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Abstract
In this paper, we propose two-dimensional autonomous cellular neural networks (CNNs), which
are formed by connecting single synaptic-input CNN cells to each node of an ideal memristor grid.
Our computer simulations show that the proposed two-dimensional autonomous CNNs can exhibit
interesting and complex nonlinear waves. In many two-dimensional autonomous CNNs, we have
to use a locally active memristor grid, in order for the autonomous CNNs to exhibit the continuous
evolution of nonlinear waves. Some other notable features of the two-dimensional autonomous
CNNs are: The autonomous Van der Poll type CNN can exhibit various kinds of nonlinear waves
by changing the characteristic curve of the nonlinear resistor in the CNN cell. Furthermore, if we
choose a different step size in the numerical integration, it exhibits a different nonlinear wave. This
property is similar to the sensitive dependence on initial conditions of chaos. The autonomous
Lotka-Volterra CNN can also exhibit various kinds of nonlinear waves by changing the initial
conditions. That is, it can exhibit different response for each initial condition. Furthermore, we
have to choose a passive memristor grid to avoid an overflow in the numerical integration process.
Our computer simulations show that the dynamics of the proposed autonomous CNNs are more
complex than we expected.
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1 Introduction

The memristor cellular neural network (memristor CNN)1 has the suspend and resume feature, and it has the
functions of the short-term and long-term memories. It can also exhibit many interesting two-dimensional
nonlinear waves2 by adding an inductor to each CNN cell [1]. In this paper, we propose two-dimensional
autonomous (i.e., having no inputs) CNNs, which are formed by connecting single synaptic-input CNN cells
to each node of an ideal memristor grid. The CNN cells can be realized by the three element memristor
circuits in [2] or the nonlinear circuits in [3, 4]. The two-dimensional autonomous CNNs are defined by
large nonlinear systems of first-order ordinary differential equations. Thus, we use the simple Euler method
to find the solutions of the autonomous CNNs, which is the most basic method for numerical integration.
We also use the synchronous parallel model, which is the basic model for solving the discrete-time neural

1The terminology CNN was originally used for Cellular Neural Network [5, 6]. Recently, CNN is also used for Convolutional
Neural Network. In this paper, CNN stands for Cellular Neural Network.

2In this paper, the term “nonlinear waves” will be used, which can be target (concentric) waves, spiral waves, scroll waves,
or chaotic waves, etc. (see [4] for more details).
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networks. Furthermore, we assume the Neumann (zero-flux) boundary condition. It means that there is no
current flow from the boundary in the border cells, that is, the boundary does not affect the dynamics of
the two-dimensional autonomous CNNs.

Our computer simulations show that the proposed two-dimensional autonomous CNNs can exhibit inter-
esting and complex nonlinear waves (see Fig. 1). In many two-dimensional autonomous CNNs, we have to
use a locally active memristor grid, in order for the autonomous CNNs to exhibit the continuous evolution
of nonlinear waves. Some other notable features of the two-dimensional autonomous CNNs are: The au-
tonomous Van der Poll type CNN can exhibit various kinds of nonlinear waves by changing the characteristic
curve of the nonlinear resistor in the CNN cell. Furthermore, if we choose a different step size in the numeri-
cal integration, it exhibits a different nonlinear wave. This property is similar to the sensitive dependence on
initial conditions of chaos. The autonomous Lotka-Volterra CNN can also exhibit various kinds of nonlinear
waves by changing the initial conditions. That is, it can exhibit different response for each initial condition.
Furthermore, we have to choose a passive memristor grid to avoid an overflow in the numerical integration
process of this CNN. Our computer simulations show that the dynamics of the proposed autonomous CNNs
are more complex than we expected.

Figure 1: Examples of nonlinear waves in the two-dimensional autonomous CNNs. These figures are not
static, but dynamic (always changing) images at an instant.
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2 Two-Dimensional Autonomous Brusselator CNN

Consider the two-dimensional autonomous CNNs containing N ×M cells shown in Fig. 2, which are formed
by connecting single synaptic-input CNN cells (colored in red) to each node of a voltage-controlled ideal
memristor grid (colored in peach and navy).

As stated in Sec. 1, we can use the memristor circuits, or the nonlinear circuits in [3, 4], as the single
synaptic-input CNN cells. In the case of the memristor circuits, we have to use the three element memristor
circuit shown in Fig. 3, since the grid consists of voltage-controlled ideal memristors.3

Figure 2: Two-dimensional autonomous CNN containing N ×M cells, which is formed by connecting single
synaptic-input CNN cells (colored in red) to each node of a nonlinear voltage-controlled ideal memristor grid
(colored in peach and navy). Here vi,j indicates the voltage across the CNN cell ni,j and ii,j indicates the
current though the CNN cell ni,j .

Figure 3: Memristor circuit realization of a single synaptic-input CNN cell. It consists of a linear capacitor
C, a direct current source J , and a voltage-controlled extended memristor defined by Eq. (1).

3 Note that the memristor circuit in Fig. 3 is the dual of the circuit given in [2]. That is, these two circuits have identical
dynamics (see [7] for more details).
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The terminal voltage vM and the terminal current iM of the voltage-controlled extended memristor in
Fig. 3 are described by

iM = Ĝ(x, vM ) vM ,

dx

dt
= g̃(x, vM ),

 (1)

where x = (x1, x2, · · · , xn) ∈ Rn are the state variables of the extended memristor, Ĝ(x, vM ) is a continuous
scalar-valued function satisfying Ĝ(x, 0) 6=∞, and g̃ = (g̃1, g̃2, · · · , g̃n) : Rn → Rn. Thus the dynamics of
the three-element memristor circuit (CNN cell) in Fig. 3 is given by

C
dv

dt
= −iM + J = −Ĝ(x, v) v + J,

dx

dt
= g̃(x, v),

 (2)

where C denotes the capacitance of the linear capacitor, J denotes the current of DC (direct current) source,
and vM = v. Here, we used the same symbols given in Appendix A of [2] (see [8] for more details on the
voltage-controlled extended memristor).

(1) Brusselator equations

Assume that Eq. (2) satisfies
C = 1,

J = A,

Ĝ(x, v) = −
{
v x− (B + 1)

}
,

g̃1(x, v) = Bv − v2 x,

 (3)

where A = 1, B = 3, x = x ∈ R is the state variable of the extended memristor, Ĝ(x, v) = Ĝ(x, v), and
g̃(x, v) = g̃1(x, v). Then, Eqs. (1) and (2) can respectively be recast into the forms

iM = −
{
vM x− (B + 1)

}
vM ,

dx

dt
= B vM − vM 2 x,

 (4)

and
dv

dt
= A+

{
vx− (B + 1)

}
v,

dx

dt
= B v − v2 x,

 (5)

where A = 1, B = 3, and vM = v. Note that Eq. (5) are equivalent to the Brusselator equations (see [2, 4]).

