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Abstract. The Number-of-Divisors Function τ(n) is the number of divisors

of a positive integer n, including 1 and n itself. Searching for pairs of the
format (τ(n), τ(n+ 1)), some pairs appear (very) often, some never and some

— like (1,2), (4,9), or (10,3) — exactly once. The manuscript provides proofs
for 46 pairs to appear exactly once and lists 12 pairs that conjecturally appear

only once. It documents a snapshot of a community effort to verify sequence

A161460 of the Online Encyclopedia of Integer Sequences that started ten
years ago.

1. Scope

The number-theoretic function τ(n) counts the divisors of n, including 1 and n
itself:

(1) τ(n) = 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, . . . (n ≥ 1).

τ(n) is tabulated in the Online Encyclopedia of Integer Sequences [6, A000005] and
a reverse lookup arranged in [6, A073915]. It is multiplicative. If n =

∏
i p
ei
i is the

unique prime factorization of n, then

(2) τ(
∏
i

peii ) =
∏
i

(ei + 1).

In the list (1), the pair (6,2) appears at least 2 times — once at τ(12) = 6, τ(13) = 2
and again at τ(18) = 6, τ(19) = 2, see Appendix C.2. The pair (4,4) appears at
least three times (see Appendix C.1). The pair (3,3), indeed any pair of odd primes,
appears never.

Proof. Formula (2) shows that only the squared primes have τ(p2) = 3, and be-
cause the squared primes have a mutual distance larger than one, a 3 cannot be
immediately followed by a 3. �

The manuscript deals with the question: which pairs appear only once in the
infinite sequence of τ(n).

[6, A161460] searches for pairs of numbers n 6= m such that the numbers of
divisors τ(.) and the numbers of divisors of the next integer match:

(3) τ(n) = τ(m), and τ(n+ 1) = τ(m+ 1).

If the two equations can be solved only by setting n = m, the number n = m is in
the sequence.
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2. Strategies and Recipes

2.1. Modular Arithmetic. We use the elementary relation (2) that τ(n) can be
computed from the product of the incremented exponents in the prime factorization
of n [13]. The prime signatures of n with a given τ are obtained by inspection of
a table of all factorizations of τ as counted in [6, A001055] and made explicit in
[6, A162247]. Once an n is fixed, n = p...q...r... · · · and n + 1 = s...t... · · · are
known with some known prime sets {p, q, r, . . .} and {s, t, . . .} plus their exponents
and define a pair of τ ′s in the τ -sequence. The proofs center around diophantine
equations of the type

(4) p...q...r... · · · = s...t... · · · − 1.

We ask for a given number of distinct prime factors on the left hand side (LHS)
and a given number of distinct prime factors on the right hand side (RHS), and a
given set of exponents, whether more than one solution exists.

Theorem 1. All primes of both sides of (4) are distinct.

Proof. If one prime would appear on both sides, reducing both sides modulo that
prime would lead to a contradiction with residues of 0 and −1. �

A first generic constraint is derived from the −1 on the RHS of Eq. (4), which
requires that either the prime product p...q... · · · on the RHS or the prime product:
s...t... · · · on the LHS is even, but not both:

Theorem 2. (Parity Argument) Exactly one of the terms p...q...r... · · · or s...t... is
even, so the prime 2 appears exactly once in the set of primes of both sides.

Usually the primes p, q. . . on the LHS and the primes s, t. . . on the RHS are
in the residue classes ≡ {1, 2} (mod 3). In cases where the prime exponents of
s...t... · · · are all even, that product is a perfect square and usually the entire term
is ≡ 1 (mod 3) such that the RHS is ≡ 0 (mod 3), whereas the LHS is ≡ {1, 2}
(mod 3). To salvage that mismatch of congruences modulo 3 we need a prime in
the ≡ 0 (mod 3) class, which is just the 3 itself:

Theorem 3. (Mod-3 Criterion) If s...t... on the right hand side in (4) is a perfect
square, one of the primes in the set {p, q, r, . . . , s, t, . . .} must be 3.

2.2. Notations. The text uses the ∼ or � symbol to indicate that two expressions
are (or are not) in the same prime signature class.

Definition 1. (omega) ω(n) is the number of distinct prime divisors of n, the
cardinality of the set of i with positive ei that contribute to (2).

Definition 2. (Big-omega) Ω(n) is the number of prime divisors of n, counted with
multiplicity.

(5) Ω(
∏
i

peii ) =
∑
i

ei.

Definition 3. (gcd) (x, y) is the greatest common divisor of x and y.

3. Proven Unique

3.1. 1. n = 1, τ(n) = 1, τ(n + 1) = 2. This pair is simple since 1 is the only
number with τ(1) = 1, all the others having at least two divisors (namely 1 and
themselves).
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3.2. 2. n = 2, τ(n) = 2, τ(n+ 1) = 2. Since prime numbers are the only numbers
with τ = 2, and since this here is the case with two consecutive numbers having
τ = 2, and since 2 and 3 are the only consecutive prime numbers, this case is also
settled easily.

3.3. 3. n = 3, τ(n) = 2, τ(n+1) = 3. This requires a prime number n = p followed
by a square of a prime number n + 1 = q2. Therefore p + 1 = q2, equivalent to
p = q2 − 1 = (q + 1)(q − 1). Since we have a prime on the left hand side of this
equation and a composite on the right hand side unless q = 2, we must have q = 2,
therefore n+ 1 = 4. So there is only the pair (n, n+ 1) = (3, 4) in this category.

3.4. 4. n = 4, τ(n) = 3, τ(n+ 1) = 2. The pair of τ is in the opposite order of the
one discussed above for n = 3. Here we need a square of a prime n = p2 followed
by a prime n + 1 = q, which implies p2 + 1 = q. With the exception of p = 2, the
squares of primes on the left hand side are odd, so the left hand side is even, and
the right hand side is odd. Therefore p = 2 and n = 4 are a unique solution to this
pair of τ .

3.5. 8. n = 8 = 23, τ(n) = 4 [6, A030513] , τ(n + 1) = 3 [6, A001248] . This
requires a product of two distinct primes n = pq or a prime cubed n = p3 followed
by a squared prime n+ 1 = r2.

• pq + 1 = r2 has two sub-formats by the parity argument:
– 2q + 1 = r2 with q 6= 2 is equivalent to 2q = (r + 1)(r − 1) equivalent

to r− 1 = 2 and r+ 1 = q, which does not have a solution over primes
r.

– pq + 1 = 22 has no solution over pairs (p, q) of distinct primes.
• The second sub-case of p3 + 1 = r2 is also settled by the parity argument:

If p = 2 we have the solution n = 8, and if r = 2 there is no solution.

This concludes the track of all sub-cases.

3.6. 15. n = 15 = 3 · 5, τ(n) = 4 [6, A030513] , τ(n + 1) = 5 [6, A030514] .
Demonstrated in the OEIS comment by the original author of the sequence.

3.7. 16. n = 16 = 24, τ(n) = 5, τ(n + 1) = 2. This requires a fourth power of a
prime n = p4 followed by a prime n+ 1 = q. By the parity argument either p = 2
or q = 2 are needed to solve this equation. Since q = 2 does not lead to a solution,
the case n = 24 remains the only one.

3.8. 24. n = 24 = 23 · 3, τ(n) = 8 [6, A030626] , τ(n + 1) = 3. τ = 8 requires
n = p7 or n = pq3 or n = pqr with distinct primes p, q and r; and τ = 3 requires
n+ 1 = s2 with prime s. By the parity argument one of the primes involved equals
2, and this prime is not s because n = 22 − 1 is no solution.

• 27 + 1 = s2 has no solution in integers s.
• 2q3 + 1 = s2 implies 2q3 = (s + 1)(s − 1). On the RHS s is an odd prime

such that (s + 1)(s − 1) is a product of two even numbers and a multiple
of 4. This does not match the prime signature of the LHS, so there are on
solutions.
• p·23+1 = s2, p ≥ 3 means 8p = (s+1)(s−1). The sub-cases of factorizations

are 1 = s− 1, 8p = s+ 1 (no solution in primes), or 2 = s− 1, 4p = s+ 1
(no solution in primes), or p = s − 1, 8 = s + 1 (no solution in primes),
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or 2p = s − 1, 4 = s + 1 (no solution in primes), or 2p = s + 1, 4 = s − 1
(solution s = 5, n = 24 as known).
• pq3 + 1 = 22 does not provide solutions with distinct primes p, q.
• pqr + 1 = 22 does not provide solutions with distinct primes p, q.
• 2qr + 1 = s2 implies 2qr = (s+ 1)(s− 1). On the RHS s is an odd prime,

so (s + 1)(s − 1) is a product of two even numbers, therefore a multiple
of 4, which does not match the prime signature of 2qr: no solution in this
branch.

3.9. 35. n = 35 = 5 · 7, τ(n) = 4 [6, A030513] , τ(n+ 1) = 9 [6, A030627] . seqfan
list [12]: This requires n = p3 or n = pq, n+ 1 = r8 or n+ 1 = r2s2. There are two
cases:

• n even: Then n = 23 or n = 2q with odd q, and n+ 1 = r8 or n+ 1 = (rs)2

with odd r, s. But odd squares are ≡ 1 (mod 8), hence n ≡ 0 (mod 8),
which excludes n = 2q, so n = 23. But 9 is neither r8 nor (rs)2. Hence n
cannot be even.
• n odd: Then n + 1 = 28 or n + 1 = 4s2 and n = p3 or n = pq (with p, q

and s odd). 255 = 3 · 5 · 17, hence n + 1 = 28 can be excluded. Then
n = 4s2 − 1 = (2s+ 1)(2s− 1).

– If n = p3, this implies
∗ either 2s− 1 = 1 which yields a contradiction s = 1,
∗ or 2s− 1 = p, 2s+ 1 = p2. Therefore p2 = p+ 2 which enforces
p ∈ {2,−1}, a contradiction.

– Remains the case n = pq = (2s + 1)(2s − 1), assuming p > q, for
example. Then p = 2s+ 1 and q = 2s− 1 are twin primes, hence 2s is
a multiple of 6, s a multiple of 3. Therefore s = 3, leading to n = 35.

3.10. 48. n = 48 = 24 · 3, τ(n) = 10 [6, A030628] , τ(n + 1) = 3 [6, A001248] .
τ = 10 requires n = p9 or n = pq4; τ = 3 requires n + 1 = r2. seqfan list [12]:
There are two cases:

• n odd: then n+ 1 = 22, but τ(3) = 2 does not match.
• n even: n = 29 is discarded by direct evaluation. Then n = 2p4 or n = 24p

(p odd), and n+1 = r2 (r odd). Since r2 = 1 (mod 8) by (9), only n = 16p
remains. Then 16p = (r+1)(r−1) implies that r−1 and r+1 are adjacent
even divisors of 16p with a greatest common divisor of 2. The factorizations
of that form are 16p = 2 × 8p and 16p = 2p × 8. The first form requires
r + 1 = 2 or r − 1 = 2 which both do not generate solutions by direct
inspection. We are left with 16p = 8× 2p. Then r− 1 = 8 does not yield a
prime r, but r + 1 = 8 (with p = 2) and n = 48 as was to be shown.

3.11. 63. n = 63 = 32 · 7, τ(n) = 6 [6, A030515] , τ(n+ 1) = 7 [6, A030516] . n is
of the form p5 or pq2. n+ 1 is of the form r6. seqfan list [12] (All prime variables
denote odd primes):

• n even. Then n = 25 or 2q2 or 22p. τ(n + 1) = 7, hence n + 1 must
be an odd square r6 and n = 1 (mod 8) by Theorem 4. This matches
only n = 25 because 2q2 ≡ 2 (mod 8) and 4q2 ≡ 4 (mod 8), which is no
solution: 25 + 1 � r6.

• n odd. Then n+ 1 is even and must be 26. Hence n = 63.

http://list.seqfan.eu/pipermail/seqfan/2009-June/001766.html
http://list.seqfan.eu/pipermail/seqfan/2009-June/001766.html
http://list.seqfan.eu/pipermail/seqfan/2009-June/001767.html
http://list.seqfan.eu/pipermail/seqfan/2009-June/001777.html
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3.12. 64. n = 64 = 26, τ(n) = 7 [6, A030516] , τ(n + 1) = 4 [6, A030513] . τ = 7
requires n = p6. τ = 4 requires n+1 = q3 or qr. seqfan list [12] (All prime variables
denote odd primes):

• n odd: n = p6 and n + 1 = 23 (but 23 − 1 � p6) or n + 1 = 2q. But

q = n+1
2 = p6+1

2 = p2+1
2 · (p4 − p2 + 1) is a nontrivial factorization of q —

contradiction..
• n even: Then n = 26 as was to be shown.

3.13. 80. n = 80 = 24 · 5, τ(n) = 10 [6, A030628] , n+ 1 = 81 = 34, τ(n+ 1) = 5
[6, A030514] . τ = 10 requires n = p9 or pq4. τ = 5 requires n+ 1 = r4. seqfan list
[12] (All prime variables denote odd primes):

• n odd. Then n+ 1 = 24, but τ(15) 6= 10.
• n even. Then n = 29 [but τ(29 + 1) � r4] or n = 2p4 or n = 24p. Note that
n + 1 = r4 is an odd square, is ≡ 1 (mod 8), hence n = 0 (mod 8), which
leaves only n = 16p. But r4 − 1 = (r − 1)(r + 1)(r2 + 1). All three factors
are even, hence exactly one is divisible by 4. Also, exactly one is divisible
by p. If p | r2 + 1, we conclude r2 + 1 ≤ 4 – contradiction. Hence r− 1 = 2,
r + 1 = 4, r2 + 1 = 2p, i.e., n = 80.

3.14. 99. n = 99 = 32 ·11, τ(n) = 6 [6, A030515] , n+1 = 100 = 22 ·52, τ(n+1) = 9
[6, A030627] . τ = 6 requires n = p5 or pq2. τ = 9 requires n + 1 = s8 or s2t2.
seqfan list [12] (All prime variables denote odd primes):

• n even. n = 25 [but τ(33) 6= 9] or n = 2p2 or n = 4p and once again n+ 1
is an odd square, hence n must be ≡ 0 (mod 8) – contradiction.
• n odd. n = p5 or n = pq2. n+1 = 28 [but τ(255) 6= 6] or n+1 = 4r2. Then
pq2 = (2r + 1)(2r − 1), a product of two adjacent odd coprime numbers.
At most one of 2r + 1, 2r − 1 is divisible by q, hence

– either p = 2r − 1, q2 = 2r + 1. Since r is prime, r = ±1 (mod 6),
hence 2r − 1 = 1 or 3 (mod 6). Since p is prime, only p = 2r − 1 ≡ 1
(mod 6) remains. But then q2 = 3 (mod 6) – contradiction.

– or p = 2r + 1, q2 = 2r − 1. Then p = q2 + 2. If q = 3, we obtain
p = 11 and n = 99. Otherwise, this implies p ≡ 0 (mod 3) and q2 = 1
– contradiction Hence we must have n = 99.

3.15. 288. n = 288 = 25 · 32, τ(n) = 18 [6, A030636] , n + 1 = 289 = 172,
τ(n+ 1) = 3 [6, A001248] . [9]:

The forms of numbers having 18 divisors are n = p17, pq8, p2q5, pq2r2. The
forms of numbers having 3 divisors is n+ 1 = s2.

• Suppose n is odd. Then n+ 1 is even, which implies that n+ 1 = 22. But
n = 3 is not possible because τ(3) 6= 18. So n cannot be odd.

• Suppose n is even. Then one of the prime factors of n must be 2. So
the forms of even n are 217, 2q8, 256q, 4q5, 32p2, 2q2r2, or 4pq2. Also
n = s2 − 1 = (s − 1)(s + 1). Because n is even, s must be odd. Hence
23|s2−1 (Theorem 4). This eliminates the forms 2q8, 4q5, 2q2r2, and 4pq2.
The remaining forms are 217, 28p, and 25p2. It cannot be 217 because
τ(217 + 1) 6= 3.

Writing s = 2y + 1 for some y, n = s2 − 1 = 4y(y + 1).
– Setting 4y(y + 1) = 28p, we see that either y or y + 1 must be prime.

If y + 1 is prime, then we obtain 4y = 28, which means y = 26. But

http://list.seqfan.eu/pipermail/seqfan/2009-June/001777.html
http://list.seqfan.eu/pipermail/seqfan/2009-June/001777.html
http://list.seqfan.eu/pipermail/seqfan/2009-June/001777.html
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then y+ 1 is not prime – a contradiction. If y is prime, then we obtain
4(y + 1) = 28, which means y = 63 – also not prime. So the form
cannot be 28p.

– Finally, we have the case 4y(y + 1) = 25p2. Equivalently, y(y + 1) =
8p2. It is well known that y and y + 1 are coprime for all y. Hence,
either y or y + 1 must have the factor 8. If y = 8, then we obtain
the known solution n = 288. If y = 8k for some odd k > 1, then
y(y+ 1) = 8k(8k+ 1), which means that k(8k+ 1) must the square of
a prime. However, this is not possible because it has a factor of k and
the other factor is not k. Similarly, if y + 1 = 8k for some k > 1, then
y(y + 1) = 8k(8k − 1), which means that k(8k − 1) is the square of a
prime for k > 1, which is not possible.

