On the Ramanujan's Fundamental Formula for obtain a highly precise Golden Ratio: mathematical connections with Black Holes Entropies and Like-Particle Solutions

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In the present research thesis, we have obtained various and interesting new mathematical connections concerning the fundamental Ramanujan's formula to obtain a highly precise golden ratio, some sectors of Particle Physics and Black Holes entropies.

[^0]http://discovermagazine.com/2015/jan-feb/15-a-beautiful-find

https://twitter.com/pickover/status/1167248857958420480

https://www.sharanagati.org/the-golden-section-of-bhagavad-gita/

http://wallpaperswide.com/snail shell spiral-wallpapers.html

Ramanujan and Phi

From:
https://blog.wolfram.com/2013/05/01/after-100-years-ramanujan-gap-filled/

This is the Ramanujan fundamental formula for obtain a beautiful and highly precise golden ratio:

$$
\sqrt[5]{\left(\frac{1}{\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}-\frac{11 \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)}-\frac{5 \sqrt{5} \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{\left.(-\sqrt{5} \pi)^{5}\right)}\right.}\right)}
$$

$1 /\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5 *\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right)\right.$

> Input: $\frac{1}{\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}$ Open code

Enlarge Data Customize A Plaintext Interactive
Exact result: 1
$\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5} \pi^{5}}$
Decimal approximation:

- More digits
11.09016994374947424102293417182819058860154589902881431067...

Open code
11.09016994374947424102293417182819058860154589902881431067
$\left.\left(11 * 5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right) /\left(\left(\left(2 *\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5 *\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right)\right.\right.\right.\right.$

Input:

$$
\frac{11 \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{\left.(-\sqrt{5} \pi)^{5}\right)}\right)}
$$

Enlarge Data Customize A Plaintext Interactive
Exact result:
$\frac{55 e^{-25 \sqrt{5} \pi^{5}}}{2\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5} \pi^{5}}\right)}$

Decimal approximation:

- More digits
$9.99290225070718723070536304129457122742436976265255 \ldots \times 10^{-7428}$
Open code
$9.99290225070718723070536304129457122742436976265255 \times 10^{\wedge}$ - 7428
$\left.\left(5 \operatorname{sqrt}(5) * 5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right) /\left(\left(\left(2^{*}\left(\left((1 / 32(-1+\operatorname{sqrt}(5)))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.$ $\left.\left.\operatorname{sqrt(5)*Pi)})^{\wedge} 5\right)\right)$)

Input:

$$
\frac{5 \sqrt{5} \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)}
$$

Enlarge Data Customize A Plaintext Interactive
Exact result
$\frac{25 \sqrt{5} e^{-25 \sqrt{5} \pi^{5}}}{2\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5} \pi^{5}}\right)}$

Decimal approximation:

- More digits

$$
1.01567312386781438874777576295646917898823529098784 \ldots \times 10^{-7427}
$$

Open code
$1.01567312386781438874777576295646917898823529098784 \times 10^{\wedge}$ - 7427

Input interpretation:
$\left(1 /\left(\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)-\right.\right.$
$\frac{9.99290225070718723070536304129457122742436976265255}{10^{7428}}-$
$\left.\left.\frac{1.01567312386781438874777576295646917898823529098784}{10^{7427}}\right)\right) \wedge(1 / 5)$

Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
1.618033988749894848204586834365638117720309179805762862135...

Or:
$\left(\left(\left(\left(1 /\left(((1 / 32)-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \operatorname{Pi}))^{\wedge} 5\right)\right)\right)-(-\right.\right.\right.$
$\left.\left.\left.1.6382898797095665677239458827012056245798314722584 \times 10^{\wedge}-7429\right)\right)\right)^{\wedge} 1 / 5$

Input interpretation:

1

$\sqrt[5]{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)--\frac{1.6382898797095665677239458827012056245798314722584}{10^{7429}}}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
1.618033988749894848204586834365638117720309179805762862135

The result, thence, is:
1.6180339887498948482045868343656381177203091798057628

This is a wonderful golden ratio, fundamental constant of various fields of mathematics and physics

Continued fraction

- Linear form

Possible closed forms:

- More
$\phi \approx 1.618033988749894848204586834365638117720309179805762862135$
Enlarge Data Customize A Plaintext Interactive
$\Phi+1 \approx 1.618033988749894848204586834365638117720309179805762862135$
$\frac{1}{\Phi} \approx 1.618033988749894848204586834365638117720309179805762862135$
Now, we take the three results and calculate the following interesting expressions:
(1.01567312386781438874777576295646917898823529098784×10^-7427) /
($9.99290225070718723070536304129457122742436976265255 \times 10^{\wedge}$-7428)

Input interpretation:
$\underline{1.01567312386781438874777576295646917898823529098784}$
$\frac{10^{7427}}{\frac{9.99290225070718723070536304129457122742436976265255}{10^{7428}}}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
1.016394535227177134731442576696034652473008345277961510888...

The result is:
1.016394535227177134731442576696034652473008345277961510888

Rational approximation:

84753381552557490451770790712

83386301888777894022056258371

$$
=1+\frac{1367079663779596429714532341}{83386301888777894022056258371}
$$

Open code

Enlarge Data Customize A Plaintext Interactive

Continued fraction:

- Linear form

Possible closed forms:

- More

$\frac{5 \sqrt{5}}{11} \approx 1.0163945352271771347314425766960346524730083452779662383$

Enlarge Data Customize A Plaintext Interactive
$\frac{5}{11}(2 \Phi+1) \approx 1.0163945352271771347314425766960346524730083452779662383$
$\frac{10}{11 \Phi}-\frac{5}{11} \approx 1.0163945352271771347314425766960346524730083452779662383$

- Φ is the golden ratio conjugate
[(1.01567312386781438874777576295646917898823529098784×10^-7427)/ ($\left.\left.9.99290225070718723070536304129457122742436976265255 \times 10^{\wedge}-7428\right)\right]^{\wedge} 31$

Enlarge Data Customize A Plaintext Interactive
Result:
1.655510584358883198709997446159741616946175065249919104301..

The result is:

1.655510584358883198709997446159741616946175065249919104301

Rational approximation:
69673893686116680947888837251
42086045443858489000117795970

$$
=1+\frac{27587848242258191947771041281}{42086045443858489000117795970}
$$

Open code

Enlarge Data Customize A Plaintext Interactive
Continued fraction:
Linear form

- Linear form

Possible closed forms

- More
$\frac{2729646287 \pi}{5179934700} \approx 1.655510584358883198752922$
Enlarge Data Customize A Plaintext Interactive

$$
\begin{aligned}
& \text { root of } 555 x^{4}-633 x^{3}+80 x^{2}+6070 x-11565 \text { near } x=1.65551 \approx \\
& 1.6555105843588831987078084 \\
& \frac{1}{11} \sqrt{\frac{1}{2}(-7728+2352 e+40 \pi+2701 \log (2))} \approx 1.6555105843588831990329
\end{aligned}
$$

We note that $1,65551058 \ldots$ is very near to the fourteenth root of following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$

$$
\left(\sqrt{\frac{113+5 \sqrt{505}}{8}}+\sqrt{\frac{105+5 \sqrt{505}}{8}}\right)^{3}=1164,269601267364
$$

Indeed:

$$
\sqrt[14]{\left(\sqrt{\frac{113+5 \sqrt{505}}{8}}+\sqrt{\frac{105+5 \sqrt{505}}{8}}\right)^{3}}=1,65578 \ldots
$$

$11.09016994374947424102293417182819058860154589902881431067+$ ($1.01567312386781438874777576295646917898823529098784 \times 10^{\wedge}-7427$) / ($\left.9.99290225070718723070536304129457122742436976265255 \times 10^{\wedge}-7428\right)$

Input interpretation:
$11.09016994374947424102293417182819058860154589902881431067+$ $\underline{1.01567312386781438874777576295646917898823529098784}$

$$
\frac{9.99290225070718723070536304129457122742436976265255}{10^{7428}}
$$

Open code

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
$12.10656447897665137575437674852422524107455424430677582155 \ldots$

The result is:
12.10656447897665137575437674852422524107455424430677582155 and is very near to the black hole entropy value $\underline{12.1904}$ (that is equal to the \ln of 196883)

Rational approximation:
308989299311928902774738082929
25522459311103200467827553378

$$
=12+\frac{2719787578690497160807442393}{25522459311103200467827553378}
$$

[^1]Continued fraction:

- Linear form

Possible closed forms:

- More
$\frac{1}{22}(121+65 \sqrt{5}) \approx$
12.106564478976651375754376748524225241074554244306780548

Enlarge Data Customize A Plaintext Interactive
$\frac{1}{11}(65 \Phi+93) \approx$
12.106564478976651375754376748524225241074554244306780548
$\frac{37-9 \Phi}{11(2 \Phi-1)} \approx 12.106564478976651375754376748524225241074554244306780548$

- Φ is the golden ratio conjugate
((11.09016994374947424102293417182819058860154589902881431067+(1.01567 $312386781438874777576295646917898823529098784 \times 10^{\wedge}$ $7427) /\left(9.99290225070718723070536304129457122742436976265255 \times 10^{\wedge}\right.$ 7428) $)^{\wedge} 3$
Input interpretation:
$11.09016994374947424102293417182819058860154589902881431067+$
$\left.\frac{\frac{1.01567312386781438874777576295646917898823529098784}{10^{7427}}}{\frac{9.99290225070718723070536304129457122742436976265255}{10^{7428}}}\right)^{3}$

Open code

- More digits
1774.445880637341360929898137888437610498796703478649700555

The result is:
1774.445880637341360929898137888437610498796703478649700555

Rational approximation:
2497836262005287330445683785493
1407671143573068730650200572 $=1774+\frac{627653306663402272227970765}{1407671143573068730650200572}$
Open code

Enlarge Data Customize A Plaintext Interactive
Continued fraction:

- Linear form

From:
$1774.445880637341360929898137888437610498796703478649700555-48=$ $=1726.445880637341360929898137888437610498796703478649700554$

Result that is very near to the range of the mass of $\mathrm{f}_{0}(1710)$ candidate glueball.
$\left[\exp \left(11.090169943749474241+\left(1.015673123867814388747 \times 10^{\wedge}\right.\right.\right.$ $\left.7427) /\left(9.9929022507071872307 \times 10^{\wedge-7428)}\right)\right]^{\wedge} 1 / 8$

[^2]Enlarge Data Customize A Plaintext Interactive
Result:
More digits
4.5417870587209305302...

This value $4,541787 \ldots$ is practically equal to the value of mass of the dark atom ≈ 5 $\mathrm{GeV}=4.5 * 10^{17}$
and
$\left[\exp \left(11.090169943749474241+\left(1.015673123867814388747 \times 10^{\wedge}\right.\right.\right.$ -
$\left.\left.7427) /\left(9.9929022507071872307 \times 10^{\wedge}-7428\right)\right)\right]^{\wedge} 1 / 8 * 0.92434086$

Input interpretation:
$\sqrt[8]{\exp \left(11.090169943749474241+\frac{\frac{1.015673123867814388747}{10^{7427}}}{\frac{9.9929022507071872307}{10^{7428}}}\right) \times 0.92434086}$
Open code

Enlarge Data Customize A Plaintext Interactive
More digit
4.1981594...

Continued fraction:

- Linear form

The result is: $4.19815935579 \ldots$ and is a very near to the range of the mass of hypothetical dark matter particles.
$\left(()\left(\left(\left[\exp \left(11.090169943749474241+\left(1.015673123867814388747 \times 10^{\wedge}-\right.\right.\right.\right.\right.\right.$ $\left.\left.7427) /\left(9.9929022507071872307 \times 10^{\wedge}-7428\right)\right)\right]^{\wedge} 1 / 8 *(1.0061571663-$ $0.081816+0.0814135-0.07609064)))))^{\wedge} 1 / 3$

Input interpretation:
$\left(\sqrt[8]{\exp \left(11.090169943749474241+\frac{\frac{1.015673123867814388747}{10^{7427}}}{\frac{9.9929022507071872307}{10^{7428}}}\right)}\right.$
$(1.0061571663-0.081816+0.0814135-0.07609064)) \wedge_{(1 / 3)}$
Open code

Result:

- More digits
1.616283718780967119038391999282118987049390234042755292944...

The result is: 1.6162837187809671190383919992821189870493902340427552

Continued fraction:

- Linear form

From:
$1.6162837187809671190383919992821189870493902340427552 * 3=$
$=4.8488511563429013571151759978463569611481707021282656$
and
$1.6162837187809671190383919992821189870493902340427552 * 2.5849=$
$=4.17793178467692190600233947894434936962396881597711791648$ where 2.5849 is a Hausdorff dimension.

The results 4,8488 and 4,1779 are very near to the values of the first of upper bound dark photon energy range $\left(4.95 * 10^{16}-5.4 * 10^{16}\right)$ and of the range of the mass of hypothetical dark matter particles.

