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Abstract

In this paper we lay out the proof of this result in group theory using only elementary facts in
group theory.

Definition Let G be a group, p be a prime number, and Z.G/ be the center of G:

Theorem 1 If jGj D pn and H ¤ G is a subgroup of G, then G has a subgroup of order pjH j that
contains H .
Proof.
Use induction on n. Suppose that the result is correct for n � 1. Let G be a group of order pn and H ¤ G

be a subgroup of G. By Lagrange’s theorem, jZ.G/j D pk for some integer 0 5 k 5 n. Since Z.G/ ¤ .e/,
p divides jZ.G/j and so Z.G/ has an element a of order p. Let N be the subgroup of G generated by a.
Then N is of order p. Since a 2 Z.G/, N must be normal in G. Moreover, jN \H j divides jN j. So jN \H j

divides p. Thus jN \H j D 1 or p. Suppose jN \H j D 1. Then

jNH j D
jN jjH j

jN \H j
D pjH j:

So NH is a subgroup of G of order pjH j that contains H . Now suppose jN \H j D p. Since N \H � N

and jN \H j D jN j, it follows that N \H D N and hence N � H . Since H ¤ G, there is an x 2 G; x 62 H .
Clearly xN 2 G=N . Suppose xN 2 H=N . Then xN D hN for some h 2 H . Since x 2 xN and xN � hN , so
x 2 hN . Hence x D hn for some n 2 N . Since h 2 H and N � H , so x 2 H , a contradiction. To conclude
xN 62 H=N and thus H=N ¤ G=N . Since G=N is a group of order pn�1 and H=N ¤ G=N is a subgroup of
G=N , by the induction hypothesis, G=N has a subgroup P of order pjH=N j D jH j that contains H=N . Let
P D fx 2 G j xN 2 Pg. Thus P is a subgroup of G and P Š P=N . As the result of

jH j D jP j D
jP j

jN j
D
jP j

p
;

so jP j D pjH j. Let h 2 H . Then hN 2 H=N . Moreover, H=N � P. To conclude hN 2 P and thus h 2 P .
As the result, H � P .

Theorem 2 Any subgroup of order pn�1 in a group G of order pn is normal in G.

Theorem 3 If jGj D pn and H ¤ G is a subgroup of G; then there exists an x 2 G; x 62 H such that
x�1Hx D H:

Proof.
By Theorem 1, G has a subgroup K of order pjH j that contains H . By Lagrange’s theorem, jH j D pi

for some integer 0 5 i 5 n � 1. So jKj D piC1 and hence H is normal in K by Theorem 2. Since
jK �H j D jKj � jH j D piC1 � pi > 0, there is an x 2 K; x 62 H . Since H is normal in K,

x�1Hx D x�1H.x�1/�1
D H:

Finally x 2 K � G as required.
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