted that in the simple spring model, the constant N implicitly appears

in eq. (8) as

a(t)

L(t)
= N =

a0
L0

(12)

III. Quantities-of-Motion Equation

If one thinks it over, a time dependent L(t) has long been observed, namely in the

form of the cosmolgical redshift. Usually this time dependence is not put into L,

G or h, as in eqs. (5) and (6), but into the redshifted photon frequency f and the

expansion paramter a. This is possible, because these quantities always appear in

products h*f and G*a, respectively. So one can choose whether to absorb the time

dependence of L in h and G or in f and a. The conventional choice is to keep G and h

constant. We shall follow this choice - as far as the variation of the Measure-of-Space

equation is concerned.

From this point of view, the ansatz of a time dependent L(t) is not so much

new [apart from the modified cosmological constant approach to dark energy with

−ω2(L− Ls) instead of a Λ-term].

As for the time dependence of the Planck energy E, the situation is different, i.e.

there will be something new:

E can be interpreted as the binding energy among the constituents of the elastic

medium which is our universe. Not too far away from the equilibrium at L = Ls it

can be expanded in a power series of (L− Ls)2

E(L) = C +D(L− Ls)2 +O(L− Ls)4 (13)

where the terms of order (L − Ls)4 and higher will be neglected in the following.

This corresponds to approximating the curve in Figure 2 by a parabola in the neigh-

borhood of Ls, which should be a reasonable approximation not too far away from

the minimum at L = Ls.

The constants C and D can be determined from the conditions that E(L0) = E0

and E(Ls) = Es. One obtains

E(L) = Es − (Es − E0)(
L− Ls
L0 − Ls

)2 = Es[1− (1− E0

Es
)(

1− L/Ls
1− L0/Ls

)2] (14)
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Figure 2: The binding energy E of 2 constituents as a function of their bond length

L. At present t=0 one has the Planck energy E0 and the Planck length L0. The

expansion of the universe through dark energy corresponds to the elastic bonds

expanding towards equilibrium values Es and Ls. In the neighbourhood of Ls the

quadratic dependence E(L) of eq. (14) is a good approximation.

As will turn out, the energy difference E0 − Es triggers the harmonic dark energy

term ∼ ω2 in eq.(7), i.e. the accelerated expansion of the universe.

The approximate behavior of E(L) is that of a parabola with minimum Es. Together

with the solution L(t) to (7) one deduces the time dependence E(t) as needed in

eqs. (5) and (6).

Since we have absorbed the time dependence of L into the redshift definition, one

only has to consider time dependencies of ~ and G through E(t), cf. eqs. (5) and

(6). These dependencies may be rewritten as

~(t)/L ∼ E(L) (15)

G(t)/L ∼ 1/E(L) (16)

with E(L) ≡ E(L(t)) to be taken from (14).

Considered as a binding energy, E(t) is negative, i.e. (5) and (6) are better to

be replaced by ~(t)c = |E(t)|L(t) and G(t)|E(t)| = c4L(t) with |E| = Mc2 being

the Planck energy. Since E(t) is negative and presently becomes more negative as

it approaches its minimum value Es, one concludes from eq. (15) that Plancks
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constant presently goes up with time, whereas the gravitational coupling

is decreasing.

At this point one may worry, whether a varying E has a problem with energy con-

servation. Actually, this question also arises in connection with the redshift, and

is usually answered by saying that energy ’goes into the metric’. Interpreting the

universe as an elastic medium one can reformulate this by stating that energy goes

into the total binding energy of the universe.

As discussed in connection with eq. (37), one can attribute the ω-term in (7) to an

’energy’

W (L) =
ω2
s

2
− ω2

2
(
L− Ls
L0

)2 =
ω2
s

2
[1− (1− ω2

0

ω2
s

)(
1− L/Ls
1− L0/Ls

)2] (17)

with

ω2 =
ω2
s − ω2

0

(1− Ls/L0)2
(18)

Note the similarity between (14) and (17). Since the dark energy phenomenon is a

smooth collective effect of all tetron binding energies E having a minimum at bond

length Ls, i.e. the behaviour of W is a reflection of the tetron bond length driving

towards its equilibrium value Ls (=the point where the tetron binding energy E is

having a minimum value Es), the time evolution of W and E is absolutely parallel,

in an analogous way as the time evolution of a(t) is parallel to that of L(t). In other

words, E(L) ∼ W (L) holds similarly as L(t) ∼ a(t) for the cosmic scale factor a

and the bond/Planck length L, cf. (8) and Figure 1, and one comes up with

W (L)

W (L0)
=

E(L)

E(L0)
(19)

The physical difference between W and E is that

-E is the microscopic tetron binding energy and is roughly of the order of the present

day Planck energy to be measured in Joule.