(2) Autonomous Brusselator CNN

In the case of the Brusselator equations (5), the dynamics of the two-dimensional autonomous CNN in
Fig. 2 is described by

dvi,j
dt

= A+
{
vi,jxi,j − (B + 1)

}
vi,j + ii,j ,

dxi,j
dt

= B vi,j − vi,j2 xi,j ,

dϕi,j

dt
= vi,j ,


(6)
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where A = 1, B = 3, i = 1, 2, · · · , N , j = 1, 2, · · · ,M , and the four state variables: vi,j , ii,j , xi,j , and ϕi,j of
the CNN cell ni,j are explained as follow:

• vi,j is the voltage across the CNN cell, that is, the voltage across the capacitor C in the CNN cell.
• ii,j is the current though the CNN cell.
• xi,j is the state variable of the voltage-controlled extended memristor (see Eqs. (1) and (4)).
• ϕi,j is the flux of the capacitor C in the CNN cell.

The current ii,j in Eq. (6) is given by

ii,j = i1 − i2 + i3 − i4
= Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j)−Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j)

+Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j)−Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),

(7)

where i1, i2, i3 and i4 are the current through the voltage-controlled ideal memristors consisting the grid
(see Fig. 4). They are given by

i1 = Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j),
i2 = Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j),

i3 = Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j),
i4 = Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),

 (8)

where Wg(ϕg) denotes the small-signal memductance of the voltage-controlled ideal memristors consisting
the grid. Their terminal current ig and voltage vg are described by

ig = Wg(ϕg) vg, (9)

where ϕg is the flux of the ideal memristor, which satisfies
dϕg

dt
= vg and we assume that ϕg(0) = 0.

Figure 4: Currents through the voltage-controlled ideal memristors: i1, i2, i3 and i4.

If we replace the ideal memristor grid with the linear resistor grid, then we obtain the two-dimensional
reaction-difusins CNN described in [4]. In this case, Eqs. (6) and (7) can respectively be recast into the
forms

dvi,j
dt

= A+
{
vi,jxi,j − (B + 1)

}
vi,j + ii,j ,

dxi,j
dt

= B vi,j − vi,j2 xi,j ,

 (10)

and
ii,j = D (vi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vi,j), (11)
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where D is a conductance of the linear resistors consisting the grid, i = 1, 2, · · · , N , and j = 1, 2, · · · ,M .
Note that Eq. (10) becomes a lower dimensional system, since the third equation in Eq. (6) disappears.

(3) Boundary condition

In this paper, we apply the zero-flux (Neumann) boundary condition to the two-dimensional autonomous
CNN (6):

vi,0
4
= vi,0 = vi,1, i = 1, 2, · · · , N

vi,N+1
4
= vi,N+1 = vi,N , i = 1, 2, · · · , N

v0,j
4
= v0,j = v1,j , j = 1, 2, · · · ,M

vN+1,j
4
= vN+1,j = vN,j , j = 1, 2, · · · ,M.


(12)

Under the condition (12), there is no current flow from the boundary in the border cells, since the terminal
current ig and voltage vg of the ideal memristors consisting the grid are zero at the boundary. That is, the
boundary does not affect the dynamics of the two-dimensional autonomous CNN (6).

(4) Memristors in the grid

Consider the state equations of the two-dimensional autonomous Brusselator CNN, which is given by Eq.
(6). Assume that the terminal current ig and voltage vg of the voltage-controlled ideal memristors in the
grid are described by by

ig = Wg(ϕg) vg,

dϕg

dt
= vg,

 (13)

where Wg(ϕg) is the small-signal memductance of the voltage-controlled ideal memristors, which is shown
in Fig. 5. It is given by a piecewise linear function of the form:

Wg(ϕg) = −0.25 s
[
|ϕg | − 0.5

]
+ 0.5 s

[
|ϕg | − 10

]
=


0 for |ϕg| < 0.5,

−0.25 for 0.5 ≤ |ϕg| < 10,

0.25 for |ϕg| ≥ 10,

 (14)

where s[ z ] denotes the unit step function, which is equal to 0 for z < 0 and 1 for z ≥ 0. Compare Eq. (13)
with Eq. (1). Note that Wg(ϕg) = 0 for |ϕg| < 0.5. We will explain this property later.

Assume next that 0.5 < |ϕg(t)| < 10. Then Wg(ϕg) = −0.25 < 0, and the instantaneous power p(t) of
the voltage-controlled ideal memristors in the grid satisfies

p(t) = ig(t) vg(t) =
(
Wg(ϕg(t)) vg(t)

)
vg(t) = Wg(ϕg(t)) vg(t)2 = −0.25vg(t)2 < 0, (15)

where we assume that vg(t) 6= 0. Thus, these memristors are locally active.4 Note that we used a locally
active memristor grid, in order for the autonomous Brusselator CNNs to exhibit the continuous evolution of
nonlinear waves.

(5) Behavior of the memristors in the grid

In the autonomous Brusselator CNN (6), individual cells are disconnected from their neighbors at first,
that is, they independently operate without interaction. It is due to the reason that the current ii,j(t) in
Eq. (7) is equal to zero, if |ϕi,j | is sufficiently small.

4In the Oregonator CNN model [9], the monotonically increasing function Wg(ϕg) is used to generate spiral patterns. In
this paper, we used Wg(ϕg) defined by Eq. (14), since the initial conditions are different from those of [9].

6



Figure 5: Memductance Wg(ϕg) of the ideal memristor, which is given by a piecewise linear function of the
form Wg(ϕg) = 0.25 s

[
|ϕg | − 0.5

]
+ 0.5 s

[
|ϕg | − 10

]
. Note that Wg(ϕg) = 0 for |ϕg| < 0.5.