Note that:
$1 /\left[\left(5 \operatorname{sqrt}(5) * 5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right) /\left(\left(\left(2^{*}\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5 *\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\operatorname{sqrt(5)*Pi)})^{\wedge} 5\right)\right)\right)\right]$

Input:
$\frac{1}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right.} \frac{\left.5)^{5}\right)}{2}$

Open code

Enlarge Data Customize A Plaintext Interactive

$$
\frac{2 e^{25 \sqrt{5} \pi^{5}}\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5} \pi^{5}}\right)}{25 \sqrt{5}}
$$

Decimal approximation:

- More digits
$9.845687323022498522853504497386406211369747193708929 \ldots \times 10^{7426}$

Alternate forms:

- More

$$
\frac{10-11 e^{25 \sqrt{5} \pi^{5}}+5 \sqrt{5} e^{25 \sqrt{5} \pi^{5}}}{25 \sqrt{5}}
$$

Open code

Enlarge Data Customize A Plaintext Interactive
$\frac{1}{125}\left(10-11 e^{25 \sqrt{5} \pi^{5}}\right) \sqrt{5}+\frac{1}{5} e^{25 \sqrt{5} \pi^{5}}$
$e^{e^{25 \sqrt{5} \pi^{5}}\left((\sqrt{5}-1)^{5}+160 e^{-25 \sqrt{5} \pi^{5}}\right)}$
$400 \sqrt{5}$
$\ln \left(\left(\left(\left(\left(\left(1 /\left[\left(5 \operatorname{sqrt}(5) * 5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \operatorname{Pi}))^{\wedge} 5\right)\right)\right) /\left(\left(\left(2^{*}\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\operatorname{sqrt}(5) * \operatorname{Pi}))^{\wedge} 5\right)\right)\right)\right]\right)\right)\right)\right)\right)$

- $\quad \log (x)$ is the natural logarithm

Exact result:
$\log \left(\frac{2 e^{25 \sqrt{5} \pi^{5}}\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5} \pi^{5}}\right)}{25 \sqrt{5}}\right)$
Decimal approximation:

- More digits
17101.28393409786327530804780300529221259899171561940725254...

Open code
Alternate forms:

- More
$\log \left(10-11 e^{25 \sqrt{5} \pi^{5}}+5 \sqrt{5} e^{25 \sqrt{5} \pi^{5}}\right)-\frac{5 \log (5)}{2}$
Enlarge Data Customize A Plaintext Interactive
$\frac{1}{2}\left(2 \log \left(10-11 e^{25 \sqrt{5} \pi^{5}}+5 \sqrt{5} e^{25 \sqrt{5} \pi^{5}}\right)-5 \log (5)\right)$
$\log \left(\frac{2 e^{25 \sqrt{5} \pi^{5}}\left(\frac{1}{2}(5 \sqrt{5}-11)+5 e^{-25 \sqrt{5} \pi^{5}}\right)}{25 \sqrt{5}}\right)$
and:
$1 / \mathrm{Pi}^{\wedge} 2 * \ln \left(\left(\left(\left(\left(\left(1 /\left[\left(5 \operatorname{sqrt}(5) * 5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right) /\left(\left(\left(2^{*}(((1 / 32(-\right.\right.\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.\left.\left.1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}\left(\left(-\operatorname{sqrt}(5)^{*} \operatorname{Pi}\right)\right)^{\wedge} 5\right)\right)\right)\right]\right)\right)\right)\right)\right)$

Open code

Enlarge Data Customize A Plaintext Interactive
$\frac{\log \left(\frac{2 e^{25 \sqrt{5}} \pi^{5}\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5} \pi^{5}}\right)}{25 \sqrt{5}}\right)}{\pi^{2}}$
Decimal approximation:

- More digits
1732.722330006490155883907217809676768207629974194791390849...
1732.7223...

Continued fraction:

- Linear form

Series representations

- More

$$
\frac{\log \left(-1+\frac{2}{5 \sqrt{5}}+\left(\frac{1}{5}-\frac{11}{25 \sqrt{5}}\right) e^{25 \sqrt{5} \pi^{5}}\right)}{\pi^{2}}-\frac{\sum_{k=1}^{\infty} \frac{125^{k}\left(\frac{1}{125-10 \sqrt{5}+(-25+11 \sqrt{5}) e^{25} \sqrt{5} \pi^{5}}\right)^{k}}{k}}{\pi^{2}}
$$

Open code

Enlarge Data Customize A Plaintext Interactive

Integral representations:

Open code

Enlarge Data Customize A Plaintext Interactive

We have that:
$1 /\left[\left(11^{*} 5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \operatorname{Pi}))^{\wedge} 5\right)\right)\right) /\left(\left(\left(2^{*}\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\operatorname{sqrt(5)*Pi)})^{\wedge} 5\right)\right)\right)\right]$

Open code

Enlarge Data Customize A Plaintext Interactive

$$
\frac{2}{55} e^{25 \sqrt{5} \pi^{5}}\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5} \pi^{5}}\right)
$$

- More digits

$$
1.000710279067556221617981291357761768984865098218399 \ldots \times 10^{7427}
$$

Alternate forms:

- More
$\frac{1}{55}\left(10-11 e^{25 \sqrt{5} \pi^{5}}+5 \sqrt{5} e^{25 \sqrt{5} \pi^{5}}\right)$

Enlarge Data Customize A Plaintext Interactive
$\frac{2}{11}-\frac{1}{5} e^{25 \sqrt{5} \pi^{5}}+\frac{1}{11} \sqrt{5} e^{25 \sqrt{5} \pi^{5}}$
$\frac{1}{880} e^{25 \sqrt{5} \pi^{5}}\left((\sqrt{5}-1)^{5}+160 e^{-25 \sqrt{5} \pi^{5}}\right)$
$\ln \left(\left(\left(\left(1 /\left[\left(11^{*} 5^{*}\left(\mathrm{e}^{\wedge}((-\mathrm{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right) /\left(\left(\left(2^{*}\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\operatorname{sqrt(5)*Pi)})^{\wedge} 5\right)\right)\right)\right]\right)\right)\right)$)

Open code

- $\log (x)$ is the natural logarithm

Enlarge Data Customize A Plaintext Interactive
$\log \left(\frac{2}{55} e^{25 \sqrt{5}} \pi^{5}\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5}} \pi^{5}\right)\right)$
Decimal approximation:

- More digits
17101.30019569371605532588699842716636475845841079687261194...

Alternate forms:

- More
$\log \left(\frac{1}{55}\left(10-11 e^{25 \sqrt{5} \pi^{5}}+5 \sqrt{5} e^{25 \sqrt{5} \pi^{5}}\right)\right)$
Enlarge Data Customize A Plaintext Interactive
$\log \left(\frac{2}{55} e^{25 \sqrt{5} \pi^{5}}\left(\frac{1}{2}(5 \sqrt{5}-11)+5 e^{-25 \sqrt{5} \pi^{5}}\right)\right)$
Open code
$25 \sqrt{5} \pi^{5}-\log \left(\frac{55}{2}\right)+\log \left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5} \pi^{5}}\right)$
and:
$1 / \mathrm{Pi}^{\wedge} 2 * \ln \left(\left(\left(\left(1 /\left[\left(11^{*} 5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right) /\left(\left(\left(2 *\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\operatorname{sqrt(5)} * \operatorname{Pi}))^{\wedge} 5\right)\right)\right)\right]\right)\right)\right)$)

Input:
$\frac{1}{\pi^{2}} \log \left(\frac{1}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)}\right)$
Open code

Enlarge Data Customize A Plaintext Interactive

$$
\frac{\log \left(\frac{2}{55} e^{25 \sqrt{5} \pi^{5}}\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5}} \pi^{5}\right)\right)}{\pi^{2}}
$$

Decimal approximation:

- More digits
$1732.723977650629872886393641942839475932747804889887454392 \ldots$

Alternate forms:

- More
$\frac{\log \left(\frac{1}{55}\left(10-11 e^{25 \sqrt{5} \pi^{5}}+5 \sqrt{5} e^{25 \sqrt{5} \pi^{5}}\right)\right)}{\pi^{2}}$
Enlarge Data Customize A Plaintext Interactive

$$
\frac{\log \left(\frac{2}{55} e^{25 \sqrt{5} \pi^{5}}\left(\frac{1}{2}(5 \sqrt{5}-11)+5 e^{-25 \sqrt{5} \pi^{5}}\right)\right)}{\pi^{2}}
$$

Open code
$\frac{25 \sqrt{5} \pi^{5}-\log \left(\frac{55}{2}\right)+\log \left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5}} \pi^{5}\right)}{\pi^{2}}$
Open code

Continued fraction:

- Linear form

Series representations:

- More
$\frac{\log \left(\frac{1}{\left.\frac{11 \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{\left.32(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)}\right.}\right)}\right.}{\pi^{2}}=$

$$
\frac{\log \left(\frac{1}{55}\left(-45+(-11+5 \sqrt{5}) e^{25 \sqrt{5} \pi^{5}}\right)\right)}{\pi^{2}}-\frac{\sum_{k=1}^{\infty} \frac{\left(-\frac{55}{-45+(-11+5 \sqrt{5}) e^{25 \sqrt{5} \pi^{5}}}\right)^{k}}{k}}{\pi^{2}}
$$

Open code

Enlarge Data Customize A Plaintext Interactive

Open code

Integral representations:

Open code

Enlarge Data Customize A Plaintext Interactive

$$
-\frac{i}{2 \pi^{3}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(\frac{55}{-45+(-11+5 \sqrt{5}) e^{25 \sqrt{5} \pi^{5}}}\right)^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
$$

The two results 1732,72233 and 1732,72397 are very similar and are very near to the range of the mass of $f_{0}(1710)$ candidate glueball.

Now, we have that:

$$
\begin{aligned}
& 27^{*} 3+10^{\wedge} 3 * \operatorname{sqrt}\left(\left(\operatorname { e x p } \left(\left(\left(\left(\left(\left(1 /\left(\left(\left(\left(\left(1 /\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(e^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\operatorname{sqrt}(5) * \operatorname{Pi}))^{\wedge} 5\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 /\left(1164^{*} 2-32\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

Open code

Exact result:
$81+1000 e^{\frac{1}{2}} \sqrt[2296]{\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5}} \pi^{5}}$
Enlarge Data Customize A Plaintext Interactive
Decimal approximation:

- More digits

Alternate forms

- More
$81+1000 e^{\frac{1}{2} 2296} \sqrt{-\frac{11}{2}+\frac{5 \sqrt{5}}{2}+5 e^{-25 \sqrt{5}} \pi^{5}}$
Open code

Enlarge Data Customize A Plaintext Interactive
$1000 \exp \left(\frac{1}{2} \sqrt[2296]{\frac{1}{2}(5 \sqrt{5}-11)+5 e^{-25 \sqrt{5} \pi^{5}}}\right)+81$
Open code
$81+1000 e^{\frac{2296}{(\sqrt{5}-1)^{5}+160 e^{-25 \sqrt{5} \pi^{5}}}} 2^{\sqrt{5 / 2296}}$

Continued fraction:

- Linear form

We have that:
$1 /\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(11^{*} 5^{*}\left(e^{\wedge}\left(\left(-\operatorname{sqrt}(5)^{*} \mathrm{Pi}\right)\right)^{\wedge} 5\right)\right)\right)\right) /\left(\left(\left(2^{*}\left(\left(\left(1 / 32(-1+\text { sqrt }(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\operatorname{sqrt(5)*Pi)})^{\wedge} 5\right)\right)\right)\right)\right)$))) $\left.\left.\left.\left.\left.\left.)^{\wedge} 1 /(2 * 1164-32)\right)\right)\right)\right)\right)\right)$)

Input:
1
$2 \times 1164-32 \sqrt{\frac{11 \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{\left.(-\sqrt{5} \pi)^{5}\right)}\right.}}$
Open code

Exact result:
$e^{\left(25 \sqrt{5} \pi^{5}\right) / 2296} \sqrt[2296]{\frac{2}{55}\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5}} \pi^{5}\right)}$
Enlarge Data Customize A Plaintext Interactive
Decimal approximation:

- More digits
1716.944401114722818821471990021882723351969991809758315223...