-the ω’s are frequencies of the universe as a whole and measured in Hertz, and they

are of the order of the Hubble parameter.

A direct consequence of (19) is

ω2
0

ω2
s

=
E0

Es
(20)
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IV. Comparison with Astrophysical Data

In the laboratory it is more or less impossible to observe time variations of G and

h, because via (1) these quantities define our rulers for mass and energy. While the

universe expands, the rulers will expand, too.

In case of the redshift, astronomers were able to obtain relevant information on L(t)

from observations of distant galaxies. In contrast, it seems difficult to measure the

time variation (14) of energy from such observations, because any process, which

took place in the past in some distant galaxy, will do so with the energy/rulers

relations valid at that time, and when the produced particles arrive on earth they

will interact with the detectors with the energy/rulers relations valid now; so that

the observer will see no difference between processes now and then.

As a consequence, time variations of h and G will generally not be visible.

Not testable in particle processes, it turns out, however, that E(t) from eq. (14)

can be directly observed in dark energy measurements. Dark energy observations

do not usually concern the very early universe, so that the parabolic approximation

(14) should be good enough2. They are in effect testing eq. (7), and E(t) in (14)

not only governs the ω-term but according to (15) and (??) also enters the G-term

on the RHS of (7).

In order to check this idea with astrophysical data, we go over from L(t) to the

redshift z defined by

z(t) =
a

a0
− 1 =

L

L0

− 1 (21)

The most precise measurement of the dark energy effect comes from the study of

type-Ia supernovae in distant galaxies. I shall compare my redshift prediction to

those data in a small-t approximation. This is justified because on cosmic scales the

times involved are not too large.

2For considering time variations of h and G in the very early universe, an approximation of the

form (14) is not sufficient, because at small bond length L a typical binding energy is expected to

be governed by a power behaviour of the form E(L) ∼ L−n.
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Under this condition, up to O(t4), the solution to (7) can be written as

z = tH0 +
t2H2

0

2
[−Ω0

M

2
+
ω2
0

H2
0

Es

EP
− 1

Ls

L0
− 1

:::::::::::

+
�
�
��S
S
SS

Λc2

3H2
0

]

+
t3H3

0

6
[Ω0

M(1 +
Es

EP
− 1

Ls

L0
− 1

)− ω
2
0

H2
0

Es

EP
− 1

(Ls

L0
− 1)2

:::::::::::::::

+
�
�
��S
S
SS

Λc2

3H2
0

] (22)

The term indicated by underlines is the contribution from the time dependent New-

ton constant, the terms with underwaves come from the harmonic dark energy ω

contribution, and the crossed out terms from a cosmological constant (the latter to

be ignored in the present model).

Ω0
M =

4π

3

G0ρ0
H2

0

(23)

is the present day density parameter of matter in the universe, frequently used in

this type of analysis. In the dark energy interpretation with a cosmological constant

it comes out as roughly 0.3, which is usually considered a reasonable value.

As for any parabola, hidden in the parabolic dark energy (14) and (17) are 3 pa-

rameters, which need to be determined from observations. They may be chosen as

(i) Es

E0
= ω2

s

ω2
0
> 1 = the ratio of the Planck energies resp dark energies at cosmic

equilibrium and at present

(ii) Ls

L0
> 1 = the ratio of the tetron binding lengths at cosmic equilibrium and at

present

(iii)
ω2
0

H2
0

= the ratio of the present dark energy over the present value of the Hubble

constant.

Since there are more parameters than in the ansatz of a cosmological constant, the

observations will only give relations between i, ii and iii. Furthermore, an estimate

for Ω0
M has to be taken from other sources. Nevertheless, our next aim is to see

what the observations allow to say.

A fit to the redshifts of supernovae yields[24]

z = tH0 +
t2H2

0

2
(1.00± 0.05) +

t3H3
0

6
(0.54± 0.05) (24)

Comparing with (23) one finds that it is easy to accommodate the data with the

help of the quantities i, ii and iii. For example, choosing Ω0
M = 0.3 and
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-Ls = 10L0 one obtains Es = 1.34E0 and ω2
0 = 3.4H2

0

-Ls = 2L0 one obtains Es = 5.6E0 and ω2
0 = 0.25H2

0

At first sight, the fact that data can be fitted this way so easily, seems to be a

big surprise. After all, we are fitting numbers which usually are explained with an

expontential increase due to a cosmological constant. The essential feature here is

the contribution from the time variation of Newton’s constant (underlined) which

in combination with the harmonic dark energy contribution (underwaved) leads

to an agreement with observations. The point is that since G(t) is going down

with time, the retarding effect of (ordinary and dark) matter becomes smaller, and

no exponential increase of the dark energy term as in the cosmological constant

approach is needed.

