On various Ramanujan's equations (Hardy-Ramanujan number, taxicab numbers, etc) linked to some parameters of Standard Model Particles and String Theory: New possible mathematical connections. V

Michele Nardelli ${ }^{\mathbf{1}}$, Antonio Nardelli

Abstract

In this research thesis, we have described and deepened further Ramanujan equations (Hardy-Ramanujan number, taxicab numbers, etc) linked to some parameters of Standard Model Particles and String Theory. We have therefore obtained further possible mathematical connections.

[^0]
https://www.britannica.com/biography/Srinivasa-Ramanujan

https://futurism.com/brane-science-complex-notions-of-superstring-theory
\[

$$
\begin{aligned}
& \text { Ff } \\
& \text { (i) } \frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+ \\
& \text { on } \frac{\alpha_{0}}{x^{2}}+\frac{\alpha_{1}}{x^{2}}+\frac{\alpha_{L}}{x^{3}}+ \\
& \text { (ii) } \frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}=b_{0}+L_{1} x+L_{2} x^{2}+L_{0} x+ \\
& \text { or } \frac{\beta_{0}}{x}+\frac{\beta_{1}}{x^{L}}+\frac{\beta_{2}}{x^{0}}+ \\
& \text { (iii) } \frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}}=c_{0}+c_{1} x+c_{2} x^{2}+c_{0} x^{3}+ \\
& \text { or } \frac{x_{0}}{x_{1}}+\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x^{0}}+ \\
& \text { then } \\
& \left.a_{n}{ }^{3}+{a_{n}}^{3}=c_{n}^{3}+(-1)^{n}\right\} \\
& \text { and } \left.\quad \alpha_{n}^{3}+\beta_{n}^{3}=\gamma_{n}^{3}+(-1)^{n}\right\} \\
& \text { Examples } \\
& 135^{5^{3}}+138^{3}=172^{3}-1 \\
& 11161^{3}+11468^{3}=14255^{3}+1 \\
& 791^{3}+812^{3}=1010^{3}-1 \\
& 9^{3}+10^{3}=12^{3}+1 \\
& 6^{3}+8^{3}=9^{3}-1
\end{aligned}
$$
\]

https://plus.maths.org/content/ramanujan

Ramanujan's manuscript

The representations of 1729 as the sum of two cubes appear in the bottom right corner. The equation expressing the near counter examples to Fermat's last theorem appears further up: $\alpha^{3}+\beta^{3}=\gamma^{3}+(-1)^{n}$.

From Wikipedia
The taxicab number, typically denoted Tan) or Taxicab(n), also called the nth Hardy-Ramanujan number, is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is $1729=T a(2)=1^{3}+12^{3}=9^{3}+10^{3}$.

From:

Two-Field Born-Infeld with Diverse Dualities

S. Ferrara, A. Sagnotti and A. Yeranyan - arXiv:1602.04566v3 [hep-th] 8 Jul 2016

From:
$\bar{\phi}=6 ; \quad \phi=8 ; F=9 ; \bar{F}=10 ; V=12 ; \bar{V}=135 ; v=138 ; \bar{v}=172$

$$
\begin{aligned}
& 9^{3}+10^{3}=12^{3}+1 \\
& 6^{3}+8^{3}=9^{3}-1
\end{aligned}
$$

$$
135^{3}+138^{3}=172^{3}-1
$$

$F=6 ; \bar{F}=8 ; f=9$ and $\gamma=10$

$$
\begin{align*}
\mathcal{L} & -f^{2}\left[1-\sqrt{\left(1+\frac{f^{2}+\bar{F}^{2}}{2 f^{2}}\right)^{2}-\frac{1}{f^{2}} \sqrt{F^{2} F^{2}}\left(\frac{1}{f^{2}} \sqrt{F^{2} F^{2}}-\gamma\right)}\right. \tag{2.38}\\
& +\gamma \operatorname{ArcTanh}\left(\frac{\left.\left.1+\frac{\mu^{2}+\bar{F}^{2}}{2 f^{2}}-\sqrt{\left(1+\frac{\mu^{\prime 2}+\bar{F}^{2}}{2 f^{2}}\right)^{2}-\frac{1}{f^{2}} \sqrt{F^{2} \overline{F^{2}}\left(\frac{1}{f^{2}} \sqrt{F^{2} \overline{F^{2}}}-\gamma\right)}} \underset{\frac{1}{f^{2}} \sqrt{F^{2} \bar{F}^{2}}-\gamma}{ }\right)\right]}{} . \frac{2.38)}{} .\right.
\end{align*}
$$

$81\left[1-\left(\left(\left(1+\left(6^{\wedge} 2+8^{\wedge} 2\right) /\left(2^{*} 9^{\wedge} 2\right)\right)^{\wedge} 2-1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)^{*}\left(1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)-10\right)\right)\right)^{\wedge} 1 / 2\right.$
$+10 \operatorname{atanh}\left(\left(\left(\left(1+\left(6^{\wedge} 2+8^{\wedge} 2\right) /\left(2^{*} 9^{\wedge} 2\right)-\left(\left(\left(1+\left(6^{\wedge} 2+8^{\wedge} 2\right) /\left(2^{*} 9^{\wedge} 2\right)\right)^{\wedge} 2-\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.1 / 81 * \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)^{*}\left(1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)-10\right)\right)\right)^{\wedge} 1 / 2\right)\right)\right) /\left(\left(1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)-10\right)\right)\right]$

$$
\left(\left(\left(1+\left(6^{\wedge} 2+8^{\wedge} 2\right) /\left(2^{*} 9^{\wedge} 2\right)\right)^{\wedge} 2-1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)^{*}\left(1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)-10\right)\right)\right)^{\wedge} 1 / 2
$$

Input:

$\sqrt{\left(1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}\right)^{2}-\frac{1}{81} \sqrt{6^{2} \times 8^{2}}\left(\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10\right)}$

Result:

$\frac{\sqrt{53737}}{81}$

Decimal approximation:

$2.861881779887940244147018014647189581730989623566768581840 \ldots$
2.86188177988794

81[1-(2.86188177988794) $+10 \operatorname{atanh}\left(\left(\left(\left(\left(\left(\left(1+\left(6^{\wedge} 2+8^{\wedge} 2\right) /\left(2^{*} 9^{\wedge} 2\right)-\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.(2.86188177988794))))) /\left(\left(1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)-10\right)\right)\right)\right)\right)\right]$

Input interpretation:

$81\left(1-2.86188177988794+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.86188177988794}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)$
$\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

-43.017729954751...
$-43.017729954751 \ldots$

Alternative representations:

$81\left(1-2.861881779887940000+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)=$
$81\left(-1.861881779887940000+10 \mathrm{sn}^{-1}\left(\left.\frac{-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}} \right\rvert\, 1\right)\right)$

$$
\begin{aligned}
& 81\left(1-2.861881779887940000+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)= \\
& 81\left(-1.861881779887940000-10 i \mathrm{sc}^{-1}\left(\frac{i\left(-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}\right)}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}}\right) 0\right) \\
& 81\left(1-2.861881779887940000+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)= \\
& 81\left(-1.861881779887940000+5\left(-\log \left(1-\frac{-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}}\right)+\right.\right. \\
& \left.\log \left(1+\frac{-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}}{81}\right)\right) \\
& \left.\left.-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
81\left(1-2.861881779887940000+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)= \\
-150.8124241709231400+810.000000000000000 \\
\sum_{k=0}^{\infty} \frac{100.8124241709231400^{1+2 k}\left(-\frac{1.000000000000000000}{-810.00000000000000+\sqrt{2304}}\right)^{1+2 k}}{1+2 k}
\end{gathered}
$$

$$
81\left(1-2.861881779887940000+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)=
$$

$$
-150.8124241709231400-405 \log (2)+
$$

$$
405 \log \left(\frac{-910.812424170923140+\sqrt{2304}}{-810.000000000000000+\sqrt{2304}}\right)+
$$

$$
405 \sum_{k=1}^{\infty} \frac{0.500000000000000000^{k}\left(\frac{-910.812424170923140+\sqrt{2304}}{-810.00000000000000+\sqrt{2304}}\right)^{k}}{k}
$$

$$
\begin{aligned}
& 81\left(1-2.861881779887940000+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)= \\
& -150.8124241709231400+405.0000000000000000 \log (2)- \\
& 405.000000000000000 \log \left(\frac{-709.187575829076860+\sqrt{2304}}{-810.000000000000000+\sqrt{2304}}\right)- \\
& 405.000000000000000 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(\frac{709.187575829076860-1.000000000000000000 \sqrt{2304}}{-810.00000000000000+\sqrt{2304}}\right)^{k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
81\left(1-2.861881779887940000+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)= \\
\frac{122158.063578447743}{-810.000000000000000+\sqrt{2304}}-\frac{81658.063578447743}{-810.000000000000000+\sqrt{2304}} \\
\int_{0}^{1} \frac{1}{1-\frac{10163.1448672181282 t^{2}}{(-810.0000000000000+\sqrt{2304})^{2}}} d t-\frac{150.812424170923140 \sqrt{2304}}{-810.000000000000000+\sqrt{2304}}
\end{gathered}
$$

$81\left(1-2.861881779887940000+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)=$
$-150.8124241709231400+$

$$
\begin{gathered}
\frac{20414.5158946119359 i}{\pi^{3 / 2}(-810.000000000000000+\sqrt{2304})} \int_{-i \infty+\gamma}^{i \infty+\gamma} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} \\
\quad\left(1-\frac{10163.14486721812815}{(-810.000000000000000+\sqrt{2304})^{2}}\right)^{-s} d s \text { for } 0<\gamma<\frac{1}{2}
\end{gathered}
$$

We have that:
$-3 * 81\left[1-(2.86188177988794)+10 \operatorname{atanh}\left(\left(\left(\left(\left(\left(\left(1+\left(6^{\wedge} 2+8^{\wedge} 2\right) /\left(2^{*} 9^{\wedge} 2\right)-\right.\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.(2.86188177988794))))) /\left(\left(1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)-10\right)\right)\right)\right)\right)\right]+47-4$

Input interpretation:

$-3 \times 81\left(1-2.86188177988794+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.86188177988794}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4$
$\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

172.05318986425...
$172.05318986425 \ldots \approx 172$ (Ramanujan taxicab number)

Alternative representations:

$$
\begin{aligned}
& -3 \times 81(1-2.861881779887940000+ \\
& \left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{29^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4=43- \\
& 243\left(-1.861881779887940000+10 \mathrm{sn}^{-1}\left(\left.\frac{-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}} \right\rvert\, 1\right)\right.
\end{aligned}
$$

$-3 \times 81(1-2.861881779887940000+$

$$
\begin{gathered}
\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{29^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4=43-243 \\
\left(-1.861881779887940000-10 i \mathrm{sc}^{-1}\left(\left.\frac{i\left(-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}\right)}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}} \right\rvert\, 0\right)\right)
\end{gathered}
$$

$-3 \times 81(1-2.861881779887940000+$

$$
\begin{gathered}
\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{29^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4=43- \\
243\left(-1.861881779887940000+5\left(-\log \left(1-\frac{-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}}\right)+\right.\right. \\
\left.\log \left(1+\frac{-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}}{81}\right)\right)
\end{gathered}
$$

Series representations:

$-3 \times 81(1-2.861881779887940000+$

$$
\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4=
$$

$495.437272512769420-2430.000000000000000$

$$
\sum_{k=0}^{\infty} \frac{100.8124241709231400^{1+2 k}\left(-\frac{1.000000000000000000}{-810.00000000000000+\sqrt{2304}}\right)^{1+2 k}}{1+2 k}
$$

$-3 \times 81(1-2.861881779887940000+$

$$
\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4=
$$

$495.437272512769420+1215.000000000000000 \log (2)-$ $1215.000000000000000 \log \left(\frac{-910.812424170923140+\sqrt{2304}}{-810.000000000000000+\sqrt{2304}}\right)-$
1215.000000000000000

$$
\sum_{k=1}^{\infty} \frac{0.500000000000000000^{k}\left(\frac{-910.812424170023140+\sqrt{2304}}{-810.00000000000000+\sqrt{2304}}\right)^{k}}{k}
$$

$$
\begin{aligned}
& -3 \times 81(1-2.861881779887940000+ \\
& \left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4= \\
& 495.437272512769420-1215.000000000000000 \log (2)+ \\
& 1215.000000000000000 \log \left(\frac{-709.187575829076860+\sqrt{2304}}{-810.000000000000000+\sqrt{2304}}\right)+ \\
& 1215.000000000000000 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(\frac{709.187575829076860-1.00000000000000000 \sqrt{2304}}{-810.000000000000000+\sqrt{2304}}\right)^{k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -3 \times 81(1-2.861881779887940000+ \\
& \left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4= \\
& -\frac{401304.190735343}{-810.000000000000000+\sqrt{2304}}+\frac{1}{-810.000000000000000+\sqrt{2304}} \\
& \int_{0}^{1} \frac{244974.190735343}{1-\frac{10163.1448672181282 t^{2}}{(-810.000000000000000+\sqrt{2304})^{2}}} d t+\frac{495.437272512769 \sqrt{2304}}{-810.000000000000000+\sqrt{2304}}
\end{aligned}
$$

$$
-3 \times 81(1-2.861881779887940000+
$$

$$
\begin{gathered}
\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{29^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)+47-4= \\
-\frac{401304.19073534323}{-810.000000000000000+\sqrt{2304}}-\frac{61243.547683835808 i}{\pi^{3 / 2}(-810.000000000000000+\sqrt{2304})} \\
\int_{-i \infty+\gamma}^{i \infty+\gamma} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}\left(1-\frac{10163.14486721812815}{(-810.000000000000000+\sqrt{2304})^{2}}\right)^{-s} d s+ \\
\frac{495.43727251276942 \sqrt{2304}}{-810.000000000000000+\sqrt{2304}} \text { for } 0<\gamma<\frac{1}{2}
\end{gathered}
$$

$-1 / 7\left(\left(\left(\left(\left(81\left[1-(2.86188177988794)+10 \operatorname{atanh}\left(\left(\left(\left(\left(\left(\left(1+\left(6^{\wedge} 2+8^{\wedge} 2\right) /\left(2^{*} 9^{\wedge} 2\right)-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.(2.86188177988794))))) /\left(\left(1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)-10\right)\right)\right)\right)\right)\right]\right)\right)\right)\right)\right)^{\wedge} 3+89+7$

Input interpretation:

$-\frac{1}{7}\left(81\left(1-2.86188177988794+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \wp^{2}}-2.86188177988794}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)\right)^{3}+$ $89+7$
$\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

11468.19837370 .
11468.1983737... ≈ 11468 (Ramanujan taxicab number)

Alternative representations:

$\frac{1}{7}(81(1-2.861881779887940000+$

$$
\left.\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)\right)^{3}(-1)+
$$

$$
\begin{aligned}
89+7=96 & -\frac{1}{7}(81(-1.861881779887940000+ \\
& \left.10 \mathrm{sn}^{-1}\left(\left.\frac{-1.861881779887940000+\frac{6^{2}+8^{2}}{29^{2}}}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}} \right\rvert\, 1\right)\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{7}(81(1-2.861881779887940000+ \\
& \left.\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)\right)^{3}(-1)+ \\
& 89+7=96-\frac{1}{7}(81(-1.861881779887940000- \\
& \left.\left.\left.10 i \mathrm{sc}^{-1}\left(\frac{i\left(-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}\right)}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}}\right) 0\right)\right)\right)^{3}
\end{aligned}
$$

