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Abstract

While the original Newton’s law of gravitation does
not lead to the formula in question, the same law
relative-velocity dependence completed does, briefly,
with no hypothesis. Keywords: perihelion advance;
interactions relative-velocity dependence.

1 Introduction

1.1 Perihelion advance formula

As known, Perihelion/Periastron advance/rotation/
precession/shift are names of the small remainder of
the angular perihelion advance, δ, per revolution, of
a planet orbiting the sun—or in general of a body or-
biting an astron—not accounted for by Newton’s law
of gravitation. This slight deviation from Kepler ’s
first law was discovered by Urbain Le Verrier (1859)
[1] for Mercury by calculations, and the well known
formula of the effect,

δ =
6πGM�

c2a(1−ε2)
, (1)

was found by Paul Gerber [2] (1898) from some
premises later regarded as inconsistent. A consistent
inference was put forward by Albert Einstein (1916),
via GTR [3]. Now we deduce it from Newton’s gravity
law RVD 1 completed.

1RVD stands for Relative-Velocity Dependence/Dependent
(according to context)

1.2 RVD1 completion of Newton’s
gravitation law

LetM andm be two point masses, and ~r the position
vector of m with respect to M , i.e., ~r has its initial
point at M and the terminal point at m or, in other
words, m lies in the gravitational field ofM ; denote as
usually ~v= ~̇r the relative velocity of m with respect to
M . In usual notations, Newton’s law of gravitation
writes ~FN = −GMm~r/r 3 = m~gN . Newton’s law of
gravitation (empirically) RVD completed is

~F = ~FN

[
1 + 3

v2

c2
+ 4

(v
c

)γ vq
c

]
, (2)

where vq is the component of ~v along the field, vq = ṙ,

and γ = 1.8 (or γ = 9/5); using ~g = ~F/m ( force per
unit mass, or gravitational field strength, or gravita-
tional acceleration), Eq. (2) writes

~g = ~gN

[
1 + 3

v2

c2
+ 4

(v
c

)γ vq
c

]
. (2′)

Of course, this is not a theory of gravitation, but
simply a completion of Newton’s law.

2 Perihelion advance formula in-
ference

Unlike Gerber, whose reasoning has ultimately been
considered both inconsistent and unclear, we either
perform or mention all likely useful steps. We do this
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rather by metamorphic successive equalities than by
words.

Newton’s law of motion, M�~a = ~F , of a mass
M� (as a planet) in the gravitational field of a
mass M� (as the sun) taken as origin, M� � M�

so that the center of the masses M� and M� be ap-
proximately at M� (not the case of binary pulsars,
for instance), writes

~̈r = −GM�~r

r 3

[
1 + 3

v2

c2
+ 4

(v
c

)γ ṙ
c

]
, (3)

where γ=1.8=9/5 as mentioned in subsection 1.2.
Apply ~r× to both sides of Eq. (3) and note that

~r × ~̈r= d(~r × ~̇r )/dt= ~̇L/M�, where ~L is the angular

moment of M�, obtaining ~̇L = ~0 , i.e., ~L is constant

(Kepler’s second law). As ~L = M�~r×~v , we have

~r ~L = 0, hence ~r keeps lying in a plain perpendic-
ular to a constant vector ~L, i.e., the motion is pla-
nar, because of which a plane polar coordinates sys-
tem ( ρ, ϕ) is convenient, in fact its three-dimensional
extension ( ρ, ϕ, z)—cylindrical coordinate system—
with the same origin (at ρ= 0) and the z-axis along
~L ; however, we continue using the notation ~r in-
stead of shifting to ~ρ . Also use the notation ~1d for
the unit vector of a given direction d, for instance
~1v ≡ ~v/|~v | = ~v/v, and (~1x,~1y,~1z) instead of (~ı,~,~k)
as the basis of unit vectors of a coordinate system
(x, y, z). Thus one can write

~r = r~1r , ~̇r ≡ ~v = ṙ~1r + rϕ̇~1ϕ ,

~̈r ≡ ~a = (r̈ − r ϕ̇2)~1r + (2ṙ ϕ̇+ r ϕ̈)~1ϕ ,

}
(4)