In other words, although the harmonic force ansatz corresponds to a more moderate

re-acceleration of the universe than the cosmological constant term, this is compen-

sated by the time variation of energy as a whole which affects Newton’s constant.

V. Cosmic Time Dependence of Particle Physics Parameters

The analysis will now be extended to the ’constants’, which describe the particle

physics interactions. All parameters of the Standard Model (SM) of particle physics

will be considered, i.e.

-the 3 dimensionless gauge couplings: the weak and electromagnetic fine structure

constants αweak and α together with the QCD scale parameter ΛQCD.

-2 further parameters of the electroweak Standard Model, in order to describe the

Higgs potential. These will be chosen to be the Higgs mass mH and the vacuum

expectation value v of the Higgs field.

-the Yukawa couplings, which are all proportional to v.

Except for αweak and α, all these parameters have dimension of energy. If one looks

at the definition of the fine structure constant

α =
e2

4πε0~c
(25)

it is the only dimensionless combination which can be built from the quantities e2/ε0,

h and c. As dimensionless, it is independent of the choice of rulers for time, length
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and energy3. This is good news, because in looking for a cosmic time dependence

of α one circumvents all the problems usually encountered in determining the time

dependence of dimensionful quantities like E(t). The bad news in considering ratios

like α is that most effects tend to drop out between numerator and denominator

(see later).

An interesting point is that although α itself is not an energy, it can be written as

a ratio of forces or energies. Namely one can rewrite (25) as

α =
e2

4πε0r(2)
/
G0M

2
0

r(2)
(26)

i.e. as the ratio of the electrostatic Coulomb (force) energy and the gravitational

(force) energy of 2 point particles with elementary charge e and Planck mass M0 at

an arbitrary distance r.

From this point of view the gravitational force is by no means small as compared to

the electric force, but - for such tetron-like test particles - is 137 times stronger!

The key relation here is

~c = G0M
2
0 = L0E0 (27)

which follows from (2).

Defining Q2 = e2/[4πε0] and introducing time dependencies, one has

α(t) =
Q2(t)/L(t)

E(t)
(28)

whereQ2 comprises the electromagnetic effect in a measurement-system independent

way. Obviously, Q2 has the dimension of length×energy. Since measurements and

astrophysical observations show almost no time variation of α, the time dependence

of Q2/L must be the same as that of E(t) to a very good approximation.

Referring once again to the tetron model, this has to do with the fact, that the time

dependence of Q2 is determined by that of the binding energy E(t)[19], so that any

time dependence of α drops out between numerator and denominator in (28).

3The dependence on the Planck/tetron binding energy E is not to be confused with the Wilso-

nian running of coupling constants, i.e. the dependence of α on the energies of particles in a

scattering process.
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To understand this point in detail, one should note that the tetron model is more

than a microscopic theory for the cosmic elastic medium. The tetrons actually

appear in the form of tetrahedrons which extend into a 3-dimensional internal space

and whose excitations can be shown to represent the complete 3-family quark and

lepton spectrum[19, 20].

The internal interactions among tetrons are typical quantum interactions in the

sense that one always has ’exchange’ energies in addition to ’direct’ energies, simply

because for 2 (or more) identical particles - tetrons in this case - with single wave

functions f1 and f2 their total wave functions are either symmetric or antisymmetric

of the form f1(x1)f2(x2)± f1(x2)f2(x1). Correspondingly, the relevant 2-point func-

tion of the tetron Hamiltonian can be described as the sum of the Planck(=binding)

energy E(t) and a function J(t) usually called the exchange energy. In the present

case it may be called ’internal exchange energy’ because it arises as an integral

including the internal space, in which the tetrahedrons are living.

E =

∫
d6x1

∫
d6x2f1(x1)f2(x2)V (1− 2)f1(x1)f2(x2) (29)

J =

∫
d6x1

∫
d6x2f1(x1)f2(x2)V (1− 2)f1(x2)f2(x1) (30)

where the integrals are actually 6-dimensional, because they extend over both inter-

nal and physical space. V(1-2) is the potential between 2 tetrons with wave functions

f1 and f2.
4

In a 6-dimensional environment the Green’s function of the Laplace operator is r−4,

instead of r−1 in the 3-dimensional case. Therefore, the most promising choice seems

to be

V (1− 2) =
N

|x1 − x2|4
(31)