$\frac{1}{7}(81(1-2.861881779887940000+$

$$
\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)^{3}(-1)+89+7=
$$

$$
96-\frac{1}{7}\left(81\left(-1.861881779887940000+10 \operatorname{coth}^{-1}\left(\frac{1}{\frac{-1.861881779887940000+\frac{6^{2}+8^{2}}{2 \times 9^{2}}}{-10+\frac{1}{81} \sqrt{6^{2} \times 8^{2}}}}\right)\right)\right)^{3}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{7}(81(1-2.861881779887940000+ \\
& \left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{29^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)^{3}(-1)+89+7=
\end{aligned}
$$

$$
96-7.59201428571428571 \times 10^{7}(-0.1861881779887940000+
$$

$$
\left.\sum_{k=0}^{\infty} \frac{100.8124241709231400^{1+2 k}\left(-\frac{1.000000000000000000}{-810.00000000000000+\sqrt{2304}}\right)^{1+2 k}}{1+2 k}\right)^{3}
$$

$$
\begin{aligned}
& \frac{1}{7}(81\{1-2.861881779887940000+ \\
& \left.\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)\right)^{3} \\
& (-1)+89+7=96+9.49001785714285714 \times 10^{6} \\
& 0.3723763559775880000+\log (2)-1.000000000000000000 \\
& \log \left(\frac{-910.812424170923140+\sqrt{2304}}{-810.000000000000000+\sqrt{2304}}\right)-1.000000000000000000 \\
& \left.\sum_{k=1}^{\infty} \frac{0.500000000000000000^{k}\left(\frac{-910.812424170923140+\sqrt{2304}}{-810.000000000000000+\sqrt{2304}}\right)^{k}}{k}\right)^{3} \\
& \frac{1}{7}(81\{1-2.861881779887940000+ \\
& \left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{29^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)^{3} \\
& (-1)+89+7=96-9.49001785714285714 \times 10^{6} \\
& (-0.3723763559775880000+\log (2)-1.000000000000000000 \\
& \log \left(\frac{-709.187575829076860+\sqrt{2304}}{-810.000000000000000+\sqrt{2304}}\right)-1.000000000000000000 \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(\frac{709.187575829076860-1.000000000000000000}{} \sqrt{2304}\right)^{k}}{-810.000000000000000+\sqrt{2304}}\right)^{3}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{7}(81\{1-2.861881779887940000+ \\
& \left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \Phi^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)^{3}(-1)+89+7= \\
& 96+\left(7.77855972817279 \times 10^{13}(-1.495970614844329+\right. \\
& 1.000000000000000 \int_{0}^{1} \frac{1}{1-\frac{10163.1448672181282 t^{2}}{(-810.00000000000000+\sqrt{2304})^{2}}} d t+ \\
& \left.0.001846877302276949 \sqrt{2304})^{3}\right) / \\
& (-810.000000000000000+\sqrt{2304})^{3} \\
& \frac{1}{7}(81(1-2.861881779887940000+ \\
& \left.\left.10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.861881779887940000}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)\right)^{3}(-1)+ \\
& 89+7=96-\frac{531441}{7}(-1.861881779887940000+ \\
& \frac{3.111494573176640123 i}{\pi^{3 / 2}\left(-10+\frac{\sqrt{2304}}{81}\right)} \int_{-i \infty+\gamma}^{i \infty+\gamma} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} \\
& \left.\left(1-\frac{1.549023756625229104}{\left(-10+\frac{\sqrt{2304}}{81}\right)^{2}}\right)^{-s} d s\right)^{3} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$\left(-81\left[1-(2.86188177988794)+10 \operatorname{atanh}\left(\left(\left(\left(\left(\left(\left(1+\left(6^{\wedge} 2+8^{\wedge} 2\right) /\left(2^{*} 9^{\wedge} 2\right)-\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.(2.86188177988794))))) /\left(\left(1 / 81^{*} \operatorname{sqrt}\left(6^{\wedge} 2^{*} 8^{\wedge} 2\right)-10\right)\right)\right)\right)\right)\right]\right)^{\wedge}\left(\left(64^{*} 2\right) / 10^{\wedge} 3\right)$

Input interpretation:
$\left(-81\left(1-2.86188177988794+10 \tanh ^{-1}\left(\frac{1+\frac{6^{2}+8^{2}}{2 \times 9^{2}}-2.86188177988794}{\frac{1}{81} \sqrt{6^{2} \times 8^{2}}-10}\right)\right)\right)^{(64 \times 2) / 10^{3}}$
$\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

1.618478291345236343849011468058325401351447944122400678325
$1.6184782913 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...
1.6184782913452363438490114680583254013514479441224006

Input interpretation:

1.6184782913452363438490114680583254013514479441224006
1.6184782913...

Rational approximation:

$\frac{574081862166558393704516348}{354704703323142342218284581}=1+\frac{219377158843416051486231767}{354704703323142342218284581}$

Possible closed forms:
$\cosh \left(\sinh \left(\frac{8411398}{9100445}\right)\right) \approx 1.6184782913452363440579$
$\left(\frac{41531845}{21856069}\right)^{3 / 4} \approx 1.618478291345236371937$
$\frac{2581-8048 e+3077 e^{2}}{782 e} \approx 1.6184782913452363442987$
$\frac{\log \left(\frac{157732589}{2826767}\right)}{\log (12)} \approx 1.618478291345236343864055$
$\frac{4012714503 \pi}{7788991963} \approx 1.618478291345236343871470$
root of $9146 x^{3}-57908 x^{2}+55621 x+22892$ near $x=1.61848 \approx$
1.618478291345236343852718
π root of $2599 x^{4}+2899 x^{3}+2620 x^{2}-2888 x+213$ near $x=0.515178 \approx$
1.618478291345236343860362
root of $496 x^{5}-516 x^{4}-346 x^{3}+133 x^{2}+66 x-956$ near $x=1.61848$
1.618478291345236343869206
π root of $51239 x^{3}+136775 x^{2}+7267 x-47051$ near $x=0.515178$
1.618478291345236343851053

1

root of $22892 x^{3}+55621 x^{2}-57908 x+9146$ near $x=0.617864$
1.618478291345236343852718
root of $3295 x^{4}-7313 x^{3}+2616 x^{2}-559 x+2447$ near $x=1.61848 \approx$
1.61847829134523634384989152
π root of $1824 x^{5}-530 x^{4}-222 x^{3}+165 x^{2}-909 x+426$ near $x=0.515178 \approx$
1.6184782913452363438434703

1

root of $2447 x^{4}-559 x^{3}+2616 x^{2}-7313 x+3295$ near $x=0.617864$
1.61847829134523634384989152
$\frac{3 \times 3^{1219 / 1860} e^{(683 \gamma) / 310}}{8 \times 2^{2131 / 2790}} \approx 1.6184782913452363423785$
$\frac{645+686 \pi-285 \pi^{2}}{-602+142 \pi+15 \pi^{2}} \approx 1.61847829134523625287$

From:

With our choices onc can now revert to the ordinary variables $\phi^{k l}$, solving eq. (3.49) for a with h_{1} as in (3.51) and substituting in the Lagrangian (3.52). The end result (with the scale f of eq. (1.1) set to one for brevity),

$$
\begin{equation*}
\mathcal{L}=1-\sqrt{\left(1+\operatorname{Re}\left[\phi_{t}\right]\right)^{2}-\mid \phi_{t}{ }^{2}-\operatorname{Det}[\phi-\bar{\phi}]+2\left(\operatorname{Re}\left[\phi_{d}\right]-\sqrt{\left|\phi_{d}\right|^{2}}\right)} . \tag{3.53}
\end{equation*}
$$

has $U(2)$ duality and reduces to the BI theory if the two Abelian field strengthes coincide.

$$
\begin{aligned}
& \mathcal{L}=1-\sqrt{\left(1+\operatorname{Re}\left[\phi_{t}\right]\right)^{2}-\left|\phi_{t}\right|^{2}-\operatorname{Det}[\phi-\bar{\phi}]+2\left(\operatorname{Re}\left[\phi_{d}\right]-\sqrt{\left.\phi_{d}\right|^{2}}\right)} \\
& 9^{3}+10^{3}=12^{3}+1 \\
& 135^{3}+138^{3}=172^{3}-1 \\
& \phi_{t}=9 ; \phi_{d}=10 ; \phi=138 ; \bar{\phi}=135 \\
& \left.1-\operatorname{sqrt[}[(1+\operatorname{Re}(9)))^{\wedge} 2-9^{\wedge} 2-\operatorname{Det}\{\{1,138-135\},\{138-135,1\}\}+2\left(\operatorname{Re}(10)-\operatorname{sqrt}\left(10^{\wedge} 2\right)\right)\right]
\end{aligned}
$$

Input interpretation:

$1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}-\left|\begin{array}{cc}1 & 138-135 \\ 138-135 & 1\end{array}\right|+2\left(\operatorname{Re}(10)-\sqrt{10^{2}}\right)}$

Result:

$1-3 \sqrt{3}$

Decimal approximation:

$-4.19615242270663188058233902451761710082841576143114188416$.
-4.1961524227...
$-\left[\left(\left(\left(1-\operatorname{sqrt}\left[((1+\operatorname{Re}(9)))^{\wedge} 2-9^{\wedge} 2-\operatorname{Det}\{\{1,138-135\},\{138-135,1\}\}+2(\operatorname{Re}(10)-\right.\right.\right.\right.\right.$ $\left.\operatorname{sqrt(10\wedge } 2))]))))^{\wedge} 5+\left(144^{*} 2+3\right)\right]$

Input interpretation:

$$
\begin{aligned}
& -\left(\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}-\left|\begin{array}{cc}
1 & 138-135 \\
138-135 & 1
\end{array}\right|+2\left(\operatorname{Re}(10)-\sqrt{10^{2}}\right)}\right)^{5}+\right. \\
& \quad(144 \times 2+3))
\end{aligned}
$$

Result:

$-291-(1-3 \sqrt{3})^{5}$

Decimal approximation:

1009.937032397458408104668380615687569231729424476866451704...
1009.937... ≈ 1010 (Ramanujan taxicab number)

Alternate form:

```
3012\sqrt{}{3}-4207
```

$144+89+8+3+\left(\left(\left(-2^{*}-\left[\left(\left(\left(\left(1-\operatorname{sqrt}\left[((1+\operatorname{Re}(9)))^{\wedge} 2-9^{\wedge} 2-\operatorname{Det}\{\{1,138-135\},\{138-135\right.\right.\right.\right.\right.\right.\right.\right.\right.$, $\left.\left.\left.\left.\left.\left.\left.\left.1\}\}+2\left(\operatorname{Re}(10)-\operatorname{sqrt}\left(10^{\wedge} 2\right)\right)\right]\right)\right)\right)\right)^{\wedge} 6\right)\right)\right)$

Input interpretation:

$144+89+8+3-$

$$
2 \times(-1)\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}-\left|\begin{array}{cc}
1 & 138-135 \\
138-135 & 1
\end{array}\right|+2\left(\operatorname{Re}(10)-\sqrt{10^{2}}\right)}\right)^{6}
$$

$|m|$ is the determinant

Result:

$244+2(1-3 \sqrt{3})^{6}$

Decimal approximation:

11161.86016056674229506978399874664772784838890751756385979
11161.8601605... ≈ 11161 (Ramanujan taxicab number)

Alternate forms:

62292-29520 $\sqrt{3}$
$-12(2460 \sqrt{3}-5191)$
$-34\left(\left(\left(1-\operatorname{sqrt}\left[((1+\operatorname{Re}(9)))^{\wedge} 2-9^{\wedge} 2-\operatorname{Det}\{\{1,138-135\},\{138-135,1\}\}+2(\operatorname{Re}(10)-\right.\right.\right.\right.$ $\operatorname{sqrt(10\wedge 2)})]))$) $-18+1 /$ golden ratio

Input interpretation:

$-34\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}-\left|\begin{array}{cc}1 & 138-135 \\ 138-135 & 1\end{array}\right|+2\left(\operatorname{Re}(10)-\sqrt{10^{2}}\right)}\right)-18+\frac{1}{\phi}$
$\operatorname{Re}(z)$ is the real part of z
$|m|$ is the determinant ϕ is the golden ratio

Result:

$\frac{1}{\phi}-18-34(1-3 \sqrt{3})$

Decimal approximation:

125.2872163607753787880041136679646195458864450684645869238...
125.28721636... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

```
Alternate forms:
\(\frac{1}{\phi}-52+102 \sqrt{3}\)
\(\frac{1}{\phi}-18+34(3 \sqrt{3}-1)\)
\(2(51 \sqrt{3}-26) \phi+1\)
```

$-5+27 * 1 / 2 *\left(\left(\left(\left(-34\left(\left(\left(1-\operatorname{sqrt}\left[((1+\operatorname{Re}(9)))^{\wedge} 2-9 \wedge 2-\operatorname{Det}\{\{1,138-135\},\{138-135\right.\right.\right.\right.\right.\right.\right.\right.$, $\left.\left.\left.\left.1\}\}+2\left(\operatorname{Re}(10)-\operatorname{sqrt}\left(10^{\wedge} 2\right)\right)\right]\right)\right)\right)-18+\mathrm{Pi}+1 /$ golden ratio $\left.\left.\left.)\right)\right)\right)$

Input interpretation:

$$
\begin{aligned}
& 27 \times \frac{1}{2}\left(-34\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}-\left|\begin{array}{cc}
1 & 138-135 \\
138-135 & 1
\end{array}\right|+2\left(\operatorname{Re}(10)-\sqrt{10^{2}}\right)}\right)-\right. \\
& \left.\quad 18+\pi+\frac{1}{\phi}\right)
\end{aligned}
$$

$\operatorname{Re}(z)$ is the real part of z
$|m|$ is the determinant ϕ is the golden ratio

Result:

$\frac{27}{2}\left(\frac{1}{\phi}-18-34(1-3 \sqrt{3})+\pi\right)-5$

Decimal approximation:

1728.788921693929822357301220191795652806128795315835852054...
1728.78892169...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Property:

$-5+\frac{27}{2}\left(-18-34(1-3 \sqrt{3})+\frac{1}{\phi}+\pi\right)$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{27}{2}\left(\frac{1}{\phi}-52+102 \sqrt{3}+\pi\right)-5 \\
& \frac{27}{2 \phi}-707+1377 \sqrt{3}+\frac{27 \pi}{2}
\end{aligned}
$$

$$
\frac{27}{2}\left(\frac{1}{\phi}-18+34(3 \sqrt{3}-1)+\pi\right)-5
$$

Now, we have that:
Reverting to the field strengths, the Lagrangian takes finally the form

$$
\begin{equation*}
\mathcal{L}=1-\sqrt{\left(1+\operatorname{Re}\left[\phi_{t}\right]\right)^{2}-\left|\phi_{t}\right|^{2}-\operatorname{Det}[\phi-\bar{\phi}]} \tag{3.63}
\end{equation*}
$$

From

$$
\mathcal{L}=1-\sqrt{\left(1+\operatorname{Re}\left[\phi_{t}\right]\right)^{2}-\left|\phi_{t}\right|^{2}-\operatorname{Det}[\phi-\bar{\phi}]}
$$

For $\phi_{t}=9 ; \phi_{d}=10 ; \phi=138 ; \bar{\phi}=135$, we obtain:
$1-\operatorname{sqrt}\left[((1+\operatorname{Re}(9)))^{\wedge} 2-9^{\wedge} 2-\operatorname{Det}\{\{1,138-135\},\{138-135,1\}\}\right]$

Input interpretation:

$1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}-\left|\begin{array}{cc}1 & 138-135 \\ 138-135 & 1\end{array}\right|}$
$\operatorname{Re}(z)$ is the real part of z
$|m|$ is the determinant

Result:

$1-3 \sqrt{3}$

Decimal approximation:

-4.19615242270663188058233902451761710082841576143114188416...
$-4.1961524227 \ldots$. the same previous result

We have also:
$\left.\left(-\left(\left(\left(1-\operatorname{sqrt}[((1+\operatorname{Re}(9))))^{\wedge} 2-9^{\wedge} 2-\operatorname{Det}\{\{1,138-135\},\{138-135,1\}\}\right]\right)\right)\right)\right)^{\wedge} 1 / 3+5 * 1 / 10^{\wedge} 3$

Input interpretation:

$\sqrt[3]{-\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}-\left|\begin{array}{cc}1 & 138-135 \\ 138-135 & 1\end{array}\right|}\right)}+5 \times \frac{1}{10^{3}}$

Result:

$$
\frac{1}{200}+\sqrt[3]{3 \sqrt{3}-1}
$$

Decimal approximation:

1.617935813642020182463303405226893817920083356882506337493...
$1.617935813642 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate form:

$\frac{1}{200}(1+200 \sqrt[3]{3 \sqrt{3}-1})$

We have that:

In terms of the field strengths, the Lagrangian becomes

$$
\begin{equation*}
\mathcal{L}=1-\sqrt{\left(1+\operatorname{Re}\left[\phi_{t}\right]\right)^{2}-\left|\phi_{t}\right|^{2}} . \tag{3.67}
\end{equation*}
$$

$1-\operatorname{sqrt}\left[((1+\operatorname{Re}(9)))^{\wedge} 2-9^{\wedge} 2\right]$

Input:

$$
1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}
$$

Exact result:

$1-\sqrt{19}$

Decimal approximation:

-3.35889894354067355223698198385961565913700392523244493689...
-3.3588989435...

