In this pdf there is my point of view about successions and series. I talk about when a succession (and so a serie) is said convergent making attention to the succession's definition.

Natural set is $\mathbb{N} = \{1, 2, 3, 4, 5, 6, ...\}$ We define a special sum between sets "+" where $\{1,4,3,2\}$ "+" $\{1,3,2\} = \{1,4,3,2,4+1,4+3,4+2\}$

A succession is a map $f: U \to \mathbb{R}$ with $U = \mathbb{N}$ or $U = \mathbb{N}^{"} + " \dots " + " \mathbb{N}$ where $n \in U \mapsto a_n$ A succession is said convergent if $f(U) \subsetneq \mathbb{R}$.

The convergence of a succession depends by the domain of f. For example we take the succession $\{1,1,2,2,3,3,4,4,5,5,6,6,7,7,\ldots\}$. If $f : \mathbb{N} \to \mathbb{R}$ (in this case we can assume $f : \mathbb{N} \to \mathbb{N}$) we obtain $a_n = \lceil \frac{n}{2} \rceil$ than for n > 1 $a_n < n$ so $f(\mathbb{N}) \subsetneqq \mathbb{N}$ and the succession is convergent. Otherwise, if $f : \mathbb{N}^{"} + "\mathbb{N} \to \mathbb{N}$ we obtain for $n \in \mathbb{N}$ and $s \in \mathbb{N}^{"} + "\mathbb{N}$ $a_s = a_{2n} = \lceil \frac{2n}{2} \rceil = n$ than $f(\mathbb{N}^{"} + "\mathbb{N}) = \mathbb{N}$ so the succession diverges.

The same is also true for the series. A serie is the sum of the terms of a succession. A serie is convergent if the partial sum succession is convergent so the serie 1+0+1+0+1+0+... has $\{1,1,2,2,3,3,4,4,5,5,...\}$ like a partial sum succession so if the index of the serie is in \mathbb{N} the serie converges, but if index is in $\mathbb{N}^{"}+"\mathbb{N}$ the serie diverges.

If there are mistakes in my reasoning, you will tell me on mary.v95@live.it please.