4If one looks into the details of the tetron model[19], the situation is a bit more complicated than

described here. First of all, f1 and f2 are the wave functions of tetron-antitetron pairs, and V(1-2)

is the potential between these 2 pairs. Secondly, to really calculate E and J from the 6-dimensional

integrals one has to take the configuration of 2 adjacent tetrahedrons with at least 8 tetrons into

account. Furthermore, there are actually 2 types of exchange integrals, one corresponding to the

inter-tetrahedral interactions, which gives rise to the Fermi scale and is responsible for the large

masses mt, mW and mH of order 100 GeV, and another one corresponding to the inner-tetrahedral

interactions, which gives rise to the lighter fermion masses and the QCD scale.
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with some coupling constant N. A rough estimate of N can be obtained by equat-

ing V(1-2) at the Planck length to the Planck energy. This gives a value for the

fundamental tetron coupling N:

N

L4
0

≈ E0 =⇒ N ≈ 10−130m
6kg

s2
(32)

When trying to calculate E and J according to (29) and (30), one naturally runs into

the so-called hierarchy problem of physics. Namely the question, why the relevant

energy scales of gravity (E0 ≈ 1019GeV) and of particle physics (J0 = 1− 100GeV)

are so much different. In the framework of the tetron model, the question can be

reformulated: why is the exchange energy J so much smaller than the direct energy

E?

Looking at (29) and (30), one sees that J � E can happen, if the tetron wave

functions are strongly localized. In the extreme case of delta functions one even finds,

that the exchange integral vanishes, while the direct integral attains the value (32).

Such an extreme localization is of course unnatural. In order to get J ≈ 10−17E,

it is enough to demand that f(x) drops from its maximum value at x = 0 by about

a factor of 10 at x = L0. This is because J is a multidimensional integral and

to integrate the product dx2f2(x2)V (1 − 2)f1(x2) will give a suppression factor of

roughly ∼ 0.1 for each of the 6 dimensions. Similarly for the x1-integration.

Except for α, which is constant, I will argue that J(t) gives a universal time

dependence for all internal/particle interactions in a similar way as does

the Planck energy E(t) for the spacetime quantities of motion. In other

words, while the time-dependence of all dimensionful spacetime quantities is dictated

by E(t), the time dependencies of dimensionful SM particle properties like v, mH ,

mW and all quark and lepton masses can be described in terms J(t).

To see how this works in detail, one should relate J to the electroweak symmetry

breaking scale. This was already done in [19], where it was shown that the critical

energy of the electroweak phase transition is given by an exchange integral J of the

form (30). This is because in the tetron model the electroweak phase transition

corresponds to an alignment of the tetrahedrons in the internal spaces, and the

Curie energy of this phase transition is given by J. Since the critical energy of the
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electroweak phase transition is approximately given by the Higgs vev v, one has

v = J .

It is well known that all particle masses in the SM are proportional to v. Therefore,

J enters all dimensionful parameters of the electroweak SM - the fermion masses,

the Higgs vev and the masses of the weak gauge bosons - in a linear way. All these

quantities are ∼ J(t).

Just as for E, the time-dependence of J arises through the time variation of the

bond length L(t), i.e. through the expansion of the universe. If one would calculate

the integrals J and E (29) and (30) as a function of L, then knowing L(t) according

to (7), one could deduce from that the time-dependence of v, of the Fermi constant

(??) and of all other parameters, and compare it to present upper limits[25, 2].

Unfortunately, the situation is not that simple. First of all, as mentioned in footnote

4, the integrals are difficult to calculate. Secondly, in everything we do, in every

experiment we undertake, we encounter the Planck energy E(t) as a ruler, whose

time dependence influences our perception of dimensionful quantities like v, GF ,

mW and so on. To say it plainly, the time dependence we can perceive is not

that of J(t) but that of the ratio J(t)/E(t).

This means: if we consider, for example, a matter particle with mass m0 in the

present epoch, our perception of the time development m(t) of m0 does not follow5

m(t) = m0
J(t)

J0
(33)

but

m(t) = m0
J(t)/J0
E(t)/E0

(34)

In the ideal case, that J and E would have an identical time dependence, the time

dependence of m or of other dimensionful SM parameters could never be measured.

By analyzing the structure of the direct and the exchange integrals E and J in some

detail, one can indeed show, that their dependence on the bond length L is quite

similar, both with an extremum at nearly the same value Ls. Making an ansatz for

5Note there is no problem with the principle of equivalence because the heavy mass and the

inert mass are both developing with J(t).
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J(L) analogous to that for E(L) in (14)

J(L) = Js − (Js − J0)(
L− Ls
L0 − Ls

)2 = Js[1− (1− J0
Js

)(
1− L/Ls
1− L0/Ls

)2 (35)

one sees that the crucial part is the ratio J0/Js. To the extent that the equality

Js
J0

=
Es
E0

(36)

holds, a time dependence of SM parameters cannot be measured. Conversely, any

observed time dependence in a SM parameter can be traced back to a deviation

from (36).