Alternative representations:

$1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}=1-\sqrt{-9^{2}+(1+\operatorname{Im}(9 i))^{2}}$
$1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}=1-\sqrt{-9^{2}+(1-\operatorname{Im}(-9 i))^{2}}$
$1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}=1-\sqrt{-9^{2}+(10-i \operatorname{Im}(9))^{2}}$

Series representations:

$1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}=1-\sqrt{-82+(1+\operatorname{Re}(9))^{2}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-82+(1+\operatorname{Re}(9))^{2}\right)^{-k}$
$1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}=1-\sqrt{-82+(1+\operatorname{Re}(9))^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-82+(1+\operatorname{Re}(9))^{2}\right)^{-k}}{k!}$
$1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}=1-\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-81+(1+\operatorname{Re}(9))^{2}-z_{0}\right)^{k} z_{0}^{-k}}{k!}$
for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

Multiplying the previous result by -0.481715587144498 that is equal to:
$1 / 233 *-((((76-4) \pi)-(322+29+7) * 1 / \pi))$
we obtain:
$\left.1 / 233 *-((((76-4) \pi)-(322+29+7) * 1 / \pi)) *\left(\left(\left(1-\operatorname{sqrt}[((1+\operatorname{Re}(9))))^{\wedge} 2-9^{\wedge} 2\right]\right)\right)\right)$

Input:

$\frac{1}{233} \times(-1)\left((76-4) \pi-(322+29+7) \times \frac{1}{\pi}\right)\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}\right)$

Exact result:

$-\frac{1}{233}(1-\sqrt{19})\left(72 \pi-\frac{358}{\pi}\right)$

Decimal approximation:

1.618033976746729868559323994611158393657325290039278466390...
$1.618033976746 \ldots$ result that is the value of the golden ratio $1,618033988749 \ldots$

Property:

$-\frac{1}{233}(1-\sqrt{19})\left(-\frac{358}{\pi}+72 \pi\right)$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{1}{233}(\sqrt{19}-1)\left(72 \pi-\frac{358}{\pi}\right) \\
& -\frac{2(\sqrt{19}-1)\left(179-36 \pi^{2}\right)}{233 \pi} \\
& \frac{2(\sqrt{19}-1)\left(36 \pi^{2}-179\right)}{233 \pi}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
- & \frac{1}{233}\left((76-4) \pi-\frac{322+29+7}{\pi}\right)\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}\right)= \\
& -\frac{1}{233}\left(72 \pi-\frac{358}{\pi}\right)\left(1-\sqrt{-9^{2}+(1+\operatorname{Im}(9 i))^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{233}\left((76-4) \pi-\frac{322+29+7}{\pi}\right)\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}\right)= \\
& -\frac{1}{233}\left(72 \pi-\frac{358}{\pi}\right)\left(1-\sqrt{-9^{2}+(1-\operatorname{Im}(-9 i))^{2}}\right)
\end{aligned}
$$

$$
-\frac{1}{233}\left((76-4) \pi-\frac{322+29+7}{\pi}\right)\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}\right)=
$$

$$
-\frac{1}{233}\left(72 \pi-\frac{358}{\pi}\right)\left(1-\sqrt{-9^{2}+(10-i \operatorname{Im}(9))^{2}}\right)
$$

Series representations:

$$
\begin{aligned}
& -\frac{1}{233}\left((76-4) \pi-\frac{322+29+7}{\pi}\right)\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}\right)= \\
& \frac{2\left(-179+36 \pi^{2}\right)\left(-1+\sqrt{-82+(1+\operatorname{Re}(9))^{2}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-82+(1+\operatorname{Re}(9))^{2}\right)^{-k}\right)}{233 \pi} \\
& -\frac{1}{233}\left((76-4) \pi-\frac{322+29+7}{\pi}\right)\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}\right)= \\
& \frac{2\left(-179+36 \pi^{2}\right)\left(-1+\sqrt{-82+(1+\operatorname{Re}(9))^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-82+(1+\operatorname{Re}(9))^{2}\right)^{-k}}{k!}\right)}{}
\end{aligned}
$$

$$
233 \pi
$$

$$
-\frac{1}{233}\left((76-4) \pi-\frac{322+29+7}{\pi}\right)\left(1-\sqrt{(1+\operatorname{Re}(9))^{2}-9^{2}}\right)=
$$

$$
2\left(-179+36 \pi^{2}\right)\left(-1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-81+(1+\mathrm{Re}(9))^{2}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
$$

$$
233 \pi
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

Now, we have that:

$$
\begin{gather*}
\mathcal{L}=1-\sqrt{\left[1+\frac{1}{4}\left(\mathcal{F}^{+} \cdot \mathcal{F}^{-}\right)\right]^{2}-\frac{1}{32} C-\frac{1}{32} \sqrt{D}}, \tag{5.8-5.9}\\
C=\left|\left(\mathcal{F}^{+}\right)^{2}\right|^{2}+\left(\mathcal{F}^{+} \cdot \mathcal{F}^{-}\right)^{2}+\left|\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}-}\right|^{2}+\left|\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}^{+}}\right|^{2}
\end{gather*}
$$

$\left(2^{\wedge} 2\right)^{\wedge} 2+(2 * 3)^{\wedge} 2+\left(2^{*} 5\right)^{\wedge} 2+(2 * 8)^{\wedge} 2$

$$
\left(2^{2}\right)^{2}+(2 \times 3)^{2}+(2 \times 5)^{2}+(2 \times 8)^{2}
$$

$$
408
$$

$C=408$

$$
\begin{align*}
D & =\left[\left(\mathcal{F}^{+} \cdot \mathcal{F}^{-}\right)^{2}-\left(\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}}^{-}\right)^{2}+\left|\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}}\right|^{2}-\left|\mathcal{F}^{+2}\right|^{2}\right]^{2} \\
& +\left[\left(\mathcal{F}^{+}\right)^{2}\left(\mathcal{F}^{-} \cdot \tilde{\mathcal{F}}^{-}\right)+\left(\mathcal{F}^{-}\right)^{2}\left(\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}}^{+}\right)-2\left(\mathcal{F}^{+} \cdot \mathcal{F}^{-}\right)\left(\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}}^{-}\right)\right]^{2} \tag{5.10}
\end{align*}
$$

$\left[(2 * 3)^{\wedge} 2-(2 * 5)^{\wedge} 2+\left(2^{*} 8\right)^{\wedge} 2-\left(2^{\wedge} 2\right)^{\wedge} 2\right]^{\wedge} 2$
$\left((2 \times 3)^{2}-(2 \times 5)^{2}+(2 \times 8)^{2}-\left(2^{2}\right)^{2}\right)^{2}$
30976
$\left[2^{\wedge} 2^{*}(3 * 5)+(3)^{\wedge} 2\left(2^{*} 8\right)-2\left(2^{*} 3\right)\left(2^{*} 5\right)\right]^{\wedge} 2$
$\left(2^{2}(3 \times 5)+3^{2}(2 \times 8)-2(2 \times 3)(2 \times 5)\right)^{2}$
7056
$\left.\left(\left(\left(\left(2^{*} 3\right)^{\wedge} 2-\left(2^{*} 5\right)^{\wedge} 2+\left(2^{*} 8\right)^{\wedge} 2-\left(2^{\wedge} 2\right)^{\wedge} 2\right)\right)\right)\right)^{\wedge} 2+\left(\left(\left(2^{\wedge} 2^{*}(3 * 5)+(3)^{\wedge} 2\left(2^{*} 8\right)-\right.\right.\right.$ $2(2 * 3)(2 * 5)))))^{\wedge} 2$
$\left((2 \times 3)^{2}-(2 \times 5)^{2}+(2 \times 8)^{2}-\left(2^{2}\right)^{2}\right)^{2}+\left(2^{2}(3 \times 5)+3^{2}(2 \times 8)-2(2 \times 3)(2 \times 5)\right)^{2}$
38032
$\mathrm{D}=38032$

Thence:

$$
\mathcal{L}=1-\sqrt{\left[1+\frac{1}{4}\left(\mathcal{F}^{+} \cdot \mathcal{F}^{-}\right)\right]^{2}-\frac{1}{32} C-\frac{1}{32} \sqrt{D}},
$$

1- $\operatorname{sqrt}\left(\left(\left((1+1 / 4(2 * 3))^{\wedge} 2-1 / 32(408)-1 / 32(\operatorname{sqrt}(38032))\right)\right)\right)$

Input:

$1-\sqrt{\left(1+\frac{1}{4}(2 \times 3)\right)^{2}-\frac{1}{32} \times 408-\frac{1}{32} \sqrt{38032}}$

Result:

$1-i \sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}$

Decimal approximation:

1 -
$3.54884641420623512949851258564743971100517368738485736186 \ldots$

Polar coordinates:

$r \approx 3.68705$ (radius), $\theta \approx-74.2631^{\circ}$ (angle)
3.68705

Alternate forms:

$\frac{1}{4}(4-i \sqrt{2(52+\sqrt{2377})})$
$1-\frac{1}{2} i \sqrt{\frac{1}{2}(52+\sqrt{2377})}$
$1+$ root of $64 x^{4}+832 x^{2}+327$ near $x=-3.54885 i$

Minimal polynomial:

$64 x^{4}-256 x^{3}+1216 x^{2}-1920 x+1223$
$\left.\left.\left(\left(\left(\left(1-\operatorname{sqrt}\left(\left(((1+1 / 4(2 * 3)))^{\wedge} 2-1 / 32(408)-1 / 32(\operatorname{sqrt}(38032))\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 4-55 i+($ golden ratio) i

Input:

$\left(1-\sqrt{\left(1+\frac{1}{4}(2 \times 3)\right)^{2}-\frac{1}{32} \times 408-\frac{1}{32} \sqrt{38032}}\right)^{4}-55 i+\phi i$

Result:

$i \phi+-55 i+\left(1-i \sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}\right)^{4}$

Decimal approximation:

$84.0508011013711709689604386111978578060140271317272306163 \ldots+$
$111.203748236577129136527174054238412070089415979349593844 \ldots i$

Polar coordinates:

$r \approx 139.394$ (radius), $\quad \theta \approx 52.917^{\circ}$ (angle)
139.394 result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$$
\begin{aligned}
& \frac{1}{256}(-256 i \sqrt{2(52+\sqrt{2377})}+i 128 \sqrt{5}+224 \sqrt{2377}+ \\
& i 32 \sqrt{2(511420+10489 \sqrt{2377})}+10596-13952 i) \\
& i \phi+-55 i+\frac{1}{256}(\sqrt{2(52+\sqrt{2377})}+4 i)^{4} \\
& -55 i+\frac{1}{2} i(1+\sqrt{5})+\left(1-i \sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}\right)^{4}
\end{aligned}
$$

Minimal polynomial:

$79228162514264337593543950336 x^{16}$ -

$$
52468850625071557571324481110016 x^{15}+
$$

$$
25603209435281972755860841943793664 x^{14}-
$$

$$
7811659199744319292480648689116774400 x^{13}+
$$

$$
1889513057074708850625002823926260170752 x^{12}-
$$

$$
331445056901235858699716289180316137947136 x^{11}+
$$

$$
47408412254625986730031814559813076286177280 x^{10}-
$$

$$
5126006746536899430283499907416593546516365312 x^{9}+
$$

$$
485223526076130174516112041544827864936731377664 x^{8}-
$$

$$
35496972632655962563131854178692921904465860100096 x^{7}+
$$

$$
2542506261596162573979800117251627245182534906019840 x^{6}-
$$

$122685740194384795631175853162642773133485017715965952 x^{5}+$ $7309025101278312840883841728767300711022693629864968192 x^{4}-$ $208213217324652462788311546797027091890904626705224171520 x^{3}+$ 11033513561385470011447927667651262861637666903505862885376 $x^{2}-$
138643452011937923815051003108090761479435795558312273421312 $x+$
6862239017182423017112684822140702761241186549848175935164801

Expanded form:

$$
\begin{aligned}
& \left(\frac{2649}{64}-\frac{109 i}{2}\right)+\frac{i \sqrt{5}}{2}+\frac{7 \sqrt{2377}}{8}+ \\
& 22 i \sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}+\frac{1}{2} i \sqrt{2377\left(\frac{13}{2}+\frac{\sqrt{2377}}{8}\right)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left.1-\sqrt{\left(1+\frac{2 \times 3}{4}\right)^{2}-\frac{408}{32}-\frac{\sqrt{38032}}{32}}\right)^{4}-i 55+\phi i= \\
& -55 i+\phi i+\left(-1+\sqrt{-\frac{15}{2}-\frac{\sqrt{38032}}{32}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-\frac{15}{2}-\frac{\sqrt{38032}}{32}\right)^{-k}\right)^{4} \\
& \left(1-\sqrt{\left(1+\frac{2 \times 3}{4}\right)^{2}-\frac{408}{32}-\frac{\sqrt{38032}}{32}}\right)^{4}-i 55+\phi i= \\
& -55 i+\phi i+\left(-1+\sqrt{-\frac{15}{2}-\frac{\sqrt{38032}}{32}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-\frac{15}{2}-\frac{\sqrt{38032}}{32}\right)^{-k}}{k!}\right)^{4}
\end{aligned}
$$

$$
\left(1-\sqrt{\left(1+\frac{2 \times 3}{4}\right)^{2}-\frac{408}{32}-\frac{\sqrt{38032}}{32}}\right)^{4}-i 55+\phi i=
$$

$$
-55 i+\phi i+\left(-1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-\frac{13}{2}-\frac{\sqrt{38032}}{32}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$\left(\left(\left(\left(1-\operatorname{sqrt}\left(\left(\left((1+1 / 4(2 * 3))^{\wedge} 2-1 / 32(408)-1 / 32(\operatorname{sqrt}(38032))\right)\right)\right)\right)\right)\right)\right)^{\wedge} 4-55 \mathrm{i}-13 \mathrm{i}-\mathrm{Pi}^{*}{ }_{\mathrm{i}}$
Input:
$\left(1-\sqrt{\left(1+\frac{1}{4}(2 \times 3)\right)^{2}-\frac{1}{32} \times 408-\frac{1}{32} \sqrt{38032}}\right)^{4}-55 i-13 i-\pi i$

Result:

$-68 i+\left(1-i \sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}\right)^{4}-i \pi$

Decimal approximation:

$84.0508011013711709689604386111978578060140271317272306163 \ldots+$
$93.4441215942374410498599438365932710681719374001687251611 \ldots i$

Property:

$-68 i+\left(1-i \sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}\right)^{4}-i \pi$ is a transcendental number

Polar coordinates:

$r \approx 125.683$ (radius), $\theta \approx 48.0294^{\circ}$ (angle)
125.683 result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$$
\begin{aligned}
& \frac{1}{256}(-256 i \sqrt{2(52+\sqrt{2377})}+224 \sqrt{2377}+ \\
& \quad i 32 \sqrt{2} \sqrt{511420+10489 \sqrt{2377}}-256 i \pi+10596-17408 i)
\end{aligned}
$$

$$
-68 i+\frac{1}{256}(\sqrt{2(52+\sqrt{2377})}+4 i)^{4}-i \pi
$$

$$
\frac{1}{64}((2649-4352 i)+56 \sqrt{2377}+
$$

$$
352 i \sqrt{2(52+\sqrt{2377})}+8 i \sqrt{4754(52+\sqrt{2377})})-i \pi
$$

Expanded form:

$$
\left(\frac{2649}{64}-68 i\right)+\frac{7 \sqrt{2377}}{8}+22 i \sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}+\frac{1}{2} i \sqrt{2377\left(\frac{13}{2}+\frac{\sqrt{2377}}{8}\right)}-i \pi
$$