Let us explain its details. Define ϕ† ∈
{

(ϕi−1,j − ϕi,j), (ϕi,j − ϕi+1,j), (ϕi,j−1 − ϕi,j), (ϕi,j − ϕi,j+1)
}

,
where i = 1, 2, · · · , N , j = 1, 2, · · · ,M . Assume that ϕi,j(0) = 0. Then ϕ†(0) = 0. Assume next that the
time t is sufficiently small. Then we obtain Wg(ϕ†(t)) = 0, since |ϕ†(t)| < 0.5 for 0 ≤ t � 1. Thus, the
current ii,j(t) given by Eq. (7) is equal to zero, and individual cells are disconnected from their neighbors
at first. That is, they independently operate without interaction at first. However, they interact each other
when the current ii,j becomes non-zero as the time t increases.

(6) Computer simulations

In order to obtain the solutions of the autonomous Brusselator CNN (6), we assume the followings:

1. The initial condition vi,j(0) is given by a black & white image in Fig. 6(1), or a gray-scale image in
Fig. 6(2), where the luminance value of the pixel would be coded as black → +1, white → −1, gray
→ (−1, 1).

2. xi,j(0) = 0 and ϕi,j(0) = 0.

3. The boundary condition for the state vi,j is given by Eq. (12).

Furthermore, we used the simple Euler method5 and the synchronous parallel model6 to find the solutions of
the autonomous Brusselator CNN (6). Then, from our computer simulations, we obtain Fig. 7, which shows

5If the image size of the initial condition is N×M = 145×150, then we have to solve a system of 3×N×M = 3×145×150 =
65250 first-order differential equations. Thus, we used the simple Euler method for solving Eq. (6). It is the most basic method
for numerical integration. We can write the Euler Method for Eq. (6) as follow:

vi,j(t+ h) = h
[
A+

{
vi,j(t)xi,j(t)− (B + 1)

}
vi,j(t) + ii,j(t)

]
+ vi,j(t),

xi,j(t+ h) = h
[
B vi,j(t)− vi,j(t)2 xi,j(t)

]
+ xi,j(t),

ϕi,j(t+ h) = h vi,j(t) + ϕi,j(t),

 (16)

where h denotes the step size for the numerical integration and it is reasonably small. By repeating the above process, we can
get

{
vi,j(t+h), xi,j(t+h), ϕi,j(t+h)

}
,
{
vi,j(t+ 2h), xi,j(t+ 2h), ϕi,j(t+ 2h)

}
, · · · ,

{
vi,j(t+nh), xi,j(t+nh), ϕi,j(t+nh)

}
,

where n is an integer. Thus, the Euler method advances a solution through an interval h using derivative information. That is,
Eq. (6) is transformed into a discrete-time system. This method may be neither accurate nor stable, however, it is attractive
because of its simplicity. When h = 1, Eq. (16) is considered to be a discrete-time cellular neural network (DTCNN).

6In the synchronous parallel mode, the state of all the CNN cells is updated instantaneously at the beginning of each time
step, and it is not changed until the next step. Only at the beginning of the next time step is the state of all CNN cells updated
again. This model can be applied to the discrete-time system (16).
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the two-dimensional nonlinear waves for the state vi,j . Observe that the autonomous Brusselator CNN (6)
can exhibit the complex nonlinear waves. Note that in order to view the wave patterns clearly, we coded the
state vi,j as follows: the color evolves continuously through red, green, blue, and black as vi,j increases.7

(1) upside-down text (2) random noise

Figure 6: Two images for the initial condition vi,j(0). They are both 145× 150 pixels in size. (1) a black &
white upside-down text image. (2) a gray-scale random noise image.

(a) t = 4000 (b) t = 4000

Figure 7: Two-dimensional nonlinear waves in the autonomous Brusselator CNN (6). These figures are not
static, but dynamic (always changing) images at the instant of t = 4000. (a) The initial condition vi,j(0) is
given by the upside-down text image in Fig. 6(1). The step size h of the Euler method is set to 0.05. (b)
The initial condition vi,j(0) is given by the random noise image in Fig. 6(2). The step size h of the Euler
method is set to 0.04.

7In some other examples, we also coded the wave patterns in reverse order, that is, black, blue, green, and red, since vi,j(t)
is oscillating (that is, always changing). Furthermore, we used the nonlinear color curve to emphasize the wave patterns (by
increasing or decreasing the intensity of the individual color).
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3 Examples of Two-Dimensional Nonlinear Waves

In this section, we show several examples of two-dimensional autonomous CNNs and their nonlinear waves.

3.1 Autonomous Gierer-Meinhardt CNN

The diffusion-less and time-scaled Gierer-Meinhardt equations are described by (see [2] for more details)

dv

dt
= (v − b x) v,

dx

dt
= e (v2 − c x)x,

 (17)

where b = 0.65, c = 0.796, and e = 0.2.8 Equation (17) can be realized by the three-element memristor
circuit in Fig. 3. Assume that Eq. (2) satisfies

C = 1,

J = 0,

Ĝ(x, v) = −(v − b x) v,

g̃1(x, v) = e (v2 − c x)x,


(18)

where x = x ∈ R is the state variable of the extended memristor, Ĝ(x, v) = Ĝ(x, v), and g̃(x, v) = g̃1(x, v).
Then Eq. (2) can be recast into Eq. (17).

In this case, the dynamics of the two-dimensional autonomous CNN in Fig. 2 is described by

dvi,j
dt

= (vi,j − b xi,j)vi,j + ii,j , ,

dxi,j
dt

= e (vi,j
2 − c xi,j)xi,j ,

dϕi,j

dt
= vi,j ,


(19)

where i = 1, 2, · · · , N , j = 1, 2, · · · ,M , and the four state variables of the CNN cell ni,j are explained as
follow:

• vi,j is the voltage across the CNN cell ni,j , that is, the voltage across the capacitor C in the CNN cell.
• ii,j is the current though the CNN cell.
• xi,j is the state variable of the voltage-controlled extended memristor in the CNN cell (see Eq. (1)).
• ϕi,j is the flux of the capacitor C in the CNN cell.

The current ii,j in Eq. (19) is given by

ii,j = Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j)−Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j)

+Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j)−Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),
(20)

where Wg(ϕg) denotes the small-signal memductance of the voltage-controlled ideal memristors consisting
the grid. The terminal current ig and voltage vg of the above memristors are given by

ig = Wg(ϕg) vg, (21)

8If we change the variables and the parameters: v −→ ṽ/e, x −→ x̃, t −→ eτ, b −→ b̃/e, c −→ c̃/e2, then Eq. (17) can be
recast into the form

dṽ

dτ
= (ṽ − b̃ x̃) ṽ,

dx̃

dτ
= (ṽ2 − c̃ x̃) x̃,


which is equivalent to the diffusion-less and time-scaled Gierer-Meinhardt equations in [2].
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where ϕg is the flux of the ideal memristor, which satisfies
dϕg

dt
= vg and ϕg(0) = 0. Assume that Wg(ϕg)

is given by
Wg(ϕg) = −6 s

[
|ϕg | − 0.5

]
+ 10 s

[
|ϕg | − 10

]
=


0 for |ϕg| < 0.5,

−6 for 0.5 ≤ |ϕg| < 10,

4 for |ϕg| ≥ 10.


