Perihelion Advance formula inference from Newton gravity law Relative-Velocity Dependence completed

D.H.W. Reffer

ICPE, 313 Splai Unirii, 030138-Bucharest, Romania

dhwreffer@gmail.com

September 30, 2019

Abstract

While the original Newton's law of gravitation does not lead to the formula in question, the same law *relative-velocity dependence* completed does, briefly, with no hypothesis. **Keywords**: perihelion advance; interactions relative-velocity dependence.

1 Introduction

1.1 Perihelion advance formula

As known, Perihelion/Periastron advance/rotation/ precession/shift are names of the small remainder of the angular perihelion advance, δ , per revolution, of a planet orbiting the sun—or in general of a body orbiting an astron—not accounted for by Newton's law of gravitation. This slight deviation from Kepler's first law was discovered by Urbain Le Verrier (1859) [1] for Mercury by calculations, and the well known formula of the effect,

$$\delta = \frac{6\pi G M_{\odot}}{c^2 a (1 - \epsilon^2)} , \qquad (1)$$

was found by Paul Gerber [2] (1898) from some premises later regarded as inconsistent. A consistent inference was put forward by Albert Einstein (1916), via GTR [3]. Now we deduce it from Newton's gravity law RVD^1 completed.

1.2 RVD¹ completion of Newton's gravitation law

Let M and m be two point masses, and \vec{r} the position vector of m with respect to M, i.e., \vec{r} has its initial point at M and the terminal point at m or, in other words, m lies in the gravitational field of M; denote as usually $\vec{v} = \vec{r}$ the relative velocity of m with respect to M. In usual notations, Newton's law of gravitation writes $\vec{F}_N = -GMm\vec{r}/r^3 = m\vec{g}_N$. Newton's law of gravitation (empirically) RVD completed is

$$\vec{F} = \vec{F}_N \left[1 + 3\frac{v^2}{c^2} + 4\left(\frac{v}{c}\right)^{\gamma} \frac{v_{\scriptscriptstyle \parallel}}{c} \right],\tag{2}$$

where v_{\parallel} is the component of \vec{v} along the field, $v_{\parallel} = \dot{r}$, and $\gamma = 1.8$ (or $\gamma = 9/5$); using $\vec{g} = \vec{F}/m$ (force per unit mass, or gravitational field strength, or gravitational acceleration), Eq. (2) writes

$$\vec{g} = \vec{g}_N \left[1 + 3\frac{v^2}{c^2} + 4\left(\frac{v}{c}\right)^{\gamma} \frac{v_{||}}{c} \right].$$
 (2')

Of course, this is not a theory of gravitation, but simply a completion of Newton's law.

2 Perihelion advance formula inference

Unlike Gerber, whose reasoning has ultimately been considered both inconsistent and unclear, we either perform or mention all likely useful steps. We do this

 $^{^1\}mathrm{RVD}$ stands for Relative-Velocity Dependence/Dependent (according to context)

rather by metamorphic successive equalities than by words.

Newton's law of motion, $M_{\odot}\vec{a} = \vec{F}$, of a mass M_{\odot} (as a planet) in the gravitational field of a mass M_{\odot} (as the sun) taken as origin, $M_{\odot} \ll M_{\odot}$ so that the center of the masses M_{\odot} and M_{\odot} be approximately at M_{\odot} (not the case of binary pulsars, for instance), writes

$$\ddot{\vec{r}} = -\frac{GM_{\odot}\vec{r}}{r^3} \left[1 + 3\frac{v^2}{c^2} + 4\left(\frac{v}{c}\right)^{\gamma}\frac{\dot{r}}{c} \right],\qquad(3)$$

where $\gamma = 1.8 = 9/5$ as mentioned in subsection 1.2.