Series representations:

$$
\begin{aligned}
& \left(1-\sqrt{\left(1+\frac{2 \times 3}{4}\right)^{2}-\frac{408}{32}-\frac{\sqrt{38032}}{32}}\right)^{4}-i 55-i 13-i \pi= \\
& -68 i-i \pi+\left(-1+\sqrt{-\frac{15}{2}-\frac{\sqrt{38032}}{32}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-\frac{15}{2}-\frac{\sqrt{38032}}{32}\right)^{-k}\right)^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1-\sqrt{\left(1+\frac{2 \times 3}{4}\right)^{2}-\frac{408}{32}-\frac{\sqrt{38032}}{32}}\right)^{4}-i 55-i 13-i \pi= \\
& -68 i-i \pi+\left(-1+\sqrt{-\frac{15}{2}-\frac{\sqrt{38032}}{32}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-\frac{15}{2}-\frac{\sqrt{38032}}{32}\right)^{-k}}{k!}\right)^{4} \\
& \left(1-\sqrt{\left(1+\frac{2 \times 3}{4}\right)^{2}-\frac{408}{32}-\frac{\sqrt{38032}}{32}}\right)^{4}-i 55-i 13-i \pi= \\
& -68 i-i \pi+\left(-1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-\frac{13}{2}-\frac{\sqrt{38032}}{32}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{4} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

From:

Integrable Scalar Cosmologies I. Foundations and links with String Theory P. Fre , A. Sagnotti and A.S. Sorin - arXiv:1307.1910v3 [hep-th] 16 Oct 2013

Depending on the choice made for the real exponent γ, these potentials can describe barriers or wells of different shapes, and the presence of the second term restricts in general the domain to the region $\varphi>0$. For the sake of brevity and simplicity, we shall concentrate on a special but very significant case of potential wells, with $\gamma=\frac{1}{3}$, which affords relatively handy solutions in terms of elliptic functions. The potentials that we would like to discuss here in detail are thus
with $\lambda>0$, since a relative factor between the two exponentials can clearly be absorbed into a shift of φ. One can also assume, without any loss of generality, that $0<\gamma<1$, so that the first

$$
\begin{align*}
\mathcal{V}_{I I I a}(\varphi)= & \frac{\lambda}{16}\left[\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-6 \varphi / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-2 \varphi / 5}\right. \tag{5.17}\\
& \left.+\left(7-\frac{1}{\sqrt{3}}\right) e^{2 \varphi / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{6 \varphi / 5}\right] \tag{5.18}
\end{align*}
$$

From the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
We put for $\varphi>0 \varphi=4$ and for $\lambda>0 \lambda=0.9991104$, an obtain:
$0.9991104 / 16\left[(1-1 /(3 \mathrm{sqrt} 3)){ }^{*} \mathrm{e}^{\wedge}(-24 / 5)+(7+1 /(\mathrm{sqrt} 3)) \mathrm{e}^{\wedge}(-8 / 5)+(7-\right.$
$\left.1 /(\mathrm{sqrt} 3))^{*} \mathrm{e}^{\wedge}(8 / 5)+(1+1 /(3 \mathrm{sqrt} 3))^{*} \mathrm{e}^{\wedge}(24 / 5)\right]$

Input interpretation:

$$
\frac{0.9991104}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)
$$

Result:

11.13029..
11.13029...

Series representations:

$$
\begin{aligned}
& \frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right) 0.99911= \\
& \frac{1}{e^{24 / 5}}\left(0.0624444+0.437111 e^{16 / 5}+\right. \\
& \left.\quad 0.437111 e^{32 / 5}+0.0624444 e^{48 / 5}+\frac{0.0208148\left(-1+e^{16 / 5}\right)^{3}}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right) 0.99911= \\
& \frac{1}{e^{24 / 5}}\left(0.0624444+0.437111 e^{16 / 5}+\right. \\
& 0.437111 e^{32 / 5}+0.0624444 e^{48 / 5}+\frac{0.0208148\left(-1+e^{16 / 5}\right)^{3}}{\left.\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)} \\
& \frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right) 0.99911= \\
& \frac{1}{e^{24 / 5}}\left(0.0624444+0.437111 e^{16 / 5}+0.437111 e^{32 / 5}+\right. \\
& \left.0.0624444 e^{48 / 5}+\frac{0.0416296\left(-1+e^{16 / 5}\right)^{3} \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)
\end{aligned}
$$

$\left(\left(\left(\left(\left(0.9991104 / 16\left[(1-1 /(3 \mathrm{sqrt3})){ }^{2} \mathrm{e}^{\wedge}(-24 / 5)+(7+1 /(\mathrm{sqrt3})) \mathrm{e}^{\wedge}(-8 / 5)+(7-\right.\right.\right.\right.\right.\right.$ $1 /($ (qrt3) $\left.\left.\left.\left.\left.\left.){ }^{*} \mathrm{e}^{\wedge}(8 / 5)+(1+1 /(3 \mathrm{sqr} 3))^{*} \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)\right)\right)^{\wedge} 2+11+(1 /(\mathrm{sqr} 3))^{\wedge} 3$

Input interpretation:

$$
\begin{aligned}
\left(\frac{0.9991104}{16}\right. & \left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\right. \\
& \left.\left.\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right)^{2}+11+\left(\frac{1}{\sqrt{3}}\right)^{3}
\end{aligned}
$$

Result:

135.0758 .
135.0758... ≈ 135 (Ramanujan taxicab number)

Series representations:

$$
\begin{aligned}
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+11+\left(\frac{1}{\sqrt{3}}\right)^{3}=11+\frac{8 \sqrt{\pi}^{3}}{\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{3}}+ \\
& \left(0 . 0 0 1 7 3 3 0 2 \left(\left(-1+e^{16 / 5}\right)^{3} \sqrt{\pi}+\left(1.5+10.5 e^{16 / 5}+10.5 e^{32 / 5}+1.5 e^{48 / 5}\right)\right.\right. \\
& \left.\left.\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}\right) / \\
& \left(e^{48 / 5}\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}\right) \\
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+11+\left(\frac{1}{\sqrt{3}}\right)^{3}= \\
& \left(0 . 0 0 3 8 9 9 3 \left(256.456 e^{48 / 5}+0.111111 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}-\right.\right. \\
& 0.666667 e^{16 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+1.66667 e^{32 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 2.22222 e^{48 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+1.66667 e^{64 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 0.666667 e^{16} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+0.111111 e^{96 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 0.666667 \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}-2.66667 e^{16 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+ \\
& 7.33333 e^{32 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}-7.33333 e^{64 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+ \\
& 2.66667 e^{16} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+0.666667 e^{96 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+ \\
& \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+14 e^{16 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& 63 e^{32 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+2921.02 e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& 63 e^{64 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+14 e^{16} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& \left.\left.e^{96 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}\right)\right) /\left(e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+11+\left(\frac{1}{\sqrt{3}}\right)^{3}= \\
& \left(0 . 0 0 3 8 9 9 3 \left(256.456 e^{48 / 5}+0.111111 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}-\right.\right. \\
& 0.666667 e^{16 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.66667 e^{32 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 2.22222 e^{48 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.66667 e^{64 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 0.666667 e^{16} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+0.111111 e^{96 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 0.666667 \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}-2.66667 e^{16 / 5} \sqrt{2}^{2} \\
& \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+7.33333 e^{32 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}-7.33333 \\
& e^{64 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+2.66667 e^{16} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+ \\
& 0.666667 e^{96 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+\sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& 14 e^{16 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+63 e^{32 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& 2921.02 e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+63 e^{64 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+
\end{aligned}
$$

$$
\begin{aligned}
& \left(e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)
\end{aligned}
$$

$$
\left(\left(\left(\left(\left(0.9991104 / 16[(1-1 /(3 \mathrm{sqrt} 3)))^{*} \mathrm{e}^{\wedge}(-24 / 5)+(7+1 /(\mathrm{sqrt} 3))\right)^{*} \mathrm{e}^{\wedge}(-8 / 5)+(7-\right.\right.\right.\right.
$$

$1 /($ sqrt3 $\left.\left.\left.\left.\left.\left.))^{*} \mathrm{e}^{\wedge}(8 / 5)+(1+1 /(3 \mathrm{sqrt} 3))^{*} \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)\right)\right)^{\wedge} 2+13+(1 /(\mathrm{sqrt} 3))^{\wedge} 3+$ golden ratio $^{\wedge} 2$

Input interpretation:

$$
\begin{aligned}
& \frac{0.9991104}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\right. \\
& \left.\left.\quad\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right)^{2}+13+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi^{2}
\end{aligned}
$$

Result:

139.6938..
139.6938... result practically equal to the rest mass of Pion meson 139.57 MeV

Series representations:

$$
\begin{aligned}
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+13+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi^{2}= \\
& 13+\phi^{2}+\frac{8 \sqrt{\pi}^{3}}{\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{3}}+ \\
& \left(0 . 0 0 1 7 3 3 0 2 \left(\left(-1+e^{16 / 5}\right)^{3} \sqrt{\pi}+\left(1.5+10.5 e^{16 / 5}+10.5 e^{32 / 5}+1.5 e^{48 / 5}\right)\right.\right. \\
& \left.\left.\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)\right)^{2}\right) / \\
& \left(e^{48 / 5}\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+13+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi^{2}= \\
& \left(0 . 0 0 3 8 9 9 3 \left(256.456 e^{48 / 5}+0.111111 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}-\right.\right. \\
& 0.666667 e^{16 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+1.66667 e^{32 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 2.22222 e^{48 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+1.66667 e^{64 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 0.666667 e^{16} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+0.111111 e^{96 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 0.666667 \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}-2.66667 e^{16 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+ \\
& 7.33333 e^{32 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}- \\
& 7.33333 e^{64 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+2.66667 e^{16} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+ \\
& 0.666667 e^{96 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+\sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& 14 e^{16 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+63 e^{32 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& 3433.93 e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+63 e^{64 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& 14 e^{16} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+e^{96 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& \left.\left.256.456 e^{48 / 5} \phi^{2} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}\right)\right) /\left(e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+13+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi^{2}= \\
& \left(0 . 0 0 3 8 9 9 3 \left(256.456 e^{48 / 5}+0.111111 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}-\right.\right. \\
& 0.666667 e^{16 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.66667 e^{32 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 2.22222 e^{48 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.66667 e^{64 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 0.666667 e^{16} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+0.111111 e^{96 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 0.666667 \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}-2.66667 e^{16 / 5} \sqrt{2}^{2} \\
& \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+7.33333 e^{32 / 5}{\sqrt{2}^{2}}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}-7.33333 \\
& e^{64 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+2.66667 e^{16} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+ \\
& 0.666667 e^{96 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+\sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& 14 e^{16 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+63 e^{32 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& 3433.93 e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+63 e^{64 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& 14 e^{16} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+e^{96 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& \left.\left.256.456 e^{48 / 5} \phi^{2} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)\right) / \\
& \left(e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)
\end{aligned}
$$

$\left(\left(\left(\left(\left(0.9991104 / 16[(1-1 /(3 \mathrm{sqrt} 3)))^{*} \mathrm{e}^{\wedge}(-24 / 5)+(7+1 /(\mathrm{sqrt} 3))\right)^{*} \mathrm{e}^{\wedge}(-8 / 5)+(7-\right.\right.\right.\right.$
$1 /($ sqrt3) $\left.\left.\left.\left.\left.\left.))^{*} \mathrm{e}^{\wedge}(8 / 5)+(1+1 /(3 \mathrm{sqrt} 3))^{*} \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)\right)\right)^{\wedge} 2+(1 /(\text { sqrt3 }))^{\wedge} 3+$ golden ratio

Input interpretation:

$$
\begin{aligned}
& \frac{0.9991104}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\right. \\
& \left.\left.\quad\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi
\end{aligned}
$$

Result:

125.6938..
125.6938... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Series representations:

$$
\begin{aligned}
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi=\phi+\frac{8 \sqrt{\pi}^{3}}{\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{3}}+ \\
& \left(0 . 0 0 1 7 3 3 0 2 \left(\left(-1+e^{16 / 5}\right)^{3} \sqrt{\pi}+\left(1.5+10.5 e^{16 / 5}+10.5 e^{32 / 5}+1.5 e^{48 / 5}\right)\right.\right. \\
& \left.\left.\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}\right) / \\
& \left(e^{48 / 5}\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi= \\
& \left(0 . 0 0 3 8 9 9 3 \left(256.456 e^{48 / 5}+0.111111 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}-\right.\right. \\
& 0.666667 e^{16 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+1.66667 e^{32 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 2.22222 e^{48 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+1.66667 e^{64 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 0.666667 e^{16} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}+0.111111 e^{96 / 5} \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}- \\
& 0.666667 \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}-2.66667 e^{16 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+ \\
& 7.33333 e^{32 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}- \\
& 7.33333 e^{64 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+2.66667 e^{16} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+ \\
& 0.666667 e^{96 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+\sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& 14 e^{16 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+63 e^{32 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& 100 e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+63 e^{64 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& 14 e^{16} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+e^{96 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}+ \\
& \left.\left.256.456 e^{48 / 5} \phi \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}\right)\right) /\left(e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right. \\
& 0.99911)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi= \\
& \left(0 . 0 0 3 8 9 9 3 \left(256.456 e^{48 / 5}+0.111111 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}-\right.\right. \\
& 0.666667 e^{16 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.66667 e^{32 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 2.22222 e^{48 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.66667 e^{64 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 0.666667 e^{16} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+0.111111 e^{96 / 5} \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 0.666667 \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}-2.66667 e^{16 / 5} \sqrt{2}^{2} \\
& \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+7.33333 e^{32 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}- \\
& 7.33333 e^{64 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+2.66667 e^{16} \sqrt{2}^{2} \\
& \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+0.666667 e^{96 / 5} \sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+ \\
& \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+14 e^{16 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& 63 e^{32 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+100 e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& 63 e^{64 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+14 e^{16} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+ \\
& \left.\left.e^{96 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+256.456 e^{48 / 5} \phi \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)\right) / \\
& \left(e^{48 / 5} \sqrt{2}^{3}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)
\end{aligned}
$$

sqrt729*1/2(((()(((0.9991104/16[(1-1/(3sqrt3)))$\left.)^{e^{\wedge}(-24 / 5)+(7+1 /(s q r t 3))}\right)^{*} \mathrm{e}^{\wedge}(-8 / 5)+(7-$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.1 /(\mathrm{sqrt3}))^{*} \mathrm{e}^{\wedge}(8 / 5)+(1+1 /(3 \mathrm{sqr} 3))^{*} \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)\right)\right)^{\wedge} 2+4+(1 /(\mathrm{sqrt3}))^{\wedge} 2\right)\right)\right)-2$
where $729=9^{3}$ (see Ramanujan cubes)

Input interpretation:

$$
\begin{aligned}
& \sqrt{729} \times \frac{1}{2} \\
& \left(\left(\frac { 0 . 9 9 9 1 1 0 4 } { 1 6 } \left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right)\right.\right.\right. \\
& \left.\left.\left.e^{24 / 5}\right)\right)^{2}+4+\left(\frac{1}{\sqrt{3}}\right)^{2}\right)-2
\end{aligned}
$$

Result:

1728.925 .
1728.925...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Series representations:

$\frac{1}{2} \sqrt{729}\left(\left(\frac{1}{16} \times 0.99911\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\right.\right.\right.$

$$
\begin{gathered}
\left.\left.\left.\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right)^{2}+4+\left(\frac{1}{\sqrt{3}}\right)^{2}\right)-2= \\
-2+\frac{1}{2} \sqrt{728}\left(4+0.0038993\left(e^{8 / 5}\left(7-\frac{1}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}\right)+\frac{\left.1-\frac{1}{3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\left(\frac{1}{2}\right.} \begin{array}{l}
k
\end{array}\right)}{e^{24 / 5}}+\right.\right. \\
e^{24 / 5}\left(1+\frac{1}{\left.3 \sqrt{\sqrt{2} \sum_{k=0^{2}}^{\infty}\binom{\frac{1}{2}}{k}}\right)^{2}}+\right. \\
\left.\frac{\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}{\sqrt{2}^{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)}\right)^{2}\left(\sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}\right.
\end{gathered}
$$