Hence, n = 288 is the only solution.

3.16. 528. n = 528 = 24 · 3 · 11, τ(n) = 20 [6, A030638] , n + 1 = 529 = 232,
τ(n+1) = 3 [6, A001248] . seqfan list [12]: n+1 is the square of a prime and surely
6= 4, hence n is even. n is one of 219 [but then τ(n+ 1) 6= 3], 29p, 24p3, 24pq, 23p4,
2p9, 2p4q. Since n+ 1 is an odd prime square r2, n = 0 (mod 8) by Eq. (9). This
leaves cases where n supports at least the factor 23: n = 29p, 24p3, 24pq, 23p4. In
n = (r − 1)(r + 1), both factors are even with a greatest common divisor of 2.

• If n = 29p, these factors cannot be 2 and 28p but must be 28 and 2p,
which implies r = 257 (255 is composite) and hence p = (r + 1)/2 = 129,
composite – contradiction.
• If n = 24p3, r ± 1 must be 8 and 2p3, which is impossible.
• If n = 23p4, r ± 1 must be 4 and 2p4, which is impossible.
• If n = 24pq, r ± 1 must be 8 and 2pq or, without loss of generality, 8p and

2q. The first case is quickly ruled out by inspection. In the second case,
r 6= 3 (as n 6= 8), hence one of r ± 1 is a multiple of 3 [since in the three
consecutive numbers r − 1, r, r + 1 one must be a multiple of 3, and this
cannot be the prime r > 3], i.e., p = 3 or q = 3. (Note that the factor of 3
cannot come from 8 or 2, and p and q must remain prime.) If q = 3, then
r = 6± 1, n = 24 or n = 48, but then τ(n) 6= 20. If p = 3, then r = 24± 1,
hence r = 23 and n = 528 as was to be shown.

3.17. 575. n = 575 = 52 · 23, τ(n) = 6 [6, A030515] , n + 1 = 576 = 26 · 32,
τ(n + 1) = 21 [6, A137484] . seqfan list [12]: Then n = p5 or p2q and n + 1 = r20

or r6s2.

• If n+ 1 = r20, then n = r20 − 1 = (r− 1)(r+ 1)(r2 + 1)(r4 − r3 + r2 − r−
1)(r4 + r3 + r2 + r+ 1)(r8− r6 + r4− r2 + 1). The case r = 2 is eliminated
explicitly: τ(220 − 1) 6= 6. Hence n can be written as product of 6 factors
≥ 2, contradicting the prime signature(s) of n.

• Hence n+1 = r6s2. If n+1 is odd, then as usual n = 0 (mod 8), hence not
of the form p2q but n = 25—but τ(25 + 1) 6= 21. Therefore, n is odd and
can be written as n = (r3s − 1)(r3s + 1), i.e., as product of two adjacent
and hence coprime odd numbers. This eliminates the case n = p5 (r3s± 1
would be of the form 1 and p5) and enforces |p2−q| = 2. q = 3 is impossible
and the case p = 3 (with q = 7 or q = 11) can be eliminated explicitly:
τ(32 · 7 + 1) 6= 21, τ(32 · 11 + 1) 6= 21. Equations (9) and (25) mean p2 ≡ 1
(mod 24), so q ≡ −1 (mod 24) and q = p2 − 2. But then p2 = r3s + 1

http://list.seqfan.eu/pipermail/seqfan/2009-June/001790.html
http://list.seqfan.eu/pipermail/seqfan/2009-June/001791.html
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and r3s must be 0 (mod 8), hence r = 2. Thus we arrive at the conditions
p2 = 8s+ 1, q = 8s−1. Exactly one of s, 8s+ 1, 8s−1 must be 0 (mod 3),
hence one of p, q, s is 3. The only valid possibility is s = 3, p = 5, q = 23,
leading to n = 575.

3.18. 624. n = 624 = 24 · 3 · 13 , τ(n) = 20 [6, A030638] , n + 1 = 625 = 54,
τ(n+1) = 5 [6, A030514] [9]: The forms of numbers having 20 divisors are n = p19,
pq9, p3q4, pqr4 The forms of numbers having 5 divisors is n+ 1 = s4.

• Suppose n is odd. Then n+ 1 is even, which implies that n+ 1 = 24. But
n = 15 is not possible because τ(15) 6= 20. So n cannot be odd.
• Suppose n is even. Then one of the prime factors of n must be 2. So

the forms of even n are 219, 2p9, 512p, 8p4, 16p3, 2pq4, or 16pq. Also
n = s4 − 1 = (s − 1)(s + 1)(s2 + 1). Because n is even, s must be odd.
Hence 16 divides s4 − 1 by (10). This eliminates the forms 2p9, 8p4, and
2pq4. The remaining forms are 219, 512p, 16p3, and 16pq. It cannot be 219

because τ(219 + 1) 6= 5.
Prime s is either 3 or a number of the form 6k − 1 or 6k + 1. If s = 3,

then n = 80 and τ(80) = 10, which contradicts the requirement. For s of
the form 6k + 1, we obtain s4 − 1 = 24k(3k + 1)(18k2 + 6k + 1). For s of
the form 6k− 1, we obtain s4− 1 = 24k(3k− 1)(18k2− 6k+ 1). For k > 1,
the three factors k, 3k+ 1, and 18k2 + 6k+ 1 are coprime and greater than
1, as are the three factors k, 3k − 1, and 18k2 − 6k + 1. When s > 3, then
2 and 3 divide s4 − 1.

– Case 512p. Suppose s4 − 1 = 512p. As noted above, 3 divides s4 − 1.
Hence, we can assume p = 3. This p produces n = 512 · 3 = 1536. But
τ(n+ 1) = 4, a contradiction.

– Case 16p3. Suppose s4 − 1 = 16p3. As noted above, 3 divides s4 − 1.
Hence, we can assume p = 3. This produces n = 16·27. But τ(n+1) =
2, a contradiction.

– Case 16pq. Suppose s4 − 1 = 16pq. For prime s of the form 6k − 1,
we have s4 − 1 = 24k(3k − 1)(18k2 − 6k + 1). Letting k = 1, we
obtain the known solution n = 624. As noted above, 3 divides s4 − 1.
Hence, we can assume q = 3. So we can assume s4 − 1 = 48p, or
equivalently, k(3k − 1)(18k2 − 6k + 1) = 2p. For k > 1, the left
hand side is the product of at least 3 distinct primes because the three
factors are all relatively prime to each other. The right hand side has
only 2 distinct prime factors. Hence, there is no solution for k > 1.
The same argument applies to primes s of the form 6k + 1.

Hence, n = 624 is the only solution.

3.19. 728. n = 728 = 23 · 7 · 13, τ(n) = 16 [6, A030634] , n + 1 = 729 = 36,
τ(n+ 1) = 7 [6, A030516] . τ = 16 requires that n is of the form p15 or pq7 or p3q3

or pqr3 or pqrs with p, q, r and s prime. τ = 7 requires that n + 1 = t6 with t
prime. Sub-cases:

• 1 + p15 = t6. The parity argument requires that either p or t is even. p = 2
is no solution since 1 + 215 � t6 and t = 2 is no solution since 26− 1 � p15.
So this case does not create solutions.

• 1 + pq7 = t6. Again comparing parities on both sides, exactly one of the
primes must be 2.
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– 1 + 2q6 = t6 is equivalent to 2q6 = t6− 1. Eq. (11) requires that t6− 1
has a factor 23 which is not supported by 2q6. This contradiction
means this sub-case does not provide solutions.

– 1 + 27p = t6. By the parity argument, t is an odd prime; the odd
primes 3, 5 and 7 are excluded by direct evaluation. Then Theorem
6 says that t6 − 1 has at least 3 distinct prime factors, which is not
supported by the other side, 27p, so there are no solutions from this
sub-case.

– 1 + pq7 = 26. Has no solutions since p and q are distinct primes > 2.
• 1 + p3r3 = t6. For primes t = 2, 3, 5, 7 the corresponding t6− 1 do not have

the (pq)3 signature. For primes t > 7, Theorem 6 requires the t6− 1 has at
least 3 distinct prime factors, but p3q3 does not support his: no solutions.

• 1 + pqr3 = t6. By the parity argument, exactly one of the primes must be
2.

– 1 + 2qr3 = t6, i.e. 2qr3 = t6 − 1. Here (11) means that t6 − 1 has
at least a factor 23, which is not supported by the format 2qr3. This
mismatch means there are no solutions from this branch.

– 1 + 23pq = t6. Insertion of t = 2k + 1, k ≥ 1, yields 23pq = 4k(k +
1)(4k2 +6k+3)(4k2 +2k+1), therefore pq = T (k)(4k2 +6k+3)(4k2 +
2k + 1), where T (k) is the k-th triangular number. k = 1 gives the
known solution with p = 7, q = 13. For k > 1, T (k) may be even,
with an odd parity of the pq on the left hand side and an even parity
on the right hand side (no solutions). If T (k) is odd, we have also
two coprime odd factors 4k2 + 6k + 3 and 4k2 + 2k + 1, both distinct
from T (k), so Ω applied to the right hand side must be ≥ 3. So this
prevents further solutions because Ω(pq) = 2 on the left hand side.

– 1 + pqr3 = 26 does not yield solutions because 26 − 1 � pqr3.
• 1 + pqrs = t6. By the parity argument, one of the primes must be 2.

– 1+2qrs = t6. As above t6−1 for odd primes t contains a factor 23, but
only 21 appears in 2qrs. This mismatch means there are no solutions
from this branch.

– 1 + pqrs = 26 does not contribute solutions because 26 − 1 � pqrs.

3.20. 960. n = 960 = 26 · 3 · 5, τ(n) = 28 [6, A137491] , n + 1 = 961 = 312,
τ(n+ 1) = 3 [6, A001248] [9]:

The forms of numbers having 28 divisors are n = p27, pq13, p3q6, pqr6.
The forms of numbers having 3 divisors is n+ 1 = s2.

• Suppose n is odd. Then n+ 1 is even, which implies that n+ 1 = 22. But
n = 3 is not possible because τ(3) 6= 28. So n cannot be odd.

• Suppose n is even. Then one of the prime factors of n must be 2. So the
forms of even n are 227, 2q13, 213q, 23q6, 26p3, 2qr6, or 26pq. We also know
that n+ 1 = s2 for some s. Hence n = s2 − 1 = (s− 1)(s+ 1). Because n
is even, s must be odd. Hence 8 divides s2 − 1. This eliminates the forms
2q13 and 2qr6. The remaining forms are 227, 213q, 23q6, 26p3, and 26pq. It
cannot be 227 because τ(227 + 1) 6= 3.

Writing s = 2y + 1 for some y, we obtain n = 4y(y + 1).
– Setting 4y(y+1) = 213q, we see that either y or y+1 must be prime q.

If y+1 is prime, then we obtain 4y = 213, which means y = 211 = 2048.
But then y + 1 is not prime—a contradiction. If y is prime, then we
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obtain 4(y + 1) = 213, which means y = 2047—also not prime. So the
form cannot be 213q.

– The next case is 4y(y+1) = 23q6. Equivalently, y(y+1) = 2q6. Either
y or y + 1 must have the factor 2. If y = 2k for some odd k > 1, then
y(y+1) = 2k(2k+1), which means that k(2k+1) must the sixth power
of a prime. However, this is not possible because it has a factor of k
and for the other factor to be a fifth power, we would need k5 = 2k+1,
which has no integer solution. Similarly, if y+ 1 = 2k for some odd k,
then y(y + 1) = 2k(2k − 1), which means that k(2k − 1) is the sixth
power of a prime, which is only possible if k5 = 2k − 1, which has
the solution k = 1. So we obtain y = 1, which produces n = 8, but
τ(8) 6= 28.

– The next case is 4y(y + 1) = 26p3. Equivalently, y(y + 1) = 16p3.
Either y or y + 1 must have the factor 16. If y = 16k for some odd k,
then y(y + 1) = 16k(16k + 1), which means that k(16k + 1) must the
cube of a prime. However, this is not possible because it has a factor of
k and for the other factor to be a square, we would need k2 = 16k+ 1,
which has no integer solution. Similarly, if y + 1 = 16k for some odd
k, then y(y + 1) = 16k(16k − 1), which means that k(16k − 1) is the
cube of a prime, which is only possible if k2 = 16k − 1, which has no
integer solution.

– The final case is (s − 1)(s + 1) = 26pq. Recall that s must be prime.
There are three possibilities (considering that s − 1 and 1 + s have a
greatest common divisor of 2): s± 1 are 2 and 25pq, s± 1 are 25 and
2pq, or s ± 1 are 2p and 25q. The first possibility 2 × 25pq forces n
to be 1 or 3. The prime s = 3 produces n = 8, which is clearly not
a solution. The second possibility 25 × 2pq forces s to be 31 or 33;
the prime s = 31 produces the known solution n = 960. For the third
possibility 2p × 25q, note that if prime s > 3, then 3 divides either
s− 1 or s+ 1 by Eq. (25). Hence p or q must be 3. This forces s± 1
to be 2 · 3 or 25 · 3. The primes s = 5, 7 and 97 produce n = 24, 48,
and 9408, none of which have the required form 26pq.

Hence, n = 960 is the only solution.

3.21. 1023. n = 1023 = 3 · 11 · 31, τ(n) = 8 [6, A030626] , n + 1 = 1024 = 210,
τ(n+ 1) = 11 [6, A030629] . seqfan list [10]: If n has 8 divisors, then n = p7, pq3,
or pqr for distinct primes p, q, r. If n + 1 has 11 divisors, then n + 1 = s10 is the
only possible form with s prime.

• Suppose n is even. Since n = p7, pq3, or pqr, one of the primes is 2. So
n must be either 27, 2q3, 23p, or 2qr with q and r odd primes. The case
n = 27 is not possible because then n+ 1 � s10. n+ 1 = s10 means s must
be odd and n = s10−1 = (s−1)(s+1)(s4+s3+s2+s+1)(s4−s3+s2−s+1).
23 divides s10− 1 by Eq. (13), implying that the forms 2q3 and 2qr are not
possible. So the remaining case is n = 23p. The factorization of s10 − 1
shows that after dividing by 8, we are always left with a composite number.
Hence the form 23p is also not possible.

• Suppose n is odd. Then n + 1 is even, which implies s10 is even, which
implies s = 2. This gives us the only solution, n = 1023.

http://list.seqfan.eu/pipermail/seqfan/2009-June/001769.html
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3.22. 1024. n = 1024 = 210, τ(n) = 11 [6, A030629] , n + 1 = 1025 = 52 · 41,
τ(n+ 1) = 6 [6, A030515] . seqfan list [10]: If n has 11 divisors, then n = s10 is the
only possible form with s prime. If n+ 1 has 6 divisors, then n+ 1 = p5 or pq2 for
distinct primes p and q.

Suppose n is odd. Then n+1 is even, implying that n+ 1 is either 25, 2q2, or 4p.
Also n+ 1 = s10 + 1 = (s2 + 1)(s8 − s6 + s4 − s2 + 1). Because s is odd, the s2 + 1
factor equals 2f for some odd f , and s8 − s6 + s4 − s2 + 1 is anyway odd. Hence,
the form of n + 1 is not 25 or 4p. It cannot be 2q2 because that would require
(s2 + 1)/2 = s8 − s6 + s4 − s2 + 1, an equation whose integer roots are s = −1 and
1.

Suppose n is even. This implies s10 is even, which implies s = 2. This gives us
the only solution, n = 1024.

3.23. 1088. n = 1088 = 26 · 17, τ(n) = 14 [6, A030632] , n + 1 = 1089 = 32 · 112

, τ(n + 1) = 9 [6, A030627] . τ(n) = 14 requires the prime signature n = p13 or
n = pq6; τ(n+ 1) = 9 requires n+ 1 = r8 or n+ 1 = r2s2. The case n = r8 − 1 =
(r4+1)(r2+1)(r2−1) is ruled out because a fourth power minus one is not supported
by the p13 or pq6, see Appendix B. Therefore n = (rs)2 − 1 = (rs+ 1)(rs− 1).

• Suppose n is odd. Then p13 or pq6 are odd and rs is even, which means
r = 2 by our name convention. So n = 4s2 − 1, where s is an odd prime.
We can rule out s = 3 because n = (2 · 3)2 − 1 = 5 · 7 does not match
τ(n) = 14. By the Mod-3 criterion, p13 or pq6 must have a prime factor 3.
The case of n = 313 is ruled out because τ(313 + 1) 6= 9. So n = 3q6 or
n = 36p.

– n = 3q6 = 4s2−1 and the branch s = 3k+1 means q6 = (2k+1)(6k+1).
Since 6k+1 and 2k+1 are coprime, this requires 2k+1 = 1∧6k+1 = q6,
therefore k = 0, which is no solution.

– n = 3q6 = 4s2−1 and the branch s = 3k+2 means q6 = (2k+1)(6k+5).
Since 6k+5 and 2k+1 are coprime, this requires 2k+1 = 1∧6k+5 = q6,
therefore k = 0, which is no solution.

– n = 36p = 4s2−1 and the branch s = 3k+1 means 35p = (2k+1)(6k+
1), (k > 4), Since 6k + 1 and 2k + 1 are coprime, either 35 = 2k + 1
(but k = 121 implies s = 364, composite) or 35 = 6k+ 1 (but this k is
not integer).