Apply $\vec{r} \times$ to both sides of Eq. (3) and note that $\vec{r} \times \ddot{\vec{r}} = d(\vec{r} \times \dot{\vec{r}})/dt = \dot{\vec{L}}/M_{\odot}$, where \vec{L} is the angular moment of M_{\odot} , obtaining $\vec{L} = \vec{0}$, i.e., \vec{L} is constant (Kepler's second law). As $\vec{L} = M_{\odot}\vec{r} \times \vec{v}$, we have $\vec{r} \vec{L} = 0$, hence \vec{r} keeps lying in a plain perpendicular to a constant vector \vec{L} , i.e., the motion is planar, because of which a plane polar coordinates system (ρ, φ) is convenient, in fact its three-dimensional extension (ρ, φ, z)—cylindrical coordinate system with the same origin (at $\rho = 0$) and the z-axis along \vec{L} ; however, we continue using the notation \vec{r} instead of shifting to $\vec{\rho}$. Also use the notation $\vec{1}_d$ for the unit vector of a given direction d, for instance $\vec{\mathbf{l}}_v \equiv \vec{v}/|\vec{v}| = \vec{v}/v$, and $(\vec{\mathbf{l}}_x, \vec{\mathbf{l}}_y, \vec{\mathbf{l}}_z)$ instead of $(\vec{i}, \vec{j}, \vec{k})$ as the basis of unit vectors of a coordinate system (x, y, z). Thus one can write

$$\vec{r} = r\vec{1}_r, \quad \dot{\vec{r}} \equiv \vec{v} = \dot{r}\vec{1}_r + r\dot{\varphi}\vec{1}_{\varphi}, \\ \ddot{\vec{r}} \equiv \vec{a} = (\ddot{r} - r\dot{\varphi}^2)\vec{1}_r + (2\dot{r}\dot{\varphi} + r\ddot{\varphi})\vec{1}_{\varphi},$$

$$(4)$$

$$\vec{L}/M_{\odot} = \vec{r} \times \vec{v} = r^2 \dot{\varphi} \vec{\mathbf{l}}_z = 2\Omega \vec{\mathbf{l}}_z = 2\vec{\Omega} \,, \qquad (5)$$

where $\vec{\Omega}$ is the *areolar velocity* (and Ω the *areolar speed*). Inserting expressions (4) in Eq. (3) and equating the components for each $\vec{1}_r$ and $\vec{1}_{\varphi}$, yield two equations:

$$\ddot{r} - r \, \dot{\varphi}^2 = -\frac{GM_{\odot}}{r^2} \left[1 + 3\frac{v^2}{c^2} + 4\left(\frac{v}{c}\right)^{\gamma} \frac{\dot{r}}{c} \right], (6)$$

$$2\dot{r} \, \dot{\varphi} + r \, \ddot{\varphi} = 0.$$
(7)

Eq. (7) writes $(1/r)d(r^2\dot{\varphi})/dt = 0$, hence $r^2\dot{\varphi} = 2\Omega =$ constant, finding again Kepler's second law.

Change variable $t \rightarrow \varphi$, so having

$$\begin{aligned} \frac{d}{dt} &= \dot{\varphi} \frac{d}{d\varphi} = \frac{2\Omega}{r^2} \frac{d}{d\varphi} ,\\ \frac{d^2}{dt^2} &= \frac{d}{dt} \left(\frac{d}{dt} \right) = \frac{2\Omega}{r^2} \frac{d}{d\varphi} \left(\frac{2\Omega}{r^2} \frac{d}{d\varphi} \right) =\\ &= \frac{2\Omega}{r^2} \frac{d}{d\varphi} \left[\frac{2\Omega}{r^2} \frac{d^2}{d\varphi^2} - \frac{4\Omega}{r^3} \left(\frac{d}{d\varphi} \right)^2 \right] = \left(\frac{2\Omega}{r^2} \right)^2 \left[\frac{d^2}{d\varphi^2} - \frac{2}{r} \left(\frac{d}{d\varphi} \right)^2 \right], \end{aligned}$$

thus, using primes for derivatives with respect to φ ,

$$\dot{r} = \frac{2\Omega}{r^2}r', \qquad \ddot{r} = \left(\frac{2\Omega}{r^2}\right)^2 \left(r'' - \frac{2}{r}r'^2\right).$$

Insert this expression of \ddot{r} in Eq. (6) and divide both sides by $(2\Omega/r^2)^2$, obtaining

$$r'' - 2\frac{r'^2}{r} - r = -\frac{GM_{\odot}r^2}{(2\Omega)^2} \left[1 + 3\frac{v^2}{c^2} + 4\left(\frac{v}{c}\right)^{\gamma}\frac{\dot{r}}{c} \right].$$
(8)