$\frac{1}{2} \sqrt{729}\left(\left(\frac{1}{16} \times 0.99911\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\right.\right.\right.$ $\left.\left.\left.\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right)^{2}+4+\left(\frac{1}{\sqrt{3}}\right)^{2}\right)-2=-2+\frac{1}{2} \sqrt{728}$ $\left(4+0.0038993\left(e^{8 / 5}\left(7-\frac{1}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)+\frac{1-\frac{1}{3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{e^{24 / 5}}+\right.\right.$ $\left.e^{24 / 5}\left(1+\frac{1}{3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)+\frac{7+\frac{1}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{e^{8 / 5}}\right)^{2}+$ $\frac{1}{\sqrt{2}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}$
$\frac{1}{2} \sqrt{729}\left(\left(\frac{1}{16} \times 0.99911\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\right.\right.\right.$

$$
\begin{aligned}
& \left.\left.\left.\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)\right)^{2}+4+\left(\frac{1}{\sqrt{3}}\right)^{2}\right)-2= \\
& -2+\frac{1}{2} \sqrt{z_{0}}\left(4+0.0038993\left(e^{8 / 5}\left(7-\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)+\right.\right. \\
& \frac{1-\frac{1}{3 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}}{e^{24 / 5}}+ \\
& e^{24 / 5}\left(1+\frac{1}{3 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0} k^{k} z_{0}^{-k}\right.}{k!}}\right)+ \\
& \left.\frac{7+\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}}{e^{8 / 5}}\right)^{2}+ \\
& \left.\frac{1}{{\sqrt{z_{0}}}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0} k^{k} z_{0}^{-k}\right.}{k!}\right)^{2}}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(729-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$\left(\left(\left(\left(\left(() 0.9991104 / 16[(1-1 /(3 \mathrm{sqrt3})))^{*} \mathrm{e}^{\wedge}(-24 / 5)+(7+1 /(\mathrm{sqrt3}))^{*} \mathrm{e}^{\wedge}(-8 / 5)+(7-\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.1 /(\operatorname{sqrt} 3))^{*} \mathrm{e}^{\wedge}(8 / 5)+(1+1 /(3 \mathrm{sqrt} 3))^{*} \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 5$

Input interpretation:

$$
\sqrt[5]{\frac{0.9991104}{16}\left(\left(1-\frac{1}{3 \sqrt{3}}\right) e^{-24 / 5}+\left(7+\frac{1}{\sqrt{3}}\right) e^{-8 / 5}+\left(7-\frac{1}{\sqrt{3}}\right) e^{8 / 5}+\left(1+\frac{1}{3 \sqrt{3}}\right) e^{24 / 5}\right)}
$$

Result:

1.6192030...
$1.6192030 \ldots$ result that is a good approximation to the value of the golden ratio 1,618033988749...

Now, we have that:

$$
\begin{align*}
\mathcal{V}_{I I I b}(\varphi)= & \frac{\lambda}{16}\left[(2-18 \sqrt{3}) e^{-6 \varphi / 5}+(6+30 \sqrt{3}) e^{-2 \varphi / 5}\right. \tag{5.23}\\
& \left.+(6-30 \sqrt{3}) e^{2 \varphi / 5}+(2+18 \sqrt{3}) e^{6 \varphi / 5}\right] \tag{5.24}
\end{align*}
$$

We put for $\varphi>0 \varphi=4$ and for $\lambda>0 \lambda=0.9991104$, an obtain:
$0.9991104 / 16\left[(2-18(\operatorname{sqrt} 3))^{*} \mathrm{e}^{\wedge}(-24 / 5)+(6+30(\mathrm{sqrt} 3))^{*} \mathrm{e}^{\wedge}(-8 / 5)+(6-\right.$
$30($ sqrt 3$))^{*} \mathrm{e}^{\wedge}(8 / 5)+(2+18($ sqrt 3$\left.)){ }^{*} \mathrm{e}^{\wedge}(24 / 5)\right]$

Input interpretation:

$$
\begin{aligned}
& \frac{0.9991104}{16} \\
& \left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)
\end{aligned}
$$

Result:

238.2350...
238.235...

Series representations:

$$
\begin{gathered}
\frac{1}{16}\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right) \\
0.99911=\frac{1}{e^{24 / 5}}\left(0.124889\left(1 .+e^{16 / 5}\right)^{3}+\right. \\
\left.\left(-1.124+1.87333 e^{16 / 5}-1.87333 e^{32 / 5}+1.124 e^{48 / 5}\right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right) \\
\frac{1}{16}\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right) \\
0.99911=\frac{1}{e^{24 / 5}}\left(0.124889\left(1 .+e^{16 / 5}\right)^{3}+\right. \\
\left.\quad\left(-1.124+1.87333 e^{16 / 5}-1.87333 e^{32 / 5}+1.124 e^{48 / 5}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
\frac{1}{16}\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right) \\
0.99911=\frac{1}{e^{24 / 5} \sqrt{\pi}}\left(0.124889\left(1 .+e^{16 / 5}\right)^{3} \sqrt{\pi}+\right. \\
\left(-0.562+0.936666 e^{16 / 5}-0.936666 e^{32 / 5}+0.562 e^{48 / 5}\right) \\
\left.\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)
\end{gathered}
$$

$1 / 2 *\left(\left(\left(0.9991104 / 16\left[(2-18(\text { sqrt3) }))^{*} \mathrm{e}^{\wedge}(-24 / 5)+(6+30(\text { sqrt3 }))\right)^{*} \mathrm{e}^{\wedge}(-8 / 5)+(6-\right.\right.\right.$
$30($ sqrt 3$\left.\left.\left.\left.))^{*} \mathrm{e}^{\wedge}(8 / 5)+(2+18(\text { sqrt } 3))^{*} \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)+11+8-\mathrm{Pi}$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{2}\left(\frac { 0 . 9 9 9 1 1 0 4 } { 1 6 } \left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+\right.\right. \\
& \left.\left.\quad(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)\right)+11+8-\pi
\end{aligned}
$$

Result:

134.9759...
$134.9759 \ldots \approx 135$ (Ramanujan taxicab number) and practically equal to the rest mass of Pion meson 134.9766 MeV

Series representations:

$\frac{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)}{16 \times 2}$
$+11+8-\pi=$
$19+\frac{0.0624444}{e^{24 / 5}}+\frac{0.187333}{e^{8 / 5}}+0.187333 e^{8 / 5}+0.0624444 e^{24 / 5}-\pi+$
$\left(-0.562+0.936666 e^{16 / 5}-0.936666 e^{32 / 5}+0.562 e^{48 / 5}\right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}$
$e^{24 / 5}$
$\frac{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)}{16 \times 2}$
$+11+8-\pi=$
$19+\frac{0.0624444}{e^{24 / 5}}+\frac{0.187333}{e^{8 / 5}}+0.187333 e^{8 / 5}+0.0624444 e^{24 / 5}-\pi+$

$$
\left(-0.562+0.936666 e^{16 / 5}-0.936666 e^{32 / 5}+0.562 e^{48 / 5}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

$$
e^{24 / 5}
$$

$\frac{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)}{16 \times 2}$

$$
\begin{aligned}
& +11+8-\pi=\frac{1}{e^{24 / 5} \sqrt{\pi}} \\
& \left(\left(0.0624444+0.187333 e^{16 / 5}+0.187333 e^{32 / 5}+0.0624444 e^{48 / 5}+e^{24 / 5}(19-\pi)\right)\right. \\
& \quad \sqrt{\pi}+\left(-0.281+0.468333 e^{16 / 5}-0.468333 e^{32 / 5}+0.281 e^{48 / 5}\right) \\
& \left.\quad \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)
\end{aligned}
$$

$1 / 2 *\left(\left(\left(0.9991104 / 16\left[(2-18(\text { sqrt3) }))^{*} \mathrm{e}^{\wedge}(-24 / 5)+(6+30(\right.\right.\right.\right.$ sqrt3 $)){ }^{*} \mathrm{e}^{\wedge}(-8 / 5)+(6-$ $30($ sqrt3 $\left.\left.\left.\left.))^{*} \mathrm{e}^{\wedge}(8 / 5)+(2+18(\text { sqrt3 }))^{*} \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)+8-\mathrm{Pi}+$ golden ratio

Input interpretation:

$$
\begin{aligned}
& \frac{1}{2}\left(\frac { 0 . 9 9 9 1 1 0 4 } { 1 6 } \left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+\right.\right. \\
& \left.\left.\quad(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)\right)+8-\pi+\phi
\end{aligned}
$$

Result:

125.5939...
125.5939... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Series representations:

$\frac{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)}{16 \times 2}$

$$
\begin{aligned}
& 8+\frac{0.0624444}{e^{24 / 5}}+\frac{0.187333}{e^{8 / 5}}+0.187333 e^{8 / 5}+0.0624444 e^{24 / 5}+\phi-\pi+ \\
& \left(-0.562+0.936666 e^{16 / 5}-0.936666 e^{32 / 5}+0.562 e^{48 / 5}\right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k} \\
& \hline
\end{aligned}
$$

$$
e^{24 / 5}
$$

$\frac{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)}{16 \times 2}$

$$
\begin{gathered}
+8-\pi+\phi= \\
8+\frac{0.0624444}{e^{24 / 5}}+\frac{0.187333}{e^{8 / 5}}+0.187333 e^{8 / 5}+0.0624444 e^{24 / 5}+\phi-\pi+
\end{gathered}
$$

$$
\left(-0.562+0.936666 e^{16 / 5}-0.936666 e^{32 / 5}+0.562 e^{48 / 5}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

$$
e^{24 / 5}
$$

$\frac{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)}{16 \times 2}$

$$
\begin{aligned}
& +8-\pi+\phi= \\
& \frac{1}{e^{24 / 5} \sqrt{\pi}} \int\left(0.0624444+0.187333 e^{16 / 5}+0.187333 e^{32 / 5}+0.0624444 e^{48 / 5}+\right.
\end{aligned}
$$

$$
\left.e^{24 / 5}(8+\phi-\pi)\right) \sqrt{\pi}+
$$

$$
\left(-0.281+0.468333 e^{16 / 5}-0.468333 e^{32 / 5}+0.281 e^{48 / 5}\right)
$$

$$
\left.\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)
$$

$1 / 2^{*}\left(\left(\left(0.9991104 / 16\left[(2-18(\text { sqrt3) }))^{*}{ }^{\wedge}(-24 / 5)+(6+30(\text { sqrt3 }))^{*} \mathrm{e}^{\wedge}(-8 / 5)+(6-\right.\right.\right.\right.$ $30($ sqrt3 $))^{*} \mathrm{e}^{\wedge}(8 / 5)+\left(2+18(\right.$ sqrt3) $\left.\left.\left.\left.) * \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)+11-\mathrm{e}+1 /$ golden ratio

Input interpretation:

$\frac{1}{2}\left(\frac{0.9991104}{16}\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+\right.\right.$
$\left.\left.(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)\right)+11-e+\frac{1}{\phi}$

Result:

128.0173...
128.0173...

Series representations:

$$
\begin{aligned}
& \frac{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)}{16 \times 2} \\
& +11-e+\frac{1}{\phi}= \\
& 11+\frac{0.0624444}{e^{24 / 5}}+\frac{0.187333}{e^{8 / 5}}-e+0.187333 e^{8 / 5}+0.0624444 e^{24 / 5}+\frac{1}{\phi}+ \\
& \frac{\sum_{k=0}^{\infty} \frac{2^{-k}\left(-0.562+0.936666 e^{16 / 5}-0.936666 e^{32 / 5}+0.562 e^{48 / 5}\right)\binom{\frac{1}{2}}{k} \sqrt{2}}{e^{24 / 5}}}{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)} \\
& 16 \times 2 \\
& +11-e+\frac{1}{\phi}= \\
& 11+\frac{0.0624444}{e^{24 / 5}+\frac{0.187333}{e^{8 / 5}}-e+0.187333 e^{8 / 5}+0.0624444 e^{24 / 5}+\frac{1}{\phi}+} \\
& \left(-0.562+0.936666 e^{16 / 5}-0.936666 e^{32 / 5}+0.562 e^{48 / 5}\right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{e^{24 / 5}}{}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{0.99911\left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)}{16 \times 2} \\
& +11-e+\frac{1}{\phi}= \\
& 11+\frac{0.0624444}{e^{24 / 5}}+\frac{0.187333}{e^{8 / 5}}-e+0.187333 e^{8 / 5}+0.0624444 e^{24 / 5}+ \\
& \frac{1}{\phi}+\frac{1}{e^{24 / 5}}\left(-0.562+0.936666 e^{16 / 5}-0.936666 e^{32 / 5}+0.562 e^{48 / 5}\right) \\
& \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

sqrt729* $1 / 2^{*}\left(\left(\left(1 / 2^{*}\left(\left(\left(0.9991104 / 16\left[(2-18(\text { sqrt3) }))^{*} \mathrm{e}^{\wedge}(-24 / 5)+(6+30(\mathrm{sqrt3}))^{*} \mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.\right.\right.$ $8 / 5)+\left(6-30(\right.$ sqrt3) $){ }^{*} \mathrm{e}^{\wedge}(8 / 5)+\left(2+18(\right.$ sqrt3) $\left.\left.\left.\left.){ }^{*} \mathrm{e}^{\wedge}(24 / 5)\right]\right)\right)\right)+11-\mathrm{e}+1 /$ golden ratio $\left.\left.)\right)\right)+4 / 5$

Input interpretation:

$$
\begin{aligned}
\sqrt{729} \times & \frac{1}{2}\left(\frac { 1 } { 2 } \left(\frac { 0 . 9 9 9 1 1 0 4 } { 1 6 } \left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+\right.\right.\right. \\
& \left.\left.\left.(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)\right)+11-e+\frac{1}{\phi}\right)+\frac{4}{5}
\end{aligned}
$$

Result:

1729.033..
1729.033...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j -invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Series representations:

$$
\begin{aligned}
& \frac{1}{2} \sqrt{729}\left(\frac { 1 } { 2 \times 1 6 } 0 . 9 9 9 1 1 \left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+\right.\right. \\
& \left.\left.(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)+11-e+\frac{1}{\phi}\right)+\frac{4}{5}= \\
& \frac{1}{e^{24 / 5} \phi} 0.281\left(2.84698 e^{24 / 5} \phi+1.77936 e^{24 / 5} \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}+\right. \\
& 0.111111 \phi \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}+0.333333 e^{16 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}+ \\
& 19.573 e^{24 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}-1.77936 e^{29 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}+ \\
& 0.333333 e^{32 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}+ \\
& 0.111111 e^{48 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}- \\
& \phi\left(\sqrt{2} \sqrt{728} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} 2^{-k_{1}-3 k_{2}} \times 91^{-k_{2}}\binom{\frac{1}{2}}{k_{1}}\binom{\frac{1}{2}}{k_{2}}\right)+ \\
& 1.66667 e^{16 / 5} \phi \sqrt{2} \sqrt{728} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} 2^{-k_{1}-3 k_{2}} \times 91^{-k_{2}}\binom{\frac{1}{2}}{k_{1}}\binom{\frac{1}{2}}{k_{2}}- \\
& 1.66667 e^{32 / 5} \phi \sqrt{2} \sqrt{728} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} 2^{-k_{1}-3 k_{2}} \times 91^{-k_{2}}\binom{\frac{1}{2}}{k_{1}}\binom{\frac{1}{2}}{k_{2}}+ \\
& \left.e^{48 / 5} \phi \sqrt{2} \sqrt{728} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} 2^{-k_{1}-3 k_{2}} 91^{-k_{2}}\binom{\frac{1}{2}}{k_{1}}\binom{\frac{1}{2}}{k_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \sqrt{729}\left(\frac { 1 } { 2 \times 1 6 } 0 . 9 9 9 1 1 \left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+\right.\right. \\
& \left.\left.(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)+11-e+\frac{1}{\phi}\right)+\frac{4}{5}= \\
& \frac{1}{e^{24 / 5} \phi} 0.281\left(2.84698 e^{24 / 5} \phi+1.77936 e^{24 / 5} \sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& 0.111111 \phi \sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 0.333333 e^{16 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 19.573 e^{24 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& 1.77936 e^{29 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 0.333333 e^{32 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 0.111111 e^{48 / 5} \phi \sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& \phi\left(\sqrt{2} \sqrt{728} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 2^{-k_{1}-3 k_{2}} \times 91^{-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}\right)+ \\
& 1.66667 e^{16 / 5} \phi \sqrt{2} \sqrt{728} \\
& \begin{array}{l}
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 2^{-k_{1}-3 k_{2}} \times 91^{-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}-1.66667 e^{32 / 5} \\
\phi \sqrt{2} \sqrt{728} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 2^{-k_{1}-3 k_{2}} \times 91^{-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}+ \\
\left.e^{48 / 5} \phi \sqrt{2} \sqrt{728} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 2^{-k_{1}-3 k_{2}} \times 91^{-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \sqrt{729}\left(\frac { 1 } { 2 \times 1 6 } 0 . 9 9 9 1 1 \left((2-18 \sqrt{3}) e^{-24 / 5}+(6+30 \sqrt{3}) e^{-8 / 5}+\right.\right. \\
& \left.\left.(6-30 \sqrt{3}) e^{8 / 5}+(2+18 \sqrt{3}) e^{24 / 5}\right)+11-e+\frac{1}{\phi}\right)+\frac{4}{5}= \\
& \frac{1}{e^{24 / 5} \phi \sqrt{\pi}^{2}} 0.8\left(e^{24 / 5} \phi \sqrt{\pi}^{2}+0.3125 e^{24 / 5} \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)+\right. \\
& 0.0195139 \phi \sqrt{\pi} \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)+ \\
& 0.0585416 e^{16 / 5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)+ \\
& 3.4375 e^{24 / 5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)- \\
& 0.3125 e^{29 / 5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)+ \\
& 0.0585416 e^{32 / 5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)+ \\
& 0.0195139 e^{48 / 5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)-0.0878124 \phi \\
& \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\operatorname{Res}_{s=-\frac{1}{2}+j_{1}} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)\left(\text { Res }_{s=-\frac{1}{2}+j_{2}} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)+ \\
& 0.146354 e^{16 / 5} \phi \\
& \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\text { Res }_{s=-\frac{1}{2}+j_{1}} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)\left(\text { Res }_{s=-\frac{1}{2}+j_{2}} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)- \\
& 0.146354 e^{32 / 5} \phi \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\operatorname{Res}_{s=-\frac{1}{2}+j_{1}} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
& \left(\text { Res }_{s=-\frac{1}{2}+j_{2}} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)+0.0878124 e^{48 / 5} \phi \\
& \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\operatorname{Res}_{s=-\frac{1}{2}+j_{1}} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)\left(\operatorname{Res}_{s=-\frac{1}{2}+j_{2}} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)
\end{aligned}
$$

Now, we have that:

$$
\begin{align*}
\mathcal{V}_{V a}(\varphi) & =\lambda\left[a \cosh ^{\frac{4}{3}}\left(\frac{3 \varphi}{5}\right)+b \frac{\sinh ^{2}\left(\frac{3 \varphi}{5}\right)}{\cosh ^{\frac{2}{3}}\left(\frac{3 \varphi}{5}\right)}\right] \\
& =\frac{a-b+(a+b) \cosh \left(\frac{6 \varphi}{5}\right)}{2 \cosh ^{\frac{2}{3}}\left(\frac{3 \varphi}{5}\right)}, \tag{5.29}
\end{align*}
$$

We put for $\varphi>0 \varphi=4$ and for $\lambda>0 \lambda=0.9991104$, and $\mathrm{a}=138, \mathrm{~b}=135$ and obtain:
$((138-135+(138+135) \cosh (24 / 5))) /\left(\left(2 \cosh ^{\wedge}(2 / 3)(12 / 5)\right)\right)$

Input:

$\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}$

Exact result:

$$
\frac{3+273 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}
$$

Decimal approximation:

2644.031410843619594106656897494426919135475769955533719560...
2644.03141084...

Alternate forms:

$\frac{3\left(1+91 \cosh \left(\frac{24}{5}\right)\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}$
$\frac{3}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\frac{273 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}$
$\frac{3\left(91+2 e^{24 / 5}+91 e^{48 / 5}\right)}{2 \sqrt[3]{2} e^{16 / 5}\left(1+e^{24 / 5}\right)^{2 / 3}}$

Alternative representations:

$\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3+273 \cos \left(\frac{24 i}{5}\right)}{2 \cos ^{2 / 3}\left(\frac{12 i}{5}\right)}$
$\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3+273 \cos \left(-\frac{24 i}{5}\right)}{2 \cos ^{2 / 3}\left(-\frac{12 i}{5}\right)}$

$$
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3+\frac{273}{\sec \left(\frac{24 i}{5}\right)}}{2\left(\frac{1}{\sec \left(\frac{12 i}{5}\right)}\right)^{2 / 3}}
$$

Series representations:

$$
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3\left(1+91 \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}}
$$

$$
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3\left(1+91 \sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{24}{5}-z_{0}\right)^{k}}{k!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}}{k!}\right)^{2 / 3}}
$$

$$
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3\left(1+91 I_{0}\left(\frac{24}{5}\right)+182 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{24}{5}\right)\right)}{2\left(I_{0}\left(\frac{12}{5}\right)+2 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{12}{5}\right)\right)^{2 / 3}}
$$

Integral representations:

$$
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3\left(1+91 \int_{\frac{i \pi}{5}}^{\frac{24}{5}} \sinh (t) d t\right)}{2\left(\int_{\frac{i \pi}{2}}^{\frac{12}{5}} \sinh (t) d t\right)^{2 / 3}}
$$

$$
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{6\left(115+546 \int_{0}^{1} \sinh \left(\frac{24 t}{5}\right) d t\right)}{\sqrt[3]{5}\left(5+12 \int_{0}^{1} \sinh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}= \\
& \frac{3 \sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s}\left(2 i \sqrt{\pi}+91 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{144 /(25 s)+s}}{\sqrt{s}} d s\right)}{2 \sqrt[3]{2} \sqrt[6]{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s} \text { for } \gamma>0
\end{aligned}
$$

$((138-135+(138+135) \cosh (24 / 5))) /\left(\left(2 \cosh ^{\wedge}(2 / 3)(12 / 5)\right)\right)+$ golden ratio

Input:

$\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi$
$\cosh (x)$ is the hyperbolic cosine function

Exact result:

$\phi+\frac{3+273 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}$

Decimal approximation:

2645.649444832369488954861484328792557253196079135339482422...
$2645.649444832 \ldots$ result practically equal to the rest mass of charmed Xi baryon 2645.9

Alternate forms:

$\frac{1}{2}+\frac{\sqrt{5}}{2}+\frac{3}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\frac{273 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}$
$\frac{3+\cosh ^{2 / 3}\left(\frac{12}{5}\right)+\sqrt{5} \cosh ^{2 / 3}\left(\frac{12}{5}\right)+273 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}$
$\phi+\frac{e^{8 / 5}\left(\frac{3}{\sqrt[3]{2}}+\frac{273}{2 \sqrt[3]{2} e^{24 / 5}}+\frac{273 e^{24 / 5}}{2 \sqrt[3]{2}}\right)}{\left(1+e^{24 / 5}\right)^{2 / 3}}$

Alternative representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi=\phi+\frac{3+273 \cos \left(\frac{24 i}{5}\right)}{2 \cos ^{2 / 3}\left(\frac{12 i}{5}\right)} \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi=\phi+\frac{3+273 \cos \left(-\frac{24 i}{5}\right)}{2 \cos ^{2 / 3}\left(-\frac{12 i}{5}\right)}
\end{aligned}
$$

$$
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi=\phi+\frac{3+\frac{273}{\sec \left(\frac{24 i}{5}\right)}}{2\left(\frac{1}{\sec \left(\frac{12 i}{5}\right)}\right)^{2 / 3}}
$$

Series representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi= \\
& 3+\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}+\sqrt{5}\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}+273 \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!} \\
& 2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi= \\
& \left(3+273 I_{0}\left(\frac{24}{5}\right)+\left(I_{0}\left(\frac{12}{5}\right)+2 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{12}{5}\right)\right)^{2 / 3}+\sqrt{5}\left(I_{0}\left(\frac{12}{5}\right)+2 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{12}{5}\right)\right)^{2 / 3}+\right. \\
& \left.546 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{24}{5}\right)\right) /\left(2\left(I_{0}\left(\frac{12}{5}\right)+2 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{12}{5}\right)\right)^{2 / 3}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi=\left(3+\left(\sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}}{k!}\right)^{2 / 3}+\right. \\
\sqrt{5}\left(\sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}}{k!}\right)^{2 / 3}+ \\
\left.273 \sum_{k=0}^{\infty} \frac{\left.(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{24}{5}-z_{0}\right)^{k}\right)}{k!}\right) / \\
\left(\sum_{k=0}^{\infty} \frac{\left.\left.(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}\right)^{2 / 3}\right)}{k!}\right)
\end{gathered}
$$

Integral representations:

$\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi=$
$\left(1380 \times 5^{2 / 3}+5\left(5+12 \int_{0}^{1} \sinh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+5 \sqrt{5}\left(5+12 \int_{0}^{1} \sinh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+\right.$ $\left.6552 \times 5^{2 / 3} \int_{0}^{1} \sinh \left(\frac{24 t}{5}\right) d t\right) /\left(10\left(5+12 \int_{0}^{1} \sinh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}\right)$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\phi= \\
& \left(6 i 2^{2 / 3} \sqrt{\pi} \sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s+2 \sqrt[6]{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s+}\right. \\
& 2 \sqrt{5} \sqrt[6]{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s+273 \times 2^{2 / 3} \sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}}} d s \\
& \left.\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{144 /(25 s)+s}}{\sqrt{s}} d s\right) /\left(4 \sqrt[6]{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s\right) \text { for } \gamma>0
\end{aligned}
$$

$\left(\left(\left(1 / 3((138-135+(138+135) \cosh (24 / 5))) /\left(\left(2 \cosh ^{\wedge}(2 / 3)(12 / 5)\right)\right)\right)\right)\right)-76+7-34^{*} 1 / 10^{\wedge} 2$

Input:

$\frac{1}{3} \times \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-76+7-34 \times \frac{1}{10^{2}}$

Exact result:

$\frac{3+273 \cosh \left(\frac{24}{5}\right)}{6 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-\frac{3467}{50}$

Decimal approximation:

812.0038036145398647022189658314756397118252566518445731867...
$812.0038036145 \ldots \approx 812$ (Ramanujan taxicab number)

Alternate forms:

$$
\begin{aligned}
& -\frac{-25+3467 \cosh ^{2 / 3}\left(\frac{12}{5}\right)-2275 \cosh \left(\frac{24}{5}\right)}{50 \cosh ^{2 / 3}\left(\frac{12}{5}\right)} \\
& -\frac{3467}{50}+\frac{1}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\frac{91 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)} \\
& \frac{91 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-\frac{3467 \cosh ^{2 / 3}\left(\frac{12}{5}\right)-25}{50 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{\left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3}-76+7-\frac{34}{10^{2}}=-69-\frac{34}{10^{2}}+\frac{3+273 \cos \left(\frac{24 i}{5}\right)}{3\left(2 \cos ^{2 / 3}\left(\frac{12 i}{5}\right)\right)} \\
& \left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3 \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{138-135+(138+135) \cosh \left(\frac{24}{5}\right)} \\
& \left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3
\end{aligned}-76+7-\frac{34}{10^{2}}=-69-\frac{34}{10^{2}}+\frac{3+273 \cos \left(-\frac{24 i}{5}\right)}{3\left(2 \cos ^{2 / 3}\left(-\frac{12 i}{5}\right)\right)}
$$

Series representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{\left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3}-76+7-\frac{34}{10^{2}}= \\
& -\frac{-25+3467\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}-2275 \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!}}{50\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{\left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3}-76+7-\frac{34}{10^{2}}= \\
& -\frac{-25-2275 I_{0}\left(\frac{24}{5}\right)+3467\left(I_{0}\left(\frac{12}{5}\right)+2 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{12}{5}\right)\right)^{2 / 3}-4550 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{24}{5}\right)}{50\left(I_{0}\left(\frac{12}{5}\right)+2 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{12}{5}\right)\right)^{2 / 3}} \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{\left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3}-76+7-\frac{34}{10^{2}}= \\
& -\frac{-25+3467\left(\sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}}{k!}\right)^{2 / 3}-2275 \sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{24}{5}-z_{0}\right)^{k}}{k!}}{50\left(\sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}}{k!}\right)^{2 / 3}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{\left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3}-76+7-\frac{34}{10^{2}}= \\
& -\frac{-25+3467\left(\int_{\frac{i \pi}{2}}^{\frac{12}{5}} \sinh (t) d t\right)^{2 / 3}-2275 \int_{\frac{i \pi}{2}}^{\frac{24}{5}} \sinh (t) d t}{50\left(\int_{\frac{i \pi}{2}}^{\frac{12}{5}} \sinh (t) d t\right)^{2 / 3}} \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{\left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3}-76+7-\frac{34}{10^{2}}= \\
& \frac{2300 \times 5^{2 / 3}-3467\left(5+12 \int_{0}^{1} \sinh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+10920 \times 5^{2 / 3} \int_{0}^{1} \sinh \left(\frac{24 t}{5}\right) d t}{50\left(5+12 \int_{0}^{1} \sinh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{\left(2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)\right) 3}-76+7-\frac{34}{10^{2}}= \\
& \left(50 i 2^{2 / 3} \sqrt{\pi} \sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s-6934 \sqrt[6]{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s+}\right. \\
& \left.2275 \times 2^{2 / 3} \sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}}} d s \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{144 /(25 s)+s}}{\sqrt{s}} d s\right) / \\
& \left(100 \sqrt[6]{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s\right) \text { for } \gamma>0
\end{aligned}
$$

$(((138-135+(138+135) \cosh (24 / 5))) /((2 \cosh \wedge(2 / 3)(12 / 5))))-843-76+4$

Input:

$\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4$

Exact result:

$$
\frac{3+273 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-915
$$

Decimal approximation:

1729.031410843619594106656897494426919135475769955533719560...
1729.031410843...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternate forms:

$$
\begin{aligned}
& -915+\frac{3}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}+\frac{273 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)} \\
& -\frac{3\left(-1+610 \cosh ^{2 / 3}\left(\frac{12}{5}\right)-91 \cosh \left(\frac{24}{5}\right)\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)} \\
& \frac{273 \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-\frac{3\left(610 \cosh ^{2 / 3}\left(\frac{12}{5}\right)-1\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4=-915+\frac{3+273 \cos \left(\frac{24 i}{5}\right)}{2 \cos ^{2 / 3}\left(\frac{12 i}{5}\right)} \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4=-915+\frac{3+273 \cos \left(-\frac{24 i}{5}\right)}{2 \cos ^{2 / 3}\left(-\frac{12 i}{5}\right)} \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4=-915+\frac{3+\frac{273}{\operatorname{scc}\left(\frac{24 i}{5}\right)}}{2\left(\frac{1}{\operatorname{scc}\left(\frac{12 i}{5}\right)}\right)^{2 / 3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4= \\
& -\frac{3\left(-1+610\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}-91 \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4= \\
& -\frac{3\left(-1-91 I_{0}\left(\frac{24}{5}\right)+610\left(I_{0}\left(\frac{12}{5}\right)+2 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{12}{5}\right)\right)^{2 / 3}-182 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{24}{5}\right)\right)}{2\left(I_{0}\left(\frac{12}{5}\right)+2 \sum_{k=1}^{\infty} I_{2 k}\left(\frac{12}{5}\right)\right)^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4= \\
& -\frac{3\left(-1+610\left(\sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}}{k!}\right)^{2 / 3}-91 \sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{24}{5}-z_{0}\right)^{k}}{k!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{(-i)^{k} \cos \left(\frac{k \pi}{2}-i z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}}{k!}\right)^{2 / 3}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4= \\
& -\frac{3\left(-1+610\left(\int_{\frac{i \pi}{5}}^{\frac{12}{5}} \sinh (t) d t\right)^{2 / 3}-91 \int_{\frac{\pi}{2}}^{\frac{24}{5}} \sinh (t) d t\right)}{2\left(\int_{\frac{i \pi}{2}}^{\frac{12}{5}} \sinh (t) d t\right)^{2 / 3}} \\
& \begin{array}{l}
\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4= \\
\frac{3\left(230 \times 5^{2 / 3}-1525\left(5+12 \int_{0}^{1} \sinh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+1092 \times 5^{2 / 3} \int_{0}^{1} \sinh \left(\frac{24 t}{5}\right) d t\right)}{5\left(5+12 \int_{0}^{1} \sinh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}}
\end{array} \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-843-76+4= \\
& \left(3 \left(2 i 2^{2 / 3} \sqrt{\pi} \sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s}-1220 \sqrt[6]{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s+\right.\right. \\
& \left.91 \times 2 / 2 / 3 \sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{144 /(25 s)+s}}{\sqrt{s}} d s\right) / \\
& \left(4 \sqrt[6]{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s\right) \text { for } \gamma>0
\end{aligned}
$$

$\left(((138-135+(138+135) \cosh (24 / 5))) /\left(\left(2 \cosh ^{\wedge}(2 / 3)(12 / 5)\right)\right)\right)-(2452.9-1535)$
where 2452.9 and 1535 are the rest mass of the charmed Sigma baryon and Xi baryon

Input interpretation:
$\frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)$

Result:

1726.13...
$1726.13 \ldots$ result very near to the mass of candidate glueball $f_{0}(1710)$ meson.