– n = 36p = 4s2 − 1 and the branch s = 3k + 2 means 35p = (2k +
1)(6k+ 5). Again 6k+ 5 and 2k+ 1 are coprime so either 35 = 2k+ 1
(but k = 121 implies s = 365, composite) or 35 = 6k + 5 (but k is not
integer).

• Suppose n is even. Then p13 or pq6 is even and rs is odd. The case n = 213

is excluded since τ(213 + 1) 6= 9 does no match the requirement.
– The case 2q6 = (rs)2 − 1 = (rs + 1)(rs − 1) is excluded, because Eq.

(9) requires a minimum factor 23 which is not supported by the form
2q6.

– The case 26q = (rs + 1)(rs − 1) remains. rs + 1 and rs − 1 are two
consecutive even numbers with a greatest common divisor of 2.
∗ The split 2 = rs−1 and 25q = rs+1 is excluded because rs ≥ 15,

the smallest product of two odd primes.
∗ The split 25 = rs− 1 and 2q = rs+ 1 requires rs = 33, so r = 3,
s = 11, q = 17, which furnishes the known solution.

http://list.seqfan.eu/pipermail/seqfan/2009-June/001772.html
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3.24. 1295. n = 1295 = 5 · 7 · 37, τ(n) = 8 [6, A030626] , n+ 1 = 1296 = 24 · 34 ,
τ(n + 1) = 25 [6, A137488] . τ = 8 requires the prime signature n = p7 or pq3 or
pqr; τ = 25 requires n+1 = s24 or s4t4. In both cases n+1 is a fourth power which
rules out the signatures n = p7 or n = pq3, see Appendix B. The format n = pqr
and n = (st)4 − 1 requires that p = st− 1, q = st+ 1 and r = (st)2 + 1; the format
n = pqr and n = s24−1 requires p = s6−1, q = s6 + 1 and r = s12 + 1. [We tacitly
follow the convention that in unique factorizations with the same exponent, like in
pqr, the smaller prime is the one named earlier in the alphabet; here p < q < r.]
In the first case

• Assume st is odd, then (st)4 is odd and n must be even such that the
smallest of p, q and r must be even, i.e., p = 2, the only even prime, which
cannot occur because p = st − 1 ≥ 5 since st ≥ 6, the smallest product of
distinct primes.
• So stmust be even, actually s = 2 if we let s < t, which requires n = 16t4−1.

The Pisano Period for 16t4 − 1 modulo 5 has period length 5: [4,0,0,0,0],
which means for all primes t of the form 5k + 1, 5k + 2, 5k + 3 and 5k + 4
we have 16t4 − 1 ≡ 0 (mod 5), which requires that 5 | pqr, so at least one
of p, q or r must be a multiple of 5, and since these are distinct primes, one
of them must be 5.

– Assume 5 is the largest, r = (st)2 +1 = 5: this cannot happen because
t 6= 1.

– Assume 5 is the middle factor, q = st + 1 = 5: this cannot happen
because s 6= t.

– So 5 is the smallest factor, 5 = st−1 and therefore t = 3. Having thus
fixed s = 2 and t = 3, n = 16 · 34 − 1 = 1295 is uniquely determined
and no further solutions exist.

In the second case

• Assume s6 is odd, then (s6)4 is odd and n must be even such that the
smallest of p, q and r must be even, i.e., p = 2, the only even prime, which
cannot occur because p = s6 − 1 ≥ 63 since s ≥ 2.
• So s6 must be even, actually s = 2. This case is ruled out by direct

inspection, because τ(224 − 1) 6= 8.

3.25. 2303. n = 2303 = 72 · 47, τ(n) = 6 [6, A030515] , n + 1 = 2304 = 28 · 32 ,
τ(n+ 1) = 27 [6, A137490] [9]:

The forms of numbers having 6 divisors are n = p5 and n = pq2. The forms of
numbers having 27 divisors are n+ 1 = r26, r2s8, and r2s2t2.

• Suppose n is even. This forces n to have one of the forms 25, 2p2, or 4p. It
is clearly not 25 because τ(25 + 1) 6= 27. So we must equate 2p2 and 4p to
each of the forms for n+ 1 with odd r, s, t. There are no solutions for even
n:

– Case 2p2 = r26− 1. 23 divides the RHS by Eq. (20), but not the LHS.
– Case 4p = r26 − 1. 23 divides the RHS by Eq. (20), but not the LHS.
– Case 2p2 = r2s8− 1. 23 divides the RHS by Eq. (9), but not the LHS.
– Case 4p = r2s8 − 1. 23 divides the RHS by Eq. (9), but not the LHS.
– Case 2p2 = r2s2t2 − 1. 23 divides the RHS by Eq. (9), but not the

LHS.
– Case 4p = r2s2t2−1. 23 divides the RHS by Eq. (9), but not the LHS.
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• Suppose n is odd. Then n+ 1 is even, forcing one of its prime factors to be
2. Hence, the forms of n+ 1 are 226, 22r8, 28r2, and 22r2s2. Clearly 226 is
not a solution because τ(226 − 1) 6= 6. There are six cases to consider:

– Case p5 = 4r8 − 1. This equation of the form a2 − 1 = p5 has no
solutions, see Appendix B.1.

– Case p5 = 28r2 − 1. This equation of the form a2 − 1 = p5 has no
solutions, see Appendix B.1.

– Case p5 = 22r2s2 − 1. This equation of the form a2 − 1 = p5 has no
solutions, see Appendix B.1.

For the next three cases we use that fact that an odd prime is either 3
or a number of the form 6k − 1 or 6k + 1.

– Case pq2 = 22r8 − 1 = (2r4 + 1)(2r4 − 1). This is a product of two
adjacent odd (therfore coprime) numbers, and by the Mod-3 criterion
one of p, q or r must be 3. r = 3 is ruled out because 22 · 38− 1 � pq2,
so p or q is 3. Since 3 - 2r4 − 1 we need 3 | 2r4 + 1, but this requires
r ≡ 0 (mod 3) — contradiction because r must be a prime distinct
from p and q.

– Case pq2 = 28r2 − 1 = (24r + 1)(24r − 1). If r = 3, we obtain the
known solution, n = 256 ·9−1 = 2303. Otherwise the Mod-3 criterion
requires p = 3 or q = 3. Since 24r ± 1 are adjacent odd coprime
numbers, the splits are 24r − 1 = 1 ∧ 24r + 1 = pq2 (obviously no
solution) or 24r + 1 = p ∧ 24r − 1 = q2 (solution not for q = 3 nor for
p = 3) or 24r − 1 = p ∧ 24r + 1 = q2 (solution not for q = 3 nor for
p = 3).

– Case pq2 = 4r2s2−1 = (2rs+1)(2rs−1). The Mod-3 criterion requires
one of p, q, r to be 3.
∗ If r = 3 and s = 6k + 1, then 4r2s2 − 1 = (5 + 36k)(7 + 36k),

product of two coprime factors. But 5 + 36k is not a square
because a square is never ≡ 5 (mod 6). Similarly, 7 + 36k is not
a square because a square is 6≡ 3 (mod 4). The case r = 3 and
s = 6k − 1 is similar.

∗ If rs = 3k + 1, then (2rs)2 − 1 = pq2 = 3(2k + 1)(6k + 1),
which is impossible for p = 3 because (2k + 1)(6k + 1) � q2 is a
product of two coprime odd numbers, and gives no solution for
q = 3 because 3p = (2k+ 1)(6k+ 1) yields k = 1 and the invalid
rs = 4.
∗ If rs = 3k + 2, then (2rs)2 − 1 = pq2 = 3(2k + 1)(6k + 5),

which is impossible for p = 3 because (2k + 1)(6k + 5) � q2 is a
product of two coprime odd numbers, and gives no solution for
q = 3 because 3p = (2k+ 1)(6k+ 5) yields k = 1 and the invalid
rs = 5.

Hence, n = 2303 is the only solution.

3.26. 2400. n = 2400 = 25 · 3 · 52, τ(n) = 36 [6, A175746] , n + 1 = 2401 = 74 ,
τ(n + 1) = 5 [6, A030514] . n is of the form p35 or pq17 or p2q11 or p3q8 or p5q5

or p2q2r3 or pq2r5 or pqr8 or pqr2s2, and n + 1 = t4, where p, q, r, s are distinct
primes, and t is prime. We consider how the factorizations of t4 − 1 may match
these products of prime powers [11]: For primes t < 5 we swiftly observe by direct
computation that these do not generate solutions. All larger primes t generate
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t4 − 1 ≡ 0 (mod 240), Theorem 5. As 240 = 24 × 3 × 5, the prime signatures
p35, pq17, p2q11, p3q8 and p5q5 are already excluded for n, because they do not
support the minimum 3 prime factors of t4 − 1. Furthermore p2q2r3 and pqr2s2

are excluded because they do not support the fourth power in 24 × 3 × 5 in their
greatest exponent. This leaves two prime signatures of n:

• pq2r5: here r = 2 because the other two factors do not support the 4th
power in 24 · 3 · 5. p and q must be 3 and 5 or vice versa, because there is
no fourth prime factor left for flexibility, and p = 3 ∧ q = 5 is the known
case; p = 5 ∧ q = 3 produces n = 25 · 5 · 32, but τ(25 · 5 · 32 + 1) 6= 5.
• pqr8: here r = 2 because the other two factors do not support the 4th

power in 24 · 3 · 5. p and q must be 3 and 5 or vice versa, because there is
no fourth prime factor left for flexibility. This demands n = 3 · 5 · 28 but
τ(3 · 5 · 28 + 1) 6= 5.

3.27. 4095. n = 4095 = 32 · 5 · 7 · 13, τ(n) = 24 [6, A137487] , n+ 1 = 4096 = 212

, τ(n + 1) = 13 [6, A030631] . seqfan list [7]: If n + 1 has 13 divisors, then p12 is
the only possible form, with p prime. However, p12 − 1 = (p − 1)(p + 1)(p2 − p +
1)(p2 + 1)(p2 + p+ 1)(p4− p2 + 1) which is, for p > 2, of the form 2a · 2b · c · 2d · e · f
with a, b, c, d, e, f odd numbers. A number of this form cannot have less than 28
divisors.

So p = 2 is the only possibility.

3.28. 4096. n = 4096 = 212, τ(n) = 13 [6, A030631] , n + 1 = 4097 = 17 · 241 ,
τ(n + 1) = 4 [6, A030513] . seqfan list [7]: τ = 13 requires n = p12 with p prime.
τ = 4 requires n+ 1 = q3 or qr for distinct primes q and r.
n + 1 = p12 + 1 = (p4 + 1)(p8 − p4 + 1). For odd p > 2, this is the product of

the even number p4 + 1 ≥ 82 and the odd number p8 − p4 + 1 ≥ 38 − 34 + 1, which
can’t be of the form q3 or qr with even q.

So the only solution is p = 2.

3.29. 5328. n = 5328 = 24 · 32 · 37, τ(n) = 30 [6, A137493] , n+ 1 = 5329 = 732 ,
τ(n + 1) = 3 [6, A001248] . The requirements are n = p29 or pq14 or p2q9 or p4q5

or pq2r4, and n+ 1 = s2. Cases where n is odd do not exist, because this requires
s to be even, and s = 2, the only even prime, generates n = 3 which matches none
of these prime signatures. The sub-cases to be examined for even n, odd s, are

• n = 229 = s2 − 1. This yields τ(n+ 1) 6= 3, contradicting the requirement.
• n = 2q14 = s2 − 1. Theorem 4 requires that the LHS is divisible by 23,

which it does not support.
• n = 214p = s2−1. The Mod-3 criterion requires either p = 3 (but 214·3+1 �
s2 ) or s = 3 (but 32 − 1 � 214p).
• n = 22q9 = s2 − 1. Theorem 4 requires that the LHS is divisible by 23,

which it does not support.
• n = 29p2 = s2−1. The Mod-3 criterion requires either p = 3 (but 29·32+1 �
s2 ) or s = 3 (but 32 − 1 � 29p2).
• n = 24q5 = s2 − 1 = (s+ 1)(s− 1). With the Mod-3 criterion either q = 3

or s = 3 is needed, but 24 · 35 + 1 � s2 and 32 − 1 � 24q5.
• n = 25p4 = s2 − 1. With the Mod-3 criterion either p = 3 or s = 3 is

needed, but 25 · 34 + 1 � s2 and 32 − 1 � 25p4.

http://list.seqfan.eu/pipermail/seqfan/2009-June/001774.html
http://list.seqfan.eu/pipermail/seqfan/2009-June/001773.html
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• n = 2q2r4 = s2 − 1. No solutions because the RHS has a prime factor 23

according to Eq. (9), which is not supported by the LHS.
• n = 22pr4 = s2 − 1. No solutions because the RHS has a prime factor 23

according to Eq. (9), which is not supported by the LHS.
• n = 24pq2 = s2− 1, the branch of the known solution. We need s = 24l+ 1

or 24l + 7 or 24l + 9 or 24l + 15 to ensure the RHS is a multiple of 24. In
the two cases 24l+ 1 and 24l+ 15, pq2 would be even and cannot generate
solutions. The remaining cases are

– s = 24l + 7 with pq2 = (2l + 1)(8l + 3) and coprime 8l + 3 and 2l + 1,
with 2 possible associations:
∗ p = 2l + 1, q2 = 8l + 3 is excluded because for all odd primes q
q2 ≡ 1 (mod 8) and never ≡ 3 (mod 8) (Theorem 4).

∗ p = 8l+3 and q2 = 2l+1 demands p = 4q2−1 = (2q+1)(2q−1),
but that form requires that p is composite (since 2q − 1 = 1 is
excluded).

– s = 24l + 9 with pq2 = (2l + 1)(8l + 5) and coprime 8l + 5 and 2l + 1,
with 2 possible associations:
∗ p = 2l + 1, q2 = 8l + 5 is excluded because for all odd primes q
q2 ≡ 1 (mod 8) and never ≡ 5 (mod 8).

∗ p = 8l + 5 and q2 = 2l + 1 is solved by l = 4 to generate the
known solution s = 73, p = 37 and q = 3. Now suppose q > 3,
then q2 ≡ 1 (mod 3) by Eq. 25, and because s = 8q2 + 1 also
s ≡ 0 (mod 3). Therefore 3 | s which contradicts that s is a
prime. So no further solutions exist.

3.30. 6399. n = 6399 = 34 · 79, τ(n) = 10 [6, A030628] , n + 1 = 6400 = 28 · 52 ,
τ(n + 1) = 27 [6, A137490] . τ = 10 requires n = p9 or pq4, and τ = 27 requires
n+ 1 = r26 or r2s8 or r2s2t2. The 6 combinations of these prime signatures are

• p9 = r26−1. The parity argument requires p = 2 or r = 2, but 29 +1 � r26

nor 226 − 1 � p9 give solutions.
• p9 = r2s8 − 1. The format p9 = a2 − 1 does not have solutions (Appendix

B.1)
• p9 = r2s2t2−1. The format p9 = a2−1 does not have solutions (Appendix

B.1)
• pq4 = r26 − 1. The case r = 3 is not a solution because 326 − 1 � pq4. So

considering r ≡ {1, 5} (mod 6) we find that 6 | r26 − 1 such that p and q
must be 2 and 3, but 2 · 34 � r26 − 1 and 3 · 24 � r26 − 1.

• pq4 = r2s8 − 1. In terms of the general solutions in Appendix B.2.4, we
require a = rs4, and find only a = 5 · 24 = 80 = 79 + 1 = 34 − 1 (smallest
case of the first bullet) equivalent to known solution.

• pq4 = r2s2t2 − 1. This is a special case of the solutions considered in
Appendix B.2.4. Considering the various possible forms of the variable a
listed there, no solutions exist where a is a product of three distinct primes.

3.31. 6723. n = 6723 = 34 · 83, τ(n) = 10 [6, A030628] , n+ 1 = 6724 = 22 · 412 ,
τ(n+1) = 9 [6, A030627] . τ = 10 requires n = p9 or pq4; τ = 9 requires n+1 = r8

or r2s2. The combinations are

• p9 = r8 − 1. As discussed in Appendix B.1 this has no solutions.
• p9 = r2s2 − 1. As discussed in Appendix B.1 this has no solutions.
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• pq4 = r8 − 1 is discussed in Appendix B.2.4: solutions with a = r4 do not
exist.
• pq4 = r2s2 − 1 is discussed in Appendix B.2.4, searching solutions where
a = rs, the product of two distinct primes. Only a = 2 · 41 matches this
format and yields the known solution.

3.32. 9408. n = 9408 = 26 · 3 · 72, τ(n) = 42 [6, A175750] , n + 1 = 9409 = 972

, τ(n + 1) = 3 [6, A001248] . τ = 42 requires n = p41 or pq20 or p2q13 or p5q6 or
pq2r6. τ = 3 requires n + 1 = s2. We discard the case s = 2 right away because
n = 3 does not match any of the prime signatures. The space of solutions with odd
s is

• p41 = s2 − 1. There are no solutions, see Appendix B.1.
• pq20 = s2 − 1. For odd s, Eq. (9) demands that q = 2, so 220p = s2 − 1.