Alternate forms:

- More
$\sqrt[2296]{\frac{1}{55}\left(10+(5 \sqrt{5}-11) e^{25 \sqrt{5} \pi^{5}}\right)}$
Open code

Enlarge Data Customize A Plaintext Interactive

Open code
$e^{\left(25 \sqrt{5} \pi^{5}\right) / 2296} \sqrt[2296]{\frac{2}{55}\left(\frac{1}{2}(5 \sqrt{5}-11)+5 e^{\left.-25 \sqrt{5} \pi^{5}\right)}\right.}$

Continued fraction:

- Linear form

Series representations:

- More

$$
\sqrt[2296]{\frac{2}{55}}
$$

Enlarge Data Customize A Plaintext Interactive
$\frac{1}{2 \times 1164-32 \sqrt{\frac{11\left(5 e^{(-\sqrt{5} \pi)^{5}}\right)}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{\left.(-\sqrt{5} \pi)^{5}\right)}\right.}}}=$

$$
\frac{\sqrt[2296]{\frac{2}{55}}}{\sqrt{\frac{\exp \left(-\pi^{5}{\sqrt{z_{0}}}^{5}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{5}\right)}{5 \exp \left(-\pi^{5}{\sqrt{z_{0}}}^{5}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{5}\right)+\frac{1}{32}\left(-1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{5}}}}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

We have that:
$1 /\left(\left(\left(\left(\left(\left(\left(()\left(\left(\left(5 \operatorname{sqrt}(5) * 5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \operatorname{Pi}))\right)^{\wedge}\right)\right)\right) /\left(\left(\left(2^{*}\left(\left((1 / 32(-1+\operatorname{sqrt}(5)))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\operatorname{sqrt}(5)^{*} \operatorname{Pi}\right)\right)^{\wedge} 5\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 /(2 * 1164-32)\right)\right)\right)\right)\right)\right)\right)\right)\right)$

Input: 1
$2 \times 1164-32 \sqrt{\frac{5 \sqrt{5} \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{\left.(-\sqrt{5} \pi)^{5}\right)}\right.}}$
Open code

Exact result:
$\frac{e^{\left(25 \sqrt{5} \pi^{5}\right) / 2296} 2296 \sqrt{2\left(\frac{1}{32}(\sqrt{5}-1)^{5}+5 e^{-25 \sqrt{5}} \pi^{5}\right)}}{5^{5 / 4592}}$
Decimal approximation:

- More digits
1716.932240767562897713904103115924197988364844525361104020...

Open code

Enlarge Data Customize A Plaintext Interactive
$\frac{e^{\left(25 \sqrt{5} \pi^{5}\right) / 2296} 2296}{\sqrt[574]{(\sqrt{5}}-1)^{5}+160 e^{-25 \sqrt{5} \pi^{5}}}$

Continued fraction:

- Linear form

Series representations:

- More

$$
5 e^{\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} 4^{\left.-k\binom{1 / 2}{k}\right)^{5}} \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}-. . . ~ . ~ . ~\right.}
$$

$$
10 e^{\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} 4^{\left.-k\binom{1 / 2}{k}\right)^{5}} \sqrt{4}^{2}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+. . . ~+. . .\right.}
$$

$$
10 e^{\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} 4^{\left.-k\binom{1 / 2}{k}\right)^{5}} \sqrt{4}^{3}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{3}-~ . ~\right.}
$$

$$
5 e^{\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{1 / 2}{k}\right)^{5}} \sqrt{4}^{4}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{4}+
$$

$$
\left.\left.\left.\left.e^{\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{1 / 2}{k}\right)^{5}} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)\right)^{5}\right)\right) \wedge(1 / 2296)\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
2 \times 1164-32 \sqrt{\frac{5\left(\sqrt{5} 5 e^{(-\sqrt{5} \pi)^{5}}\right)}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)}}=
\end{array} \\
& (\sqrt[2296]{2}) /\left(\sqrt [1 1 4 8] { 5 } \left(\left(\operatorname { e x p } \left(-\pi^{5}\left(\frac{1}{z_{0}}\right)^{5 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{5 / 2\left(1+\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right.\right.\right.\right. \\
& \left.\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{5}\right)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(5 \operatorname { e x p } \left(-\pi^{5}\left(\frac{1}{z_{0}}\right)^{5 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{5 / 2\left(1+\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right.\right. \\
& \left.\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{5}\right)+ \\
& \frac{1}{32}\left(-1+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2\left(1+\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right. \\
& \left.\left.\left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{5}\right)\right) \wedge(1 / 2296)\right)
\end{aligned}
$$

We have that:
$\left(\left(\left(\left(1 /\left(\left((1 / 32(-1+\operatorname{sqrt}(5)))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\operatorname{sqrt(5)*Pi)})^{\wedge} 5\right)\right)\right)\right)\right)^{\wedge}(1.08185+1.087534+1.006157-0.07609064)$

Input interpretation:
$\left(\frac{1}{\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}\right)^{1.08185+1.087534+1.006157-0.07609064}$

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
1732.74...

And
$\left(\left(\left(\left(1 /\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right)\right)\right)^{\wedge}\left(\left(29.7668^{\wedge}(1 / 3)\right)\right.\right.\right.\right.$
where 29.7668 is a value of the Black Hole entropy (see Table)

Input interpretation:
$\left(\frac{1}{\left.\frac{1}{32(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}\right)^{\text {Open code }}}\right)^{\sqrt[3]{29.7668}}$

Enlarge Data Customize A Plaintext Interactive
Fewer digits

- More digits
1731.534151150132597646379570111950361166250299421249406794...

Series representations:

- More

$$
\begin{aligned}
& \left(\frac{1}{\left.\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)^{\sqrt[3]{29.7668}}}=\right. \\
& \left(\frac{1}{5 e^{\left.-\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} 4^{-k(1 / 2} k\right)\right)^{5}}+\frac{1}{32}\left(-1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{5}}\right)^{3.09916}
\end{aligned}
$$

Open code

Enlarge Data Customize A plaintext Interactive
$\left(\frac{1}{\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}\right)^{\sqrt[3]{29.7668}}=$
$\left(\frac{1}{5 \exp \left(-\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{5}\right)+\frac{1}{32}\left(-1+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{5}}\right)^{3.09916}$
Open code

$$
\left.\left.\begin{array}{l}
\left(\frac{1}{\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}\right)^{\sqrt[3]{29.7668}}= \\
\left(1 /\left(5 \exp \left(-\frac{\pi^{5}\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 4^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{5}}{32 \sqrt{\pi}^{5}}\right)+\right.\right. \\
\frac{1}{32}\left(-1+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 4^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
\end{array}\right)\right)^{5} .0 .09916
$$

Integral representation:
$(1+z)^{a}=\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$
All the results: $1728,8581716,9441716,9321732,74$ and 1731,53 are very near to the range of the mass of $f_{0}(1710)$ candidate glueball.

Note that:

Input interpretation:
$\sqrt[5]{\frac{1}{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)--\frac{1.6382898797095665677239458827012056245798314722584}{10^{7429}}}}{ }^{3}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
$4.236067977499789696409173668731276235440618359611525724270 \ldots$

The result is a very near to the range of the mass of hypothetical dark matter particles.
We have that:

Result:

- More digits

```
4.5347571611551792889915884948567915637887680293971326\ldots. \times1017
```

Or
(1.618033988749894848204586834365638117720309179805762862135) ${ }^{\wedge} \mathrm{Pi}$ * $10^{\wedge} 17$
input interpretation.
$1.618033988749894848204586834365638117720309179805762862135^{\pi} \times 10^{17}$
Open code

Enlarge Data Customize A Plaintext Interactive

More digits

$4.5347571611551792889915884948567915637887680293971326 \ldots \times 10^{17}$

This value is very near to the value of mass of the dark atom $\approx 5 \mathrm{GeV}=4.5 * 10^{17}$
We have also that:
((()((((1//((1/32(-1+sqrt(5))^5+5*(e^((-sqrt(5)*Pi))^5)))-(-
$1.6382898797095665677239458827012056245798314722584 \times 10^{\wedge}$ $\left.\left.7429)))^{\wedge} 1 / 5\right)\right)$)))) ${ }^{\wedge} \mathrm{PI}$ * 1.08753454 * $10 \wedge 16$

```
Input interpretation:
                    1
\(\sqrt[5]{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)--\frac{1.6382898797095665677239458827012056245798314722584}{10^{7429}}}\)
    \(1.08753454 \times 10^{16}\)
Open code
```

Enlarge Data Customize A Plaintext Interactive

Result:

- More digits
$4.93170504 \ldots \times 10^{16}$
Or:
$(1.618033988749894848204586834365638117720309179805762862135)^{\wedge} \mathrm{Pi} *$ 1.08753454 * 10^16

```
Input interpretation:
1.618033988749894848204586834365638117720309179805762862135 }\mp@subsup{}{}{\pi
    1.08753454\times10 16
```

Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
$4.93170504 \ldots \times 10^{16}$
This result is very near to the first value of upper bound dark photon energy range (4.95* $10^{16}-5.4 * 10^{16}$)

We have that:

Input interpretation:
$\sqrt[5]{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)--\frac{1.6382898797095665677239458827012056245798314722584}{10^{7429}}}$ $-\left(2^{9}-2^{5}\right)$

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
1726.999546896146215177927205518884822189945160468287944927...

Continued fraction:

- Linear form

This result is very near to the range of the mass of $\mathrm{f}_{0}(1710)$ candidate glueball.

We have that:

```
        1
\(\sqrt[5]{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)--\frac{1.6382898797095665677239458827012056245798314722584}{10^{7429}}}\)
    \(+\left(12^{2}+8^{2}\right)\)
```

Enlarge Data Customize A Plaintext Interactive

Result:

$729.0019193787254996316687324071936814288320388947427468775 \ldots$

This value is very near to the Ramanujan expression $6^{3}+8^{3}=9^{3}-1=728$

Among Ramanujan's formulas, there is a beautiful relationship that links, through a wonderful continuous fraction, two fundamental numbers: Φ, the golden section and the famous π :

$$
\sqrt{\Phi+2}-\Phi=\frac{e^{\frac{-2 \pi}{5}}}{1+\frac{e^{\frac{-2 \pi}{5}}}{1+\frac{e^{\frac{-2 \pi}{5}}}{1+\ldots}}}=0,2840 \ldots
$$

(https://www.matematicamente.it/storia/Ramanujan-genio-matematico.pdf)

Now let's analyze this expression and see if we can get new and interesting mathematical connections with some sectors of particle physics and black holes
$(((\operatorname{sqrt}((\operatorname{sqrt}(5)+1) / 2+2)))-((\operatorname{sqrt}(5)+1) / 2))$
$\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)$

Result:
$\frac{1}{2}(-1-\sqrt{5})+\sqrt{2+\frac{1}{2}(1+\sqrt{5})}$
Decimal approximation:
$0.284079043840412296028291832393126169091088088445737582759 \ldots$

Alternate forms:
$\frac{1}{2}(\sqrt{2(5+\sqrt{5})}-\sqrt{5}-1)$
$-\frac{1}{2}-\frac{\sqrt{5}}{2}+\sqrt{\frac{1}{2}(5+\sqrt{5})}$
$-\frac{1}{2}-\frac{\sqrt{5}}{2}+\sqrt{2+\frac{1}{2}(1+\sqrt{5})}$
Minimal polynomial:
$x^{4}+2 x^{3}-6 x^{2}-2 x+1$

Continued fraction:

$-5 / 2 \ln [(((\operatorname{sqrt}((\operatorname{sqrt}(5)+1) / 2+2)))-((\operatorname{sqrt}(5)+1) / 2))]$
$-\frac{5}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)$

- $\log (x)$ is the natural logarithm

Exact result:
$-\frac{5}{2} \log \left(\frac{1}{2}(-1-\sqrt{5})+\sqrt{2+\frac{1}{2}(1+\sqrt{5})}\right)$
Decimal approximation:
$3.146256890409912031962983108617580961172288121414743463855 \ldots$
3.146256890409912031962983108617580961172288121414743463855

Property:
$-\frac{5}{2} \log \left(\frac{1}{2}(-1-\sqrt{5})+\sqrt{2+\frac{1}{2}(1+\sqrt{5})}\right)$ is a transcendental number
Continued fraction:

Series representations:

$$
\frac{1}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)(-5)=\frac{5}{2} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3-\sqrt{5}+\sqrt{2(5+\sqrt{5})})^{k}}{k}
$$

$$
\frac{1}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)(-5)=
$$

$$
-5 i \pi\left[\frac{\arg (-1-\sqrt{5}+\sqrt{2(5+\sqrt{5})}-2 x)}{2 \pi}\right\rfloor-\frac{5 \log (x)}{2}+
$$

$$
\frac{5}{2} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1-\sqrt{5}+\sqrt{2(5+\sqrt{5})}-2 x)^{k} x^{-k}}{k} \text { for } x<0
$$

$$
\begin{aligned}
& \left.\left.\frac{1}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)(-5)=-5 i \pi \right\rvert\, \frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]- \\
& \frac{5 \log \left(z_{0}\right)}{2}+\frac{5}{2} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-1-\sqrt{5}+\sqrt{2(5+\sqrt{5})}-2 z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representation:

$$
\frac{1}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)(-5)=-\frac{5}{2} \int_{1}^{\frac{1}{2}(-1-\sqrt{5}+\sqrt{2(5+\sqrt{5})})} \frac{1}{t} d t
$$

We note that:

$$
1 / 1.7712 *(((-5 / 2 \ln [(((\operatorname{sqrt}((\operatorname{sqrt}(5)+1) / 2+2)))-((\operatorname{sqrt}(5)+1) / 2))])))^{\wedge} 7
$$

Where 1,7712 is a Hausdorff dimension
Input interpretation:
$\frac{1}{1.7712}\left(-\frac{5}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)\right)^{7}$
Open code

- $\log (x)$ is the natural logarithm

Result:

- More digits
1723.03...