(22)

Then the ideal memristors consisting the grid are locally active, since the instantaneous power p(t) satisfies

p(t) = ig(t) vg(t) = Wg(ϕg(t)) vg(t)2 = −6 vg(t)2 < 0, (23)

for 0.5 < |ϕg(t)| < 10 and vg(t) 6= 0. Because of the continuous evolution of nonlinear waves, we used the
locally active memristor grid.

We show the two-dimensional nonlinear waves for vi,j in Fig. 8. Observe that the two-dimensional
autonomous Gierer-Meinhardt CNN (19) can exhibit the complex nonlinear waves after very long transient
time. Here, the initial conditions v∗i,j(0) and x∗i,j(0) are equal to a black & white image in Fig. 6(1)
or a gray-scale image in Fig. 6(2), where v∗i,j(0) and x∗i,j(0) are defined by v∗i,j(0) = vi,j(0) − 1.1 and

x∗i,j(0) = xi,j(0)− 1.1,9 and we set ϕi,j(0) = 0. The boundary condition is given by Eq. (12).

(a) t = 30000 (b) t = 30000

Figure 8: Two-dimensional nonlinear waves in the autonomous Gierer-Meinhardt CNN (19). These figures
are not static, but dynamic (always changing) images at the instant of t = 30000. (a) The initial condition
v∗i,j(0) is given by the upside-down text image in Fig. 6(1). (b) The initial condition v∗i,j(0) is given by the
random noise image in Fig. 6(2). Here, v∗i,j(0) is defined by v∗i,j(0) = vi,j(0) − 1.1. The step size h of the
Euler method is both set to 0.001.

3.2 Autonomous Tyson-Kauffman CNN

The Tyson-Kauffman equations are described by (see [2] for more details)

dv

dt
= α

{
A− (B +Dx2) v

}
,

dx

dt
= (B +Dx2) v − d x,

 (24)

9We shifted the initial conditions in order to avoid an overflow in the numerical simulations.
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where α = 8, A = 0.2, B = 0.00803, D = 1, and d = 1.10 Equation (24) can be realized by the three-element
memristor circuit in Fig. 3. Assume that Eq. (2) satisfies

C =
1

α
,

J = A,

Ĝ(x, v) = (B + x2),

g̃1(x, v) = v + v x2 − x,


(25)

where x = x ∈ R is the state variable of the extended memristor, Ĝ(x, v) = Ĝ(x, v), and g̃(x, v) = g̃1(x, v).
Then Eq. (2) can be recast into Eq. (24).

In this case, the dynamics of the two-dimensional autonomous CNN in Fig. 2 is described by

dvi,j
dt

= α
{
A− (B + xi,j

2) vi,j + ii,j
}
,

dxi,j
dt

= (B + xi,j
2) vi,j − xi,j ,

dϕi,j

dt
= vi,j ,


(26)

where i = 1, 2, · · · , N , j = 1, 2, · · · ,M , and the four state variables of the CNN cell ni,j are explained as
follow:

• vi,j is the voltage across the CNN cell, that is, the voltage across the capacitor C in the CNN cell.
• ii,j is the current though the CNN cell.
• xi,j is the state variable of the voltage-controlled extended memristor (see Eq. (1)).
• ϕi,j is the flux of the capacitor C.

The current ii,j in Eq. (26) is given by

ii,j = Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j)−Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j)

+Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j)−Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),
(27)

where Wg(ϕg) denotes the small-signal memductance of the voltage-controlled ideal memristors consisting
the grid. The terminal current ig and voltage vg of the above memristors are given by

ig = Wg(ϕg) vg, (28)

where ϕg is the flux of the ideal memristor, which satisfies
dϕg

dt
= vg and ϕg(0) = 0. Assume that Wg(ϕg)

is given by
Wg(ϕg) = = −s

[
|ϕg | − 0.5

]
+ 2 s

[
|ϕg | − 7

]
=


0 for |ϕg| < 0.5,

−1 for 0.5 ≤ |ϕg| < 7,

1 for |ϕg| ≥ 7.

 (29)

Then the ideal memristors consisting the grid are locally active, since the instantaneous power p(t) satisfies

p(t) = ig(t) vg(t) = Wg(ϕg(t)) vg(t)2 = − vg(t)2 < 0, (30)

10If we change the variables and the parameters: v −→ αṽ, x −→ x̃, B −→ B̃/α, D −→ D̃/α, then Eq. (24) can be recast
into the form

dṽ

dt
= A− (B̃ + D̃ x̃2) ṽ,

dx̃

dt
= (B̃ + D̃ x̃2)− d x̃,


which is equivalent to the Tyson-Kauffman equations in [2].
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for 0.5 < |ϕg(t)| < 7 and vg(t) 6= 0. Note that we used the locally active memristor grid because of the
continuous evolution of nonlinear waves.

We show the two-dimensional nonlinear waves for vi,j in Fig. 9. Observe that the autonomous Tyson-
Kauffman CNN (26) can exhibit complex nonlinear waves. Here, the initial condition vi,j(0) is equal to
a black & white image or a gray-scale image in Fig. 6, and we set xi,j(0) = ϕi,j(0) = 0. The boundary
condition is given by Eq. (12).

(a) t = 700 (b) t = 700

Figure 9: Two-dimensional nonlinear waves in the autonomous Tyson-Kauffman CNN (26). These figures
are not static, but dynamic (always changing) images at the instant of t = 700. (a) The initial condition
vi,j(0) is given by the upside-down text image in Fig. 6(1). (b) The initial condition vi,j(0) is given by the
random noise image in Fig. 6(2). The step size h of the Euler method is both set to 0.0007.