The Mod-3 criterion calls for either p = 3 (which does not work since
3 · 220 + 1 � s2) or s = 3 (which does not work since 32 − 1 � 2220p).
• p2q13 = s2 − 1. Eq. (9) means that q = 2 to support the factor 23 on

the left hand side. Furthermore case 213p2 = s2 − 1 requires p = 3 or by
s = 3 by the Mod-3 criterion, but by direct inspection 32 − 1 � 213p2 and
213 · 32 + 1 � s2: no solutions exit here.
• p5q6 = s2− 1. Guided by the parity argument we have either 25q6 = s2− 1

(and either q = 3 or s = 3 by the Mod-3 criterion), or 26p5 = s2 − 1 (and
either p = 3 or s = 3 by the Mod-3 criterion). These 4 ways are all excluded
by direction inspection: 25 · 36 + 1 � s2, 32− 1 � 25q6, 26 · 35 + 1 � s2, and
32 − 1 � 26p5.
• pq2r6 = s2−1, the branch with the known solution. Since s is odd, Eq. (9)

requires r = 2 to provide at least a factor 23 on the LHS, so 26pq2 = s2−1.
By the Mod-3 criterion either p = 3 or q = 3 or s = 3 (the latter obviously
discarded because 32 − 1 � 26pq2).

– 26 ·3 ·q2 = s2−1 requires s ≡ {1, 31, 65, 95, 97, 127, 161, 191} (mod 26 ·
3),
and insertion of these s yields the 8 cases q2 = 2k(96 + 1) with k ≥ 1,
q2 = (6k+1)(32k+5) with k ≥ 0, q2 = 2(3k+1)(32k+11) with k ≥ 0,
q2 = (2k+1)(96k+47) with k ≥ 0, q2 = (2k+1)(96k+49) with k ≥ 0,
q2 = 2(3k + 2)(32k + 21) with k ≥ 0, or q2 = 2(k + 1)(96k + 95) with
k ≥ 0. The second and fourth in this list generate the primes 5 and 47
on the right hand side if k = 0 (not wanted, we seek q2), but the fifth
generates uniquely the known solution q2 = 49 and no other.

– Alternatively 26·32p = s2−1 requires s ≡ {1, 127, 161, 287, 289, 315, 449, 575}
(mod 26 · 32),
and insertion of these s yields the 8 cases p = 2k(288k+1) with k ≥ 1,
p = 2(9k+ 2)(32k+ 7) with k ≥ 0, p = (18k+ 5)(32k+ 9) with k ≥ 0,
p = (2k + 1)(288k + 143) with k ≥ 0, p = (2k + 1)(288k + 145) with
k ≥ 0, p = (18k + 13)(32k + 23) with k ≥ 0, p = 2(9k + 7)(32k + 25)
with k ≥ 0, or p = 2(k + 1)(288k + 287) with k ≥ 0. These forms are
incompatible with the requirement that p is prime, even if k = 0.

3.33. 9999. n = 9999 = 32 ·11·101, τ(n) = 12 [6, A030630] , n+1 = 10000 = 24 ·54
, τ(n + 1) = 25 [6, A137488] . τ = 12 requires n = p11, or pq5 or pqr2. τ = 25
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requires n+ 1 = s24 or n+ 1 = s4t4. The 6 combinations of these prime signatures
are

• p11 = s24 − 1. Solutions are ruled out with the aid of Appendix B.1.
• p11 = (st)4 − 1. Solutions are ruled out with the aid of Appendix B.1.
• pq5 = s24 − 1. The parity argument requires either 2q5 = s24 − 1 or

25p = s24 − 1 or pq5 = 224 − 1. 2q5 does not match because Eq. (19)
requires at least a factor 25 on the LHS. The case pq5 = 224 − 1 is ruled
out by direct evaluation. Finally the case 25p = s24 − 1 needs either p = 3
or s = 3 by the Mod-3 Argument, but 25 · 3 + 1 � s24, and 324 − 1 � 25p.
• pq5 = (st)4 − 1. The parity argument requires either 2q5 = (st)4 − 1 or

25p = (st)4 − 1 or pq5 = 24t4 − 1.
– 2q5 = (st)4 − 1 lacks the minimum power 24 on the LHS required by

Eq. (10).
– 25p = (st)4 − 1 = (s2t2 + 1)(s2t2 − 1) has a product of two even

terms on the RHS which have a greatest common divisor of 2. [This
might be taken as a result of running the Euclidean Algorithm on
the two factors.] So the only possible matching splits on the LHS are
2p = (st)2 − 1 ∧ 24 = (st)2 + 1 or 2 = (st)2 − 1 ∧ 24p = (st)2 + 1.
The first case is impossible because 24− 1 � (st)2 and the second case
because 2 + 1 � (st)2.

– pq5 = (2t)4 − 1 = (4t2 + 1)(4t2 − 1) has two adjacent odd factors on
the RHS with a greatest common divisor of 1. [This might be taken as
a result of running the Euclidean Algorithm on the two factors.] The
only associated splits of the LHS are p = (2t)2 − 1 ∧ q5 = (2t)2 + 1 or
p = (2t)2 +1∧q5 = (2t)2−1 or 1 = (2t)2−1∧pq5 = (2t)2 +1 [rejected
because 2 � (2t)2]. The Mod-3 criterion requires that exactly one of
p, q or t equals 3. In the first two cases p 6= 3 because that violates
p ± 1 = (2t)2 for odd prime t. In the first two cases q 6= 3 because
then q5 ± 1 is not a square. In the first two cases t 6= 3 because then
(2t)2 ± 1 is not of the form q5.

• pqr2 = s24−1. The parity argument requires 2qr2 = s24−1 or 22pq = s24−1
or pqr2 = 224 − 1. Eq. (19) requires for odd s at least a factor 25 on the
other side; this dismisses the first two cases. Finally 224 − 1 � pqr2 does
not provide a solution.

• pqr2 = (st)4 − 1. The parity argument requires 2qr2 = (st)4 − 1 or 22pq =
(st)4 − 1 or pqr2 = 24t4 − 1. The first two expressions miss the minimum
factor 24 on the left hand side required by Eq. 10, so pqr2 = 24t4 − 1 =
(4t2 +1)(2t+1)(2t−1) remains. The Mod-3 criterion requires the presence
of a factor 3, one of

– 3qr2 = (2t)4 − 1 = (4t2 + 1)(2t + 1)(2t − 1) with 3 pairwise coprime
factors on the RHS. Sorting by magnitude, the LHS must be factorized
such that 3 = 2t−1 because q and r are larger than 3. But this means
t = 2 which is invalid because already s = 2 in use.

– 9pq = (2t)4 − 1. The only t where (2t)4 − 1 is divisible by 9 are
the residue classes t = 9k + 4 (k ≥ 1) and t = 9k + 5 (k ≥ 0),
giving pq = (2k + 1)(18k + 7)(324k2 + 288k + 65) with k ≥ 1 or
pq = (2k+1)(18k+11)(324k2 +360k+101) with k ≥ 0. The first case
has 3 distinct factors and does not produce solutions, but the second
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case has 2 distinct factors if k = 0, pq = 11 · 101, which is the unique
known solution.

– pqr2 = (2 · 3)4 − 1. This fails because 64 − 1 � pqr2.

3.34. 14640. n = 14640 = 24 ·3·5·61, τ(n) = 40 [6, A175749] , n+1 = 14641 = 114

, τ(n + 1) = 5 [6, A030514] . τ = 40 requires n = p39 or p19q or p9q3 or p7q4 or
p9qr or p4q3r or p4qrs. τ = 5 requires n+ 1 = t4.

• p39 = t4 − 1. Impossible according to B.1 because the exponent 39 is too
large.
• p19q = t4 − 1. For the primes t = 2, 3 and 5 the equation is invalid by

direct inspection, because 24 − 1 ∼ pq, 34 − 1 ∼ p4q and 54 − 1 ∼ p4qr.
For primes t > 5 the LHS fails to have at least 3 distinct prime divisors of
Theorem 5.
• p9q3 = t4 − 1. For the primes t = 2, 3 and 5 the equation is invalid by

direct inspection. For primes t > 5 the LHS fails to have at least 3 distinct
prime divisors of Theorem 5.
• p7q4 = t4 − 1. For the primes t = 2, 3 and 5 the equation is invalid by

direct inspection. For primes t > 5 the LHS fails to have at least 3 distinct
prime divisors of Theorem 5.
• p9qr = t4 − 1. For the primes t = 2, 3 and 5 the equation is invalid by

direct inspection. For primes t > 5 the LHS must meet Theorem 5, which
requires p = 2 and qr = 3 · 5. But 29 · 3 · 5 + 1 � t4.
• p4q3 = t4 − 1. For the primes t = 2, 3 and 5 the equation is invalid by

direct inspection. For primes t > 5 the LHS fails to have at least 3 distinct
prime divisors of Theorem 5.
• p4qrs = t4 − 1. For the primes t = 2, 3 and 5 the equation is invalid by

direct inspection. For primes t > 5 the LHS must meet Theorem 5, which
requires p = 2 and qr = 3 · 5 with a free slot for the prime s ≥ 7. Since
24 · 3 · 5 | t4 − 1, the Pisano period of the sequence t4 − 1 modulo 24 · 3 · 5
requires t ≡ {1, 7, 11, 13, 17, 19, 23, . . . 227, 229, 233, 239} (mod 240), which
leads to polynomial expressions for s with at least 3 factors. Only in the
residue class t = 240 + 11k we get an expression, s = (24k + 1)(20k +
1)(28800k4 + 2640k + 61), where, at k = 0, s = 61 is prime. So this is the
only solution.

3.35. 15624. n = 15624 = 23 ·32 ·7·31, τ(n) = 48 [6, A175754] , n+1 = 15625 = 56

, τ(n + 1) = 7 [6, A030516] . τ = 48 requires n = p48, p23q, p15q2, p11q3, p7q5,
p3q3r2, p7q2r, p11qr, p5q3r, p5qrs, p3q2rs or p2qrst. τ = 7 requires n + 1 = u6.
First we check the prime signatures of u6 − 1 for the primes u = 2, 3, 5, 7 against
those 12 supported by n: 26 − 1 = 32 · 7, 36 − 1 = 23 · 7 · 13, 56 − 1 = 23 · 32 · 7 · 31,
76 − 1 = 24 · 32 · 19 · 43. Only 56 − 1 ∼ p3q2rs, the known solution, fits in here.
The prime signatures of n ≥ 116 − 1 that have less than three distinct primes or
not at least a prime cubed and another prime squared are discarded with the aid
of Theorem 6. The remaining cases to be checked with u > 7 for further solutions
are

• p3q3r2 = u6 − 1 = (u2 + u+ 1)(u2 − u+ 1)(u+ 1)(u− 1). The 4 factors on
the RHS are well ordered: u2 +u+ 1 > u2−u+ 1 > u+ 1 > u−1. Because
u+1 and u−1 are adjacent even numbers, their greatest common divisor is
(u+1, u−1) = 2. The first step of the Euclidean Algorithm shows that the
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greatest common divisor (u2 +u+ 1, u2−u+ 1) is (u2−u+ 1, 2u). Because
u is odd and u2 − u+ 1 is odd, this is the same as (u2 − u+ 1, u), which is
1. Similarly (u2 + u+ 1, u± 1) = 1; (u2 − u+ 1, u± 1) = 1. We know from
Theorem 6 that p = 2 which leaves either q = 3 ∧ r = 7 or q = 7 ∧ r = 3.
But 23 · 33 · 72 + 1 � u6, and 23 · 73 · 32 + 1 � u6: there are no solutions
here.
• p7q2r = u6 − 1. As above, p = 2 is enforced by the theorem, with either
q = 3 ∧ r = 7 or q = 7 ∧ r = 3. By direct inspection 27 · 32 · 7 + 1 � u6 and
27 · 72 · 3 + 1 � u6.
• p5q3r = u6 − 1. As above, p = 2 or q = 2 with r = 7 is enforced by the

theorem.
(1) p = 2, q = 3, r = 7 does not match u6 − 1 by direct inspection.
(2) q = 2, p = 3, r = 7 does not match u6 − 1 by direct inspection.

• p3q2rs = u6 − 1. As above, there is a product of 4 polynomials in u on
the RHS, pairwise coprime except a common divisor (u + 1, u − 1) = 2.
p = 2, q = 3, r = 7 are enforced by the theorem. The factors q2, r and s
must be matched in some permutation by the polynomial factors u2+u+1,
u2 − u + 1 and (u2 − 1)/8. (u + 1)(u − 1)/8 cannot contribute with more
than one odd prime to the triplet q2×r×s, because at least one odd factor
is contributed by each of u2± u+ 1, so at least one of (u+ 1)/2, (u+ 1)/4,
(u − 1)/2 and (u − 1)/4 must be 1. This means u = 1 or u = 3 or u = 3
or u = 5. u = 1 or u = 3 are discarded by direct evaluation of u6 − 1, and
u = 5 with 56 − 1 = 23 · 32 · 7 · 31 is the known solution.

3.36. 28223. n = 28223 = 132 · 167, τ(n) = 6 [6, A030515] , n + 1 = 28224 =
26 ·32 ·72 , τ(n+1) = 63 . τ = 6 requires n = p5 or p2q. τ = 63 requires n+1 = s62

or s20t2 or s8t6 or s6t2u2.

• p5 = s62 − 1. Rejected in Appendix B.1.
• p5 = s20t2 − 1. Rejected in Appendix B.1.
• p5 = s8t6 − 1. Rejected in Appendix B.1.
• p5 = s6t2u2 − 1. Rejected in Appendix B.1.
• p2q = s62 − 1. For odd s, Eq. (23) requires the presence of a factor 23 in
p2q, which is not supported. So the alternative is s = 2, but 262 − 1 � p2q
does not fit the prime signature.

• p2q = s20t2 − 1. Appendix B.2.2 mandates that s = 2 or t = 2, so the
RHS is a product (s10t+1)(s10t−1) of two adjacent odd coprime numbers.
Therefore one of s10t± 1 must be p2, the other q.

– p2 = s10t+1∧q = s10t−1. The Mod-3 Argument requires that one of
the four primes is 3. q = 3 or p = 3 are immediately discarded because
they do not fit s10t ± 1. This leaves s = 2 with t = 3 or s = 3 with
t = 2, but in both cases s10t+ 1 is not a perfect square p2.

– p2 = s10t−1∧q = s10t+1. The Mod-3 Argument requires that one of
the four primes is 3. q = 3 or p = 3 are immediately discarded because
they do not fit s10t ± 1. This leaves s = 2 with t = 3 or s = 3 with
t = 2, but in both cases s10t− 1 is not a perfect square p2.

• p2q = s8t6 − 1. Appendix B.2.2 mandates that s = 2 or t = 2, so the
RHS is a product (s4t3 +1)(s4t3−1) of two adjacent coprime odd numbers.
Therefore one of s4t3 ± 1 must equal p2, the other q.
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– p2 = s4t3 +1∧q = s4t3−1. The Mod-3 Argument requires that one of
the four primes is 3. q = 3 or p = 3 are immediately discarded because
they do not fit s4t3 ± 1. This leaves s = 2 with t = 3 or s = 3 with
t = 2, but in both cases s4t3 + 1 is not a perfect square p2.

– p2 = s4t3−1∧q = s4t3 +1. The Mod-3 Argument requires that one of
the four primes is 3. q = 3 or p = 3 are immediately discarded because
they do not fit s4t3 ± 1. This leaves s = 2 with t = 3 or s = 3 with
t = 2, but in both cases s4t3 − 1 is not a perfect square p2.

• p2q = s6t2u2−1. Branch of the known solution. Appendix B.2.2 mandates
that s = 2 or t = 2, so the RHS is a product (s3tu + 1)(s3tu − 1) of two
adjacent coprime odd numbers. Therefore one of s3tu ± 1 must equal p2,
the other q.

– p2 = s3tu+ 1 ∧ q = s3tu− 1. The Mod-3 Argument requires that one
of the four odd primes is 3. q = 3 or p = 3 are immediately discarded
because they do not fit s3tu± 1. This leaves s = 2 with t = 3 or s = 3
with t = 2.
∗ p2 = 23·3u+1∧q = 23·3u−1. Here p2−1 = (p+1)(p−1) = 23·3u

has 2 adjacent even factors on the LHS, such that the factors
can be split as
· either p + 1 = 2 · 3u ∧ p − 1 = 22, (p = 5 and u = 1, not

prime)
· or p+1 = 2 ·3∧p−1 = 22 ·u, (p = 5 and u = 1, not prime)
· or p+ 1 = 2u ∧ p− 1 = 22 · 3 (p = 13, u = 7, t = 3, s = 2,
p2 = 169, q = 167, the known solution.)
· or p+ 1 = 2 ∧ p− 1 = 22 · 3u, (p = 1, not prime)
· or p+ 1 = 22 · 3u ∧ p− 1 = 2, (p = 3 but no u noninteger.)
· or p+ 1 = 22 · 3∧ p− 1 = 2 · u, (p = 11, u = 5, but q = 119

composite.)
· or p + 1 = 22u ∧ p − 1 = 2 · 3, (p = 7, but requires u = 2

already used by s).
· or p+ 1 = 22 ∧ p− 1 = 2 · 3u, (p = 3, but u noninteger.)

∗ p2 = 33 ·2u+1∧q = 33 ·2u−1. Here p2−1 = 33 ·2u violates the
requirement of Theorem 9 of supplying a factor 23 on the other
side; no solutions.