Series representations:

- More

$$
\frac{\left(-\frac{5}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)\right)^{7}}{344.598\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}+\sqrt{\frac{1}{2}(5+\sqrt{5})}\right)^{k}}{k}\right)^{7}}=
$$

Open code

Enlarge Data Customize A Plaintext Interactive

$$
\begin{aligned}
& \frac{\left(-\frac{5}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)\right)^{7}}{1.7712}= \\
& -344.598 \log ^{7}\left(-\frac{1}{2}+\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-2^{-1-2 k} \sqrt{4}+2^{k}(3+\sqrt{5})^{-k} \sqrt{\frac{1}{2}(3+\sqrt{5})}\right)\right)
\end{aligned}
$$

Open code

$$
\begin{aligned}
& \frac{\left(-\frac{5}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)\right)^{7}}{-344.598\left(2 i \pi\left(\frac{\arg \left(-\frac{1}{2}-x-\frac{\sqrt{5}}{2}+\sqrt{\frac{1}{2}(5+\sqrt{5})}\right)}{2 \pi}\right)+\log (x)-\right.}= \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}\left(-\frac{1}{2}-x-\frac{\sqrt{5}}{2}+\sqrt{\frac{1}{2}(5+\sqrt{5})}\right)^{k}}{k}\right)^{7} \text { for } x<0
\end{aligned}
$$

Integral representation:

$$
\frac{\left(-\frac{5}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)\right)^{7}}{1.7712}=-344.598\left(\int_{1}^{-\frac{1}{2}-\frac{\sqrt{5}}{2}+\sqrt{\frac{1}{2}(5+\sqrt{5})}} \frac{1}{t} d t\right)^{7}
$$

```
\(\left.\left(\left(\left(\left(1 / 1.7712 *(((-5 / 2 \ln [(((\operatorname{sqrt}((\operatorname{sqrt}(5)+1) / 2+2)))-((\operatorname{sqrt}(5)+1) / 2))])))^{\wedge} 7\right)\right)\right)\right)\right)^{\wedge} 1 / 3\)
```

Input interpretation:
$\sqrt[3]{\frac{1}{1.7712}\left(-\frac{5}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)\right)^{7}}$
Open code

- $\log (x)$ is the natural logarithm

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
11.9885...

This result is very near to the two values of black hole entropies 11,8458 and 12,1904
We have that:
$(((((((1 / 1.7712 *)(((-5 / 2 \ln [(((\operatorname{sqrt}((\operatorname{sqrt}(5)+1) / 2+2)))-$ $\left(\left(\operatorname{sqrt(5)+1)/2))])))^{\wedge }7))))))))^{\wedge }1/15}\right.\right.$

Input interpretation:
$\sqrt[15]{\frac{1}{1.7712}\left(-\frac{5}{2} \log \left(\sqrt{\frac{1}{2}(\sqrt{5}+1)+2}-\frac{1}{2}(\sqrt{5}+1)\right)\right)^{7}}$
Open code

- $\quad \log (x)$ is the natural logarithm

Enlarge Data Customize A Plaintext Interactive

Result:

- Fewer digits
- More digits
1.643435927508493987136581463417090709645425557040873758714...
1.6434359275....... $\approx \zeta(2)$

Now:
$\exp (-2 \mathrm{Pi} / 5)$
$\exp \left(-2 \times \frac{\pi}{5}\right)$
Exact result:
$e^{-(2 \pi) / 5}$
Decimal approximation:
$0.284609543336029280115568598422534831907047843012062136097 \ldots$

Property:

$e^{-(2 \pi) / 5}$ is a transcendental number

Note that:
$\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(1+\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(1+\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(1+\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(1+\left(\left(\left(\mathrm{e}^{\wedge}\right)-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $2 \mathrm{Pi} / 5))$)
$\frac{e^{-2 \times \pi / 5}}{1+\frac{e^{-2 \times \pi / 5}}{1+\frac{e^{-2 \times \pi / 5}}{1+\frac{e^{-2 \times \pi / 5}}{1+e^{-2 \times \pi / 5}}}}}$

Exact result:
$\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+e^{-(2 \pi) / 5}}}}}$
Decimal approximation:
$0.231234066267623019735059502654595755412999544181351871272 \ldots$

Property:
$\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+e^{-(2 \pi) / 5}}}}}$ is a transcendental number

Alternate forms:

$$
\frac{3+2 \cosh \left(\frac{2 \pi}{5}\right)}{3+4 e^{(2 \pi) / 5}+e^{(4 \pi) / 5}}
$$

$\frac{3+e^{-(2 \pi) / 5}+e^{(2 \pi) / 5}}{3+4 e^{(2 \pi) / 5}+e^{(4 \pi) / 5}}$
$\frac{1}{3} e^{-(2 \pi) / 5}+\frac{1}{2\left(1+e^{(2 \pi) / 5}\right)}+\frac{1}{6\left(3+e^{(2 \pi) / 5}\right)}$

Continued fraction:

Series representations:

$$
\frac{e^{-(2 \pi) / 5}}{\left.1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+e^{-(2 \pi) / 5}}}}=\frac{\left(1+3\left(\frac{1}{\sum_{k=0}^{\infty} \frac{e^{i k \pi}}{k!}}\right)^{(2 \pi) / 5}+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{e^{i k \pi}}{k!}}\right)^{(4 \pi) / 5}\right)\left(\frac{1}{\sum_{k=0}^{\infty} \frac{e^{i k \pi}}{k!}}\right)^{-(2 \pi) / 5}}{\left(1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{e^{i k \pi}}{k!}}\right)^{(2 \pi) / 5}\right)\left(3+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{e^{i k \pi}}{k!}}\right)^{(2 \pi) / 5}\right)}\right)}
$$

Integral representations:

$$
\begin{aligned}
& \frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+e^{-(2 \pi) / 5}}}}=\frac{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-(2 \pi) / 5}\left(1+3\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{(2 \pi) / 5}+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{(4 \pi) / 5}\right)}{\left(1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{(2 \pi) / 5}\right)\left(3+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{(2 \pi) / 5}\right)}} \\
& \frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+e^{-(2 \pi) / 5}}}}}= \\
& e^{-8 / 5 \sum_{k=0}^{\infty} e^{i k \pi /(1+2 k)}}\left(1+3 e^{8 / 5 \sum_{k=0}^{\infty} e^{i k \pi} /(1+2 k)}+e^{\left.16 / 5 \sum_{k=0}^{\infty} e^{i k \pi /(1+2 k)}\right)}\right. \\
& \left(1+e^{8 / 5} \sum_{k=0}^{\infty} e^{i k \pi /(1+2 k)}\right)\left(3+e^{8 / 5} \sum_{k=0}^{\infty} e^{i k \pi /(1+2 k)}\right)
\end{aligned}
$$

$\left.\frac{e^{-(2 \pi) / 5}}{\left.1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+e^{-(2 \pi) / 5}}}}=\frac{e^{-4 / 5 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\left(1+3 e^{4 / 5} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right.}{}+e^{8 / 5 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)}\left(1+e^{4 / 5 \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)\left(3+e^{4 / 5} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)\right)$
$\frac{e^{-(2 \pi) / 5}}{\left.1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+e^{-(2 \pi) / 5}}}}=\frac{e^{-4 / 5 \int_{0}^{\infty} \sin (t) / t d t}\left(1+3 e^{4 / 5} \int_{0}^{\infty} \sin (t) / t d t\right.}{}+e^{8 / 5 \int_{0}^{\infty} \sin (t) / t d t}\right)}\left(1+e^{4 / 5 \int_{0}^{\infty} \sin (t) / t d t}\right)\left(3+e^{4 / 5 \int_{0}^{\infty} \sin (t) / t d t}\right)$
$\frac{e^{-(2 \pi) / 5}}{\left.1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{1+e^{-(2 \pi) / 5}}}}=\frac{e^{-8 / 5} \int_{0}^{1} \sqrt{1-t^{2}} d t\left(1+3 e^{8 / 5} \int_{0}^{1} \sqrt{1-t^{2}} d t\right.}{}+e^{16 / 5} \int_{0}^{1} \sqrt{1-t^{2}} d t\right)}\left(1+e^{8 / 5} \int_{0}^{\left.1 \sqrt{1-t^{2}} d t\right)\left(3+e^{8 / 5} \int_{0}^{1} \sqrt{1-t^{2}} d t\right)}\right.$

And
$\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(1+\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(142+\left(\left(\left(\mathrm{e}^{\wedge}\right)-2 \mathrm{Pi} / 5\right)\right)\right) /\left(\left(143+\left(\left(\left(\mathrm{e}^{\wedge}\right)-\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $2 \mathrm{Pi} / 5)))) /\left(\left(144+\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right)\right.\right.\right.$

Exact result:

Decimal approximation:
$0.284040251552571646790195087181918299434906557227779317801 \ldots$
Property:

Alternate forms:

$$
\frac{e^{-(2 \pi) / 5}\left(1+20592 e^{(2 \pi) / 5}+2924064 e^{(4 \pi) / 5}\right)}{145+41184 e^{(2 \pi) / 5}+2924064 e^{(4 \pi) / 5}}
$$

Continued fraction:

Series representations:

$$
\begin{aligned}
& \frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{142+\frac{e^{-(2 \pi) / 5}}{143+\frac{e^{-(2 \pi) / 5}}{144+e^{-(2 \pi) / 5}}}}}= \\
& \frac{e^{-8 / 5 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\left(1+20592 e^{8 / 5 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+2924064 e^{16 / 5 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)}{1+\frac{145+41184 e^{8 / 5 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+2924064 e^{16 / 5 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}{142+\frac{e^{-(2 \pi) / 5}}{e^{-(2 \pi) / 5}}}=} \\
& \frac{\left(\sum_{k=0}^{\infty} \frac{1}{k!)^{-(2 \pi) / 5} \frac{e^{-(2 \pi) / 5}}{144+e^{-(2 \pi) / 5}}}\right.}{\frac{145+41184\left(\sum_{k=0}^{\infty}\right.}{\left.\frac{1}{k!}\right)^{(2 \pi) / 5}+2924064\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{(4 \pi) / 5}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{142+\frac{e^{-(2 \pi) / 5}}{143+\frac{e^{-(2 \pi) / 5}}{144+e^{-(2 \pi) / 5}}}}}= \\
& \frac{\left(1+20592\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{(2 \pi) / 5}+2924064\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{(4 \pi) / 5}\right)\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{-(2 \pi) / 5}}{145+41184\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{(2 \pi) / 5}+2924064\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{(4 \pi) / 5}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{142+\frac{e^{-(2 \pi) / 5}}{143+\frac{e^{-(2 \pi) / 5}}{144+e^{-(2 \pi) / 5}}}}}= \\
& \left.\frac{e^{-4 / 5} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}{} \frac{1+20592 e^{4 / 5} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}{}+2924064 e^{8 / 5} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right) \\
& 145+41184 e^{4 / 5} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \frac{e^{-(2 \pi) / 5}}{1+\frac{e^{-(2 \pi) / 5}}{142+\frac{e^{-(2 \pi) / 5}}{143+\frac{e^{-(2 \pi) / 5}}{144+e^{-(2 \pi) / 5}}}}}= \\
& \frac{e^{-4 / 5 \int_{0}^{\infty} \sin (t) / t d t}\left(1+20592 e^{4 / 5} \int_{0}^{\infty} \sin (t) / t d t\right.}{} \\
& \left.\frac{145+41184 e^{4 / 5} \int_{0}^{\infty} \sin (t) / t d t}{}+2924064 e^{8 / 5} \int_{0}^{\infty} \sin (t) / t d t\right) \\
& 1+\frac{e^{-(2 \pi) / 5}}{142+\frac{e^{-(2 \pi) / 5}}{143+\frac{e^{-(2 \pi) / 5}}{144+e^{-(2 \pi) / 5}}}}= \\
& e^{-8 / 5 \int_{0}^{1} \sqrt{1-t^{2}} d t\left(1+2054 e^{8 / 5} \int_{0}^{\infty} \sin (t) / t d t\right.} \\
& \frac{145+41184 e^{8 / 5} \int_{0}^{1} \sqrt{1-t^{2}} d t}{}=2924064 e^{16 / 5} \int_{0}^{1} \sqrt{1-t^{2}} d t
\end{aligned}
$$