The integrals J and E can be analysed on a qualitative level, and according to this

analysis the relation (36) is approximately true. On the other hand there is no a

priori reason, why it should be exactly true. First of all, the integrals (29) and (30)

are definitely distinct. Secondly, particle physics interactions have to do with inner

symmetries not contained in the energetic analysis of the elastic universe [governed

by E(t)]. Therefore, although present observations only give upper limits on time

dependencies of SM parameters, their cosmic time dependence at least in principle

follows its own rule, given by J(t).

VI. Discussion

In this study a theory concerning the time dependence of all known fundamental

physical parameters has been developed. It rests on the idea that dark energy is

a harmonic rather than an exponential effect, which is furthermore related to the

binding energy of the underlying constituents of the universe. As has been shown,

one is led to a time-dependence of Newton’s and Planck’s constant. These effects,

however, are usually impossible to measure - except in the dark energy itself and in

certain paricle physics properties.

Furthermore

-microsopic (L) und cosmic (a) length scales are connected in a simple linear kind

of way (’the universe expands in the same manner as the tetron bonds expand’), cf.

eq. (8) and Figure 1.

-In an analogous fashion, Planck energies E(t) and dark energies ω are linearly
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related (’the total dark energy of the universe increases proportional to the single

tetron binding energy’) via (19).

Since the universe is rather cool by now and apparently expands in a rather homo-

geneous way, these assumptions are expected to be very good approximations. This

expectation was substantiated in section IV by proving that it leads to agreement

with present day dark energy observations. Thereby it has turned out that there is

a significant contribution to the observed dark energy effect from the time variation

of Newton’s constant. Since G(t) is going down with time, the retarding effect of

ordinary matter becomes smaller, and no exponential increase of the dark energy

effect as in the cosmological constant approach is needed.

The Planck energy E0 and its time-dependent generalization E(t) play a central role

in the considerations presented here, see (5), (6) and (14). Actually, E0 has been

used in this paper with 2 meanings:

-it represents the gravitational energy of the interaction of 2 matter particles with

Planck mass M0 at Planck distance L0, i.e. E0 = G0M
2
0/L0.

-it describes the binding energy of 2 tetrons bound at distance L0.

Concerning the fundamental parameters of particle physics, it was shown that they

depend on cosmic time via the internal exchange function J, whose dependence on L

is similar but not exactly the same as that of E. With the advent of higher precision

observations, this effect may become observable.

A remaining problem is the calculation of E(t) (Planck energy) and J(t) (internal

exchange energy) from first principles, i.e. from fundamental tetron interactions. In

principle, this can be done using eqs. (29) and (30), as soon as the precise form of

the fundamental tetron interactions is known.

Finally, I want to discuss the question of energy conservation in the present frame-

work. First of all, it should be stressed that energy is conserved locally in the

interplay of processes between tetrons and ordinary and dark matter, just as it is in

GR in the interplay between the metric, the vacuum energy and ordinary and dark

matter.

The possibility that the observed acceleration of the Universe and the possible time

variation of the fundamental constants are two manifestations of the same under-
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lying dynamics (’micro and macro connection’), has already been considered in a

somewhat different context by the authors of [21, 22, 23]. In those papers a cosmic

time dependent vacuum energy density has been introduced, and it was nicely shown

how energy conservation can be maintained by an interplay between matter and the

’running vacuum’.

There is some similarity of this approach to the present work, however the arguments

of [21, 22, 23] are not directly applicable here, because the conserved energy of the

elastic tetron medium cannot be given in a Lorentz invariant way. Actually, the

conserved quantity, from which the vibrational ω2-term in eq. (7) can be derived is

given by L̇2 + ω2(L− Ls)2, or, using (8), by

1

2
ȧ2 +

ω2

2
(a− as)2 = const (37)

for a matter free elastic universe. as is the equilibrium value of a(t), at which the

tetron binding energy has a minimum, cf. Figure 2. The ω2-term is not a part of

the Einstein theory. It represents the energy of the elastic medium universe which

vibrates with a ’breathing frequency’ ω around a = as. Furthermore, this expres-

sion is valid only in the FLRW cosmic coordinate system and therefore coordinate

dependent and the model cannot be presented in a Lorentz covariant form.

The fact that it cannot be made a Lorentz covariant part of the Einstein theory

should not be considered as a surprise, because general relativity is a theory of local

curvature induced by energy-momentum and does not know about the equilibrium

of the underlying elastic medium at a = as. In the elastic picture of the universe,

the FLRW cosmic coordinate system is a preferred system, where the tetrons do not

move except for their general elastic expansion as in Figure 1. Ordinary and dark

matter particles are quasi-particle waves, gliding on the tetron substrate. Since they

respect Lorentz covariant wave equations, their physics looks the same in all inertial

coordinate systems. The elastic tetron background, on the other hand, should be

described on its preferred FLRW ’rest system’ Figure 1, and for this the variational

principle for (37) can be formulated.