– p2 = s3tu − 1 ∧ q = s3tu + 1. The Mod-3 criterion requires that one
of the 4 odd primes is 3. q = 3 or p = 3 are immediately discarded
because they do not fit s3tu± 1. This leaves s = 2 with t = 3 or s = 3
with t = 2. In both cases s3tu ≡ 0 (mod 3) which leaves p2 ≡ −1
(mod 3) and violates Eq. (25).

3.37. 36863. n = 36863 = 22 ·9209, τ(n) = 4 [6, A030513] , n+1 = 36864 = 212 ·32
, τ(n+ 1) = 39 [6, A175748] . Proof by Jon Schoenfield [11]: τ(n) = 4 so n = p3 or
pq, and τ(n+ 1) = 39, so n+ 1 = s38 or s2t12.

• p3 = s38 − 1 is ruled out via App. B.1.
• pq = s38 − 1 has the sub-cases 2q = s38 − 1 and pq = 228 − 1 (which has 3

distinct prime factors and does not work). The Mod-3 Argument requires
either q = 3 or s = 3 which are discarded by direct evaluation.

• So n+ 1 is the square of a composite c = st6, so n = c2−1 = (c−1)(c+ 1),
which cannot be p3 (see App. B.1), so n = pq = (c − 1)(c + 1). c cannot
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be odd, because then Eq. (9) requires a factor 23 which is not supported
by the form pq. So c is even, and c − 1 and c + 1 are twin primes. They
are not 3 and 5 (since c = 4 � st6), so they are of the form 6j − 1 and
6j + 1, so n + 1 = c2 = 22 · 32 · j2 is divisible by both 2 and 3. Since
c = st6, n + 1 = s2t12 and j must be 25 or 35. So n + 1 = 212 · 32 or
22 · 312; the latter won’t work (it would give τ(n) = 8), so the only solution
is n = 212 · 32 − 1 = 36863.

3.38. 38415. n = 38415 = 3 · 5 · 13 · 197, τ(n) = 16 [6, A030634] , n+ 1 = 38416 =
24 ·74 , τ(n+1) = 25 [6, A137488] . τ = 16 requires that n is of the form p15 or pq7

or pqr3 or p3q3 or pqrs with p, q, r and s prime. τ = 25 requires that n+ 1 = t24

or t4u4.

• p15 = t24 − 1 and p15 = (tu)4 − 1 are discarded via Appendix B.1.
• pq7 = t24 − 1. For primes t ≤ 13 the format of t24 − 1 never matches
pq7. For primes t > 13, the LHS does not support the minimum 5 distinct
primes required by Theorem 10.

• pq7 = (tu)4 − 1.
– If tu is odd, Eq. (9) requires q = 2 to match the LHS. The Mod-

3 argument requires 3 · 27 = (tu)4 − 1 (but 3 · 27 + 1 � t4u4) or
27p = (3u)4 − 1. In 27p = (9u2 + 1)(9u2 − 1) the two adjacent even
numbers on the RHS have a greatest common divisor of 2, so one of
∗ 26 = 9u2 + 1 ∧ 2p = 9u2 − 1. Impossible since 26 − 1 � 9u2.
∗ 26p = 9u2 + 1 ∧ 2 = 9u2 − 1. Impossible since 2 + 1 � 9u2.
∗ 2 = 9u2 + 1 ∧ 26p = 9u2 − 1. Impossible since 2− 1 � 9u2.
∗ 2p = 9u2 + 1 ∧ 26 = 9u2 − 1. Impossible since 26 + 1 � 9u2.

– If tu is even, the RHS is the product (22u2 + 1)(22u2 − 1) of two
adjacent coprime odd numbers, so one of
∗ p = (2u)2 + 1 ∧ q7 = (2u)2 − 1 . The Mod-3 argument requires

that either p = 3 (fails since 3 − 1 � (2u)2 with noninteger
u) or u = 3 [fails since (2 · 3)2 − 1 � q7] or q = 3 (fails since
27 + 1 � 4u2).
∗ q7 = (2u)2 + 1 ∧ p = (2u)2 − 1. The Mod-3 argument requires

that either q = 3 (fails since 37 − 1 � 4u2) or u = 3 [fails since
(2 · 3)2 + 1 � q7] or p = 3 (fails since 2 + 1 � 4u2).

• pqr3 = t24 − 1. For primes t ≤ 13 the format of t24 − 1 never matches
pqr3. For primes t > 13, the LHS does not support the minimum 5 distinct
primes required by Theorem 10.

• pqr3 = (tu)4 − 1 = (t2u2 + 1)(tu+ 1)(tu− 1).
– If tu = 2u is even, the RHS is the product of 3 odd coprime distinct

factors. So the factorizations may have three splittings, organized by
association r3 with the largest to smallest of the factors:
∗ r3 = 4u2 + 1 ∧ p = 2u + 1 ∧ q = 2u − 1. The Mod-3 argument

requires that either r = 3 (impossible because 33 − 1 � 4u2), or
u = 3 (impossible since 4 · 32 + 1 � r3), or p = 3 (impossible
because u = 1, nonprime) or q = 3 (impossible because then
u = 2 already taken by t).
∗ r3 = 2u + 1 ∧ p = 4u2 + 1 ∧ q = 2u − 1. The Mod-3 argument

requires that either r = 3 (impossible because then u = 13 but
2 · 13 − 1 � q), or u = 3 (impossible because 2 · 3 + 1 � r3),
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or p = 3 (impossible because 3 − 1 � 4u2) or q = 3 (impossible
because then u = 2 already taken by t).

∗ r3 = 2u − 1 ∧ p = 4u2 + 1 ∧ q = 2u + 1 The Mod-3 argument
requires that either r = 3 (impossible because 33 + 1 � 2u), or
u = 3 (impossible because 2× 3− 1 � r3), or p = 3 (impossible
because 3− 1 � 4u2) or q = 3 (impossible because 3− 1 � 2ut).

– If tu is odd, 24 | (tu)4 − 1 by (10), but pqr3 does not support a fourth
power: no solutions.

• p3q3 = t24− 1. For primes t ≤ 13 the format of t24− 1 never matches p3q3.
For primes t > 13, the LHS does not have at least the 5 distinct primes
required by Theorem 10.

• p3q3 = (tu)4 − 1.
– If tu = 2u is even, the RHS is the product of three distinct coprime odd

factors. Since the LHS offers only two coprime factors, the smallest of
the three must be 2u− 1 = 1, but then u = 1 (not prime).

– If tu is odd, 24 | (tu)4 − 1 by (10), but the LHS does not support a
fourth power: no solutions.

• pqrs = t24− 1. For primes t ≤ 13 the format of t24− 1 never matches pqrs.
For primes t > 13, the LHS does not have at least the 5 distinct primes
required by Theorem 10.

• pqrs = (tu)4 − 1. The branch of the known solution.
– If tu = 2u is even, the RHS is the product of three distinct coprime

odd factors, pqrs = (4u2+1)(2u+1)(2u−1). For all odd primes u > 5,
3·5 | (2u)4−1, because 24 ≡ 1 (mod 3) and u4 ≡ 1 (mod 3) and 24 ≡ 1
(mod 5) and u4 ≡ 1 (mod 5). We check that (2 · 5)4 − 1 � pqrs. So
3 · 5 · rs = (4u2 + 1)(2u + 1)(2u − 1). Distributing the four primes
of the LHS over the three factors of the RHS (ignoring the order of r
and s which appear with the same exponent) requires that rs is split
[because otherwise rs > 5 > 3 is the largest factor, which leads leads
to 2u + 1 = 5, 2u − 1 = 3 and u = 2 is impossible because already
taken by t = 2].
∗ . . . r = 4u2 + 1 ∧ . . . s = 2u+ 1 ∧ . . . = 2u− 1. Here . . . are the

3 spots allocated for 3 and 5. Because u ≥ 7, 2u− 1 ≥ 13, the 3
and 5 must appear at 2u− 1, so 3 · 5 = 2u− 1, but u = 8 is not
prime.
∗ . . . r = 4u2 + 1 ∧ . . . = 2u+ 1 ∧ . . . s = 2u− 1. Here . . . are the

dispersed 3 and 5. To put an isolated 3 or 5 at 2u + 1 requires
too small u, so we need both there, 3 · 5 = 2u + 1, u = 7, so
s = 13 and r = 197, the known solution.
∗ . . . = 4u2 + 1 ∧ . . . r = 2u+ 1 ∧ . . . s = 2u− 1. Here . . . are the

dispersed 3 and 5. Since u ≥ 7, 4u2 + 1 ≥ 197, we cannot fill
the LHS spot of 4u2 + 1 because at most the factor 3 · 5 = 15 is
available. So no solutions here.

– If tu is odd, 24 | (tu)4 − 1 by (10), but the LHS does not support a
fourth power: no solutions.

3.39. 46655. n = 46655 = 5 · 7 · 31 · 43, τ(n) = 16 [6, A030634] , n+ 1 = 46656 =
26 · 36 , τ(n + 1) = 49 [6, A175755] . τ = 16 requires that n is one of the 5 forms
p15 or pq7 or p3q3 or pqr3 or pqrs with p, q, r and s prime. τ = 49 requires that
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n + 1 = s48 or s6t6 with s, t prime. There are 10 combinations of these prime
signatures:

• p15 = s48 − 1. There are no solutions according to App. B.1.
• p3q3 = s48 − 1 or pqr3 = s48 − 1 or pqrs = s48 − 1: If s is odd, Eq. (22)

requires that the LHS does support the factor 26, which they do not. So
s = 2, but 248 − 1 has 9 distinct prime factors and does not match any of
the 3 prime signatures of the LHS. @

• pq7 = s48−1. The parity argument requires either s = 2 (but 248−1 � pq7)
or p = 2 or q = 2. So s is odd and with Eq. (22) q = 2, so 27p = s48 − 1.
Then the Mod-3 criterion requires either p = 3 or s = 3, but 27 ·3+1 � s48

and 348 − 1 � 27p. @
• p15 = s6t6 − 1 = (s3t3 + 1)(s3t3 − 1). If st is even, the right hand side is

the product of two adjacent coprime odd numbers, but the other side can
only be factored that way as 1 · p15, but that would require s3t3 − 1 = 1,
impossible. If st is odd, the parity argument requires p = 2, but 215 + 1 �
(st)6. @

• pq7 = s6t6 − 1 = (s3t3 + 1)(s3t3 − 1).
– If st is even, the RHS is a product of two adjacent odd coprime num-

bers, and the Mod-3 criterion requires one of the odd primes to be
3:
∗ 3q7 = (23t3 + 1)(23t3 − 1). Sub-cases

· 3q7 = (2t)3 + 1∧ 1 = (2t)3− 1. Fails because 1 + 1 � (2t)3.
· q7 = (2t)3 + 1 ∧ 3 = (2t)3 − 1. Fails because 3 + 1 � (2t)3.
· 3 = (2t)3 + 1 ∧ q7 = (2t)3 − 1. Fails because 3− 1 � (2t)3.
· 1 = (2t)3 + 1 ∧ 3q7 = (2t)3 − 1. Fails because 3q7 > 1.

∗ 37p = (23t3 + 1)(23t3 − 1). Sub-cases
· 37p = (2t)3 + 1∧ 1 = (2t)3− 1. Fails because 1 + 1 � (2t)3.
· p = (2t)3 + 1∧ 37 = (2t)3− 1. Fails because 37 + 1 � (2t)3.
· 37 = (2t)3 + 1∧ p = (2t)3− 1. Fails because 37− 1 � (2t)3.
· 1 = (2t)3 + 1 ∧ 37p = (2t)3 − 1. Fails because 37p > 1.

∗ pq7 = (23 ·33+1)(23 ·33−1). Fails because (63+1)(63−1) � pq7.
@

– If st is odd, Eq. (11) requires q = 2, so 27p = (s3t3 + 1)(s3t3 − 1).
The RHS is the product of two adjacent even numbers which have a
greatest common divisor of 2. The two factors of 27p can be dispersed
as:
∗ 2p = (st)3 + 1 ∧ 26 = (st)3 − 1. Fails because 26 + 1 � (st)3.
∗ 26p = (st)3 + 1 ∧ 2 = (st)3 − 1. Fails because 2 + 1 � (st)3.
∗ 2 = (st)3 + 1 ∧ 26p = (st)3 − 1. Fails because 2− 1 � (st)3.
∗ 26 = (st)3 + 1 ∧ 2p = (st)3 − 1. Fails because 26 − 1 � (st)3.

@
• p3q3 = s6t6 − 1.

– If st is even, (st)3±1 is a pair of coprime odd factors, with two possible
splittings:
∗ p3q3 = (2t)3 + 1 ∧ 1 = (2t)3 − 1. Impossible since 1 + 1 � (2t)3

∗ p3 = (2t)3 + 1 ∧ q3 = (2t)3 − 1. Subtraction of both equations
gives p3 − q3 = 2 = (p − q)(p2 + pq + q2). For odd primes,
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p − q is even and p2 + pq + q2 is odd, so p − q = 2, but clearly
p2 + pq + q2 > 1, impossible.

– If st is odd the parity argument gives 23q3 = (s3t3 + 1)(s3t3 − 1) ,
product of two adjacent even numbers with greatest common divisor
2. The possible splittings are
∗ 22q3 = (st)3 + 1 ∧ 2 = (st)3 − 1. Impossible since 2 + 1 � (st)3.
∗ 2q3 = (st)3 + 1∧ 22 = (st)3− 1. Impossible since 22 + 1 � (st)3.
∗ 22 = (st)3 + 1∧ 2q3 = (st)3− 1. Impossible since 22− 1 � (st)3.
∗ 2 = (st)3 + 1 ∧ 22q3 = (st)3 − 1. Impossible since 2− 1 � (st)3.

@
• pqr3 = s6t6 − 1

– If st is even, (2t)3 ± 1 are two adjacent coprime odd factors on the
RHS.
∗ pqr3 = (2t)3 + 1 ∧ 1 = (2t)3 − 1. Impossible since 1 + 1 � (2t)3.
∗ qr3 = (2t)3 + 1 ∧ p = (2t)3 − 1. Impossible since (2t)3 − 1 =

(2t− 1)(22t2 + 2t+ 1) is composite.
∗ r3 = (2t)3 +1∧pq = (2t)3−1. Implies (r−1)(r2 +r+1) = 23t3.

Because r is odd, r2 + r + 1 is odd, r − 1 is even. The greatest
common divisor of r2 + r + 1 and r − 1 is 1 or 3 (but t = 3 is
discarded, (2 · 3)3 + 1 � r3). So r− 1 = 23 ∧ r2 + r+ 1 = t3, but
23 + 1 � r.

∗ pq = (2t)3 +1∧r3 = (2t)3−1. Implies (r+1)(r2−r+1) = 23t3.
r2−r+1 is odd, r+1 is even, and the greatest common divisor of
r2−r+1 and r+1 is 1 or 3 (but t = 3 is discarded, (2·3)3−1 � r3).
So r + 1 = 23 ∧ r2 − r + 1 = t3, so r = 7, but 72 − 7 + 1 � t3.

∗ q = (2t)3 +1∧pr3 = (2t)3−1. Requires that q = (2t+1)(22t2−
2t+ 1) has distinct factors, contradiction to q being prime.
∗ 1 = (2t)3 + 1 ∧ pqr3 = (2t)3 − 1. Impossible ordering because
pqr3 > 1.

@
– If st is odd, Eq. (11) leads to r = 2, 23pq = (s3t3 + 1)(s3t3 − 1) where

the gcd of (st)3 ± 1 is 2. Associations:
∗ 22pq = (st)3 + 1 ∧ 2 = (st)3 − 1. Impossible 2 + 1 � (st)3.
∗ 2pq = (st)3 + 1 ∧ 22 = (st)3 − 1. Impossible 22 + 1 � (st)3.
∗ 22 = (st)3 + 1 ∧ 2pq = (st)3 − 1. Impossible 22 − 1 � (st)3.
∗ 2 = (st)3 + 1 ∧ 22pq = (st)3 − 1. Impossible 2− 1 � (st)3.
∗ 22p = (st)3 + 1 ∧ 2q = (st)3 − 1 = (st− 1)(s2t2 + st+ 1). Since
st is odd, (st)2 + st + 1 is odd. The sub-case where st − 1 and
s2t2 +st+1 have a common factor of 3 is not supported because
2q does not support 32, so 2 = st−1, impossible since 2+1 � st.

∗ 2p = (st)3 + 1 ∧ 22q = (st)3 − 1 Since st is odd, (st)2 − st + 1
is odd, a common factor 3 not supported as above, so in 2p =
(st+ 1)(s2t2 − st+ 1), so 2 = st+ 1, impossible 2− 1 � st.

@
• pqrv = s6t6 − 1. Branch with the known solution.

– st is even. The Mod-3 criterion requires one of
∗ 3qrv = (22t2+2t+1)(22t2−2t+1)(2t+1)(2t−1). There are four

distinct well ordered 4t2 + 2t+ 1 > 4t2− 2t+ 1 > 2t+ 1 > 2t− 1
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factors (where t ≥ 5), so the smallest must match the 3, but
2t−1 = 3 is impossible because the prime s = 2 is already used.

∗ or pqrv = (22 · 32 + 2 · 3 + 1)(22 · 32− 2 · 3 + 1)(2 · 3 + 1)(2 · 3− 1),
which gives the known solution p = 5, q = 7, r = 31, v = 43.