Now:
$-5 / 2 * \ln \left[\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(1+\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(142+\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right) /\left(\left(143+\left(\left(\left(\mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $2 \mathrm{Pi} / 5)))) /\left(\left(144+\left(\left(\left(\mathrm{e}^{\wedge}(-2 \mathrm{Pi} / 5)\right)\right)\right]\right.\right.$

$$
-\frac{5}{2} \log \left(\frac{e^{-2 \times \pi / 5}}{1+\frac{e^{-2 \times \pi / 5}}{142+\frac{e^{-2 \times \pi / 5}}{143+\frac{e^{-2 \times \pi / 5}}{144+e^{-2 \times \pi / 5}}}}}\right)
$$

- $\quad \log (x)$ is the natural logarithm

Exact result:

$$
-\frac{5}{2} \log \left(\frac{e^{-(2 \pi) / 5}}{\left.1+\frac{e^{-(2 \pi) / 5}}{142+\frac{e^{-(2 \pi) / 5}}{143+\frac{e^{-(2 \pi) / 5}}{144+e^{-(2 \pi) / 5}}}}\right)}\right)
$$

Decimal approximation:
3.146598300112200916747192118432400793481083699330260737149

Continued fraction:

Series representations:

$$
\frac{5 \log \left(z_{0}\right)}{2}+\frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{e^{-(2 \pi) / 5}}{1+\frac{144\left(1+143 e^{(2 \pi) / 5}\right)}{1+20592 e^{(2 \pi) / 5}+2924064 e^{(4 \pi) / 5}}}-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representation:

1/1.7712 *

(3.146598300112200916747192118432400793481083699330260737149) ^7

Where 1,7712 is a Hausdorff dimension

[^3]Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
$1724.334519417215011072155751426792246560495211390772263712 \ldots$
(()((1/1.7712 *
$\left.\left.\left.\left.\left.(3.146598300112200916747192118432400793481083699330260737149)^{\wedge} 7\right)\right)\right)\right)\right)^{\wedge} 1 / 3$

Input interpretation:
$\left(\frac{1}{1.7712}\right.$
$\left.3.146598300112200916747192118432400793481083699330260737149^{7}\right)^{\wedge}$
(1/3)
Open code

Enlarge Data Customize A Plaintext Interactive
Result

- More digits
11.9915.

This result is very near to the two values of black hole entropies 11,8458 and 12,1904
We have also that:
$\left(\left(\left(\left(\left(1 / 1.7712 *(3.1465983001122009167471921)^{\wedge} 7\right)\right)\right)\right)\right)^{\wedge} 1 / 15$

Input interpretation:
$\sqrt[15]{\frac{1}{1.7712} \times 3.1465983001122009167471921^{7}}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:
Fewer digits

- More digits
1.643519147692272025085077393491643800794801127145485544947 .
1.64351914769...... $\approx \zeta(2)$

We note that, from the above expression, we obtain the following results, that are very good approximation to π :
$3.146256890409912031962983108617580961172288121414743463855 \approx$
$\approx 3.146598300112200916747192118432400793481083699330260737149$

This is a Ramanujan approximation to π :
(https://www.matematicamente.it/storia/Ramanujan-genio-matematico.pdf)

$$
\pi \cong \frac{-2}{\sqrt{210}} \log \left[\frac{\left.(\sqrt{2}-1)^{2}(2-\sqrt{3})(\sqrt{7}-\sqrt{6})(8-3 \sqrt{7})(\sqrt{10}-3)^{2}(\sqrt{15}-\sqrt{14})^{4}-\sqrt{15}\right)^{2}(6-\sqrt{35})}{4}\right]
$$

We have that:
$(((-2 /((\operatorname{sqrt}(210))))$
$-\frac{2}{\sqrt{210}}$
Result:
$-\sqrt{\frac{2}{105}}$
Decimal approximation:
-0.13801311186847084355922537292542639736323936071199021989...
$-0.13801311186847084355922537292542639736323936071199021989$
$\left[\ln \left(1 / 4^{*}((\operatorname{sqrt}(2)-1))^{\wedge} 3.94((2-\operatorname{sqrt}(3)))\left((7-\operatorname{sqrt}(6))^{\wedge} 3.94((8-3 \operatorname{sqrt}(7))((\operatorname{sqrt}(10)-\right.\right.\right.$ $3))^{\wedge} 3.94\left((\operatorname{sqrt}(15)-\operatorname{sqrt}(14))\left((4-\operatorname{sqrt}(15))^{\wedge} 3.94((6-\mathrm{sqrt}(35))]\right.\right.$

$$
\begin{aligned}
& \log \left(\frac { 1 } { 4 } (\sqrt { 2 } - 1) ^ { 3 . 9 4 } \left((2 - \sqrt { 3 }) \left((7-\sqrt{6})^{3.94}\right.\right.\right. \\
& \left.\left.\left.\quad\left((8-3 \sqrt{7})(\sqrt{10}-3)^{3.94}\left((\sqrt{15}-\sqrt{14})\left((4-\sqrt{15})^{3.94}(6-\sqrt{35})\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

- $\quad \log (x)$ is the natural logarithm

Result:
-22.7771...
-22.7771...
$-0.1380131118 *\left[\ln \left(1 / 4 *((\operatorname{sqrt}(2)-1))^{\wedge} 3.94((2-\operatorname{sqrt}(3)))\left((7-\operatorname{sqrt}(6))^{\wedge} 3.94((8-3 \operatorname{sqrt}(7))\right.\right.\right.$ $((\operatorname{sqrt}(10)-3))^{\wedge} 3.94\left((\operatorname{sqrt}(15)-\operatorname{sqrt}(14))\left((4-\operatorname{sqrt}(15))^{\wedge} 3.94((6-\operatorname{sqrt}(35))]\right.\right.$

$$
\begin{aligned}
& \log \left(\frac { 1 } { 4 } (\sqrt { 2 } - 1) ^ { 3 . 9 4 } \left((2 - \sqrt { 3 }) \left((7 - \sqrt { 6 }) ^ { 3 . 9 4 } \left((8-3 \sqrt{7})(\sqrt{10}-3)^{3.94}\right.\right.\right.\right. \\
&\left.\left.\left.\left.\left.\left((\sqrt{15}-\sqrt{14})\left((4-\sqrt{15})^{3.94}(6-\sqrt{35})\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

- $\quad \log (x)$ is the natural logarithm

Result:
$3.143533354646032799338907981653340236072708428876664893982 \ldots$
3.1435333546460327993389079816533402360727084288766648

Series representations:

$$
\begin{array}{r}
\begin{array}{r}
\log \left(\frac { 1 } { 4 } (\sqrt { 2 } - 1) ^ { 3 . 9 4 } \left((2 - \sqrt { 3 }) \left((7 - \sqrt { 6 }) ^ { 3 . 9 4 } \left((8-3 \sqrt{7})(\sqrt{10}-3)^{3.94}\right.\right.\right.\right. \\
\left.\left.\left.\left.\left((\sqrt{15}-\sqrt{14})\left((4-\sqrt{15})^{3.94}(6-\sqrt{35})\right)\right)\right)\right)\right)\right)(-1) 0.138013= \\
0.138013 \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-1-\frac{1}{4}(-1+\sqrt{2})^{3.94}(-2+\sqrt{3})(7-\sqrt{6})^{3.94}(-8+3 \sqrt{7})\right. \\
\left.\quad(-3+\sqrt{10})^{3.94}(4-\sqrt{15})^{3.94}(-\sqrt{14}+\sqrt{15})(-6+\sqrt{35})\right)^{k}
\end{array} \\
\log \left(\frac { 1 } { 4 } (\sqrt { 2 } - 1) ^ { 3 . 9 4 } \left((2 - \sqrt { 3 }) \left((7 - \sqrt { 6 }) ^ { 3 . 9 4 } \left((8-3 \sqrt{7})(\sqrt{10}-3)^{3.94}\right.\right.\right.\right. \\
\left.\left.\left.\left.\quad\left((\sqrt{15}-\sqrt{14})\left((4-\sqrt{15})^{3.94}(6-\sqrt{35})\right)\right)\right)\right)\right)\right)(-1) 0.138013= \\
0.138013 \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-1+\frac{1}{4}(-1+\sqrt{2})^{3.94}(2-\sqrt{3})(7-\sqrt{6})^{3.94}(8-3 \sqrt{7})\right. \\
\left.(-3+\sqrt{10})^{3.94}(4-\sqrt{15})^{3.94}(-\sqrt{14}+\sqrt{15})(6-\sqrt{35})\right)^{k}
\end{array}
$$

$$
\begin{aligned}
& \log \left(\frac{1}{4}(\sqrt{2}-1)^{3.94}\right. \\
& \left((2 - \sqrt { 3 }) \left((7 - \sqrt { 6 }) ^ { 3 . 9 4 } \left((8-3 \sqrt{7})(\sqrt{10}-3)^{3.94}((\sqrt{15}-\sqrt{14})\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left((4-\sqrt{15})^{3.94}(6-\sqrt{35})\right)\right)\right)\right)\right)\right)(-1) 0.138013= \\
& -0.276026 i \pi \left\lvert\, \frac{1}{2 \pi} \arg \left(-x+\frac{1}{4}(-1+\sqrt{2})^{3.94}(2-\sqrt{3})(7-\sqrt{6})^{3.94}(8-3 \sqrt{7})\right.\right. \\
& \left.\left.(-3+\sqrt{10})^{3.94}(4-\sqrt{15})^{3.94}(-\sqrt{14}+\sqrt{15})(6-\sqrt{35})\right)\right]- \\
& 0.138013 \log (x)+0.138013 \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k} x^{-k} \\
& \left(-x+\frac{1}{4}(-1+\sqrt{2})^{3.94}(2-\sqrt{3})(7-\sqrt{6})^{3.94}(8-3 \sqrt{7})(-3+\sqrt{10})^{3.94}\right. \\
& \left.(4-\sqrt{15})^{3.94}(-\sqrt{14}+\sqrt{15})(6-\sqrt{35})\right)^{k} \text { for } x<0
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \log \left(\frac{1}{4}(\sqrt{2}-1)^{3.94}\right. \\
& \quad\left((2 - \sqrt { 3 }) \left((7 - \sqrt { 6 }) ^ { 3 . 9 4 } \left((8-3 \sqrt{7})(\sqrt{10}-3)^{3.94}((\sqrt{15}-\sqrt{14})\right.\right.\right. \\
& \left.\left.\left.\left.\left.\quad\left((4-\sqrt{15})^{3.94}(6-\sqrt{35})\right)\right)\right)\right)\right)\right)(-1) 0.138013=-0.138013 \\
& \quad \int_{1}^{-\frac{1}{4}(-1+\sqrt{2})^{3.94}(-2+\sqrt{3})(7-\sqrt{6})^{3.94}(-8+3 \sqrt{7})(-3+\sqrt{10})^{3.94}(4-\sqrt{15})^{3.94}(-\sqrt{14}+\sqrt{15})(-6+\sqrt{35})} \\
& \quad \frac{1}{t} d t
\end{aligned}
$$

$1 / 1.7712 *(3.1435333546460327993389079816533402360727084288766648)^{\wedge} 7$
Input interpretation:
$\frac{1}{1.7712} \times 3.1435333546460327993389079816533402360727084288766648^{7}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
1712.611698175792834398526977124345116854997211081796928611...
1712.61169817579...

$\sqrt[3]{\frac{1}{1.7712} \times 3.1435333546460327993389079816533402360727084288766648^{7}}$
 Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
11.9643..

This result is very near to the two values of black hole entropies 11,8458 and 12,1904

With 4 as exponent, we obtain the original Ramanujan approximation to Pi :
$-0.1380131118 * \ln \left[1 / 4 *\left(\left((((\operatorname{sqrt}(2)-1)))^{\wedge} 4((2-\operatorname{sqrt}(3)))((7-\operatorname{sqrt}(6)))^{\wedge} 4((8-3 \operatorname{sqrt}(7))\right.\right.\right.$ $((\operatorname{sqrt}(10)-3))^{\wedge} 4\left((\operatorname{sqrt}(15)-\operatorname{sqrt}(14))\left((4-\operatorname{sqrt}(15))^{\wedge} 4((6-\operatorname{sqrt}(35))]\right.\right.$

$$
\begin{gathered}
-0.1380131118 \\
\log \left(\frac { 1 } { 4 } \left((\sqrt { 2 } - 1) ^ { 4 } \left((2 - \sqrt { 3 }) \left((7 - \sqrt { 6 }) ^ { 4 } \left((8-3 \sqrt{7})(\sqrt{10}-3)^{4}((\sqrt{15}-\sqrt{14})\right.\right.\right.\right.\right. \\
\left.\left.\left.\left.\left.\left.\left.\left((4-\sqrt{15})^{4}(6-\sqrt{35})\right)\right)\right)\right)\right)\right)\right)\right)
\end{gathered}
$$

- $\log (x)$ is the natural logarithm

Result:
3.170429496808134399061223668881523703860885705131826135241...
3.1704294968081343990612236688815237038608857051318261
(()(1/1.8617 *
(3.1704294968081343990612236688815237038608857051318261)^7))))

Where 1,8617 is a Hausdorff dimension

Input interpretation:
$\frac{1}{1.8617} \times 3.1704294968081343990612236688815237038608857051318261^{7}$

- More digits
1729.48579995....