Alternative representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)=-917.9+\frac{3+273 \cos \left(\frac{24 i}{5}\right)}{2 \cos ^{2 / 3}\left(\frac{12 i}{5}\right)} \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)=-917.9+\frac{3+273 \cos \left(-\frac{24 i}{5}\right)}{2 \cos ^{2 / 3}\left(-\frac{12 i}{5}\right)} \\
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)=-917.9+\frac{3+\frac{273}{\operatorname{scc}\left(\frac{24 i}{5}\right)}}{2\left(\frac{1}{\operatorname{scc}\left(\frac{12 i}{5}\right)}\right)^{2 / 3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)= \\
& -\frac{917.9\left(-0.00163416+\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}-0.148709 \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!}\right)}{\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2 k)!}\right)^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)= \\
& -\left(\left(9 1 7 . 9 \left(-0.00163416+\left(\sum_{k=0}^{\infty} \frac{(-i)^{k} \cosh \left(\frac{i k \pi}{2}+z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}}{k!}\right)^{2 / 3}-\right.\right.\right. \\
& \left.0.148709 \sum_{k=0}^{\infty} \frac{\left.(-i)^{k} \cosh \left(\frac{i k \pi}{2}+z_{0}\right)\left(\frac{24}{5}-z_{0}\right)^{k}\right)}{k!}\right) / \\
& \left.\left(\sum_{k=0}^{\infty} \frac{\left.\left.(-i)^{k} \cosh \left(\frac{i k \pi}{2}+z_{0}\right)\left(\frac{12}{5}-z_{0}\right)^{k}\right)^{2 / 3}\right)}{k!}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)= \\
& \frac{1}{i \sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}} 136.5\left(-6.72454 i \sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\right. \\
& \left.0.010989 \sqrt[3]{i \sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}}+i \sqrt[3]{i \sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}} \sum_{k=0}^{\infty} \frac{\left(\frac{24}{5}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)= \\
& -\frac{917.9\left(-0.00163416+\left(\int_{\frac{i \pi}{2}}^{\frac{12}{5}} \sinh (t) d t\right)^{2 / 3}-0.148709 \int_{\frac{i \pi}{2}}^{\frac{24}{5}} \sinh (t) d t\right)}{\left(\int_{\frac{i \pi}{2}}^{\frac{12}{5}} \sinh (t) d t\right)^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{138-135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \cosh ^{2 / 3}\left(\frac{12}{5}\right)}-(2452.9-1535)= \\
& \left(1 . 5 \left(-611.933 \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s+1.5874 i \pi \sqrt[3]{\frac{\sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s+}\right.\right. \\
& \left.\left.72.2267\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{144 /(25 s)+s}}{\sqrt{s}} d s\right) \sqrt{\pi} \sqrt[3]{\frac{\sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s}\right)\right) / \\
& \quad\left(\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{36 /(25 s)+s}}{\sqrt{s}} d s\right) \text { for } \gamma>0
\end{aligned}
$$

From

$$
\begin{align*}
\mathcal{V}_{V b}(\varphi) & =\lambda\left[a \sinh ^{\frac{4}{3}}\left(\frac{3 \varphi}{5}\right)+b \frac{\cosh ^{2}\left(\frac{3 \varphi}{5}\right)}{\sinh ^{\frac{2}{3}}\left(\frac{3 \varphi}{5}\right)}\right] \\
& =\frac{-a+b+(a+b) \cosh \left(\frac{6 \varphi}{5}\right)}{2 \sinh ^{\frac{2}{3}}\left(\frac{3 \varphi}{5}\right)} \tag{5.33}
\end{align*}
$$

We obtain:
for $\varphi>0 \varphi=4$ and for $\lambda>0 \lambda=0.9991104$, and $\mathrm{a}=138, \mathrm{~b}=135$ and obtain:
$((-138+135+(138+135) \cosh (24 / 5))) /\left(\left(2 \sinh ^{\wedge}(2 / 3)(12 / 5)\right)\right)$

Input:

$\frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}$
$\sinh (x)$ is the hyperbolic sine function

Exact result:

$\frac{273 \cosh \left(\frac{24}{5}\right)-3}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}$

Decimal approximation:

2672.237998872641217733820876740236691949476671178658401997...
2672.23799887...

Alternate forms:

$\frac{3\left(91 \cosh \left(\frac{24}{5}\right)-1\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}$
$\frac{273 \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}-\frac{3}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}$
$\frac{3\left(91-2 e^{24 / 5}+91 e^{48 / 5}\right)}{2 \sqrt[3]{2} e^{16 / 5}\left(e^{24 / 5}-1\right)^{2 / 3}}$

Alternative representations:

$$
\begin{aligned}
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{-3+273 \cos \left(\frac{24 i}{5}\right)}{2\left(\frac{1}{2}\left(-e^{-12 / 5}+e^{12 / 5}\right)\right)^{2 / 3}} \\
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{-3+273 \cos \left(-\frac{24 i}{5}\right)}{2\left(\frac{1}{2}\left(-e^{-12 / 5}+e^{12 / 5}\right)\right)^{2 / 3}}
\end{aligned}
$$

$$
\frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{-3+273 \cos \left(-\frac{24 i}{5}\right)}{2\left(i \cos \left(\frac{\pi}{2}+\frac{12 i}{5}\right)\right)^{2 / 3}}
$$

Series representations:

$$
\begin{aligned}
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3\left(-1+91 \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}} \\
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{3 i\left(i+91 \sum_{k=0}^{\infty} \frac{\left(\frac{24}{5}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}} \\
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}=-\frac{3 i\left(-1+91 \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!}\right) \sqrt[3]{i \sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}-\frac{i \pi}{2}\right)^{2 k}}{(2 k)!}}}{2 \sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}-\frac{i \pi}{2}\right)^{2 k}}{(2 k)!}}
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
\frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{\sqrt[3]{\frac{3}{10}}\left(75+364 \int_{0}^{1} \sinh \left(\frac{24 t}{5}\right) d t\right)}{2\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}} \\
\frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}=\frac{\sqrt[3]{\frac{3}{2}} 5^{2 / 3}\left(-1+91 \int_{i \pi}^{\frac{24}{5}} \sinh (t) d t\right)}{2\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}} \\
\frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}= \\
-\frac{\sqrt[3]{\frac{3}{2}} 5^{2 / 3}\left(2 \sqrt{\pi}+91 i \int_{-i \infty+\gamma}^{i \infty} \frac{e^{144 /(25 s)+s}}{\sqrt{s}} d s\right)}{8 \sqrt{\pi}\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}}
\end{gathered}
$$

$((-138+135+(138+135) \cosh (24 / 5))) /((2 \sinh \wedge(2 / 3)(12 / 5)))+21+\mathrm{Pi}-1 /$ golden ratio

Input:

$\frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}+21+\pi-\frac{1}{\phi}$
$\sinh (x)$ is the hyperbolic sine function

Exact result:

$-\frac{1}{\phi}+21+\pi+\frac{273 \cosh \left(\frac{24}{5}\right)-3}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}$

Decimal approximation:

2695.761557537481116124078933289150556715953531398227744956
2695.7615575 ... result practically equal to the rest mass of charmed Omega baryon 2695.2

Alternate forms:

$-\frac{1}{\phi}+21+\pi+\frac{3\left(91 \cosh \left(\frac{24}{5}\right)-1\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}$
$\frac{1}{2}(43-\sqrt{5})+\pi+\frac{273 \cosh \left(\frac{24}{5}\right)-3}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}$
$21-\frac{2}{1+\sqrt{5}}+\pi-\frac{3}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}+\frac{273 \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}$

Alternative representations:

$\frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}+21+\pi-\frac{1}{\phi}=21+\pi-\frac{1}{\phi}+\frac{-3+273 \cos \left(\frac{24 i}{5}\right)}{2\left(\frac{1}{2}\left(-e^{-12 / 5}+e^{12 / 5}\right)\right)^{2 / 3}}$

$$
\begin{aligned}
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}+21+\pi-\frac{1}{\phi}=21+\pi-\frac{1}{\phi}+\frac{-3+273 \cos \left(-\frac{24 i}{5}\right)}{2\left(\frac{1}{2}\left(-e^{-12 / 5}+e^{12 / 5}\right)\right)^{2 / 3}} \\
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}+21+\pi-\frac{1}{\phi}=21+\pi-\frac{1}{\phi}+\frac{-3+273 \cos \left(-\frac{24 i}{5}\right)}{2\left(i \cos \left(\frac{\pi}{2}+\frac{12 i}{5}\right)\right)^{2 / 3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}+21+\pi-\frac{1}{\phi}= \\
& \left(-3-3 \sqrt{5}+273 \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!}+273 \sqrt{5} \sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2 k)!}+38\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}+\right. \\
& \left.42 \sqrt{5}\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}+2 \pi\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}+2 \sqrt{5} \pi\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}\right) / \\
& \left(2(1+\sqrt{5})\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}\right) / \\
& -138+135+(138+135) \cosh \left(\frac{24}{5}\right) \\
& 2 \sinh ^{2 / 3}\left(\frac{12}{5}\right) \\
& \left(21+\pi-\frac{1}{\phi}=\right. \\
& -3-3 \sqrt{5}+38\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}+42 \sqrt{5}\left(\sum_{k=0}^{\infty} \frac{\left.\left(\frac{12}{5}\right)^{1+2 k}\right)^{2 / 3}}{(1+2 k)!}\right)^{2 / 3}+ \\
& 2 \pi\left(\sum_{k=0}^{\infty} \frac{\left.\left(\frac{12}{5}\right)^{1+2 k}\right)^{2 / 3}}{(1+2 k)!}+2 \sqrt{5} \pi\left(\sum_{k=0}^{\infty} \frac{\left.\left(\frac{12}{5}\right)^{1+2 k}\right)^{2 / 3}}{(1+2 k)!}+273 i \sum_{k=0}^{\infty} \frac{\left(\frac{24}{5}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\right.\right. \\
& \left.273 i \sqrt{5} \sum_{k=0}^{\infty} \frac{\left(\frac{24}{5}-\frac{i \pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right) /\left(2(1+\sqrt{5})\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}+21+\pi-\frac{1}{\phi}= \\
& \left(-3-3 \sqrt{5}+38\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}+42 \sqrt{5}\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}+2 \pi\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}+\right. \\
& 2 \sqrt{5} \pi\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}+273 \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{\left(-\frac{144}{25}\right)^{-s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}+ \\
& \left.273 \sqrt{5 \pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{\left(-\frac{144}{25}\right)^{-s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) /\left(2(1+\sqrt{5})\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2 k}}{(1+2 k)!}\right)^{2 / 3}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{} \begin{array}{l}
2 \sinh ^{2 / 3}\left(\frac{12}{5}\right) \\
\left(1125 \times 21+\pi-\frac{1}{\phi}=\right. \\
380\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+420 \sqrt{5}\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+ \\
20 \pi\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+20 \sqrt{5} \pi\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+ \\
\left.5460 \times 2^{2 / 3} \sqrt[3]{3} \sqrt[6]{5} \int_{0}^{1} \sinh \left(\frac{24 t}{5}\right) d t+1092 \sqrt[3]{3} 10^{2 / 3} \int_{0}^{1} \sinh \left(\frac{24 t}{5}\right) d t\right) / \\
-138+135+(138+135) \cosh \left(\frac{24}{5}\right) \\
\left(20(1+\sqrt[6]{5})(1-\sqrt[6]{5}+\sqrt[3]{5})\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}\right) \\
2 \sinh \\
\hline 2 / 3\left(\frac{12}{5}\right) \\
\left(-5 \times 2^{2 / 3} \sqrt[3]{3} \sqrt[6]{5}-\sqrt[3]{3} 10^{2 / 3}+152\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+\right. \\
168 \sqrt{5}\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+ \\
8 \pi\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+8 \sqrt{5} \pi\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}+ \\
455 \times 2^{2 / 3} \sqrt[3]{3} \sqrt[6]{5} \int_{\frac{i \pi}{5}}^{25} \\
\sinh (t) d t+91 \sqrt[3]{3} 10^{2 / 3} \int_{i \frac{i \pi}{5}}^{24} \\
\sinh (t) d t) /
\end{array} \\
& \left(8(1+\sqrt[6]{5})(1-\sqrt[6]{5}+\sqrt[3]{5})\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-138+135+(138+135) \cosh \left(\frac{24}{5}\right)}{2 \sinh ^{2 / 3}\left(\frac{12}{5}\right)}+21+\pi-\frac{1}{\phi}= \\
& -\left(\left(10 \times 2^{2 / 3} \sqrt[3]{3} \sqrt[6]{5} \sqrt{\pi}+2 \sqrt[3]{3} 10^{2 / 3} \sqrt{\pi}+455 i 2^{2 / 3} \sqrt[3]{3} \sqrt[6]{5}\right.\right. \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{144 /(25 s)+s}}{\sqrt{s}} d s+91 i \sqrt[3]{3} 10^{2 / 3} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{144 /(25 s)+s}}{\sqrt{s}} d s- \\
& 304 \sqrt{\pi}\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}-16 \pi^{3 / 2}\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}- \\
& \left.16 \sqrt{5} \pi^{3 / 2}\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}-336 \sqrt{5 \pi}\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}\right) / \\
& \left.\left(16(1+\sqrt[6]{5})(1-\sqrt[6]{5}+\sqrt[3]{5}) \sqrt{\pi}\left(\int_{0}^{1} \cosh \left(\frac{12 t}{5}\right) d t\right)^{2 / 3}\right)\right) \text { for } \gamma>0
\end{aligned}
$$

Now:

It is thus convenient to define the two fields

$$
\begin{align*}
& \Phi_{t}=\sqrt{\frac{d-2}{2(d-1)}}\left(\frac{3}{2} \phi-\frac{10-d}{d-2} \sigma\right) \tag{6.7}\\
& \Phi_{s}=\sqrt{\frac{10-d}{2(d-1)}}\left(\frac{1}{2} \phi+3 \sigma\right) \tag{6.8}
\end{align*}
$$

One can add to this discussion a further degree of freedom, allowing for an off-critical bulk of dimension d. Confining our attention to the case $d>10$, let us add some cursory remarks on the resulting potential after a compactification to four dimensions. For simplicity, let us confine our attention to the contributions arising from $D 9$ branes and from the conformal anomaly originally described by Polyakov in [43]. Up to shifts of the two fields Φ_{s} and Φ_{t}, the resulting potential
contains again two terms with identical normalizations, and assuming again that Φ_{s} is somehow stabilized, one is finally confronted with

$$
\begin{equation*}
V=V_{0}\left(e^{\sqrt{3} \gamma_{9} \Phi_{t}}+e^{\sqrt{3} \gamma_{\Lambda} \Phi_{t}}\right) \tag{6.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{9}=\sqrt{\frac{d^{2}-14 d+184}{24(d-4)}}, \quad \gamma_{\Lambda}=-\frac{10}{3} \frac{(d-4)(d-10)}{\sqrt{2\left(d^{2}-14 d+184\right)}} \tag{6.19}
\end{equation*}
$$