∃
– If st is odd, Eq. (11) requires a factor 23 which is not supported by

the form pqrv. @

3.40. 50624. n = 50624 = 26·7·113, τ(n) = 28 [6, A137491] , n+1 = 50625 = 34·54
, τ(n + 1) = 25 [6, A137488] . τ = 28 requires n = p27 or pq13 or p3q6 or p6qr.
τ = 25 requires n+ 1 = s24 or s4t4.

• p27 = s24 − 1. There are no solutions according to App. B.1. @
• p27 = s4t4 − 1 = (s2t2 + 1)(s2t2 − 1). If st is even, the RHS is the product

of two adjacent coprime odd numbers, but p27 cannot be split that way. If
st is odd, p = 2 with the parity argument, but 227 + 1 � (st)4. @

• pq13 = s24 − 1. We check that for primes s ≤ 13 the RHS does not have
the prime signature of the LHS. For the other primes Theorem 10 requires
at least 5 distinct prime factors on the LHS, which it does not support. @

• pq13 = s4t4 − 1 = (s2t2 + 1)(s2t2 − 1).
– If st is even, (22t2+1)(22t2−1) is the product of two adjacent coprime

odd numbers. The possible associations are
∗ pq13 = 22t2 + 1 ∧ 1 = 22t2 − 1. Impossible since 1 + 1 � (2t)2.
∗ q13 = 22t2+1∧p = 22t2−1. Impossible since p = (2t+1)(2t−1)

is composite (unless 2t− 1 = 1 with t nonprime, rejected).
∗ p = 22t2+1∧q13 = 22t2−1. Impossible since q13 = (2t+1)(2t−1)

is a product of two distinct coprime factors (2t−1 = 1 rejected).
∗ 1 = s2t2 + 1 ∧ pq13 = s2t2 − 1. Impossible ordering because
pq13 > 1.

– If st is odd, Eq. (10) requires q = 2 and 213p = (s2t2 + 1)(s2t2 − 1),
product of two adjacent even numbers with greatest common divisor
2. The possible associations of factors:
∗ 212p = s2t2 + 1∧ 2 = s2t2− 1. Impossible because 2 + 1 � (st)2.
∗ 2p = s2t2+1∧212 = s2t2−1. Impossible because 212+1 � (st)2.
∗ 212 = s2t2+1∧2p = s2t2−1. Impossible because 212−1 � (st)2.
∗ 2 = s2t2 + 1 ∧ 212p = s2t2 − 1. Impossible ordering.

@
• p3q6 = s24 − 1. We check that for primes s ≤ 13 the RHS does not have

the prime signature of the LHS. For the other primes Theorem 10 requires
at least 5 distinct prime factors on the LHS, which it does not support. @

• p3q6 = s4t4 − 1 = (s2t2 + 1)(s2t2 − 1).
– If st is odd, this is a product of two adjacent even factors with a

greatest common divisor of 2. Eq. (10) requires q = 2, so 26p3 =
(s2t2 + 1)(s2t2 − 1). The associations are
∗ 25p3 = s2t2 + 1 ∧ 2 = s2t2 − 1. Impossible since 2 + 1 � (st)2.
∗ 2p3 = s2t2 + 1 ∧ 25 = s2t2 − 1. Impossible since 25 + 1 � (st)2

∗ 25 = s2t2 + 1 ∧ 2p3 = s2t2 − 1. Impossible since 25 − 1 � (st)2.
∗ 2 = s2t2 + 1 ∧ 25p3 = s2t2 − 1. Impossible ordering.

– If st is even, this is a product of two adjacent coprime odd factors.
∗ p3q6 = 22t2 + 1 ∧ 1 = 22t2 − 1. Impossible since 1 + 1 � (2t)2.
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∗ q6 = 22t2 + 1 ∧ p3 = 22t2 − 1. Subtraction gives q6 − p3 = 2 =
(q2−p)(q4+q2p+p2). Impossible because the factor q4+q2p+p2

is already ≥ 151 for distinct odd primes p, q ≥ 3.
∗ p3 = 22t2 + 1 ∧ q6 = 22t2 − 1. Subtraction requires p3 − q6 =

2 = (p − q2)(q4 + q2p + p2), and again the factor q4 + q2p + p2

is already ≥ 151 for distinct odd primes p, q ≥ 3.
∗ 1 = 22t2 + 1 ∧ p3q6 = 22t2 − 1. Impossible ordering.

@
• p6qr = s24 − 1. We check that for primes s ≤ 13 the RHS does not have

the prime signature of the LHS. For the other primes Theorem 10 requires
at least 5 distinct prime factors on the LHS, which it does not support. @
• p6qr = s4t4 − 1. Proof by Jon Schoenfield [11]: Without loss of generality,

require that q < r and that s < t.
– Suppose st is even. Then p6qr = 24t4 − 1 = (2t− 1)(2t+ 1)(4t2 + 1):

three pairwise coprime odd factors; 2t− 1 < 2t+ 1 < 4t2 + 1.
So p6, q, and r are, in some order, 2t− 1, 2t+ 1 and 4t2 + 1.
p6 ≡ 1 (mod 8), so p6 cannot be 2t + 1, because t ≡ {1, 3} (mod 4)
means 2t + 1 ≡ {3, 7} (mod 8). Also, p6 cannot be 4t2 + 1, because
that would require the existence of two positive squares, (p3)2 and
(2t)2, with a difference of 1.
So p6 = 2t− 1, q = 2t+ 1, and r = 4t2 + 1.
∗ If p = 3, then 36 = 2t− 1 (impossible, 36 + 1 � 2t).
∗ If p 6= 3, then p6 ≡ 1 (mod 3), and q = p6+2, so q ≡ 0 (mod 3):

3 | q (and q 6= 3 since t 6= 1) (also impossible).
@

– So st is odd, Eq. (10) leads to p = 2, and 26qr = s4t4−1 = (st−1)(st+
1)(s2t2+1): three even factors with no prime divisors in common other
than 2. That means in all 3 possible partitions of the exponent of 26

in 3 parts, 6 = 2 + 2 + 2 = 1 + 2 + 3 = 1 + 1 + 4, only the partition
26 = 21 · 21 · 24, is possible, so exactly one of the three factors is
a multiple of 24. That one is not s2t2 + 1; st is odd, so (st)2 ≡ 1
(mod 8), so s2t2 + 1 ≡ 2 (mod 8), i.e., 2 divides s2t2 + 1, but 22 does
not. Since 26 | s4t4 − 1, we have 25 | (st− 1)(st+ 1).
So, of st − 1 and st + 1, one is 24 times an odd number, and the
other is 2 times an odd number. The associations of the product qr
as either 2qr = s2t2 + 1 ∧ 25 = (st + 1)(st − 1) or 2 = s2t2 + 1 ∧
25qr = (st + 1)(st − 1) fail obviously, so it must be distributed as
2q = s2t2 + 1∧ 25r = (st+ 1)(st− 1) (without loss of generality). This
leaves 4 choices: 24 = st+ 1 ∧ 2r = st− 1 or 24r = st+ 1 ∧ 2 = st− 1
or 2 = st+ 1∧ 24r = st− 1 or 2r = st+ 1∧ 24 = st− 1. Only the first
of these matches the prime signatures, st = 3 · 5, r = 7, q = 113, the
known solution. ∃

3.41. 57121. n = 57121 = 2392, τ(n) = 3 [6, A001248] , n+ 1 = 57122 = 2 · 134 ,
τ(n+ 1) = 10 [6, A030628] . τ = 3 requires n = p2 and τ = 10 requires n+ 1 = q9

or n+ 1 = qr4. The sub-case p2 = q9 − 1 requires by the parity argument p = 2 or
q = 2, and by explicit evaluation there are no solutions. The sub-case p2 = qr4 − 1
requires again by the parity argument either p = 2 (no solution obviously) or q = 2
or r = 2.
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• p2 = 2r4−1 provides the known solution with p = 239 and r = 13, and this
is known to be the only solution (besides p = 1, r = 1) of this Diophantine
equation [4, 1].
• p2 = q · 24 − 1. This requires p2 ≡ −1 (mod 8), but this contradicts the

statement p2 ≡ 1 (mod 8) of Eq. (9): no solution here.

3.42. 59048. n = 59048 = 23 ·112 ·61, τ(n) = 24 [6, A137487] , n+1 = 59049 = 310

, τ(n + 1) = 11 [6, A030629] . The candidates for τ = 24 have prime signatures
n = p23, p2q7, pq2r3, pqr5, pqrs2, p3q5 or pq11. Proof from Jon Schoenfield [11]:
For n+ 1 to have 11 divisors, we must have n+ 1 = s10 for some prime s.

• For all primes s other than 2, 3, and 11, n = s10−1 is divisible by 23 ·3·11, so
the prime signatures with less than 3 distinct primes or highest exponent
less than 3 are ruled out and only n = pq2r3 or pqr5 remain. The only
possibilities are n = 25 · 3 · 11 = 1056, n = 23 · 32 · 11 = 792, and n =
23 · 3 · 112 = 2904, none of which satisfy τ(n+ 1) = 11. @

• For primes s = 2, 3, and 11, s10 − 1 can be computed explicitly, and the
only prime s such that s10 − 1 has exactly 24 divisors is s = 3, so n =
310 − 1 = 59048 is the unique known solution. ∃

3.43. 65535. n = 65535 = 3·5·17·257, τ(n) = 16, [6, A030634] n+1 = 65536 = 216

, τ(n+ 1) = 17 [6, A030635] . τ = 16 requires the form n = pqrs, pqr3, pq7, p3q3 or
p15. τ = 17 requires n+ 1 = s16. Theorem 9 requires that n = s16 − 1 is divisible
by 26 · 3 · 5 for sufficiently large odd primes s, but none of the 5 prime signatures
of n have the minimum three distinct prime factors and at least one exponent ≥ 6.
The small primes s = 2, 3, and 5 are checked explicitly and only s = 2, the known
solution, remains.

3.44. 65536. n = 65536 = 216, τ(n) = 17, τ(n + 1) = 2. τ = 17 requires n = p16

and τ = 2 requires n+ 1 = q. This implies p16 + 1 = q and by the parity criterion
either p = 2 or q = 2 which is settled by direct inspection.

3.45. 83520. n = 83520 = 26 · 32 · 5 · 29, τ(n) = 84 , n + 1 = 83521 = 174 ,
τ(n+ 1) = 5 [6, A030514] .

Contribution from Jon Schoenfield [11]: Since τ(n+ 1) = 5, n+ 1 = p4 for some
prime p, so n = p4 − 1, which does not have 84 divisors for any p ≤ 5, so p > 5; for
all such primes p, 24 · 3 · 5 divides p4 − 1 (Theorem 5). So n has at least 3 distinct
prime factors; the only prime signatures yielding 84 divisors and having at least 3
distinct prime factors are q20rs, q13r2s, q6r5s, q6r3s2, and q6r2st.

If n has exactly 3 distinct prime factors, then since 24 · 3 · 5 | n, the only
possibilities are 220 ·3 ·5, 213 ·32 ·5, 213 ·3 ·52, 26 ·35 ·5, 26 ·3 ·55, 25 ·36 ·5, 25 ·3 ·56,
26 · 33 · 52, and 26 · 32 · 53, but none of those values satisfy τ(n+ 1) = 5, so n must
have more than 3 distinct prime divisors; its prime signature must then be q6r2st,
so n = 26r2st, where r, s, and t are distinct odd primes, two of which are 3 and 5.
Note that n has exactly one prime divisor > 5 and is not divisible by 53.

For odd primes p, p4 − 1 = (p− 1)(p+ 1)(p2 + 1) and these three factors are all
even and share no prime divisors other than 2. Either (p− 1)(p+ 1) or p2 + 1 must
be 5-smooth [6, A051037] [otherwise, n = (p− 1)(p+ 1)(p2 + 1) would have at least
two distinct prime divisors > 5]. Since p is a prime > 5, p2 + 1 ≡ 2 (mod 23 · 3)
by Eqs. (9) and (25). So p2 + 1 is divisible by 2 but not by 3 or 4, and 2 | p2 + 1
with 25 | p2 − 1; thus, if p2 + 1 were 5-smooth, it would be of the form 21 · 30 · 5L
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where L < 3 (since 53 - n), but L = 0, 1, or 2 would correspond to p2 + 1 = 2, 10,
or 50, i.e., p = 1, 3, or 7, none of which would satisfy τ(p4 − 1) = 84. So p2 + 1 is
not 5-smooth.

So p2 − 1 is 5-smooth. The coprime factorizations of (p2 + 1)(p2 − 1) = 26r2st
must be one of

• 2r2st = p2 + 1 ∧ 25 = p2 − 1. Impossible since 25 + 1 � p2.
• 2st = p2 + 1 ∧ 25r2 = p2 − 1. Because p2 − 1 is 5-smooth, either r = 3

(which gives the known solution p = 17) or r = 5 (but 25 · 52 + 1 � p2).
• 2r2 = p2 + 1 ∧ 25st = p2 − 1. Because p2 − 1 is 5-smooth, st = 3 · 5, but

25 · 3 · 5 + 1 � p2.
• 2 = p2 + 1 ∧ 25r2st = p2 − 1. Impossible because 2− 1 � p2.
• 2r2s = p2 + 1∧ 25t = p2 − 1. Because p2 − 1 is 5-smooth, either t = 3 (but

25 · 3 + 1 � p2) or t = 5 (but 25 · 5 + 1 � p2).
• 2s = p2 + 1 ∧ 25r2t = p2 − 1. Because p2 − 1 is 5-smooth, either r = 3 and
t = 5 (but 25 · 32 · 5 + 1 � p2) or r = 5 and t = 3 (but 25 · 52 · 3 + 1 = 72

and 72 + 1 � 2s).

3.46. 117648. n = 117648 = 24 · 32 · 19 · 43, τ(n) = 60, n + 1 = 117649 = 76,
τ(n+ 1) = 7. τ = 60 requires n = p59, pq29, p2q19, p3q14, p4q11, p5q9, pqr14, pq2r9,
p2q3r4, pq4r5, or pqr2s4. τ = 7 requires n+ 1 = t6.

The case t = 2 is discarded by direction inspection, because τ(26 − 1) 6= 60, so t
is odd and n is even. The cases t = 3 and 5 are discarded also by direct evaluation,
and t = 7 leads to the known solution. For primes t > 7, Theorem 6 requires
23 · 32 · 7 | n, so only the prime signatures with a minimum of three distinct primes
remain.

• pqr14 = t6 − 1. Does not support at least two primes with exponents ≥ 2
required by the theorem.

• pq2r9 = t6 − 1. The theorem is matched only with r = 2, q = 3, p = 7, but
7 · 32 · 29 + 1 � t6.

• p2q3r4 = t6 − 1. The theorem is matched by
– p = 3, q = 2, r = 7, but 32 · 23 · 74 + 1 � t6.
– p = 3, q = 7, r = 2, but 32 · 73 · 24 + 1 � t6.
– p = 7, q = 2, r = 3, but 72 · 23 · 34 + 1 � t6.
– p = 7, q = 3, r = 2, but 72 · 33 · 24 + 1 � t6.

• pq4r5 = t6 − 1. The theorem is matched by
– p = 7, q = 2, r = 3, but 7 · 24 · 35 + 1 � t6.
– p = 7, q = 3, r = 2, but 7 · 34 · 25 + 1 � t6.

• pqr2s4 = t6−1. The theorem is only matched if s = 2, r = 3, so 24 ·32 ·7q =
t6 − 1 = (t + 1)(t − 1)(t2 + t + 1)(t2 − t + 1). The two even factors have
greatest common divisor (t+ 1, t− 1) = 2.

So one of t± 1 is an odd multiple of 23, the other an odd multiple of 2.
The greatest common divisor of t2 − 1 and t2 + t+ 1 is 3 if t ≡ 1 (mod 3)
and 1 if t ≡ {0, 2} (mod 3). The greatest common divisor of t2 − 1 and
t2− t+ 1 is 3 if t ≡ 2 (mod 3) and 1 if t ≡ {0, 1} (mod 3). (The case t ≡ 0
(mod 3) can be ignored because t = 3 does not yield a solution.) t2 − t+ 1
and t2 + t + 1 are coprime. How do the three factors 32, 7 and q emerge
from (t2−1)/16, t2 + t+1 and t2− t+1 (all three of which are > 1 because
t > 7)?
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Because (t2 − 1)/16 shares a factor of 3 with either t2 + t + 1 (t ≡ 1
(mod 3)) or t2 − t+ 1 (t ≡ 2 (mod 3)), and because 32 appears in pqr2s4,
we have

– if t ≡ 1 (mod 3), 3 | (t2− 1)/16 and 3 | t2 + t+ 1. The factors 7 and q
must be distributed over the factors t2 ± t+ 1, because otherwise one
of them remains fixed at 1:
∗ 3 = (t2 − 1)/16 ∧ 3q = t2 + t+ 1 ∧ 7 = t2 − t+ 1. Obviously no

solution.
∗ 3 = (t2− 1)/16∧ 3 · 7 = t2 + t+ 1∧ q = t2− t+ 1. Obviously no

solution.
– if t ≡ 2 (mod 3), 3 | (t2− 1)/16 and 3 | t2− t+ 1. The factors 7 and q

must be distributed over the factors t2 ± t+ 1, because otherwise one
of them remains fixed at 1:
∗ 3 = (t2 − 1)/16 ∧ 3q = t2 − t+ 1 ∧ 7 = t2 + t+ 1. Obviously no

solution.
∗ 3 = (t2− 1)/16∧ 3 · 7 = t2− t+ 1∧ q = t2 + t+ 1. Obviously no

solution.