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

```
(()(1/1.8617 *
\(\left.\left.\left.(3.1704294968081343990612236688815237038608857051318261)^{\wedge} 7\right)\right)\right)^{\wedge} 1 / 3\)
```

Input interpretation:
$\sqrt[3]{\frac{1}{1.8617} \times 3.1704294968081343990612236688815237038608857051318261^{7}}$
Open code

Enlarge Data Customize A Plaintext Interactive
More digits
12.0034...

This result is very near to the value of black hole entropy 12,1904
2 * (((1/1.8617 *
$\left.\left.\left.(3.1704294968081343990612236688815237038608857051318261)^{\wedge} 7\right)\right)\right)^{\wedge} 1 / 3$

Input interpretation:
$2 \sqrt[3]{\frac{1}{1.8617} \times 3.1704294968081343990612236688815237038608857051318261^{7}}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
24.0069...

This value is linked to the "Ramanujan function" (an elliptic modular function that satisfies the need for "conformal symmetry") that has 24 "modes" corresponding to the physical vibrations of a bosonic string.

A new approximation to Pi can be obtained also multiplying the above Ramanujan expression (without exponents) by the Hausdorff dimension 1,7227:

```
1.7227 * -2/(sqrt(210)) * ln [1/4*(((((sqrt(2)-1)) ((2-sqrt(3)) ((7-sqrt(6)) ((8-3sqrt(7))
((sqrt(10)-3)) ((sqrt(15)-sqrt(14)) ((4-sqrt(15)) ((6-sqrt(35))]
```

$$
\begin{aligned}
& 1.7227\left(-\frac{2}{\sqrt{210}}\right) \log \left(\frac{1}{4}((\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})\right. \\
& \quad((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35}))))))))
\end{aligned}
$$

- $\quad \log (x)$ is the natural logarithm

Result:
$3.144999690579044036176475089121164161207446575918317499717 \ldots$

Series representations:

$$
\begin{aligned}
& \frac{1}{\sqrt{210}} \\
& \begin{array}{c}
\left(1 . 7 2 2 7 \operatorname { l o g } \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})\right.\right. \\
((4-\sqrt{15})(6-\sqrt{35}))))))))(-2)= \\
\left(3 . 4 4 5 4 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
(-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15}) \\
\left.(6-\sqrt{35}))^{k}\right) /\left(\sqrt{209} \sum_{k=0}^{\infty} 209^{-k}\binom{\frac{1}{2}}{k}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\frac{1}{\sqrt{210}} \\
\begin{array}{r}
\left(1 . 7 2 2 7 \operatorname { l o g } \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})\right.\right. \\
((4-\sqrt{15})(6-\sqrt{35}))))))))(-2)=
\end{array} \\
\left(3 . 4 4 5 4 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
(-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15})
\end{array} \\
& \left.(6-\sqrt{35}))^{k}\right) /\left(\sqrt{209} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{209}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned} \begin{aligned}
& \frac{1}{\sqrt{210}\left(1 . 7 2 2 7 \operatorname { l o g } \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)\right.\right.} \begin{array}{l}
((\sqrt{15}-\sqrt{14})((4-\sqrt{15)})(6-\sqrt{35})))))))(-2)= \\
\left(3 . 4 4 5 4 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
\left.(-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15})(6-\sqrt{35}))^{k}\right) /
\end{array} \\
& \left(\exp \left(i \pi\left[\frac{\arg (210-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(210-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)
\end{aligned}
$$

for ($x \in \mathbb{R}$ and $x<0$)

Integral representation:

$$
\begin{aligned}
& \frac{1}{\sqrt{210}} \\
& \left(1 . 7 2 2 7 \operatorname { l o g } \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3}))((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})\right.\right. \\
& ((4-\sqrt{15})(6-\sqrt{35})))))))(-2)=-\frac{3.4454}{\sqrt{210}}
\end{aligned}
$$

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
1718.211596506515216555784793643310055691013226699210595777...
1718.2115965...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson.
(()(1/1.7712 *
$\left.\left.\left.(3.1449996905790440361764750891211641612074465759183174)^{\wedge} 7\right)\right)\right)^{\wedge} 1 / 3$

Input interpretation:
$\sqrt[3]{\frac{1}{\text { Open code }} \times 3.1449996905790440361764750891211641612074465759183174^{7}}$

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
11.9773...

This result is very near to the two values of black hole entropies 11,8458 and 12,1904
We note that, from the three results that we have obtained, we have the following interesting expression:
$(((((1712.61169817579+1729.48579995+1718.2115965) / 3))))^{\wedge} 1 / 15$

Input interpretation:
$\sqrt[15]{\frac{1}{3}(1712.61169817579+1729.48579995+1718.2115965)}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
1.643249961400...
$1.643249961400000495779 \ldots \approx \zeta(2)$
Now, we can to obtain a similar result, thence a good approximation to π, also multiplying the above expression by the value in GeV of $\mathrm{f}_{0}(1710)$ scalar meson (candidate glueball). Indeed:
$1.723 *-2 /(\operatorname{sqrt}(210)) * \ln [1 / 4 *(((((\operatorname{sqrt}(2)-1)))((2-\mathrm{sqrt}(3)))((7-\mathrm{sqrt}(6)))((8-3 \operatorname{sqrt}(7))$ $((\operatorname{sqrt}(10)-3))((\operatorname{sqrt}(15)-\operatorname{sqrt}(14)))((4-\operatorname{sqrt}(15)))((6-\mathrm{sqrt}(35))]$

$$
\begin{aligned}
& 1.723\left(-\frac{2}{\sqrt{210}}\right) \log \left(\frac{1}{4}((\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})\right. \\
&((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35}))))))))
\end{aligned}
$$

- $\quad \log (x)$ is the natural logarithm

Result:
3.145547377295926669955341370265145324061316799388901754230...
3.1455473772959266699553413702651453240613167993889017

Continued fraction:

Series representations:

$$
\begin{aligned}
& \frac{1}{\sqrt{210}} \\
& \left(1 . 7 2 3 \operatorname { l o g } \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3}))((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})\right.\right. \\
& ((4-\sqrt{15})(6-\sqrt{35})))))))(-2)= \\
& \left(3 . 4 4 6 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
& (-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15}) \\
& \left.(6-\sqrt{35}))^{k}\right) /\left(\sqrt{209} \sum_{k=0}^{\infty} 209^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \frac{1}{\sqrt{210}} \\
& \left(1 . 7 2 3 \operatorname { l o g } \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3}))((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})\right.\right. \\
& ((4-\sqrt{15})(6-\sqrt{35})))))))(-2)= \\
& \left(3 . 4 4 6 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
& (-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15}) \\
& \left.(6-\sqrt{35}))^{k}\right) /\left(\sqrt{209} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{209}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \frac{1}{\sqrt{210}}\left(1 . 7 2 3 \operatorname { l o g } \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6}))((8-3 \sqrt{7})(\sqrt{10}-3)\right.\right. \\
& ((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35}))))))))(-2)= \\
& \left(3 . 4 4 6 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
& \left.(-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15})(6-\sqrt{35}))^{k}\right) / \\
& \left(\exp \left(i \pi\left\lfloor\frac{\arg (210-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(210-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for ($x \in \mathbb{R}$ and $x<0$)

Integral representation:

$$
\begin{aligned}
& \frac{1}{\sqrt{210}} \\
& \begin{array}{l}
\left(1 . 7 2 3 \operatorname { l o g } \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})\right.\right. \\
((4-\sqrt{15})(6-\sqrt{35}))))))))(-2)=-\frac{3.446}{\sqrt{210}} \\
\int_{1}^{-\frac{1}{4}(-1+\sqrt{2})(-2+\sqrt{3})(-7+\sqrt{6})(-8+3 \sqrt{7})(-3+\sqrt{10})(-4+\sqrt{15})(-\sqrt{14}+\sqrt{15})(-6+\sqrt{35}) \frac{1}{t} d t}
\end{array}
\end{aligned}
$$

We note that, multiplying by 2 :
2 * 1.723 *-2/(sqrt(210)) * $\ln [1 / 4 *(((((\operatorname{sqrt}(2)-1)))((2-\operatorname{sqrt}(3)))((7-\operatorname{sqrt}(6)))((8-$ $3 \operatorname{sqrt}(7))((\operatorname{sqrt}(10)-3))((\operatorname{sqrt}(15)-\mathrm{sqrt}(14))((4-\mathrm{sqrt}(15)))((6-\mathrm{sqrt}(35))]$

$$
\begin{aligned}
2 \times 1.723\left(-\frac{2}{\sqrt{210}}\right. &) \log \left(\frac{1}{4}((\sqrt{2}-1)((2-\sqrt{3}))((7-\sqrt{6})\right. \\
& ((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35}))))))))
\end{aligned}
$$

- $\quad \log (x)$ is the natural logarithm

Result:
6.29109...
$6.2910947545918533399106827405302906481226335987778035 \approx 2 \pi$
Continued fraction:

Series representations:

$$
\begin{aligned}
& \left.\frac{1}{\sqrt{210}^{2(-2)} 1.723 \log \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})\right.} \begin{array}{r}
((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35}))))))= \\
\left(6 . 8 9 2 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
(-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15}) \\
\left.(6-\sqrt{35}))^{k}\right) /\left(\sqrt{209} \sum_{k=0}^{\infty} 209^{-k}\left(\frac{1}{2}\right)\right) \\
k
\end{array}\right) \\
& \begin{array}{r}
\frac{1}{\sqrt{210}} 2(-2) 1.723 \log \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})\right. \\
((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35})))))))= \\
\left(6 . 8 9 2 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
(-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15}) \\
(6-\sqrt{35}))) /\left(\sqrt{209} \sum_{k=0}^{\infty} \frac{\left.\left(-\frac{1}{209}\right)^{k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{210}} 2(-2) 1.723 \\
& \quad \log \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})\right. \\
& \quad((4-\sqrt{15})(6-\sqrt{35})))))))= \\
& \left(6 . 8 9 2 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
& \left.\quad(-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15})(6-\sqrt{35}))^{k}\right) /
\end{aligned}
$$

for ($x \in \mathbb{R}$ and $x<0$)

Integral representation:

$$
\begin{aligned}
& \frac{1}{\sqrt{210}} 2(-2) 1.723 \log \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})\right. \\
& \quad((8-3 \sqrt{7})(\sqrt{10}-3)((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35})))))))= \\
& -\frac{6.892}{\sqrt{210}} \int_{1}^{-\frac{1}{4}(-1+\sqrt{2})(-2+\sqrt{3})(-7+\sqrt{6})(-8+3 \sqrt{7})(-3+\sqrt{10})(-4+\sqrt{15})(-\sqrt{14}+\sqrt{15})(-6+\sqrt{35}) \frac{1}{t}} \\
& \quad d t
\end{aligned}
$$

The result $6.291094754 \ldots$ is a very good approximation to the length of a circle with radius equal to $1: 2 \pi$.

This is a further confirmation of the dual nature of the particles (wave-particle), in this case represented by small closed-loop curves. In the present case, the glueball the Particle Made of Pure Force-, is a particle composed only of gluons which are bosons, therefore, energy particles, which can be described as closed strings.

We have also that:
$2 *(6.2910947545918533399106827405302906481226335987778035)$

Input interpretation:

$2 \times 6.2910947545918533399106827405302906481226335987778035$

This result 12,5821 is very near to the value of black hole entropy 12,5664

Furthermorer:
$\left(\left((((2 *(6.291094754591853))))^{\wedge} 1 / 5\right.\right.$

Input interpretation:
$\sqrt[5]{2 \times 6.291094754591853}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
1.6594006062528121...
1.6594006062528121 is very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$

We have also:
$(1.4649+0.6309) * 1.723 *-2 /(\operatorname{sqrt}(210)) * \ln [1 / 4 *(((((\operatorname{sqrt}(2)-1)))((2-\operatorname{sqrt}(3)))((7-$ $\operatorname{sqrt}(6))((8-3 \operatorname{sqrt}(7))((\operatorname{sqrt}(10)-3))((\operatorname{sqrt}(15)-\operatorname{sqrt}(14))((4-\mathrm{sqrt}(15)))((6-\operatorname{sqrt}(35))]$

Input interpretation:
$(1.4649+0.6309) \times 1.723\left(-\frac{2}{\sqrt{210}}\right)$

$$
\begin{array}{r}
\log \left(\frac{1}{4}((\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)\right. \\
((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35})))))))))
\end{array}
$$

Open code

- $\quad \log (x)$ is the natural logarithm

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
6.59244...