~L/M� = ~r×~v = r 2ϕ̇~1z = 2Ω~1z = 2~Ω , (5)

where ~Ω is the areolar velocity (and Ω the areolar
speed). Inserting expressions (4) in Eq. (3) and
equating the components for each ~1r and ~1ϕ , yield
two equations:

r̈ − r ϕ̇2 = −GM�

r 2

[
1 + 3

v2

c2
+ 4

(v
c

)γ ṙ
c

]
, (6)

2ṙ ϕ̇+ r ϕ̈ = 0 . (7)

Eq. (7) writes (1/r)d(r2ϕ̇)/dt= 0, hence r2ϕ̇= 2Ω =
constant, finding again Kepler’s second law.

Change variable t→ϕ , so having

d
dt = ϕ̇ d

dϕ = 2Ω
r2

d
dϕ ,

d2

dt2 = d
dt

(
d
dt

)
= 2Ω

r2
d
dϕ

(
2Ω
r2

d
dϕ

)
=

= 2Ω
r2

d
dϕ

[
2Ω
r2

d2

dϕ2− 4Ω
r3

(
d
dϕ

)2]
=
(

2Ω
r2

)2[ d2

dϕ2− 2
r

(
d
dϕ

)2]
,

thus, using primes for derivatives with respect to ϕ ,

ṙ =
2Ω

r2
r′ , r̈ =

(
2Ω

r2

)2(
r′′ − 2

r
r′ 2
)
.

Insert this expression of r̈ in Eq. (6) and divide both
sides by (2Ω/r 2)2, obtaining

r′′−2
r′

2

r
−r = −GM�r

2

(2Ω)2

[
1 + 3

v2

c2
+ 4

(v
c

)γ ṙ
c

]
. (8)

By function change r→u , as r= `/u , where ` is an
arbitrary constant, we have r ′ =−`u′/u2, and r′′ =
−`u′′/u2+2`u′ 2/u3, so the left side of Eq. (8) becomes
−`u′′/u2 − `/u = (−`/u2)(u′′ + u); also v 2 = ṙ 2 +
r 2ϕ̇2 =(2Ω/r2)2(r ′ 2 + r 2)=(2Ω/` )2(u′ 2 + u2); with
these preparations Eq. (8) writes

u′′ + u = GM�`
(2Ω)2

[
1 + 3

(
2Ω
c `

)2
(u′ 2+u2)

− 4
(
2Ω
c `

)γ+1
(u′ 2+u2)γ/2u′

]
,

∣∣∣∣∣∣
which, after setting the arbitrary constant `, and
defining a non-dimensional constant κ as

` =
(2Ω)2

GM�
, κ ≡

(
2Ω

` c

)2
=

(
GM�

2Ω c

)2
=
GM�

` c2
, (9)

finally writes

u′′+u = 1 + 3κ (u′ 2+u2)− 4κ(γ+1)/2(u′ 2+u2)γ/2u′.
(10)

The next step is to solve Eq. (10) whose non-linear
terms contain in factor the powers 1 and (γ + 1)/2
of κ that carries the RVD effect. As κ is small
(2.663×10−8 for Mercury, decreasing to 2.666×10−10

for Pluto), we treat the non-linear terms as a small
perturbation, solving the equation approximately, by
successive approximations, u0 , u1 , u2 , ..., replacing
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the non-linear terms in equation with their prece-
dent approximation, and neglecting all terms having
in factor κν with ν > (γ+1)/2.

If κ were zero, then Eq. (10) would be just that
in the Newton case, u′′0 + u0 = 1, whose solution is
u0 = 1 + ε cosϕ , meeting the condition of passing
through periastron at ϕ=0, ε being the eccentricity.
Taking as the zeroth approximation just the Newton
solution u0 is convenient for a fast convergence. Cor-
responding to the sequence of approximations {un}
we have a sequence of linear equations,

u′′1 +u1 =1+3κ(u′0
2+u2

0)− 4κ(γ+1)/2(u′ 20 +u2
0)γ/2u′0,

u′′2 +u2 =1+3κ(u′1
2+u2

1)− 4κ(γ+1)/2(u′ 21 +u2
1)γ/2u′1,

............................................................................. .