3.3 Autonomous Rössler CNN

The Rössler equations are described by (see [2] for more details)

dv

dt
= b+ (x− c) v,

dx

dt
= y + a x,

dy

dt
= −x− v,


(31)

where a = 0.1, b = 0.1, and c = 14. Equation (31) can be realized by the three-element memristor circuit in
Fig. 3. Assume that Eq. (2) satisfies

C = 1,

J = b,

Ĝ(x, y, v) = −(x− c),

g̃1(x, y, v) = y + a x,

g̃2(x, y, v) = −x− v,


(32)

where x = (x, y) ∈ R2 are the state variables of the extended memristor, Ĝ(x, v) = Ĝ(x, y, v), and
g̃(x, v) = g̃(x, y, v) = (g̃1(x, y, v), g̃2(x, y, v)). Then Eq. (2) can be recast into Eq. (31).

12



In this case, the dynamics of the two-dimensional autonomous CNN in Fig. 2 is described by

dvi,j
dt

= b+ (xi,j − c) vi,j + ii,j ,

dxi,j
dt

= yi,j + a xi,j ,

dyi,j
dt

= −xi,j − v,

dϕi,j

dt
= vi,j ,


(33)

where i = 1, 2, · · · , N , j = 1, 2, · · · ,M , and the five state variables of the CNN cell ni,j are explained as
follow:

• vi,j is the voltage across the CNN cell, that is, the voltage across the capacitor C in the CNN cell.
• ii,j is the current though the CNN cell.
• xi,j and yi,j are the state variables of the voltage-controlled extended memristor in the CNN cell

(see Eqs. (1)).
• ϕi,j is the flux of the capacitor C in the CNN cell.

The current ii,j in Eq. (33) is given by

ii,j = Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j)−Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j)

+Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j)−Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),
(34)

where Wg(ϕg) denotes the small-signal memductance of the voltage-controlled ideal memristors consisting
the grid. The terminal current ig and voltage vg of the above memristors are given by

ig = Wg(ϕg) vg, (35)

where ϕg is the flux of the ideal memristor, which satisfies
dϕg

dt
= vg and ϕg(0) = 0. Assume that Wg(ϕg)

is given by
Wg(ϕg) = 2 s

[
|ϕg | − 0.5

]
+ s
[
|ϕg | − 1

]
=


0 for |ϕg| < 0.5,

2 for 0.5 ≤ |ϕg| < 1,

3 for |ϕg| ≥ 1.

 (36)

Then the ideal memristors consisting the grid are passive, since the instantaneous power p(t) satisfies

p(t) = ig(t) vg(t) = Wg(ϕg(t)) vg(t)2 ≥ 0. (37)

In this case, the nonlinear waves can evolve continuously, even though the memristors are passive.
We show the two-dimensional nonlinear waves for vi,j in Fig. 10. The autonomous Rössler CNN (33)

can exhibit complex nonlinear waves. Here, the initial conditions vi,j(0) , xi,j(0), and yi,j(0) are equal to
a black & white image or a gray-scale image in Fig. 6, and we set ϕi,j(0) = 0. The boundary condition is
given by Eq. (12).

13



(a) t = 10000 (b) t = 10000

Figure 10: Two-dimensional nonlinear waves in the autonomous Rössler CNN (33). These figures are not
static, but dynamic (always changing) images at the instant of t = 10000. (a) The initial condition vi,j(0) is
given by the upside-down text image in Fig. 6(1). (b) The initial condition vi,j(0) is given by the random
noise image in Fig. 6(2). The step size h of the Euler method is both set to 0.02.

3.4 Autonomous Lotka-Volterra CNN

The Lotka-Volterra equations are described by (see [2] for more details)

dv

dt
= (c x− d) v,

dx

dt
= (a− b v)x,

 (38)

where a =
2

3
, b =

4

3
, and c = d = 1. Equation (38) can be realized by the three-element memristor circuit

in Fig. 3. Assume that Eq. (2) satisfies

C = 1,

J = 0,

Ĝ(x, v) = −(c x− d),

g̃1(x, v) = (a− b v)x,

 (39)

where x = x ∈ R is the state variable of the extended memristor, Ĝ(x, v) = Ĝ(x, v), and g̃(x, v) = g̃1(x, v).
Then Eq. (2) can be recast into Eq. (38).

In this case, the dynamics of the two-dimensional autonomous CNN in Fig. 2 is described by

dvi,j
dt

= −(c xi,j − d) vi,j + ii,j ,

dxi,j
dt

= (a− b vi,j + vi,j)xi,j ,

dϕi,j

dt
= vi,j ,


(40)

where i = 1, 2, · · · , N , j = 1, 2, · · · ,M , and the four state variables of the CNN cell ni,j are explained as
follow:

• vi,j is the voltage across the CNN cell, that is, the voltage across the capacitor C in the CNN cell.
• ii,j is the current though the CNN cell.
• xi,j is the state variable of the voltage-controlled extended memristor (see Eq. (1)).
• ϕi,j is the flux of the capacitor C.
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The current ii,j in Eq. (40) is given by

ii,j = Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j)−Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j)

+Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j)−Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),
(41)

where Wg(ϕg) denotes the small-signal memductance of the voltage-controlled ideal memristors consisting
the grid. The terminal current ig and voltage vg of the above memristors are given by

ig = Wg(ϕg) vg, (42)

where ϕg is the flux of the ideal memristor, which satisfies
dϕg

dt
= vg and ϕg(0) = 0. Assume that Wg(ϕg)

is given by
Wg(ϕg) = s

[
|ϕg | − 0.5

]
− s
[
|ϕg | − 3

]
=


0 for |ϕg| < 0.5,

1 for 0.5 ≤ |ϕg| < 3,

0 for |ϕg| ≥ 3.

 (43)

Then the ideal memristors consisting the grid are passive, since Wg(ϕg) ≥ 0 and the instantaneous power
p(t) satisfies

p(t) = ig(t) vg(t) = Wg(ϕg(t)) vg(t)2 ≥ 0. (44)

Note that when |ϕg | is greater than 3 or less than 0.5, the memductance Wg(ϕg) becomes zero, and the
terminal current ig does not flow into the memristor.

We show the two-dimensional nonlinear waves for vi,j in Fig. 11. The initial conditions v∗i,j(0) and
x∗i,j(0) are equal to a black & white image or a gray-scale image in Fig. 6, where v∗i,j(0) = vi,j(0)− 1.1 and

x∗i,j(0) = xi,j(0) − 1.1,11 and we set ϕi,j(0) = 0. The boundary condition is given by Eq. (12). Observe
that the four nonlinear waves in the autonomous Lotka-Volterra CNN (40) are completely different, that is,
the nonlinear waves depend greatly on the initial conditions. It is partially thought to be caused by the fact
that the Lotka-Volterra equations can be recast into the Hamilton’s equations, which have integral invariant
(see [2] for more details).