Appendix: A simple Spring Model for the empty Universe

In this section a simple harmonic spring model is used to carry the idea of the

universe as an extremely low frequency oscillatory system to an end.
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Among others, it will be shown that by taking precise measurements on the cosmic

frequency ω (i.e. of the dark energy effect), the full size and total mass/energy of

the universe can be inferred. To obtain a value for ω, the retarding effects from

ordinary and dark matter have first to be subtracted out, as indicated in eq. (22),

but once this has been done and a value of ω extracted, one can use this value to

determine the full size (and not just the observable size) of the universe.

By ’full size’ is meant the size of the 3-dimensional elastic medium which once has

condensed and now is expanding within some higher dimensional space (of dimension

≥ 6). As a measure of the size of the universe I shall take a(t) from eq. (4) to have

dimension of length and assume dr2 to be dimensionless.

In the course of discussion it turns out that a non-vanishing cosmological constant

Λ is needed after all, in addition to the oscillatory term ∼ ω2(a − as). Λ was left

out in the main text eq. (7) for the sake of clarity of the arguments, but will be

included in this appendix.

Furthermore, the equation of state of the dark energy, i.e. of the invisible tetron

background substrate, will be derived[26]. The relation between tetron density and

pressure is a characteristic property of the bound tetron system. Actually, the

elastic tetron substrate resembles a fluid with elastic bonds among its constituents

rather than an ordered solid, and so the fluid equation seems an appropriate way of

description.

The reason why the universe behaves harmonic is because its tetrahedral constituents

follow a harmonic elastic interaction, i.e. the binding energy among the internal

tetrahedrons in the neighborhood of the minimum at Ls follows a parabola, see

Figure 2. While characteristic frequencies ω and H0 of the universe are tiny, the

frequency fs = f(ts) of a single tetron spring is extremely large and given by

f(t) =
1

T (t)
=

c

L(t)
(38)

where T (t) = L(t)/c is the time dependent Planck time eq. (1).

-

Coming to the details of the model, it is assumed that at each point of the elastic

universe each direction can be approximated as a serial connection of N harmonic
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springs which connect N+1 constituents (= internal tetrahedrons). These can be

thought to lie on a straight line running from one end of the universe to the other,

cf. Figure 1. The spatial extension of the universe is then given by

a(t) = NL(t) (39)

where L(t) is the bond=spring=Planck length as given in eq. (1). Clearly, this

includes the additional simplifying assumption of a cosmic time, of a breathing

oscillation and that the expanding universe has the approximate form of a cube.

The mass µ of any one of the spring chains is given by the sum of all constituent

rest masses Mrest in the chain, i.e.

µ = NMrest (40)

where Mrest is the unknown rest mass of one internal tetrahedron.

According to eq. (14), the Planck energy E(t) (and similarly the Planck mass

M(t) = E(t)/c2) is a sum of a constant energy Es plus a variable component, which

vanishes at L(ts) = Ls. Es comprises the binding energy of 2 tetrahedrons at Ls as

well as their possible rest mass

Es = Mrestc
2 − Ebind (41)

The spring constant of a single spring is d = Mrestf(ts)
2 with f(t) from eq. (38).

Therefore one has

E(L) = Es +
d

2
(L− Ls)2 = Mrestc

2 − Ebind +
1

2
Mrestc

2(1− L

Ls
)2 (42)

2 remarks are in order:

-In principle Mrest could be any value, even much larger than Ebind. To have a

bound state one needs a local minimum of E(L) at Ls but not necessarily a negative

E(Ls), i.e.

Ebind > Erest (43)

is not compelling - although present dark energy data seem to give a hint this is

true. See later.

-It is to be noted that (14) and (42) do not meet the condition E(L =∞) = Mrestc
2,

so they definitely hold only in the neighborhood of L = Ls.
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-

The basic reason why the breathing frequency ω of the universe is so small whereas

the fundamental frequency f = 1/T of its tetron constituents is so large, arises

from the following fact: Consider one chain of strings stretching from one end of the

universe to the other, each spring with a constant d. Then the serial connection of N

springs is itself a harmonic oscillator with a much smaller combined spring constant

D = d/N (44)

Note that the springs connected in parallel belong to different chains and do not

contribute to the effective overall chain constant D.