Series representations:

- More

$$
\begin{aligned}
& \frac{1}{\sqrt{210}}(1.4649+0.6309)(-2) 1.723 \\
& \log \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)\right. \\
& \quad((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35})))))))= \\
& \left(7 . 2 2 2 1 3 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
& (-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15}) \\
& \left.(6-\sqrt{35}))^{k}\right) /\left(\sqrt{209} \sum_{k=0}^{\infty} 209^{-k}\binom{\frac{1}{2}}{k}\right)
\end{aligned}
$$

Open code

Enlarge Data Customize A Plaintext Interactive

$$
\begin{aligned}
& \frac{1}{\sqrt{210}}(1.4649+0.6309)(-2) 1.723 \\
& \log \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)\right. \\
& \quad((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35})))))))= \\
& \left(7 . 2 2 2 1 3 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
& (-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15}) \\
& \left.(6-\sqrt{35}))^{k}\right) /\left(\sqrt{209} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{209}\right)^{k}\left(-\frac{1}{2}\right) k}{k!}\right)
\end{aligned}
$$

Open code

$$
\begin{aligned}
& \frac{1}{\sqrt{210}}(1.4649+0.6309)(-2) 1.723 \\
& \log \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)\right. \\
& \quad((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35})))))))= \\
& \left(7 . 2 2 2 1 3 \sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\frac{1}{4}(-1+\sqrt{2})(2-\sqrt{3})(7-\sqrt{6})(8-3 \sqrt{7})\right.\right. \\
& \left.(-3+\sqrt{10})(4-\sqrt{15})(-\sqrt{14}+\sqrt{15})(6-\sqrt{35}))^{k}\right) /
\end{aligned}
$$

for ($x \in \mathbb{R}$ and $x<0$)

$$
\begin{aligned}
& \frac{1}{\sqrt{210}}(1.4649+0.6309)(-2) 1.723 \\
& \quad \log \left(\frac{1}{4}(\sqrt{2}-1)((2-\sqrt{3})((7-\sqrt{6})((8-3 \sqrt{7})(\sqrt{10}-3)\right. \\
& \quad((\sqrt{15}-\sqrt{14})((4-\sqrt{15})(6-\sqrt{35})))))))=-\frac{7.22213}{\sqrt{210}} \\
& \int_{1}^{-\frac{1}{4}(-1+\sqrt{2})(-2+\sqrt{3})(-7+\sqrt{6})(-8+3 \sqrt{7})(-3+\sqrt{10})(-4+\sqrt{15})(-\sqrt{14}+\sqrt{15})(-6+\sqrt{35}) \frac{1}{t} d t}
\end{aligned}
$$

This result 6,59244 is a very good approximation to the value of reduced Planck's constant $6,5821 * 10^{-16} \mathrm{eV} * \mathrm{~s}$

We have that:
$(((\operatorname{sqrt}(5)+5)) / 2)))^{*}$
6.5924381933368031148924044438016915701677077481592602

Input interpretation:
$\left(\frac{1}{2}(\sqrt{5}+5)\right) \times 6.5924381933368031148924044438016915701677077481592602$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
23.851665452225504239235410886090825336655367196541473...

This result 23,8516 is very near to the value of black hole entropy 23,9078
$(1.8617 * 2) * 6.5924381933368031148924044438016915701677077481592602$
Where 1,8617 is a Hausdorff dimension
Input interpretation:
$(1.8617 \times 2) \times 6.5924381933368031148924044438016915701677077481592602$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
24.54628436907025271799037870605121839236244302949618942868

This result 24,5462 is very near to the value of black hole entropy 24,4233
And:
$(1.8272 * 2) * 6.5924381933368031148924044438016915701677077481592602$

Where 1,8272 is a Hausdorff dimension

Input interpretation:
$(1.8272 \times 2) \times 6.5924381933368031148924044438016915701677077481592602$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
24.09140613373001330306280279942890167402087119487320047488

This value is linked to the "Ramanujan function" (an elliptic modular function that satisfies the need for "conformal symmetry") that has 24 "modes" corresponding to the physical vibrations of a bosonic string.

We note that:
$((((6.5924381933368031148924044438016915701677077481592602))))^{\wedge} 1 / 4$

Input interpretation:
$\sqrt[4]{6.5924381933368031148924044438016915701677077481592602}$
Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
1.60236524529187269353214298684401309300506587345068458 ..
1.602365245291872693..... result that is a golden number and is very near to the elementary charge

We note that with the last two results, we obtain:
$(1.6594006062528121+1.602365245291872693) / 2.015$

With regard the fractal dimension of the Rössler attractor is slightly above 2. For $\mathrm{a}=0.1, \mathrm{~b}=0.1$ and $\mathrm{c}=14$ it has been estimated between 2.01 and 2.02 . thence 2.015 is a very good value.

[^4]Open code

- More digits
1.618742358086692204962779156327543424317617866004962779156...

Open code

1.618742358086692204962779156327543424317617866004962779156

Continued fraction

- Linear form

Open code

Enlarge Data Customize A Plaintext Interactive

Possible closed forms:

- More
$\frac{7}{6} \pi \operatorname{sech}^{2}\left(\frac{4474282}{4628671}\right) \approx 1.6187423580866922061642$
$\frac{-55995+25645 \pi-73 \pi^{2}}{4690 \pi} \approx 1.61874235808669220486885$
$\frac{-428 \pi \pi!+1227-304 \pi+961 \pi^{2}}{18 \pi} \approx 1.6187423580866922026812$
$\frac{1198262411 \pi}{2325541411} \approx 1.6187423580866922050745$
$\frac{851}{13085 C_{\text {PTP }}}+\frac{9064}{13085} \approx 1.61874235808669217609$
root of $2750 x^{3}-53841 x^{2}+31358 x+78656$ near $x=1.61874 \approx$

1.618742358086692204956408

root of $435 x^{5}-213 x^{4}-335 x^{3}-620 x^{2}-158 x-71$ near $x=1.61874$ 1.618742358086692204941618
root of $78656 x^{3}+31358 x^{2}-53841 x+2750$ near $x=0.617764$
1.618742358086692204956408
π root of $1025 x^{5}+876 x^{4}-681 x^{3}+882 x^{2}-97 x-190$ near $x=0.515262 \approx$
1.6187423580866922049631750

1

root of $71 x^{5}+158 x^{4}+620 x^{3}+335 x^{2}+213 x-435$ near $x=0.617764$
1.618742358086692204941618
$\frac{-296+622 \pi-167 \pi^{2}}{2\left(-13-441 \pi+142 \pi^{2}\right)} \approx 1.61874235808669219697$
root of $3690 x^{4}-4563 x^{3}-6831 x^{2}+9277 x-3099$ near $x=1.61874$
1.6187423580866922049613096
π root of $8717 x^{4}-123 x^{3}+1333 x^{2}+1637 x-1795$ near $x=0.515262 \approx$
1.618742358086692204949498
$-\frac{4229}{749}+\frac{5809}{963 e}+\frac{4171 e}{2247} \approx 1.61874235808669220488088$
1
root of $3099 x^{4}-9277 x^{3}+6831 x^{2}+4563 x-3690$ near $x=0.617764$
1.6187423580866922049613096

This result $1.61874235808669220496 \ldots$ is a good approximation to the value of the golden ratio.
http://sciencevibe.com/2015/10/14/new-discovery-particle-made-of-pure-force/

"GLUEBALL" - The Particle Made of Pure Force

Appendix A

This is the Ramanujan fundamental formula for obtain a beautiful and highly precise golden ratio:

[^5]1,61803398.................................

Possible closed forms:

- Less
$\phi \approx 1.618033988749894848204586834365638117720309179805762862135$
Enlarge Data Customize A Plaintext Interactive
$\Phi+1 \approx 1.618033988749894848204586834365638117720309179805762862135$
$\frac{1}{\Phi} \approx 1.618033988749894848204586834365638117720309179805762862135$
$\frac{151837964 \pi}{294810267} \approx 1.61803398874989484850313$
$\frac{11\left(-70+23 \pi+40 \pi^{2}\right)}{-185-659 \pi+502 \pi^{2}} \approx 1.61803398874989484854941$
π root of $11208 x^{3}+103781 x^{2}-49442 x-3596$ near $x=0.515036 \approx$
1.6180339887498948482068128
π root of $4704 x^{4}+358 x^{3}-4422 x^{2}-3386 x+2537$ near $x=0.515036$
1.61803398874989484818899

$$
\begin{aligned}
& \frac{1}{42}\left(-1+34 e-56 e^{2}+7 \sqrt{1+e}-5 \sqrt{1+e^{2}}+50 \pi+22 \pi^{2}-\right. \\
& \left.24 \sqrt{1+\pi}+20 \sqrt{1+\pi^{2}}\right) \approx 1.6180339887498948482008510
\end{aligned}
$$

$\frac{-487-906 e+711 e^{2}}{283-56 e+175 e^{2}} \approx 1.61803398874989484835044$
$\frac{-13+\sqrt{2}-3 e+2 \pi-\pi^{2}-\log (2)-\log (3)}{7 \sqrt{2}+7 \sqrt{3}-e-\pi-3 \pi^{2}-3 \log (2)} \approx 1.61803398874989484867509$
$\frac{7778742049}{4807526976} \approx 1.618033988749894848223936$

- $\quad \phi$ is the golden ratio
- Φ is the golden ratio conjugate

Developing this formula, we obtain the extended value of golden ratio as the following image:

1．61803398874989484820458683436563811772030917980576286213544862270 26046281890244970720720418939113748475408807538689175212663386222 6752087668925017116962070322210432162695486262963136144381497587 22034080588795445474924618569536486444924104432077134494704956584 885098743394422125448770664780915884607499887124007652170575179788 41622562494075890697040002812104276217711177780531531714101170466 7146697987317613560067087480710131795236894275219484353056783002竍法22165791286675294654906811317159934323597349498509040947621322 1017261070596116456299098162905552085247903524060201727997471753 159278625619432082750513121815628551222480939471234145170223735 057727861600868838295230459264787801788992199027077690389532196819 738937645560606059216589466759551900400555908950229530942312482355 12212415444006470340565734797663972394949946584578873039623090375保
 551894475926007348522821010881444442231899121924826200230 44377026992300780308526118075451928877050210968424936271359251876 77884665836150238913493333122310533923213624319263728910670503399源 602389016207773224499435308899909501680328112194320481964387675863 681410696837288405874610337810544399436359358138113116899385557 97548414914453415091295407005019477548616307542264172939468036731 058618339183285991303960720144559504497792120761247856459161608370 594988600697018940988640076443617093341727091914336501371576601148 1927570340507809145458109063612982798141174533927312019928972 922213298064294687824274874017450554067787570832373109759151177620 844328474790817651809778726841611763250386121129143683437670235037 116330725869883258710336322238109809012110198991768414917512331340 243614910205471855496118087642657651106054588147560443178479859453 2360162548761148520170640411660766950597757832570395110878 30827106478939021115691039276838453863333215658296597731034360323位 5665643600729599983912881031974263125179714143201231127955189477 172691415891177991956481255800184550656329528598591000908621802977 ；竍 14438405327483781378246691744422963491470815700735254570708977267年 506480367930414723657203986007355076090231731250161320484358364817 70484818109916024425237167219018933459637860378552870173935930307 359011237102391712659047026349402830766876743638651327106280323174缺173344823435645318505813531085497333507599667787124490583636754 3289086240632456395357212524261170278028656043234942837301725574405 272782679960317393640132876277012436798311446436947670531272492410 391582397084177298337282311525692609299594224000056062667867435792 397245408481765197343626526894488855272027477874733598353672776140
591712051326934483752991649980936024617844267572776790019191907038 22046123248239132610432719168451230602362789354543246176997575368
 553569634828178128862536460842033946538194419457142666823718394918 3709085748502665680398974406621053603064002608171266599541993683 60945722888109207788227720363668448153256172841176909792666655223 6688311371855299192163190520156863122282071559987646842355205928537 521598426676625780770620194304005425501583125030175340941171910196 890384472503329880245014367968441694795954530459103138116218704567 978663661746059570003445970113525181346006565535203478881174149941 24826415213556776394039071038708818233806803350038046800174808220 4841410503189825189970074862287941558957428202165570621889007 08805032467699129728721038707369740643566745892025865657397856085 66534107035997832044633634648548949766388535104552729824229069984 536968280464597457626514343590509383212437433338705166571490059071俍 14704732395512060705503992088442603708790843334261838413597078164
 128091805045008992187051211860693357315389593507903007367270233 4165320423401553741442687154055116479611433230248544040940691145613俍 2759192231837235682727938563733126547985912463275030 05925674549794350881192950568549325935531872914180113641218747075 281068698301357605247194455932195535961045283031488391176930119658
 1313166753771047926636519016399771284730070336111191589983050 361060987171783055435403560895292908184641437139294378135604820389俗 226980690145994511995478016399151412612525728280664331261657469388
 45297511065046428105417755259095187131888359147659960413179602094詸 1412747443168847218459392781435474099999072233203059262976611238327竍 12512323597150723383833240815257819336426263043302658 274511215368730091219962952276591316370939686072713426926231547533俗 060116918941750272298741586991791453499462444194012197858601373660 133283193575622089713765630977850156315498245644586542479293572202927 5060848145335135218172958793299117100324762220521946451053624505129 843087134443950724426735146286179918323364598369637632722575691597 27895000604596613134633630249499514808053290179029751825158750490 25500604596613134633630249499514808053290179029751825158750490 05548257930709100576358699019297217995168731175563144485648100220竍