In this CNN, we have to use the passive memristor grid, since an overflow occurs in the numerical
integration process when they are locally active. For example, assume that Wg(ϕg) is given by

Wg(ϕg) = −1.5 s
[
|ϕg | − 0.5

]
+ 3 s

[
|ϕg | − 7

]
=


0 for |ϕg| < 0.5,

−1.5 for 0.5 ≤ |ϕg| < 7,

1.5 for |ϕg| ≥ 7.

 (45)

Then the ideal memristors consisting the grid become locally active, since the instantaneous power p(t)
satisfies

p(t) = ig(t) vg(t) = Wg(ϕg(t)) vg(t)2 = −1.5 vg(t)2 < 0, (46)

for 0.5 < |ϕg(t)| < 7 and vg(t) 6= 0.
We show the two-dimensional nonlinear waves for the autonomous Lotka-Volterra CNN (40) in Fig. 13.

Here, the initial condition and the boundary condition are the same as those for Eq. (43). Note that we
could not obtain the nonlinear wave for t = 14000, since an overflow occurred in the numerical integration
process. Here the step size h of the Euler method is set to 0.002. The initial conditions v∗i,j(0) and x∗i,j(0)
are given by the image in Fig. 13 (1), where v∗i,j(0) = vi,j(0)− 1.1 and x∗i,j(0) = xi,j(0)− 1.1

11In order to avoid an overflow in the numerical simulations, we shifted the initial conditions.

15



(a) t = 6000 (b) t = 6000

(c) t = 6000 (d) t = 6000

Figure 11: Two-dimensional nonlinear waves in the autonomous Lotka-Volterra CNN (40). These figures are
not static, but dynamic (always changing) images at the instant of t = 6000. Observe that the four nonlinear
waves are completely different, that is, the nonlinear waves depend greatly on the initial conditions. (a) The
initial condition v∗i,j(0) is given by the upside-down text image in Fig. 6(1). (b) The initial condition v∗i,j(0)
is given by the random noise image in Fig. 6(2). (c) The initial condition v∗i,j(0) is given by the gray-scale
spiral image in Fig. 12(3). (d) The initial condition v∗i,j(0) is given by the flipped image of C in Fig. 12(4).
Here, v∗i,j(0) is defined by v∗i,j(0) = vi,j(0)− 1.1. The step size h of the Euler method is all set to 0.002.

(3) (4)

Figure 12: Additional images for the initial condition vi,j(0). (3) a gray-scale spiral image. (4) a flipped
image of C. They are both 145× 150 pixels in size.
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(1) t = 0 (2) t = 6 (3) t = 10 (4) t = 20

(5) t = 40 (6) t = 60 (7) t = 100 (8) t = 160

(9) t = 300 (10) t = 400 (11) t = 600 (12) t = 1000

Figure 13: Two-dimensional nonlinear waves in the autonomous Lotka-Volterra CNN (40). In this case, the
grid consists of locally active memristors, whose memductance is given by Eq. (45). Initial condition v∗i,j(0)
is given by the image in Fig. 13 (1) (255×211 pixels in size), where v∗i,j(0) is defined by v∗i,j(0) = vi,j(0)−1.1.
The step size h of the Euler method is set to 0.002. Note that we could not obtain the nonlinear wave for
t = 14000, since an overflow occurred in the numerical integration process.
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Figure 14: Circuit model for the FitzHugh-Nagumo equations (47). This circuit contains six circuit elements:
a linear capacitor C, a linear inductor L, a linear resistor R, a direct current (DC) source J , a Battery E, and

a nonlinear resistor, whose v − i characteristic is given by iR = f(vR) =
vR

3

3
− vR. The circuit parameters

are given by C =
1

5
, L = 1, R1 = 0.8, E = 0.7, and J = 0.5.

3.5 Autonomous FitzHugh-Nagumo CNN

Consider the FitzHugh-Nagumo equations defined by (see [10] for more details)

dv

dt
= 5

(
x− v3

3
− v + J

)
,

dx

dt
= −v − 0.7− 0.8x,

 (47)

where J denotes a constant current source. Equation (47) can be realized by the circuit in Fig. 14. Its
dynamics is given by

C
dv

dt
= x− f(v) + J = x− v3

3
+ v + J,

L
dx

dt
= −v − E −Rx,

 (48)

where v and x respectively denote the voltage across the capacitor C and the current through the inductor
L, and the v − i characteristic of the nonlinear resistor is given by

iR = f(vR)
4
=
vR

3

3
− vR, (49)

where v = vR. The parameters in Eq. (48) satisfy

C =
1

5
= 0.2, L = 1, R = 0.8, E = 0.7, J = 0.5. (50)
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In this case, the dynamics of the two-dimensional autonomous CNN in Fig. 2 is described by

dvi,j
dt

=
1

C

(
xi,j − f(vi,j) + J + ii,j

)
= 5

(
xi,j −

vi,j
3

3
+ vi,j + 0.5 + ii,j

)
,

dxi,j
dt

= −vi,j − E −Rxi,j = −vi,j − 0.7− 0.8xi,j ,

dϕi,j

dt
= vi,j ,


(51)

where i = 1, 2, · · · , N , j = 1, 2, · · · ,M , the nonlinear function f(vi,j) is given by

f(vi,j) =
vi,j

3

3
− vi,j , (52)

and the four state variables of the CNN cell ni,j are explained as follow:

• vi,j is the voltage across the CNN cell, that is, the voltage across the capacitor C in the CNN cell.
• ii,j is the current though the CNN cell.
• xi,j is the current through the inductor L in the CNN cell.
• ϕi,j is the flux of the capacitor C in the CNN cell.

The current ii,j in Eq. (51) is given by

ii,j = Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j)−Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j)

+Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j)−Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),
(53)

where Wg(ϕg) denotes the small-signal memductance of the voltage-controlled ideal memristors consisting
the grid. The terminal current ig and voltage vg of the above memristors are given by

ig = Wg(ϕg) vg, (54)

where ϕg is the flux of the ideal memristor, which satisfies
dϕg

dt
= vg and ϕg(0) = 0. Assume that Wg(ϕg)

is given by
Wg(ϕg) = −s

[
|ϕg | − 0.5

]
+ 2 s

[
|ϕg | − 2

]
=


0 for |ϕg| < 0.5,

−1 for 0.5 ≤ |ϕg| < 2,

1 for |ϕg| ≥ 2.