By function change $r \rightarrow u$, as $r = \ell/u$, where ℓ is an arbitrary constant, we have $r' = -\ell u'/u^2$, and $r'' = -\ell u''/u^2 + 2\ell u'^2/u^3$, so the left side of Eq. (8) becomes $-\ell u''/u^2 - \ell/u = (-\ell/u^2)(u'' + u)$; also $v^2 = \dot{r}^2 + r^2 \dot{\varphi}^2 = (2\Omega/r^2)^2 (r'^2 + r^2) = (2\Omega/\ell)^2 (u'^2 + u^2)$; with these preparations Eq. (8) writes

$$u'' + u = \frac{GM_{\odot}\ell}{(2\Omega)^2} \left[1 + 3\left(\frac{2\Omega}{c\ell}\right)^2 (u'^2 + u^2) - 4\left(\frac{2\Omega}{c\ell}\right)^{\gamma+1} (u'^2 + u^2)^{\gamma/2} u' \right],$$

which, after setting the arbitrary constant $\ell,$ and defining a non-dimensional constant κ as

$$\ell = \frac{(2\Omega)^2}{GM_{\odot}}, \quad \kappa \equiv \left(\frac{2\Omega}{\ell c}\right)^2 = \left(\frac{GM_{\odot}}{2\Omega c}\right)^2 = \frac{GM_{\odot}}{\ell c^2}, \quad (9)$$

finally writes

$$u'' + u = 1 + 3\kappa \left(u'^2 + u^2 \right) - 4\kappa^{(\gamma+1)/2} (u'^2 + u^2)^{\gamma/2} u'.$$
(10)

The next step is to solve Eq. (10) whose non-linear terms contain in factor the powers 1 and $(\gamma + 1)/2$ of κ that carries the RVD effect. As κ is small $(2.663 \times 10^{-8}$ for Mercury, decreasing to 2.666×10^{-10} for Pluto), we treat the non-linear terms as a small perturbation, solving the equation approximately, by successive approximations, $u_0, u_1, u_2, ...$, replacing the non-linear terms in equation with their precedent approximation, and neglecting all terms having in factor κ^{ν} with $\nu > (\gamma+1)/2$.

If κ were zero, then Eq. (10) would be just that in the Newton case, $u_0'' + u_0 = 1$, whose solution is $u_0 = 1 + \epsilon \cos \varphi$, meeting the condition of passing through periastron at $\varphi = 0$, ϵ being the eccentricity. Taking as the zeroth approximation just the Newton solution u_0 is convenient for a fast convergence. Corresponding to the sequence of approximations $\{u_n\}$ we have a sequence of *linear* equations,

$$u_{1}^{\prime\prime} + u_{1} = 1 + 3\kappa (u_{0}^{\prime 2} + u_{0}^{2}) - 4\kappa^{(\gamma+1)/2} (u_{0}^{\prime 2} + u_{0}^{2})^{\gamma/2} u_{0}^{\prime},$$

$$u_{2}^{\prime\prime} + u_{2} = 1 + 3\kappa (u_{1}^{\prime 2} + u_{1}^{2}) - 4\kappa^{(\gamma+1)/2} (u_{1}^{\prime 2} + u_{1}^{2})^{\gamma/2} u_{1}^{\prime},$$

(11)

So, using the expression $u_0 = 1 + \epsilon \cos \varphi$, the first of these equations becomes

$$\begin{array}{c} u_1'' + u_1 = 1 + 3\kappa (1 + \epsilon^2 + 2\epsilon \cos \varphi) \\ + 4\epsilon \kappa^{(\gamma+1)/2} (1 + \epsilon^2 + 2\epsilon \cos \varphi)^{\gamma/2} \sin \varphi \,. \end{array}$$
(12)

The general solution of this linear non homogeneous equation is the sum of a particular solution u_{1p} and the general solution, $c_1 \sin \varphi + c_2 \cos \varphi$, of the homogeneous equation $u''_1 + u_1 = 0$. Denoting by $h(\varphi)$ the whole second side (the non-homogeneity term) of Eq. (12),

$$\begin{array}{c} h(\varphi) = 1 + 3\kappa (1 + \epsilon^2 + 2\epsilon \cos \varphi) \\ + 4\epsilon \kappa^{(\gamma+1)/2} (1 + \epsilon^2 + 2\epsilon \cos \varphi)^{\gamma/2} \sin \varphi \,, \end{array}$$
(13)

the general solution of Eq. (12), directly verifiable by differentiation, is

$$u_1(\varphi) = c_1 \sin \varphi + c_2 \cos \varphi + \sin \varphi \int_0^{\varphi} h(\tau) \cos \tau \, d\tau - \cos \varphi \int_0^{\varphi} h(\tau) \sin \tau \, d\tau , \qquad (14)$$

and its derivative

$$u_1'(\varphi) = c_1 \cos \varphi - c_2 \sin \varphi + \cos \varphi \int_0^{\varphi} h(\tau) \cos \tau \, d\varphi + \sin \varphi \int_0^{\varphi} h(\tau) \sin \tau \, d\tau \,.$$
(15)