Using D = µω2 one can express the (extremely small) frequency of the universe in

terms of the (extremely large) Planck frequency fs = f(ts):

ω2 =
D

µ
=

d/N

NMrest

=
1

N2
f 2
s =

c2

N2L2
s

(45)

Thus, the full extension (39) of the universe at equilibrium can be given as

as = NLs =
c

ω
(46)

in a similar way as the observable(=Hubble) radius is given as c/H0. The present

size of the universe is somewhat smaller than as and can be expressed as

a0 =
L0

Ls

c

ω
(47)

These equations show that a precise enough measurement of the dark energy effect

(i.e. of ω) can lead to an estimate for the full size of the universe.

-

The spring model is also of use to better understand the FLRW theory within the

general elasticity ansatz. Remember the essence of the FLRW model is contained

in 2 equations

(i) the Friedmann equation for the Hubble parameter ȧ/a and

(ii) the ‘fluid equation’ for the densities ρtet and ρmat of tetrons and (ordinary and

dark) matter, respectively. Both, the tetron substrate and the matter content of the

universe are assumed to be separate uniformly distributed perfect fluids with mass

energy densities ρtet(t) and ρmat(t) and pressure ptet(t) and pmat(t).
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(i)

In the present model one can write down an equation for the conservation of energy

in a matter-free spacially flat tetron universe

µ

2
ȧ2 +

µc2

2
(1− a

as
)2 −

��
��
�HHH
HH

µ

6
Λc2a2 = −NEs (48)

the conserved energy being the kinetic plus potential energy of a chain of springs

which stretches from one end of the universe to the other. As before, µ is the sum

(40) of the constituent rest masses Mrest on the chain. The chain of springs is

furthermore assumed to be in a breathing mode, like is the whole universe. Then,

the difference in neighboring spring positions xn+1(t) − xn(t) is n-independent and

given by L(t)−Ls for each spring n, and the velocity difference by ẋn+1− ẋn = L̇(t).

Comparing (48) to the corresponding matter-free FLRW equation, there is a non-

vanishing constant contribution ∼ Es on the rhs, where there is 0 in FLRW. This

has to do with the fact that the Friedmann equation only counts contributions to

the spacetime curvature, where a constant binding energy of the tetron constituents

does not matter. The FLRW model does not know about the cosmic constituents

and uses the freedom to put their background binding energy to zero. In other

words, the binding energy Es = E(Ls) at equilibrium a = as does not contribute to

any expansion. Es is the background tetron binding energy which leads to the flat

elastic substrate being built from free tetrons, but does not at all contribute to its

possible curvature.

Any cosmological constant contribution from tetrons has been crossed out in (48),

because for the matter free elastic tetron substrate the binding forces do not drive

the universe with Λa2 to infinity, but with ω(a−as)2 to as. As will turn out later, the

time dependence of the Newton constant G = c4L/E(L) implies a time dependent

matter contribution to the cosmological constant, i.e. in case that matter is present.

-

So far we have considered an empty universe built up from an elastic substrate of

bound tetrons (or, more precisely, of bound internal tetrahedrons). If, in addition,

matter is present in the universe, the Friedmann equation reads

1

2
ȧ2 +

1

2
ω2(a− as)2 =

4π

3c2
Gρmata

2 +
1

6
Λmatc

2a2 (49)
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where ρmat denotes the energy density and ρmat/c
2 the mass density of ordinary plus

dark matter.

As before, the conserved tetron energy Es does not appear in the Friedmann equation

because it does not contribute to the spacetime curvature, i.e. to the accelerated

expansion.

Equation (49) includes a cosmological constant contribution Λmat due to ordinary

and dark matter. This comes about as follows: Λmat measures a (small) clas-

sical matter vacuum energy. Since in the present model the Newton constant

G = c4L(t)/E(L(t)) is time dependent, Λmat will turn out to be time dependent,

too, an effect which for pedagogical reasons has been withhold in the main text.

(ii,a)

In order to determine Λmat and its time dependence, we now turn to the cosmolog-

ical fluid equations. To that end, both the expanding tetron background and the

matter distribution will be approximated as fluids distributed homogeneously over

the universe with energy densities ρtet(t), ρmat(t) and pressure ptet(t) and pmat(t).

According to earlier discussions the tetronic constituents of the elastic universe be-

have more like a fluid than like a solid or a crystal. For this fluid the appropriate

form of the fluid equation is the ordinary one

ρ̇tet + 3(ρtet + ptet)
ȧ

a
= 0 (50)

because the spring coupling d is constant and the time dependent Newton coupling

not involved. In terms of a single tetrahedron with physical volume L3 around it

the density of the tetronic ‘dark energy’ fluid is

ρtet(t) =
E

V
=
Es
L3

+
Erest
2L3

s

(1− L(t)

Ls
)2 (51)

where Es = E(Ls) is the Planck energy at equilibrium and Erest/c
2 is the tetrahedral

rest mass without binding energy

Es = Erest − Ebind (52)

Erest = Mrestc
2 (53)
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Similarly, the dark energy pressure is obtained to be

ptet = −∂E
∂V

=
Erest
3L3

s

(1− L

Ls
) +O(L− Ls)2 (54)

It can be checked that (51) and (54) indeed fulfill eq. (50). These equations corre-

spond to an equation of state parameter

w =
ptet
ρtet

=
Erest
3Es

(1− L

Ls
) +O(L− Ls)2 (55)

To compare this with various other dark energy equations of state suggested in the

literature one may consult [26].