 (55)

Then the ideal memristors consisting the grid are locally active, since the instantaneous power p(t) satisfies

p(t) = ig(t) vg(t) = Wg(ϕg(t)) vg(t)2 = −vg(t)2 < 0, (56)

for 0.5 < |ϕg(t)| < 2 and vg(t) 6= 0. Note that we used the locally active memristor grid because of the
continuous evolution of nonlinear waves.

We show the two-dimensional nonlinear waves for vi,j in Fig. 15. Observe that the nonlinear waves of
the two-dimensional autonomous FitzHugh-Nagumo CNN (51) can exhibit complex nonlinear waves. Here,
the initial condition vi,j(0) is equal to a black & white image or a gray-scale image in Fig. 6, and we set
xi,j(0) = ϕi,j(0) = 0. The boundary condition is given by Eq. (12).
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(a) t = 10000 (b) t = 10000

Figure 15: Two-dimensional nonlinear waves in the autonomous FitzHugh-Nagumo CNN (51). These figures
are not static, but dynamic (always changing) images at the instant of t = 10000. (a) The initial condition
vi,j(0) is given by the upside-down text image in Fig. 6(1). (b) The initial condition vi,j(0) is given by the
random noise image in Fig. 6(2). The step size h of the Euler method is both set to 0.02.

3.6 Autonomous Van der Pol CNN

The FitzHugh-Nagumo equations contains the Van der Pol oscillator equations as a special case, that is, we
can obtain the Van der Pol oscillator equations if we set C = L = 1 and J = E = R = 0 for Eq. (48).

In this case, the dynamics of the two-dimensional autonomous Van der Pol CNN is given by

dvi,j
dt

= xi,j − f(vi,j) + ii,j = xi,j −
vi,j

3

3
+ vi,j + ii,j ,

dxi,j
dt

= −vi,j ,

dϕi,j

dt
= vi,j ,


(57)

where i = 1, 2, · · · , N , j = 1, 2, · · · ,M , the nonlinear function f(vi,j) is given by

f(vi,j) =
vi,j

3

3
− vi,j , (58)

and the four state variables of the CNN cell ni,j are explained as follow:

• vi,j is the voltage across the CNN cell, that is, the voltage across the capacitor C in the CNN cell.
• ii,j is the current though the CNN cell.
• xi,j is the current through the inductor L in the CNN cell.
• ϕi,j is the flux of the capacitor C in the CNN cell.

The current ii,j in Eq. (57) is given by is given by

ii,j = Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j)−Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j)

+Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j)−Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),
(59)

where Wg(ϕg) denotes the small-signal memductance of the voltage-controlled ideal memristors consisting
the grid. The terminal current ig and voltage vg of the above memristors are given by

ig = Wg(ϕg) vg, (60)

where ϕg is the flux of the ideal memristor, which satisfies
dϕg

dt
= vg and ϕg(0) = 0. Assume that Wg(ϕg)
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(a) t = 80000 (b) t = 80000

Figure 16: Two-dimensional nonlinear waves in the autonomous Van der Pol CNN (57). These figures are
not static, but dynamic (always changing) images at the instant of t = 80000. The v − i characteristic of

the nonlinear resistor is given by iR = f(vR) =
vR

3

3
− vR. (a) The initial condition vi,j(0) is given by the

upside-down text image in Fig. 6(1). (b) The initial condition vi,j(0) is given by the random noise image in
Fig. 6(2). The step size h of the Euler method is both set to 0.2.

is given by
Wg(ϕg) = s

[
|ϕg | − 0.5

]
+ 2 s

[
|ϕg | − 7

]
=


0 for |ϕg| < 0.5,

1 for 0.5 ≤ |ϕg| < 7,

3 for |ϕg| ≥ 7.

 (61)

Then the ideal memristors consisting the grid are passive, since the instantaneous power p(t) satisfies

p(t) = ig(t) vg(t) = Wg(ϕg(t)) vg(t)2 ≥ 0. (62)

In this case, the nonlinear waves can evolve continuously, even though the memristors are passive.
We show the two-dimensional nonlinear waves for vi,j in Fig. 16. The autonomous Van der Pol CNN (57)

can exhibit complex nonlinear waves. Here, the initial condition vi,j(0) is equal to a black & white image or
a gray-scale image in Fig. 6, and we set xi,j(0) = ϕi,j(0) = 0. The boundary condition is given by Eq. (12).

We next show that the two-dimensional autonomous Van der Pol type CNN (57) can exhibit interesting
wave patterns if we change the v − i characteristic of the nonlinear resistor in Fig. 14, that is, if we change
the nonlinear function f(vR).

Case A. Assume that v − i characteristic of the nonlinear resistor in Fig. 14 is given by

iR = f(vR) = vR + 1.5|vR − 1| − 1.5. (63)

Assume that the initial condition and the boundary condition are same as those for Eq. (57). Then, we
obtain the nonlinear waves in Fig. 17.

Case B. Assume that v − i characteristic of the nonlinear resistor in Fig. 14 is given by

iR = f(vR) = 0.01vR
3 + 0.25vR

2 − 0.25vR. (64)

Assume that the initial condition and the boundary condition are same as those for Eq. (57). Then, we
obtain the nonlinear waves in Fig. 18. Furthermore, if we choose a different value for the step size h of
the Euler method, the two-dimensional autonomous Van der Pol type CNN (57) exhibit different nonlinear
waves as shown in Fig. 19. This property is similar to the sensitive dependence on initial conditions of chaos.
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(a) t = 2000 (b) t = 2000

Figure 17: Two-dimensional nonlinear waves in the autonomous Van der Pol type CNN (57). These figures
are not static, but dynamic (always changing) images at the instant of t = 2000. The v − i characteristic
of the nonlinear resistor is given by iR = f(vR) = vR + 1.5|vR − 1| − 1.5. (a) The initial condition vi,j(0) is
given by the upside-down text image in Fig. 6(1). (b) The initial condition vi,j(0) is given by the random
noise image in Fig. 6(2). The step size h of the Euler method is both set to 0.01.