Interestingly, for d slightly larger than ten γ_{A} is small and negative while γ_{9} is very close to one, so that one has a potential well which combines a steep wall with a rather flat one. As a result, the scalar is essentially bound to emerge from the initial singularity with the scalar descending along the mild wall and to stabilize readily at the bottom as the Universe enters a de Sitter phase.
for $\mathrm{d}=11, \phi=6, \sigma=8$ and $\mathrm{V}_{0}>0 ; \mathrm{V}_{0}=0.5$
$(((\operatorname{sqrt}(((11-2) /((2(11-1)))))))) *(3 / 2 * 6-((10-11) * 8 /(11-2)))$

Input:

$\sqrt{\frac{11-2}{2(11-1)}}\left(\frac{3}{2} \times 6-(10-11) \times \frac{8}{11-2}\right)$

Result:

$\frac{89}{6 \sqrt{5}}$

Decimal approximation:

6.633668333249376099347215217236119498473834466847526315336...
$6.6336683 \ldots=\Phi_{t}$

Alternate form:

$\frac{89 \sqrt{5}}{30}$
$\operatorname{sqrt}((((10-11) /(2(11-1)))))(1 / 2 * 6+3 * 8)$
Input:
$\sqrt{\frac{10-11}{2(11-1)}}\left(\frac{1}{2} \times 6+3 \times 8\right)$

Result:
$\frac{27 i}{2 \sqrt{5}}$

Decimal approximation:

$6.037383539249432180304768905574445835689669570951119455531 \ldots i$
Polar coordinates:
$r \approx 6.03738$ (radius), $\theta=90^{\circ}$ (angle)
$6.03738=\Phi_{\mathrm{s}}$

$$
\gamma_{9}=\sqrt{\frac{d^{2}-14 d+184}{24(d-4)}}, \quad \gamma_{\Lambda}=-\frac{10}{3} \frac{(d-4)(d-10)}{\sqrt{2\left(d^{2}-14 d+184\right)}}
$$

$\operatorname{sqrt}\left[\left(\left(\left(11^{\wedge} 2-14^{*} 11+184\right)\right)\right) /((24(11-4)))\right]$

Input:

$$
\sqrt{\frac{11^{2}-14 \times 11+184}{24(11-4)}}
$$

Result:

$\frac{\sqrt{\frac{151}{42}}}{2}$

Decimal approximation:

$0.948055654384026027535475008086838750296780006857956458452 \ldots$
$0.948055654=\gamma_{9}$ - result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.

Alternate form:

$\frac{\sqrt{6342}}{84}$
$-10 / 3 *(((11-4)(11-10))) /\left(\left(2\left(11 \wedge 2-14^{*} 11+184\right)\right)\right)^{\wedge} 1 / 2$

Input:

$-\frac{10}{3} \times \frac{(11-4)(11-10)}{\sqrt{2\left(11^{2}-14 \times 11+184\right)}}$

Result:

$-\frac{35 \sqrt{\frac{2}{151}}}{3}$

Decimal approximation:

$-1.34268245451301731435134380946037693444224131610524948089 \ldots$
$-1.342682454 \ldots=\gamma_{\Lambda}$

Alternate form:
$-\frac{35 \sqrt{302}}{453}$

Thence:

$$
V=V_{0}\left(e^{\sqrt{3} \gamma_{9} \Phi_{t}}+e^{\sqrt{3} \gamma_{\Lambda} \Phi_{t}}\right)
$$

$0.5\left(\mathrm{e}^{\wedge}(\mathrm{sqrt} 3 * 0.948055654 * 6.6336683)+\mathrm{e}^{\wedge}(\mathrm{sqrt} 3 *-1.342682454 * 6.6336683)\right)$

Input interpretation:

$0.5\left(e^{\sqrt{3} \times 0.948055654 \times 6.6336683}+e^{\sqrt{3} \times(-1.342682454) \times 6.6336683}\right)$

Result:

26899.7...
26899.7...

Series representations:

$0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)=$ $0.5 e^{-8.90691 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{1 / 2}{k}}\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} 2^{-k}\binom{1 / 2}{k}\right)$

$$
\begin{aligned}
& 0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)= \\
& 0.5 \exp \left(-8.90691 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& 0.5\left(e^{\sqrt{3}} 0.948056 \times 6.63367+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)= \\
& 0.5 \exp \left(-\frac{4.45346 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right) \\
& \left(1+\exp \left(\frac{7.598 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right)
\end{aligned}
$$

Now, from the formula of coefficients of the '5th order' mock theta function $\psi_{1}(\mathrm{q})$: (A053261 OEIS Sequence)
sqrt(golden ratio) * $\exp \left(\mathrm{Pi}^{*}\right.$ sqrt(n/15)) / (2*5^(1/4)*sqrt(n))
for $\mathrm{n}=294$ and subtracting 322 that is a Lucas number and adding the conjugate of the golden ratio, we obtain:
$\left(\left((\right.\right.$ sqrt(golden ratio) $\left.\left.\left.) \exp \left(\mathrm{Pi}^{*} \mathrm{sqrt(294/15))}\right) /\left(2^{*} 5^{\wedge}(1 / 4)^{*} \operatorname{sqrt(294)}\right)\right)\right)\right)$) 322
$+1 /$ golden ratio

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{294}{15}}\right)}{2 \sqrt[4]{5} \sqrt{294}}-322+\frac{1}{\phi}$

Exact result:

$\frac{e^{7 \sqrt{2 / 5} \pi} \sqrt{\frac{\phi}{6}}}{14 \sqrt[4]{5}}+\frac{1}{\phi}-322$

Decimal approximation:

26899.31667422566335943323798656204015406864467228630180239...
26899.3166...

Property:

$-322+\frac{e^{7 \sqrt{2 / 5} \pi} \sqrt{\frac{\phi}{6}}}{14 \sqrt[4]{5}}+\frac{1}{\phi}$ is a transcendental number

Alternate forms:

$$
\frac{1}{2}(\sqrt{5}-645)+\frac{1}{28} \sqrt{\frac{1}{15}(5+\sqrt{5})} e^{7 \sqrt{2 / 5} \pi}
$$

$$
-322+\frac{2}{1+\sqrt{5}}+\frac{\sqrt{1+\sqrt{5}} e^{7 \sqrt{2 / 5} \pi}}{28 \sqrt{3} \sqrt[4]{5}}
$$

$$
\frac{14 \sqrt[4]{5} \sqrt{6}(1-322 \phi)+e^{7 \sqrt{2 / 5} \pi} \phi^{3 / 2}}{14 \sqrt[4]{5} \sqrt{6} \phi}
$$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{294}{15}}\right)}{2 \sqrt[4]{5} \sqrt{294}}-322+\frac{1}{\phi}= \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(294-z_{0}\right)^{k} z_{0}^{-k}}{k!}-3220 \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(294-z_{0}\right)^{k} z_{0}^{k}}{k!}+5^{3 / 4} \phi\right. \\
& \left.\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{98}{5}-z_{0}\right)^{k} z_{0}^{k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{k}}{k!}\right) / \\
& \left(10 \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(294-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{294}{15}}\right)}{2 \sqrt[4]{5} \sqrt{294}}-322+\frac{1}{\phi}= \\
& \left(10 \exp \left(i \pi\left[\frac{\arg (294-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(294-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}-\right. \\
& 3220 \phi \exp \left(i \pi\left[\frac{\arg (294-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(294-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 5^{3 / 4} \phi \exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right) \exp \left(\pi \exp \left(i \pi\left[\frac{\arg \left(\frac{98}{5}-x\right)}{2 \pi}\right)\right] \sqrt{x}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{98}{5}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(10 \phi \exp \left(i \pi\left[\frac{\arg (294-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(294-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for ($x \in \mathbb{R}$ and $x<0$)

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{294}{15}}\right)}{2 \sqrt[4]{5} \sqrt{294}}-322+\frac{1}{\phi}=\left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(294-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(294-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(10\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(294-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(294-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(294-z_{0}\right)^{k} z_{0}^{k}}{k!}-\right. \\
& 3220 \phi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(294-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(294-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(294-z_{0}\right)^{k} z_{0}^{k}}{k!}+5^{3 / 4} \phi \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(\frac{\rho 8}{5}-z_{0}\right) /(2 \pi)\right]}\right. \\
& \left.z_{0}^{1 / 2\left(1+\left[\arg \left(\frac{98}{5}-z_{0}\right) /(2 \pi)\right]\right.} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{98}{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left.\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
& \left(10 \phi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(294-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)
\end{aligned}
$$

We have also that:
$\left(\left(\left(0.5\left(\mathrm{e}^{\wedge}\left(\mathrm{sqrt3}{ }^{*} 0.948055654^{*} 6.6336683\right)+\mathrm{e}^{\wedge}(\right.\right.\right.\right.$ sqrt3*-
$1.342682454 * 6.6336683)))))^{\wedge} 1 / 2+8$

Input interpretation:

$\left.\sqrt{0.5\left(e^{\sqrt{3} \times 0.948055654 \times 6.6336683}+e^{\sqrt{3}} \times(-1.342682454) \times 6.6336683\right.}\right)+8$

Result:

172.011...
172.011.... ≈ 172 (Ramanujan taxicab number)

Series representations:

$$
\begin{aligned}
& \sqrt{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}+8= \\
& 0.707107\left(11.3137+\sqrt{e^{-8.90691 \sqrt{2}} \sum_{k=0}^{\infty} 2^{-k}\binom{1 / 2}{k}\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} 2^{-k}\binom{1 / 2}{k}\right.}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}+8=0.707107 \\
& \left(11.3137+\sqrt{\exp \left(-8.90691 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right)
\end{aligned}
$$

$$
\sqrt{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}+8=
$$

$$
0.707107\left(11.3137+\sqrt{\exp \left(-\frac{4.45346 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)}\right.
$$

$$
\left.\left.\left(1+\exp \left(\frac{7.598 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right)\right)\right)
$$

$\left(\left(\left(0.5\left(\mathrm{e}^{\wedge}\left(\mathrm{sqrt} 3 * 0.948055654^{*} 6.6336683\right)+\mathrm{e}^{\wedge}(\mathrm{sqrt} 3 *-\right.\right.\right.\right.$
$1.342682454 * 6.6336683)))))^{\wedge} 1 / 2-34-5$

Input interpretation:

$\sqrt{0.5\left(e^{\sqrt{3} \times 0.948055654 \times 6.6336683}+e^{\sqrt{3} \times(-1.342682454) \times 6.6336683}\right)}-34-5$

Result:

125.011...
$125.011 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Series representations:

$$
\begin{aligned}
& \sqrt{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}-34-5= \\
& \left.0.707107\left(-55.1543+\sqrt{e^{-8.90691 \sqrt{2}} \sum_{k=0}^{\infty} 2^{2-k}\binom{1 / 2}{k}\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} 2^{2-k}\binom{1 / 2}{k}\right.}\right)\right) \\
& \sqrt{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}-34-5=0.707107 \\
& \left(-55.1543+\sqrt{\exp \left(-8.90691 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}\right) \\
& \sqrt{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}-34-5= \\
& 0.707107\left(-55.1543+\sqrt{\exp }\left(-\frac{4.45346 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right. \\
& \left.\left.\left(1+\exp \left(\frac{7.598 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right)\right)\right)
\end{aligned}
$$

And:
sqrt729*1/2* $\left(\left(\left(() .5\left(e^{\wedge}(\right.\right.\right.\right.$ sqrt3*0.948055654*6.6336683) $)+e^{\wedge}($ sqrt3*-
$\left.\left.1.342682454 * 6.6336683)))))^{\wedge} 1 / 2-34-2\right)\right)+4 / 5$
Input interpretation:
$\sqrt{729} \times \frac{1}{2}\left(\sqrt{0.5\left(e^{\sqrt{3} \times 0.948055654 \times 6.6336683}+e^{\sqrt{3} \times(-1.342682454) 6.6336683}\right)}-34-2\right)+\frac{4}{5}$

Result:

1728.95...
1728.95...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Series representations:

$$
\begin{aligned}
& \frac{1}{2} \sqrt{729}\left(\sqrt{0.5\left(e^{\sqrt{3} 0.9480566 .63367}+e^{\sqrt{3}(-1.34268) 6.63367}\right)}-34-2\right)+\frac{4}{5}= \\
& 0.353553\left(2.26274-50.9117 \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}+\right. \\
& \left.\left.\sqrt{e^{-8.90601 \sqrt{2}} \sum_{k=0}^{\infty} 2^{-k}\binom{1 / 2}{k}\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} 2^{-k}\binom{1 / 2}{k}\right.}\right) \sqrt{728} \sum_{k=0}^{\infty} 728^{-k}\binom{\frac{1}{2}}{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \sqrt{729}\left(\sqrt{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{\sqrt{3}(-1.34268) 6.63367}\right)}-34-2\right)+\frac{4}{5}= \\
& 0.353553\left(2.26274-50.9117 \sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& \sqrt{\exp \left(-8.90691 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)} \\
& \left.\sqrt{728} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

$$
\frac{1}{2} \sqrt{729}\left(\sqrt{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{\sqrt{3}(-1.34268) 6.63367}\right)}-34-2\right)+\frac{4}{5}=
$$

$$
0.353553\left(2.26274-50.9117 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(729-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right.
$$

$$
\sqrt{ }\left(\exp \left(-8.90691 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right.
$$

$$
\left.\left(1+\exp \left(15.196 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)\right)\right) \sqrt{z_{0}}
$$

$$
\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(729-z_{0}\right)^{k} z_{0}^{k}}{k!}\right) \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

$\left(\left(()\left(0.5\left(\mathrm{e}^{\wedge}\left(\mathrm{sqrt} 3 * 0.948055654^{*} 6.6336683\right)+\mathrm{e}^{\wedge}(\right.\right.\right.\right.$ sqrt $3 *-$
$1.342682454 * 6.6336683)))))))^{\wedge} 1 / 21-7 * 1 / 10^{\wedge} 3$

Input interpretation:

$\sqrt[21]{0.5\left(e^{\sqrt{3} \times 0.948055654 \times 6.6336683}+e^{\sqrt{3} \times(-1.342682454) \times 6.6336683}\right)}-7 \times \frac{1}{10^{3}}$

Result:

1.618325531898728836063509055847500751410065335542606770967...
$1.6183255318 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Series representations:

$$
\begin{aligned}
& \sqrt[21]{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}-\frac{7}{10^{3}}= \\
& \left.0.967532\left(-0.0072349+21 e^{-8.90601 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{1 / 2}{k}\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} 2^{-k}\binom{1 / 2}{k}\right.}\right)\right) \\
& \sqrt[21]{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}-\frac{7}{10^{3}}=0.967532(-0.0072349+ \\
& \sqrt[21]{\exp \left(-8.90691 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(1+e^{15.196 \sqrt{2}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)} \\
& \sqrt[21]{0.5\left(e^{\sqrt{3} 0.948056 \times 6.63367}+e^{(\sqrt{3} 6.63367)(-1) 1.34268}\right)}-\frac{7}{10^{3}}= \\
& 0.967532\left(-0.0072349+\left(\exp \left(-\frac{4.45346 \sum_{j=0}^{\infty} \mathrm{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right.\right. \\
& \left.\left.\left(1+\exp \left(\frac{7.598 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right)\right) \wedge(1 / 21)\right)
\end{aligned}
$$

Observations

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

Acknowledgments

We would like to thank Professor Augusto Sagnotti theoretical physicist at Scuola Normale Superiore (Pisa - Italy) for his very useful explanations and his availability.

References

Two-Field Born-Infeld with Diverse Dualities

S. Ferrara, A. Sagnotti and A. Yeranyan - arXiv:1602.04566v3 [hep-th] 8 Jul 2016

Integrable Scalar Cosmologies I. Foundations and links with String Theory P. Fre , A. Sagnotti and A.S. Sorin - arXiv:1307.1910v3 [hep-th] 16 Oct 2013

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