From：

Exact Renormalization Group Equations. An Introductory Review. C. Bagnuls-and C. Bervilliert C. E. Saclay, F91191 Gif-sur-Yvette Cedex, France February 1, 2008

For $d=3$ and $k=1$, the first order of the derivative expansion yields (after a long but straightforward computation) the following two coupled equations for U and Z [22]:

$$
\begin{align*}
\dot{U}= & -\frac{1-\eta j 4}{\sqrt{Z} \sqrt{U^{\prime \prime}+2 \sqrt{Z}}}+3 U-\frac{1}{2}(1+\eta) \varphi U^{\prime} \\
\dot{Z}= & -\frac{1}{2}\left(1+\eta \dot{\varphi} \varphi Z^{\prime}-\eta Z+\left(1-\frac{\eta}{4}\right)\left\{\frac{1}{48} \frac{24 Z Z^{\prime \prime}-19\left(Z^{\prime}\right)^{2}}{Z^{3 / 2}\left(U^{\prime \prime}+2 \sqrt{Z}\right)^{3 / 2}}\right.\right. \\
& 158 U^{\prime \prime \prime} Z^{\prime} \sqrt{Z}+57\left(Z^{\prime}\right)^{2}+\left(Z^{\prime \prime \prime}\right)^{2} Z \tag{87}\\
& 48\left(U^{\prime \prime \prime}\right)^{2} Z+2 U^{\prime \prime \prime} Z^{\prime} \sqrt{Z}+\left(Z^{\prime}\right)^{2} \\
& \quad Z\left(U^{\prime \prime}+2 \sqrt{Z}\right)^{5 / 2}
\end{align*}
$$

As expected, the search for a non trivial fixed point solution for these equations (a solution which is nonsingular up to $\varphi \rightarrow \infty$) produces a unique solution with an unambiguously defined η [22]:

$$
\begin{equation*}
\eta-0.05393 \tag{88}
\end{equation*}
$$

The linearization about this fixed point yields the eigenvalues:

$$
\begin{align*}
& \nu=0.6181 \tag{89}\\
& \omega=0.8975 \tag{90}
\end{align*}
$$

and also a zero eigenvalue $\lambda=0$ [22] which corresponds to the redundant operator \mathcal{O}_{1} [eq. (24)] responsible for the moving along the line of equivalent fixed points. This is, of course, an expected confirmation of the preservation of the reparametrization invariance.
and from:

Polchinski equation, reparameterization invariance and the derivative expansion
Jordi Comellas - Departament d'Estructura i Constituents de la Materia - Facultat de Fisica, Universitat de Barcelona - Diagonal, 647, 08028 Barcelona, Spain

	LPA	Polchinski	eff. action	best known
η	0	0.042	0.054	$0.035(3)$
ν	0.650	0.622	0.618	$0.631(2)$
ω	0.656	0.754	0.897	$0.80(4)$

Table 1: The critical exponents η, ν and ω for (1) the LPA of Polchinski equation; (2) derivative expansion at second order of Polchinski equation; (3) derivative expansion at second order of the effective action RG equation [1]; (4) combination of best known estimates taken from Ref. [1].

The partition function is then

$$
\begin{equation*}
Z=\int \mathcal{D} \phi e^{-S^{*}-j_{\alpha} \mathcal{O}_{\alpha}} \tag{52}
\end{equation*}
$$

and we define the thermodynamic densities

$$
\begin{equation*}
M_{\alpha} \equiv \frac{1}{V} \frac{\partial}{\partial j_{\alpha}} \ln Z \tag{53}
\end{equation*}
$$

with V the volume of the system (needed in order M_{α} to be an intensive quantity and, thus, defined in the thermodynamic limit).

From Wikipedia:
In mathematics, in particular in linear algebra, an eigenvector of a function between vector spaces is a non-zero vector whose image is the vector itself multiplied by a number (real or complex) called eigenvalue. If the function is linear, the eigenvectors having in common the same eigenvalue, together with the null vector, form a vector space, called autospace. The notion of eigenvector is generalized by the concept of root vector or generalized eigenvector.

Eigenvectors and eigenvalues are defined and used in mathematics and physics in the context of more complex and abstract vector spaces than the threedimensional one of classical physics. These spaces can have dimensions greater than 3 or even infinite (an example is given by the Hilbert space). Also the possible positions of a vibrating string form a space of this type: a vibration of the string is then interpreted as a transformation of this space and its eigenvectors (more precisely, its eigenfunctions) are stationary waves.

We note that the values of $v, 0.6181$ or 0.618 , are practically equals to the reciprocal of the golden ratio:

From Wikipedia:

$$
\varphi=\frac{1+\sqrt{5}}{2}=1.6180339887 \ldots
$$

The conjugate root to the minimal polynomial $x^{2}-x-1$ is

$$
-\frac{1}{\varphi}=1-\varphi=\frac{1-\sqrt{5}}{2}=-0.6180339887 \ldots
$$

The absolute value of this quantity (≈ 0.618) corresponds to the length ratio taken in reverse order (shorter segment length over longer segment length, b / a), and is sometimes referred to as the golden ratio conjugate. It is denoted here by the capital Phi (Φ)

$$
\Phi=\frac{1}{\varphi}=\varphi^{-1}=0.6180339887 \ldots
$$

Alternatively, $\boldsymbol{\Phi}$ can be expressed as

$$
\Phi=\varphi-1=1.6180339887 \ldots-1=0.6180339887 \ldots
$$

This illustrates the unique property of the golden ratio among positive numbers, that

$$
\frac{1}{\varphi}=\varphi-1
$$

or its inverse:

$$
\frac{1}{\Phi}=\Phi+1
$$

This means 0.61803...: $1=1: 1.61803 \ldots$.
Thence, we can to obtain the following mathematical connection between the value of the eigenvalue $v=0.618 \ldots$ and the fundamental Ramanujan's formula:

$\sqrt[5]{\left(\frac{1}{\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}-\frac{11 \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)}-\frac{5 \sqrt{5} \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{\left.(-\sqrt{5} \pi)^{5}\right)}\right.}\right)}$

(a)

Input interpretation:
$\left(1 /\left(\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)-\right.\right.$
$\frac{9.99290225070718723070536304129457122742436976265255}{10^{7428}}-$
$\left.\left.\frac{1.0156731238678143887477576295646917898823529098784}{10^{7427}}\right)\right)^{\wedge}(1 / 5)$
Open code
(b)

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
$1.618033988749894848204586834365638117720309179805762862135 \ldots$

Or:
$\left(\left(\left(\left(1 /\left(\left((1 / 32)(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right)-(-\right.\right.\right.\right.$
$\left.\left.\left.1.6382898797095665677239458827012056245798314722584 \times 10^{\wedge}-7429\right)\right)\right)^{\wedge} 1 / 5$
$\sqrt[5]{\frac{1}{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)--\frac{1.6382898797095665677239458827012056245798314722584}{10^{7429}}}}$
Open code
(c)

Enlarge Data Customize A Plaintext Interactive
Result:
More digits
1.618033988749894848204586834365638117720309179805762862135...

The result, thence, is:
1.6180339887498948482045868343656381177203091798057628

Indeed, we obtain from (c):
$1 /\left(\left(\left(\left(1 /\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right)-(-\right.\right.\right.\right.\right.$
$\left.\left.\left.1.6382898797095665677239458827012056245798314722584 \times 10^{\wedge}-7429\right)\right)\right)^{\wedge} 1 / 5$
$\sqrt[5]{\frac{1}{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)-\frac{1.6382898797095665677239458827012056245798314722584}{10^{7429}}}}$

Open code

Enlarge Data Customize A Plaintext Interactive
Result:

- More digits
0.618033988749894848204586834365638117720309179805762862135
0.61803398...

Series representations

- More
$\frac{1}{\sqrt[5]{\frac{1}{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)-1.63828987970956656772394588270120562457983147225840000} 10^{7429}}}=$
$1 /(\mid 1 /(1.63828987970956656772394588270120562457983147225840000 \times$

$$
\begin{gathered}
10^{-7429}+5 e^{-\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{1 / 2}{k}\right)^{5}}+ \\
\left.\left.\left.\frac{1}{32}\left(-1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{5}\right)\right){ }^{5}(1 / 5)\right)^{(1)}
\end{gathered}
$$

Open code

Enlarge Data Customize A Plaintext Interactive

$1 /(\mid 1 /(1.63828987970956656772394588270120562457983147225840000 \times$

$$
\begin{aligned}
& 10^{-7429}+5 \exp \left(-\pi^{5} \sqrt{4}^{5}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{5}\right)+ \\
& \left.\left.\left.\frac{1}{32}\left(-1+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{5}\right)\right) \wedge(1 / 5)\right)
\end{aligned}
$$

$\sqrt[5]{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)-\frac{1.63828987970956656772394588270120562457983147225840000}{10^{7429}}}$
$1 /\left(\int 1 /(1.63828987970956656772394588270120562457983147225840000 \times\right.$

$$
10^{-7429}+5 \exp \left(-\frac{\pi^{5}\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 4^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{5}}{32 \sqrt{\pi}^{5}}\right)+
$$

$$
\left.\left.\frac{1}{32}\left(-1+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 4^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)^{5}\right) \wedge(1 / 5)\right)
$$

$\left.\quad \begin{array}{l}n \\
m\end{array}\right)$ is the binomial coefficient

$\bullet \quad$| $n!$ is the factorial function |
| :--- |

Enlarge Data Customize A Plaintext Interactive

The result $0.61803398 \ldots$ is practically equal to the value of eigenvalue v, that is 0.6181 or 0.618 , practically equals to the reciprocal of the golden ratio.

Conclusion

Translating the formula from the cosmological point of view, the two infinitesimal values with exponents -7427 and -7428 could represent the slightest ripples of the socalled supersymmetric vacuum which, therefore, like any vacuum, is not really "empty". The golden ratio represents then the very first symmetry break, even before the Big Bang, from which it emerged and was formalized the infinite-dimensional Hilbert space that is of a fractal nature, as is the golden ratio whose value is also a Hausdorff dimension. So ϕ represents the thought-information that becomes a creative act and from which the formal phase begins with the infinite representations of the absolute reality that corresponds to the two infinitesimal values mentioned above.

From the picture we can see the Hilbert space, (in green) represented by an infinitedimensional torus on which lie infinity open strings, the infinite 1-branes from whose collision of a pair of them, emerges a multiverse-brane as ours that contains an immeasurable but finite number of bubbles, which probably coincides with the size number of the Monster Group 8.1 * 10^{53} which, in turn, is related to Ramanaujan's mathematics through the j -invariants of the Monstrous Moonshine.

References

https://blog.wolfram.com/2013/05/01/after-100-years-ramanujan-gap-filled/ Andrew, G.E. Ramanujan's "Lost" Notebook. III. The Rogers-Ramanujan continued fraction. Adv. Math. 1981, 41, 186-208.

Andrews, G.E.; Berndt, B.C. Ramanujan's Lost Notebook, Part I; Springer-Verlag: New York, NY, USA, 2005.

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

[^1]: Open code

[^2]: Input interpretation:
 $\sqrt[8]{\exp \left(11.090169943749474241+\frac{\frac{1.015673123867814388747}{10^{7427}}}{\frac{9.9929022507071872307}{10^{7428}}}\right)}$
 Open code

[^3]: $\frac{1}{1.7712} \times 3.146598300112200916747192118432400793481083699330260737149^{7}$
 Open code

[^4]: Input interpretation:
 $1.6594006062528121+1.602365245291872693$
 2.015

[^5]: $\sqrt[5]{\left(\frac{1}{\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}-\frac{11 \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{\left.(-\sqrt{5} \pi)^{5}\right)}\right.}-\frac{5 \sqrt{5} \times 5 e^{(-\sqrt{5} \pi)^{5}}}{2\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)}\right)}$
 (11.09016994374947424102293417182819058860154589902881431067+
 $-9.99290225070718723070536304129457122742436976265255 \times 10^{\wedge}-7428+$
 $\left.-1.01567312386781438874777576295646917898823529098784 \times 10^{\wedge}-7427\right)^{\wedge} 1 / 5=$

 Input interpretation:
 $(11.09016994374947424102293417182819058860154589902881431067+$ $-\frac{9.99290225070718723070536304129457122742436976265255}{10^{7428}}+$
 $\left.-\frac{1.01567312386781438874777576295646917898823529098784}{10^{7427}}\right) \wedge(1 / 5)$
 $=1.6180339887498948482045868343656381177203091798057628$