(a) t = 3000 (b) t = 3000

Figure 18: Two-dimensional nonlinear waves in the autonomous Van der Pol type CNN (57). These figures
are not static, but dynamic (always changing) images at the instant of t = 3000. The v − i characteristic of
the nonlinear resistor is given by iR = f(vR) = 0.01vR

3 + 0.25vR
2 − 0.25vR. (a) The initial condition vi,j(0)

is given by the upside-down text image in Fig. 6(1). (b) The initial condition vi,j(0) is given by the random
noise image in Fig. 6(2). The step size h of the Euler method is both set to 0.03.
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(a) h = 0.1 (b) h = 0.06 (b) h = 0.03

Figure 19: Nonlinear waves in the autonomous Van der Pol type CNN (57) for h = 0.1, h = 0.06, and
h = 0.03 at t = 1200. Here h denotes the step size of the Euler method. Observe that Eq. (57) exhibits
different nonlinear waves, if we choose a different value for the step size h. The v − i characteristic of the
nonlinear resistor is given by iR = f(vR) = 0.01vR

3 + 0.25vR
2− 0.25vR. The initial condition vi,j(0) is given

by the random noise image in Fig. 6(2).

3.7 Autonomous Chua circuit CNN

The dynamics of the Chua circuit [11, 12] is defined by

dv

dt
= α

(
x− v − f(v)

)
,

dx

dt
= v − x+ y,

dy

dt
= −βx,


(65)

where α = 10, β = 14, and f(v) is a scalar function of a single variable v defined by

f(v) =
1

16
v3 − 7

6
v. (66)

Equation (65) can be realized by the circuit in Fig. 20 (see [4] and [11]). Its dynamics is given by

C1
dv

dt
=

x− v
R
− f(v),

C2
dx

dt
= y − x− v

R
,

L
dy

dt
= −x,


(67)

where the symbols v, x, and y denote the voltage across the capacitor C1, the voltage across the capacitor
C2, and the current through the inductor L, respectively. These parameters satisfy

C1 =
1

α
=

1

10
, C2 = 1, L =

1

β
=

1

14
, R = 1, (68)

and v − i characteristic of the nonlinear resistor is given by

iR = f(vR) =
1

16
vR

3 − 7

6
vR. (69)
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Figure 20: Chua circuit, which contains five circuit elements: two linear capacitors C1 and C2, one linear
inductor L, one linear resistor R, and one nonlinear resistor. The v− i characteristic of the nonlinear resistor

is given by iR = f(vR) =
1

16
vR

3 − 7

6
vR. The circuit parameters are given by C1 =

1

10
, C2 = 1, L =

1

14
,

and R = 1.

In this case, the dynamics of the two-dimensional autonomous CNN in Fig. 2 is described by

dvi,j
dt

= α
(
xi,j − vi,j − f(vi,j) + ii,j

)
,

dxi,j
dt

= vi,j − xi,j + yi,j ,

dyi,j
dt

= −βxi,j ,
dϕi,j

dt
= vi,j ,


(70)

where i = 1, 2, · · · , N , j = 1, 2, · · · ,M , and the five state variables of the CNN cell ni,j are explained as
follow:

• vi,j is the voltage across the CNN cell, that is, the voltage across the capacitor C1 in the CNN cell.
• ii,j is the current though the CNN cell.
• xi,j is the voltage across the capacitor C2 in the CNN cell.
• yi,j is the current though the inductor L in the CNN cell.
• ϕi,j is the flux of the capacitor C1 in the CNN cell.

The current ii,j in Eq. (70) is given by

ii,j = Wg(ϕi−1,j − ϕi,j)(vi−1,j − vi,j)−Wg(ϕi,j − ϕi+1,j)(vi,j − vi+1,j)

+Wg(ϕi,j−1 − ϕi,j)(vi,j−1 − vi,j)−Wg(ϕi,j − ϕi,j+1)(vi,j − vi,j+1),
(71)

where Wg(ϕg) denotes the small-signal memductance of the voltage-controlled ideal memristors consisting
the grid. The terminal current ig and voltage vg of the above memristors are given by

ig = Wg(ϕg) vg, (72)

where ϕg is the flux of the ideal memristor, which satisfies
dϕg

dt
= vg and ϕg(0) = 0. Assume that Wg(ϕg)

is given by
Wg(ϕg) = −s

[
|ϕg | − 0.5

]
+ 4 s

[
|ϕg | − 7

]
=


0 for |ϕg| < 0.5,

−1 for 0.5 ≤ |ϕg| < 7,

3 for |ϕg| ≥ 7.

 (73)
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Then the ideal memristors consisting the grid are locally active, since the instantaneous power p(t) satisfies

p(t) = ig(t) vg(t) = Wg(ϕg(t)) vg(t)2 = −vg(t)2 < 0, (74)

for 0.5 < |ϕg(t)| < 7 and vg(t) 6= 0. Note that we used the locally active memristor grid because of the
continuous evolution of nonlinear waves.

We show the two-dimensional nonlinear waves for vi,j in Fig. 21. Observe that the autonomous Chua
circuit CNN (70) can exhibit complex nonlinear waves. The initial conditions v∗i,j(0), x∗i,j(0), and y∗i,j(0) are
equal to a black & white image or a gray-scale image in Fig. 6, and we set ϕi,j(0) = 0, where vi,j(0) =
1.1 v∗i,j(0), xi,j(0) = 1.1x∗i,j(0), and yi,j(0) = 1.1 y∗i,j(0).12 The boundary condition is given by Eq. (12).

(a) t = 1000 (b) t = 1000

Figure 21: Two-dimensional nonlinear waves in the autonomous Chua circuit CNN (70). These figures are
not static, but dynamic (always changing) images at the instant of t = 1000. (a) The initial condition v∗i,j(0)
is given by the upside-down text image in Fig. 6(1). (b) The initial condition v∗i,j(0) is given by the random
noise image in Fig. 6(2). We scaled the initial conditions by multiplying them 1.1, in order to avoid an
overflow in the numerical simulations. That is, vi,j(0) = 1.1 v∗i,j(0). The step size h of the Euler method is
both set to 0.005.

4 Conclusion

We have shown that the two-dimensional autonomous CNNs coupled by memristors can exhibit interesting
and complex nonlinear waves. Furthermore, we have shown that some autonomous CNN can exhibit various
kinds of nonlinear waves by changing the initial conditions, or by changing the characteristic curve of the
nonlinear resistor. It suggests that neural networks are capable of more complex responses by using the
memristors. In this paper, we used the Euler method for solving the autonomous CNN equations. In order
to get more accurate results, we may need high accuracy numerical methods, for example, the Runge-Kutta
method. Furthermore, we used the synchronous parallel model to obtain the solutions of the autonomous
CNN equations. If we use the sequential model, then we may obtain similar but little different results.

12We used the scaled initial conditions in order to avoid an overflow in the numerical simulations.
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