(11)

So, using the expression u0 = 1+ε cosϕ, the first of
these equations becomes

u′′1 + u1 =1 + 3κ(1+ε2+2ε cosϕ)

+ 4εκ(γ+1)/2(1+ε2+2ε cosϕ)γ/2 sinϕ .

∣∣∣∣∣ (12)

The general solution of this linear non homogeneous
equation is the sum of a particular solution u1p and
the general solution, c1 sinϕ+ c2 cosϕ, of the homo-
geneous equation u′′1 + u1 =0. Denoting by h(ϕ) the
whole second side (the non-homogeneity term) of Eq.
(12),

h(ϕ)=1 + 3κ(1+ε2+2ε cosϕ)

+ 4εκ(γ+1)/2(1+ε2+2ε cosϕ)γ/2 sinϕ ,

∣∣∣∣∣ (13)

the general solution of Eq. (12), directly verifiable by
differentiation, is

u1(ϕ) = c1 sinϕ+ c2 cosϕ

+ sinϕ
∫ ϕ

0
h(τ) cos τ dτ − cosϕ

∫ ϕ
0
h(τ) sin τ dτ ,

∣∣∣∣∣ (14)

and its derivative

u′1(ϕ) = c1 cosϕ− c2 sinϕ

+ cosϕ
∫ ϕ

0
h(τ) cos τ dϕ + sinϕ

∫ ϕ
0
h(τ) sin τ dτ .

∣∣∣∣∣ (15)

Now determine constants c1 and c2 using the ini-
tial conditions (the same for all approximations un) ,

u1(0)=1+ ε , and u′1(0)=0 , directly, without explic-
iting the integrals. Obviously, from (14), u1(0) = c2,
hence c2 = 1 + ε, and from (15), u′1(0) = c1, hence
c1 =0 ; insert these values in (15),

u′1(ϕ)=−(1+ε) sinϕ+ cosϕ
∫ ϕ

0
h(τ) cos τ dτ

+ sinϕ
∫ ϕ

0
h(τ) sin τ dτ .

∣∣∣∣∣ (16)

Note that our sequence of successive approximations
{un}n∈N —neglecting the terms having in factor κν

for ν >3/2—stops at n= 1, since the second of Eqs.
(11) (for u2) coincides with the first (for u1). In other
words, u1 contains the whole RVD effect of periastron
shift in our pre-established approximation, κν≈ 0 for
ν >(γ+1)/2.

By its definition, perihelion (or periastron) is a
point of extreme (minimum distance), hence u′1 = 0
at that point. Expecting a periastron shift δ after a
revolution means that u′1 =0 at ϕ=2π+δ (instead of
ϕ=2π in the Newton case). Because of the smallness
of κ, a small δ is to be expected, so that we approx-
imate sin δ ≈ δ, cos δ ≈ 1, δ 2 ≈ 0, and κδ ≈ 0, i.e.,
neglect δ ν for ν ≥ (γ + 1)/2 . From Eq. (16), us-
ing these approximations, as well as the general fact
that f(x + δ) ≈ f(x) + δf ′(x), and (13), we have
successively

u′1(2π+δ) ≈ −(1 + ε)δ +
2π+δ∫

0

h(ϕ) cosϕdϕ

+δ
2π+δ∫

0

h(ϕ) sinϕdϕ ≈ −(1 + ε)δ +
2π∫
0

h(ϕ) cosϕdϕ

+δ h(2π) + δ
2π∫
0

h(ϕ) sinϕdϕ+ 0

≈ −εδ +
2π∫
0

h(ϕ) cosϕdϕ+ 0

≈ −εδ + 6κε
(
ϕ
2 + sin 2ϕ

4

)∣∣∣2π
ϕ=0

= − εδ + 6πκε ,

whence, as ε 6= 0 ,
δ = 6πκ . (17)

Hence the perihelion shift δ is positive, i.e., an ad-
vance, indeed.Eq. (17) coincides with the well-known
formula (1), via the third form of κ in (9), and
`=a (1−ε2), ` being the semilatus rectum of an ellipse
in polar coordinates, r = `/(1 + ε cosϕ). Q.E.D.
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