Now determine constants c_1 and c_2 using the initial conditions (the same for all approximations u_n),

 $u_1(0) = 1 + \epsilon$, and $u'_1(0) = 0$, directly, without expliciting the integrals. Obviously, from (14), $u_1(0) = c_2$, hence $c_2 = 1 + \epsilon$, and from (15), $u'_1(0) = c_1$, hence $c_1 = 0$; insert these values in (15),

$$\begin{aligned} u_1'(\varphi) &= -(1+\epsilon)\sin\varphi + \cos\varphi \int_0^{\varphi} h(\tau)\cos\tau \,d\tau \\ &+ \sin\varphi \int_0^{\varphi} h(\tau)\sin\tau \,d\tau \,. \end{aligned}$$
(16)

Note that our sequence of successive approximations $\{u_n\}_{n\in\mathcal{N}}$ —neglecting the terms having in factor κ^{ν} for $\nu > 3/2$ —stops at n=1, since the second of Eqs. (11) (for u_2) coincides with the first (for u_1). In other words, u_1 contains the whole RVD effect of periastron shift in our pre-established approximation, $\kappa^{\nu} \approx 0$ for $\nu > (\gamma+1)/2$.

By its definition, perihelion (or periastron) is a point of extreme (minimum distance), hence $u'_1 = 0$ at that point. Expecting a periastron shift δ after a revolution means that $u'_1 = 0$ at $\varphi = 2\pi + \delta$ (instead of $\varphi = 2\pi$ in the Newton case). Because of the smallness of κ , a small δ is to be expected, so that we approximate $\sin \delta \approx \delta$, $\cos \delta \approx 1$, $\delta^2 \approx 0$, and $\kappa \delta \approx 0$, i.e., neglect δ^{ν} for $\nu \geq (\gamma + 1)/2$. From Eq. (16), using these approximations, as well as the general fact that $f(x + \delta) \approx f(x) + \delta f'(x)$, and (13), we have successively

$$\begin{split} u_1'(2\pi+\delta) &\approx -(1+\epsilon)\delta + \int_0^{2\pi+\delta} h(\varphi)\cos\varphi d\varphi \\ &+ \delta \int_0^{2\pi+\delta} h(\varphi)\sin\varphi d\varphi \approx -(1+\epsilon)\delta + \int_0^{2\pi} h(\varphi)\cos\varphi d\varphi \\ &+ \delta h(2\pi) + \delta \int_0^{2\pi} h(\varphi)\sin\varphi d\varphi + 0 \\ &\approx -\epsilon\delta + \int_0^{2\pi} h(\varphi)\cos\varphi d\varphi + 0 \\ &\approx -\epsilon\delta + 6\kappa\epsilon \left(\frac{\varphi}{2} + \frac{\sin 2\varphi}{4}\right) \Big|_{\varphi=0}^{2\pi} \\ &= -\epsilon\delta + 6\pi\kappa\epsilon \,, \end{split}$$
whence, as $\epsilon \neq 0$,

$$\delta = 6\pi\kappa. \tag{17}$$

Hence the perihelion shift δ is positive, i.e., an advance, indeed.Eq. (17) coincides with the well-known formula (1), via the third form of κ in (9), and $\ell = a (1-\epsilon^2)$, ℓ being the *semilatus rectum* of an ellipse in polar coordinates, $r = \ell/(1 + \epsilon \cos \varphi)$. Q.E.D.

References

- Urbain-Jean-Joseph Le Verrier. Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète. *Comptes rendus hebdomadaires des séances de l'Académie des Sciences (Paris)*, 49:379–383, 1859.
- [2] Paul Gerber. Die räliche und zeitliche Ausbreitung der Gravitation (The Spatial and Temporal Propagation of Gravity). Zeitschrift für Mathematik und Physik (Journal of Mathematics and Physics), 43:93–104, 1898.
- [3] Albert Einstein. Grundlage der allgemeinen Relativitätstheorie (The Foundation of the General Theory of Relativity). Annalen der Physik, 49(7):769–822, 1916.