-

For matter and dark matter the suitable form of the fluid equation can be derived

from the Bianchi identity

T µν;µ = 0 (56)

for the energy-momentum tensor in general relativity. In case of a time dependent

Newton and cosmological constant one has[21, 22, 23]

d

dt
[Gρmat +

c4

8π
Λmat] + 3G(pmat + ρmat)

ȧ

a
= 0 (57)

For the late time cosmology under consideration, matter can be approximated in

the standard way as uniformly distributed dust. Ordinary and dark matter should

then fulfill the ordinary fluid equation

ρ̇mat + 3(pmat + ρmat)
ȧ

a
= 0 (58)

by means of

pmat = 0 (59)

ρmat(a) = ρmat(as)
a3s
a3

(60)

Comparing (57) and (58) one concludes, that any imbalance coming from the time

dependency of G must be cancelled by a time dependence of Λmat according to[21,

22, 23]

Ġρmat +
c4

8π
Λ̇mat = 0 (61)
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In the present approach all time dependencies arise only through a(t) = NL(t).

Therefore using

d

dt
= ȧ

d

da
= L̇

d

dL
(62)

one can calculate Λmat from the scale dependence of G eqs. (6) and (14)

Λmat(a) = Λmat(as) + 8π

∫ as

a

daρmat(a)
d

da

L

|E(L)|
(63)

In the quadratic approximation used throughout this paper, where one considers the

neighborhood of a = as and neglects terms of higher order in a − as one can carry

out the integral in (63) to obtain the a(t) dependence of Λmat:

Λmat(a) = Λmat(as) +
8πρmat(as)

|Es|
(Ls − L) +O(L− Ls)2 (64)

Here, ρmat(as)L
3
s/|Es| is the ratio of energy of normal matter within a Planck vol-

ume L3
s over one tetrahedral binding energy Es. Since there are much more bound

tetrons than matter particles in the universe, the cosmological constant due to (64)

is extremely small. This can be seen more explicitly by rewriting (64) as

Λmat(a)− Λmat(as) = 8π
ρmat(as)

ρtet(as)

Ls − L
L3
s

≈ 8π
ρmat(a0)

ρtet(a0)

L0 − L
L3
0

(65)

and using approximate values L0 − L ≈ −L0 and

ρmat(a0)/c
2 = 2.6 10−27 kg

m3
(66)

ρtet(a0)/c
2 =

M0

L3
0

= 0.54 1097 kg

m3
(67)

-

In the literature one often finds the argument that there should be enormous con-

tributions to the cosmological constant from zero point fluctuations of the matter

fields. This is ‘proven’ by summing up the zero point energies ~ωk/2 of all existing

fields over all modes with wave vector k

ρquant =
~
2

∫
d3k

(2π)3
ωk (68)

and using the Planck scale as UV cutoff. This leads to an enormous number of the

order of ρquant ∼ Es/L
3
s - actually the same order as ρtet eqs. (51) and (67). Which
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is no wonder, because both the claimed quantum effects and the tetron properties

are derived from the Planck scale.

If true, such a huge contribution to the cosmological constant would immediately tear

the universe into pieces. This then is considered a fundamental unsolved problem

and runs under the name ‘cosmological constant problem’. The suggested solutions

usually lead to a cascade of fine tuning problems.

In the elastic theory of gravity the situation is much simpler. As discussed before,

the Planck energy E0 ∼ Es contained in the neighborhood volume L3
0 of one bound

constituent tetrahedron is the binding energy of a flat spacetime and does not affect

the curvature(=accelerated expansion). Any contribution from Es on the curva-

ture/expansion of the elastic medium can safely be defined to zero. Furthermore,

quantum fluctuations do not exist by themselves at any point in the universe but

arise only in the process of detecting and measuring a matter field gliding as quasi-

particle excitation on the discrete tetron background[19]. In other words, gravity

needs no quantization nor does the cosmological constant get a contribution from

quantum fluctuations.

Finally, it was repeatedly stressed in this paper, that the tiny cosmic frequencies H0

and ω can be naturally generated from the extremely large Planck frequency c/L0

as ω = c/L0/N where N3 is the number of internal tetrahedrons in the universe, cf.

eq. (11).
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