4. Conjectured Unique

4.1. 50175. n = 50175 = 32 · 52 · 223, τ(n) = 18 [6, A030636] , n + 1 = 50176 =
210 · 72 , τ(n + 1) = 33 [6, A175743] . τ = 18 requires n = p17 or pq8 or p2q5 or
pq2r2. τ = 33 requires n+ 1 = s32 or s2t10. The pairs of signatures are

• p17 = s32 − 1. There are no solutions as outlined in App. B.1.
• p17 = s2t10 − 1. There are no solutions as outlined in App. B.1.
• pq8 = s32−1. s 6= 2 because 232−1 � pq8. s is an odd number, so 27|s32−1

by Theorem 4, which matches the RHS only if q = 2, so 28p = s32 − 1.
Further by the Mod-3 criterion either p = 3 or s = 3, but 28 · 3 + 1 � s32

and 332 − 1 � 28p.
• pq8 = s2t10 − 1 = (st5 + 1)(st5 − 1).

– If st is even, the RHS are two coprime odd numbers such that
∗ p = st5 + 1 ∧ q8 = st5 − 1. The Mod-3 criterion requires either
p = 3 (impossible since 3 − 1 � st5) or q = 3 (impossible since
38 + 1 � st5) or s = 3 or t = 3 (impossible because then st5 ≡ 0
(mod 3) and q8 ≡ −1 (mod 3), which violates Theorem 7).
∗ or q8 = st5 +1∧p = st5−1. The Mod-3 criterion requires either
q = 3 (impossible since 38 − 1 does not have the form st5) or
p = 3 (impossible since 3 + 1 � st5 or (remember st is even)
either s = 2 ∧ t = 3 (but 2 · 35 + 1 � q8) or s = 3 ∧ t = 2 (but
3 · 25 + 1 � q8).

– If st is odd, s2t10 − 1 is divisible by 23 and a product of two even
factors st5±1 with a greatest common divisor of 2. q = 2 on the LHS.
The possible factorizations of 28p (with the constraint that p > 2) are
∗ 27p = st5 + 1 ∧ 2 = st5 − 1. Fails because 2 + 1 � st5.
∗ 2p = st5 + 1∧27 = st5−1. Requires by subtraction 2p−27 = 2,

but that p = 65 is not prime.
∗ 27 = st5 + 1∧2p = st5−1. Requires by subtraction 27−2p = 2,

but that p = 63 is not prime.
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• p2q5 = s32 − 1. s is not 2 because 232 − 1 � p2q5. Then for odd s Eq. (21)
requires a factor 27 on the LHS but this is not supported by p2q5.
• p2q5 = s2t10 − 1.

– If st is even, the RHS is the product of two coprime odd numbers such
that
∗ p2 = st5 + 1 ∧ q5 = st5 − 1. The Mod-3 criterion requires either
p = 3 or q = 3 (both fail to match the st5 ± 1 formats) or s = 3
or t = 3. Because st is even, either st5 = 2 · 35 or 3 · 25, but in
both cases st5 + 1 do not match the prime signature p2.

∗ or q5 = st5 + 1 ∧ p2 = st5 − 1. The Mod-3 criterion requires
either p = 3 or q = 3 (both fail to match their st5 ± 1 formats)
or s = 3 or t = 3. Because st is even, either st5 = 2 · 35 (but
2 · 35 + 1 � q5) or 3 · 25 (but 3 · 25 + 1 � q5).

– If st is odd, (st5 + 1)(st5 − 1) is a product of two adjacent positive
numbers with greatest common divisor 2 and q = 2 on the other side
from Eq. 9. The factorizations of 25p2 = (st5 + 1)(st5 − 1) are one of
∗ 2p2 = st5 + 1 ∧ 24 = st5 − 1. Impossible because 24 + 1 � st5.
∗ 24p2 = st5 + 1 ∧ 2 = st5 − 1. Impossible because 2 + 1 � st5.
∗ 24 = st5 + 1 ∧ 2p2 = st5 − 1. Impossible because 24 − 1 � st5.

• pq2r2 = s32 − 1. s is not 2 because 232 − 1 � pq2r2. Then for odd s Eq.
(21) requires a factor 27 on the LHS, but this is not supported by pq2r2.

• pq2r2 = s2t10 − 1. The branch with the known solution.
– If st is odd, s2t10 − 1 is divisible by 23 by Eq. (9) but the exponents

of pq2r2 are too small to support solutions.
– If st is even, (st5+1)(st5−1) is a product of two coprime odd numbers.

The possible splitting of the three factors p, q2 and r2 over these two
are (note that q2 and r2 are equivalent here)
∗ pq2r2 = st5 + 1 ∧ 1 = st5 − 1. Impossible because 1 + 1 � st5.
∗ q2r2 = st5 + 1 ∧ p = st5 − 1. Because qr is odd, 8|(qr)2 − 1,

so t = 2, so (qr)2 = 25s + 1 ∧ p = 25s − 1. (qr + 1)(qr − 1) is
a product of two adjacent even numbers, so the splitting of the
factors 25s is one of
· 2s = qr+1∧24 = qr−1∧p = 25s−1. Subtraction requires

2s− 24 = 2, but s = 9 is not prime.
· 24s = qr+1∧2 = qr−1∧p = 25s−1. Subtraction requires

24s− 2 = 2, but such prime s does not exist.
· 2 = qr+ 1∧ 24s = qr− 1∧ p = 25s− 1. Impossible because

2 < 24s
· 24 = qr+1∧2s = qr−1∧p = 25s−1. Subtraction requires

24 − 2s = 2, so s = 7, p = 223, qr = 3 × 5, which is the
known solution.

∗ pr2 = st5 + 1∧ q2 = st5− 1. Since st is even, q is odd, so q2 ≡ 1
(mod 4), which needs to be balanced by st5 − 1 ≡ 1 (mod 4).
Checking all 4× 4 cases of s and t, this requires s ≡ 2 (mod 4)
and t ≡ {1, 3} (mod 4). Since st is even, s = 2 and t is odd, so
pr2 = 2t5 + 1 ∧ q2 = 2t5 − 1. No solutions because q2 = 2t5 − 1
has no solutions in the primes [5].
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∗ r2 = st5 + 1 ∧ pq2 = st5 − 1. Here r2 − 1 = st5 with odd r
such that 23|r2 − 1, so t = 2 and (r + 1)(r − 1) = 25s ∧ pq2 =
25s−1. The Mod-3 criterion needs either r = 3 (impossible since
(3 + 1)(3− 1) � 25s or s = 3 (impossible since 25 · 3 + 1 � r2) or
p = 3 or q = 3. The two latter choices are not possible because
then the two sides of r2 − 1 = 25s would differ modulo 3.

∗ p = st5 + 1 ∧ q2r2 = st5 − 1. The Mod-3 criterion requires that
either p = 3 (but 3− 1 � st5) or q = 3 (equivalent to r = 3) or
s = 3 or t = 3.
· p = st5 + 1 ∧ 32r2 = st5 − 1. t cannot be 2, because that

would require 32r2 = 25s − 1. By Eq. (9) odd squares are
(3r)2 + 1 ≡ 2 (mod 23), but the equation would require
odd squares (3r)2 +1 ≡ 0 (mod 25), which is incompatible.
So s = 2, and the focus is on the existence of solutions
to the coupled Diophantine equations p = 2t5 + 1 ∧ 32r2 =
2t5−1 for odd distinct primes p, t and r larger than 3. This
manuscript does not offer a proof that no such triples exist,
so the question whether 50175 can be moved into Section
3 remains unanswered here.
· p = 3t5 + 1 ∧ q2r2 = 3t5 − 1. Impossible since 3t5 ≡ 0

(mod 3) and q2r2 ≡ 1 (mod 3) since q · r > 3.
· p = 35s + 1 ∧ q2r2 = 35s − 1. Impossible since 35s ≡ 0

(mod 3) and q2r2 ≡ 1 (mod 3) since q · r > 3.
∗ 1 = st5+1∧pq2r2 = st5−1. Impossible because st5+1 > st5−1.

4.2. 59049. n = 59049 = 310, τ(n) = 11 [6, A030629] , n+1 = 59050 = 2 ·52 ·1181
, τ(n+ 1) = 12 [6, A030630] . τ = 11 requires n = p10. τ = 12 requires n+ 1 = q11,
q5r, q3r2, or q2rs.

A proof that n = 59049 is a term unless n > 1040000 [11]:
n+ 1 = p10 + 1 = xy where x = p2 + 1 and y = p8 − p6 + p4 − p2 + 1.
p 6= 2 since τ(210+1) 6= 12. So p is an odd prime, so p2 ≡ 1 (mod 8); x = p2+1 ≡

2 (mod 8) (which is an even composite number), and y is odd, so n+ 1 = xy = 2q5

or 2q2s.
y = x(p6 − 2p4 + 3p2 − 4) + 5, so (y, x) = 1 or 5.
Note that y is never a square; for every odd prime p (and for all other odd

numbers p ≥ 3), the fractional part of
√
y is in the interval [0.843997..., 0.875],

converging to 0.875 = 7/8.
If n+ 1 = 2q5, then since x is an even number > 2, and since y is not a square,

we must have x = 2q2 and y = q3 or x = 2q4 and y = q, but the latter would mean
y > x (impossible). So x = 2q2 and y = q3.

But y > x3 for all primes p, so x = 2q2 ∧ y = q3 is also impossible.
So n+ 1 = xy = 2q2s, and 2 | x, and x > 2, and y 6= q2.
Thus if (x, y) = 1, then x = 2q2, y = s (addressed below).
The only other way to split up n + 1 = 2q2s would be x = 2q, y = qs, but

this would require (x, y) = 5, and this would mean x = 2 · 5 = 10, y = 5s;
x = p2 + 1, so x = 10 means p = 3, y = 38 − 36 + 34 − 32 + 1 = 5905 = 5 · 1181, so
n+ 1 = xy = 10 · 5905 = 59050; this is the known solution n = 59049 = 310.

So if there is any solution other than n = 59049, it must satisfy n+1 = p10 +1 =
xy where x = p2 + 1 and y = p8 − p6 + p4 − p2 + 1, with x = 2q2 and y = s.
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So p must be a prime such that p2 + 1 = 2q2 and p8 − p6 + p4 − p2 + 1 = s is
prime.

There do exist primes p such that p2 + 1 = 2q2. In general, pairs of positive
integers (y, z) such that y2 + 1 = 2z2 are (1, 1), (7, 5), (41, 29), (239, 169),
(1393, 985), (8119, 5741), (47321, 33461), (275807, 195025), ... (the y values are
[6, A002315] the z values are [6, A001653] )

Thus if there is a solution other than n = 59049, it is the 10th power of a prime
p that meets three requirements:

(1) p is a term in [6, A002315],
(2) the accompanying term in [6, A001653], i.e., the number q that satisfies

p2 + 1 = 2q2, is also a prime, and
(3) p8 − p6 + p4 − p2 + 1 = 1 + (p4 + 1)p2(p+ 1)(p− 1) is also a prime.

Ordered pairs that satisfy the first two requirements are rare:
p q
7 5

41 29
63018038201 44560482149

19175002942688032928599 13558774610046711780701
[6, A086397] lists (after its initial term, 3) the numbers p in such pairs. [6,

A118612] lists (after its initial term, 2) the numbers q in such pairs, and each of
those two sequences has comment that says Next term, if it exists, is bigger than
489 digits (the 1279th convergent to sqrt(2)). (I checked farther; the next term, if
it exists, exceeds 105000.)

For each of the above pairs, the corresponding value of p8 − p6 + p4 − p2 + 1 is
not a prime.

So if there’s a number other than 59049 such that τ(n) = 11 and τ(n+ 1) = 12,
it’s at least p8 − p6 + p4 − p2 + 1 where p ≥ 105000, so n ≥ 1040000.

But primes aren’t terribly rare among values of y = p8 − p6 + p4 − p2 + 1 for
primes p; y is prime for each of the following primes: 11, 19, 101, 109, 139, 149,
181, 229, 311, 479, 601, 619, 631, 659, 719, 1201, 1229, 1511, 1531, 1571, 1699,
1721, 1879, 1931, 1999, 2221, 2239, 2269, 2549, 2879, 2939, 2969, 3221, 3391, 3511,
3539, 3541, 3719, 3761, 4211, 4241, 4421, 4441, 4621, 4649, 5059, 5471, 5519, 5569,
5869, 5939, 6151, 6361, 6571, 6659, 6781, 7069, 7151, 7159, 7489, 7499, 7759, 8419,
8951, 9419, 9649, 9929, . . .

Is there some way to prove that if p is prime and the corresponding q such that
p2 + 1 = 2q2 then p8 − p6 + p4 − p2 + 1 cannot be prime?

4.3. 130320. n = 130320 = 24 · 32 · 5 · 181, τ(n) = 60, n + 1 = 130321 = 194,
τ(n+ 1) = 5.

4.4. 146688. n = 146688 = 28 · 3 · 191, τ(n) = 36, n + 1 = 146689 = 3832,
τ(n+ 1) = 3.

4.5. 262143. n = 262143 = 33 · 7 · 19 · 73, τ(n) = 32, n + 1 = 262144 = 218,
τ(n+ 1) = 19.

4.6. 263168. n = 263168 = 210 · 257, τ(n) = 22, n + 1 = 263169 = 36 · 192,
τ(n+ 1) = 21.
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4.7. 279840. n = 279840 = 25 · 3 · 5 · 11 · 53, τ(n) = 96, n + 1 = 279841 = 234,
τ(n+ 1) = 5.

4.8. 331775. n = 331775 = 52 · 23 · 577, τ(n) = 12, n + 1 = 331776 = 212 · 34,
τ(n+ 1) = 65.

4.9. 529983. n = 529983 = 36 · 727, τ(n) = 14, n + 1 = 529984 = 26 · 72 · 132,
τ(n+ 1) = 63.

4.10. 531440. n = 531440 = 24 · 5 · 7 · 13 · 73, τ(n) = 80, n + 1 = 531441 = 312,
τ(n+ 1) = 13,

4.11. 746495. n = 746495 = 5 · 173 · 863, τ(n) = 8, n + 1 = 746496 = 210 · 36,
τ(n+ 1) = 77.

4.12. 923520. n = 923520 = 27 · 3 · 5 · 13 · 37, τ(n) = 128, n+ 1 = 923521 = 314,
τ(n+ 1) = 5.

5. Proven Non-Unique

In chapter 5 we list those n which are absent from the sequence because one can
find an m which fulfills the requirement of (3).

5.1. Individual Entries Proven Non-unique.

• n = 23103 = 32 · 17 · 151, τ(n) = 12, τ(n + 1) = 21. matched by m =
4631103 = 32 · 239 · 2153 for example.
• n = 25920 = 26 ·34 ·5, τ(n) = 70, τ(n+1) = 9. matched by m = 34023888 =

24 · 36 · 2917 for example.
• n = 33124 = 22 · 72 · 132, τ(n) = 27, τ(n + 1) = 10. matched by m =

5373124 = 22 · 192 · 612 for example.
• n = 39600 = 24 · 32 · 52 · 11, τ(n) = 90, τ(n + 1) = 3. matched by
m = 75916368 = 24 · 32 · 112 · 4357 for example.

• n = 46656 = 26 · 36, τ(n) = 49, τ(n+ 1) = 8. matched by m = 7529536 =
26 · 76 for example.

• n = 28224 = 26 · 32 · 72, τ(n) = 63, τ(n + 1) = 6. matched by m =
5271616 = 26 · 72 · 412 for example.

• n = 71824 = 24 · 672 matched by m = 868834576 = 24 · 73692 for example.
• n = 82944 = 210 · 34 matched by m = 1686498489 = 310 · 134 for example.
• n = 250000 = 24 · 56 matched by m = 2368574224 = 24 · 236 for example.
• n = 262144 = 218 matched by m = 387420489 = 318 for example.
• n = 421200 = 24 · 34 · 52 · 13 matched by m = 262472400 = 24 · 34 · 52 · 8101

or 1008253008 = 24 · 34 · 72 · 15877 for example.
• n = 589824 = 216 · 32 matched by m = 59520385024 = 216 · 9532 or

261358157824 = 216 · 19972 for example.
• n = 640000 = 210·54 matched bym = 718240924712219661023456897050078235203037193616 =

24 · 4626110 for example.
• n = 641600 = 26 · 52 · 401 matched by m = 12408400448 = 26 · 592 · 55697

for example.
• n = 651249 = 32 · 2692 matched by m = 290941249 = 32 · 4612 or

321951249 = 32 · 59812 for example.
• n = 746496 = 210 · 36 matched by m = 4942652416 = 210 · 136 or

151588750336 = 210 · 236 for example.
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• n = 777924 = 22 · 34 · 74 matched by m = 410791824 = 24 · 34 · 5632 or
1983099024 = 24 · 34 · 12372 for example.
• n = 860624 matched by m = 150309999
• n = 861183 = 32 · 103 · 929 matched by m = 369869823 = 32 · 2137 · 19231

or 1063281663 = 32 · 3623 · 32609 for example.
• n = 937024 = 26·114 matched bym = 886133824 = 26·614 or 64537845849 =

36 · 974 for example.
• n = 1000000 matched by m = 689869781056 for example [11].

5.2. Broad band search (small m). A numerical search for unique pairs started
by Jack Brennen in Jun 11, 2009 in the seqfan list was extended by Jon Schoenfield
in August 2019. All numbers in the range n ≤ 1000000 except the individuals listed
in Chapters 3 and 4 have non-unique τ -pairs.

6. Summary

We filtered numerically a maximum set of 58 pairs (τ(n),τ(n+ 1)) in the range
n < 1, 000, 000 which seem to be unique in the infinite sequence of such pairs, and
showed for 46 of them that they are indeed unique by computing all solutions for
their set of associated Diophantine equations that emerge from the prime signatures
of n and n+ 1.

Appendix A. Squares Near-Misses

In the context of this manuscript, Squares Near-Misses are numbers of the form
n2 − 1. The associated subset of the τ -functions is
(6)
τ(n2−1) = 0, 2, 4, 4, 8, 4, 10, 6, 10, 6, 16, 4, 16, 8, 12, 8, 18, 4, 24, 8, 16, 8, 20, 6, . . . (n ≥ 1)

These are even numbers. [Proof: n2−1 is not a square basically because the squares
have a mutual distance larger than 1 — except the squares 02 and 12 which are not
of interest here. So in the unique prime factorization of n2 − 1 there is at least one
prime factor with an odd exponent, and each odd exponent multiplies τ by an even
number according to Eq. (2).] More explicit: Let νp(n) characterize the maximum
power of p that divides n:

(7) νp(n) = max
α≥0
{pα | n} .

Then the maximum power of 2 in τ(n2− 1), ν2(τ(n2− 1)), is the number of primes
with odd exponent in the prime factorization of n2 − 1.

The Prime Squares Near-Misses are the subset where the s are primes, [6,
A084920]

(8) p2 − 1 = 3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, . . .

With the exception of the initial 3 these are multiples of 4 because the factors p+ 1
and p− 1 are individually multiples of 2.

For odd numbers of the form a = 2k + 1 we have a2 − 1 = 4k(k + 1), a3 − 1 =
2k(4k2 + 6k+ 3), a4− 1 = 8k(k+ 1)(2k2 + 2k+ 1), and so on, where k(k+ 1) is an
even number:

http://list.seqfan.eu/pipermail/seqfan/2009-June/001648.html
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Theorem 4. For odd a

23 | a2 − 1(9)

24 | a4 − 1(10)

23 | a6 − 1(11)

25 | a8 − 1(12)

23 | a10 − 1(13)

24 | a12 − 1(14)

23 | a14 − 1(15)

26 | a16 − 1(16)

23 | a18 − 1(17)

24 | a20 − 1(18)

25 | a24 − 1(19)

23 | a26 − 1(20)

27 | a32 − 1(21)

26 | a48 − 1(22)

23 | a62 − 1(23)

28 | a64 − 1(24)

With the exception of the initial 3 and 8 they are multiples of 3:

(25) 3 | p2 − 1 (primes p > 3)

Proof. For primes of the form p = 3k + 1 we have p2 − 1 = 3k(3k + 1) and for
primes of the form p = 3k + 2 we have p2 − 1 = 3(k + 1)(3k + 1). �

For odd primes Eq. (10) may be extended as follows [11]:

Theorem 5. 24 · 3 · 5 | p4 − 1 (prime p > 5).

Proof. The factor 5 is shown by using the prime residue classes p ≡ {1, 2, 3, 4}
(mod 5) such that p2 ≡ {1, 4} (mod 5) and p4 ≡ 1 (mod 5). The factor 3 is
inherited from Eq. (25) because p2 − 1 | p4 − 1. �

Most of this section summarizes standard divisibility properties of Cyclotomic
Polynomials [3, 8, 2].

p2 − 1 = Φ1(p)Φ2(p),(26)

p4 − 1 = Φ1(p)Φ2(p)Φ4(p),(27)

p6 − 1 = Φ1(p)Φ2(p)Φ3(p)Φ6(p),(28)

p8 − 1 = Φ1(p)Φ2(p)Φ4(p)Φ8(p),(29)

p10 − 1 = Φ1(p)Φ2(p)Φ5(p)Φ10(p),(30)

p12 − 1 = Φ1(p)Φ2(p)Φ3(p)Φ6(p)Φ4(p)Φ12(p).(31)

For odd primes Eq. (11) may be extended as follows:

Theorem 6. 23 · 32 · 7 | p6 − 1 (prime p > 7).



CONSECUTIVE ENTRIES IN THE τ -FUNCTION 35

Proof. The factor 7 is shown by using the prime residue classes p ≡ {1, 2, 3, 4, 5, 6}
(mod 7) such that p2 ≡ {1, 2, 4} (mod 7), p3 ≡ {1, 6} (mod 7) and finally p6 ≡ 1
(mod 7). The factor 32 is shown by using the prime residue classes p ≡ {1, 2, 4, 5, 7, 8}
(mod 9) such that p2 ≡ {1, 4, 7} (mod 9), p3 ≡ {1, 8} (mod 9), p4 ≡ {1, 4, 7}
(mod 9), and p6 ≡ 1 (mod 9). �

For odd primes Eq. (12) may be extended as follows:

Theorem 7. 25 · 3 · 5 | p8 − 1 (prime p > 5).

Proof. The factor 25 is inherited from (12) and the factor 3 · 5 is inherited from
Theorem 5, since p4 − 1|p8 − 1. �

For odd primes Eq. (13) may be extended as follows:

Theorem 8. 23 · 3 | p10 − 1 (prime p > 3).

Proof. The factor 23 is inherited from (13) and the factor 3 is inherited from (25),
since p2 − 1|p10 − 1. �

For odd primes Eq. (16) may be extended as follows:

Theorem 9. 26 · 3 · 5 | p16 − 1 (prime p > 5).

Proof. The factor 26 is inherited from (16) and the factor 3 · 5 is inherited from
Theorem 7, since p8 − 1|p16 − 1. �

For odd primes Eq. (19) may be specialized as follows:

Theorem 10. 25 · 32 · 5 · 7 · 13 | p24 − 1 (prime p > 13).

Proof. The factor 13 is shown by using the prime residue classes p ≡ {1, 2, 3, . . . , 12}
(mod 13) such that p3 ≡ {1, 5, 8, 12} (mod 13), p6 ≡ {1, 12} (mod 13), p12 ≡ 1
(mod 13).

The factor 32 ·7 is inherited from Theorem 6 because p6−1 | p24−1. The factor
5 is inherited from Theorem 5 because p4 − 1 | p24 − 1. �

Appendix B. Generic Prime Signatures

B.1. a2 − 1 = pj. Can a number of the form a2 − 1 = (a+ 1)(a− 1) equal a power
of a prime, pj? The answer is obviously no if j = 1, because a prime cannot have
two distinct factors a± 1. The severe constraint is that the two divisors a+ 1 and
a − 1 are near neighbors. Solutions require that pα is split into one of the forms
p · pj−1, p2 · pj−2,. . . pb(j−1)/2 · pd(j+1)/2e, where the smaller factor pi = a − 1 and
the larger factor pj−i = a+ 1, 2i < j. Subtraction of these two equations requires
2 = pj−i − pi = pi(pj−2i − 1), which requires either 2 = pi, 1 = pj−2i − 1 or pi = 1
(impossible) and pj−2i−1 = 2. This winds down to p = 2, i = 1, therefore pj−2 = 2
and finally j = 3. So the only solution is 32 − 1 = 23.

B.2. a2− 1 = pqj. Can a number of the form a2− 1 = (a+ 1)(a− 1) equal a prime
times another prime’s power, pqj?

B.2.1. j = 1. There are numerous solutions for j = 1 with a = 4, 6, 12, 18, 30, . . ..
[6, A014574]. There are no solutions where a is a prime.

Proof. The candidates in the prime residue classes a ≡ {1, 5} (mod 6) have a2−1 ≡
0 (mod 6) which requires 6 | pq and p = 2, q = 3, which does not solve the equation
(by direct inspection). �
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B.2.2. j = 2. The candidates of the factorization of pq2 are p · q2 and (pq) · q. (The
1 · pq2 and a − 1 = 1, a + 1 = pq2 does not generate solutions.) Their possible
orderings are p < q2, p > q2 and q < pq, so assignment of a± 1 to the two factors
classifies as:

• a−1 = p, a+1 = q2: There are numerous solutions with a = 8, 24, 48, 168, 360, . . ..
If we consider the prime classes q ≡ {1, 3, 5, 7} (mod 8) we conclude that
8|a.
• a − 1 = q2, a + 1 = p: There is only the solution with a = 10, q = 3 and
p = 11. There are no others because this requires p = q2 + 2, and with
the classifications q ≡ {1, 2} (mod 3) with find q2 ≡ 1 (mod 3) such that
q2 + 2 is divisible by 3 and cannot equal a prime p.
• a− 1 = q, a+ 1 = pq: The ratio (pq)/q = (a+ 1)/(a− 1) = 1 + 2/(a− 1)

needs to be integer, which requires a = 2 or a = 3. By direct inspection
none of these has the proper format.

B.2.3. j = 3. The candidates of the factorization of pq3 = (a + 1)(a − 1) in two
factors are p · q3, (pq) · q2, and (pq2) · q. (The 1 ·pq3 is left aside as reasoned in App.
B.2.2.) Their possible orderings are p < q3, p > q3, pq > q2, pq < q2, q < pq2, so
assignments of a± 1 are:

• a−1 = p, a+1 = q3: There are numerous solutions at a = 6858, 29790, 50652, 300762, 1295028, . . ..
• a− 1 = q3, a+ 1 = p: There are numerous solutions at a = 22 · 7, 2 · 32 · 7,

2 · 32 · 5 · 271, 23 · 33 · 1667,. . .
• a−1 = q2, a+1 = pq: Subtraction of these two equations yields 2 = q(p−q),

so q = 2, p = 3, a = 25 is the only solution.
• a−1 = pq, a+1 = q2: Subtraction of these two equations yields 2 = q(q−p),

so there is no solution.
• a− 1 = q, a+ 1 = pq2: The ratio (pq2)/q = (a+ 1)/(a− 1) = 1 + 2/(a− 1)

needs to be integer, which requires a = 2 or a = 3. By direct inspection
none of these has the proper format.

B.2.4. j = 4. The candidates of the factorization of pq4 in two factors are p · q4,
(pq) · q3, (pq2) · q2 and (pq3) · q. (The 1 · pq4 is left aside as reasoned in App. B.2.2.)
Their possible orderings with p ≶ q are p < q4, p > q4, pq > q3, pq < q3, q2 < pq2,
q < pq3, so assignments of a± 1 are:

• a−1 = p, a+1 = q4: Numerous solutions via a = 24 ·5, 25 ·3 ·52, 24 ·3 ·5 ·61,
24 · 3 · 5 · 7 · 17,. . . exist. With the exception of the smallest, a = 80, all are
multiples of 24 · 3 · 5 = 240, Theorem 5.

• a − 1 = q4, a + 1 = p: There is only one solution with a = 82 = 2 · 41,
q = 3, p = 83. There are no others because this requires p = q4 + 2, and
with the classifications q ≡ {1, 2} (mod 3) with find q4 ≡ 1 (mod 3) such
that q4 + 2 is divisible by 3 and cannot equal a prime p.

• a− 1 = q3, a+ 1 = pq: Subtraction requires 2 = q(p− q2), so there is only
the solution with a = 9, q = 2, p = 5.

• a− 1 = pq, a+ 1 = q3: Subtraction requires 2 = q(q2 − p), so there is only
the solution with q = 2, p = 3 and a = 7.

• a−1 = q2, a+1 = pq2: The ratio (pq2)/q2 = (a+1)/(a−1) = 1+2/(a−1)
needs to be integer, which requires a = 2 or a = 3. By direct inspection
none of these has the proper format.
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• a− 1 = q, a+ 1 = pq3: The ratio (pq3)/q = (a+ 1)/(a− 1) = 1 + 2/(a− 1)
needs to be integer, which requires a = 2 or a = 3. By direct inspection
none of these has the proper format.

B.3. a4−1 = pq3. Can a number of the format a4−1 = (a2 +1)(a+1)(a−1) equal
a prime times a different prime cubed, pq3? For 0 ≤ a ≤ 1 the answer is negative
because the LHS of the equation is not positive. For a ≥ 2, the RHS has three
distinct, well-ordered factors a2 + 1 > a+ 1 > a−1. There is only one factorization
of pq3 which supports three distinct factors: p · q · q2. (At this place factorizations
like (pq2) · q · 1 with smallest part equal 1 are discarded because that implies a = 2
and 24 − 1 = 3 · 5 6= pq3.) There are three different possible orders of p relative to
q and q2:

• p < q < q2: Here q = a+1, which implies q2 = a2 +2a+1, and q2 = a2 +1,
which requires a = 0 and does not provide solutions.

• q < p < q2: Here q = a−1, which implies q2 = a2−2a+1, and q2 = a2 +1,
which requires a = 0 and does not provide solutions.

• q < q2 < p: Here q = a − 1 and q2 = a + 1, which subtracted require
2 = q2 − q = q(q − 1), so q = 2, therefore a = 3. [In short: 2 and 4 is the
only twin prime pair of the form (q, q2).] In addition we need p = a2 + 1
which becomes p = 10 since a = 3, which is not prime, as required.

Summary: there are no solutions to a4 − 1 = pq3.

Appendix C. Individual Pairs

C.1. Pairs of 4’s. The number 4 appears in the sequence of τ when n = p3 or
n = pq, cubed primes or squarefree semiprimes.

C.1.1. Pair of Semiprimes. Squarefree semiprimes followed by squarefree semiprimes
require n = pq = rs − 1 with distinct primes p, q, r and s, where exactly one of
them is 2, and that condition is often met, see [6, A263990].

Remark 1. There are even triples of consecutive 4’s in (1), for example starting
at n = 33, or 85 or 93, see [6, A039833].

C.1.2. Cube plus Semiprime. A prime cubed followed by a semiprime means 23 =
rs− 1 (which obviously has no solution because 23 + 1 = 32 6= rs) or p3 = 2s− 1,
which also has no solution.

Proof. The case where p = 3 requires s = 14 which is not prime. The cases in
the residuum class p = 3k + 1, k ≥ 2, lead to p3 + 1 = (3k + 2)(9k2 + 3k + 1)
which do not have the format 2s, and the cases p = 3k + 2, k ≥ 1 lead to p3 + 1 =
9(k + 1)(3k2 + 3k + 1) which also do not have the format 2s. �

C.1.3. Semiprime plus Cube. A squarefree semiprime followed by a prime cubed,
rs = p3− 1, which has one solution: The case p = 2 has obviously no solution, and
2s = p3 − 1 has one solution.

Proof. The case where p = 3 furnishes a solution with s = 13. The cases in the
residuum class p = 3k + 1 (k ≥ 2) lead to p3 − 1 = 9k(3k2 + 3k + 1) which
does not have the format 2s, and the cases p = 3k + 2 (k ≥ 1) lead to p3 − 1 =
(3k + 1)(9k2 + 15k + 7) which also does not have the format 2s. �
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C.2. The Pair (6,2). Pairs of (6,2) in the τ -sequence are generated when a number
of the form n = p5 or n = pq2 is followed by prime n+ 1 = s. The case p5 = s− 1
has neither a solution 25 = s − 1 nor p5 = 2 − 1. The case pq2 = s − 1 has the
formats

• 2q2 = s − 1: There is a solution with q = 3, s = 19. There are no further
solutions where q ≡ {1, 2} (mod 3) because then q2 ≡ 1 (mod 3), 2q2 ≡ 2
(mod 3) such that 2q2 + 1 is divisible by 3 and not a prime s.
• 22p = s−1: has many solutions, p = 3, 7, 13, 37, 43, 67, 73, 79, 97, 127, 139, . . .,

all of the form p 6≡ 2 (mod 3), [6, A023212].
• pq2 = 2− 1: Obviously not solvable.

C.3. The Pair (2,4). Pairs of (2,4) in the τ -sequence appear when a number of
the form n = p is followed by a number of the form n+ 1 = q3 or n+ 1 = rs.

• n = p = q3 − 1. Using the parity argument we only find q = 2, p = 7 here.
• n = p = rs − 1. Using the parity argument we find no solutions where
p = 2 but many solutions where p = 2s− 1, [6, A005382].

C.4. The Pair (3,6). Pairs of (3,6) in the τ -sequence appear when a number of
the form n = p2 is followed by a number of the form n+1 = s5 (the parity argument
quickly reveals that there are none) or n + 1 = s2t. The parity argument again
shows that p2 = s2t − 1 have only solutions with p2 = 2s2 − 1. The candidates
for s are [6, A001653], and here we are only interested in the sub-sequence where
s is prime, [6, A056869], s = 5, 29, 169, . . . such that p = 1, 7, 41, 8119, 47321 . . .
and reduce this further to cases where p is a prime larger than 3 (apparently [6,
A086397]).
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