On various Ramanujan's equations (Hardy-Ramanujan number, taxicab numbers, etc) linked to some parameters of Standard Model Particles and String Theory: New possible mathematical connections. V

Michele Nardelli¹, Antonio Nardelli

Abstract

In this research thesis, we have described and deepened further Ramanujan equations (Hardy-Ramanujan number, taxicab numbers, etc) linked to some parameters of Standard Model Particles and String Theory. We have therefore obtained further possible mathematical connections.

_

¹ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" -Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

https://www.britannica.com/biography/Srinivasa-Ramanujan

https://futurism.com/brane-science-complex-notions-of-superstring-theory

If
$$\frac{1+53x+9x^{2-}}{1-92x-92x^{2}+23} = a_0 + a_1x + a_2x^{2} + a_3x^{3} + \cdots$$
or
$$\frac{a_0}{x} + \frac{a_1}{x_1} + \frac{a_{12}}{x_2} + \cdots$$

$$0x \frac{a_0}{x} + \frac{a_1}{x_2} + \frac{a_1}{x_2} + \cdots$$

$$0x \frac{a_0}{x} + \frac{a_1}{x_2} + \cdots$$

$$0x \frac{a_0}{x} + \frac{a_1}{x_2} + \cdots$$

$$0x \frac{a_0}{x} + \frac{a_1}{x_2} + \frac{a_1}{x_2} + \cdots$$

$$0$$

https://plus.maths.org/content/ramanujan

Ramanujan's manuscript

The representations of 1729 as the sum of two cubes appear in the bottom right corner. The equation expressing the near counter examples to Fermat's last theorem appears further up: $\alpha^3 + \beta^3 = \gamma^3 + (-1)^n$.

From Wikipedia

The **taxicab number**, typically denoted Ta(n) or Taxicab(n), also called the nth **Hardy–Ramanujan number**, is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is $1729 = Ta(2) = 1^3 + 12^3 = 9^3 + 10^3$.

From:

Two-Field Born-Infeld with Diverse Dualities

S. Ferrara, A. Sagnotti and A. Yeranyan - arXiv:1602.04566v3 [hep-th] 8 Jul 2016

From:

$$\bar{\phi} = 6$$
; $\phi = 8$; $F = 9$; $\bar{F} = 10$; $V = 12$; $\bar{V} = 135$; $v = 138$; $\bar{v} = 172$

$$9^{3} + 10^{3} = 12^{3} + 1$$

 $6^{3} + 8^{3} = 9^{3} - 1$

$$135^{-3} + 138^{3} = 172^{3} - 1$$

$$F = 6$$
; $\bar{F} = 8$; $f = 9$ and $\gamma = 10$

$$\mathcal{L} - f^{2} \left[1 - \sqrt{\left(1 + \frac{F^{2} + \overline{F}^{2}}{2 f^{2}} \right)^{2} - \frac{1}{f^{2}} \sqrt{F^{2} F^{2}} \left(\frac{1}{f^{2}} \sqrt{F^{2} F^{2}} - \gamma \right)} \right]$$

$$+ \gamma \operatorname{ArcTanh} \left(\frac{1 + \frac{F^{2} + \overline{F}^{2}}{2 f^{2}} - \sqrt{\left(1 + \frac{F^{2} + \overline{F}^{2}}{2 f^{2}} \right)^{2} - \frac{1}{f^{2}} \sqrt{F^{2} \overline{F}^{2}} \left(\frac{1}{f^{2}} \sqrt{F^{2} \overline{F}^{2}} - \gamma \right)}}{\frac{1}{f^{2}} \sqrt{F^{2} \overline{F}^{2}} - \gamma} \right) \right],$$

$$(2.38)$$

 $81[1-(((1+(6^2+8^2)/(2*9^2))^2-1/81*sqrt(6^2*8^2)*(1/81*sqrt(6^2*8^2)-10)))^1/2 + 10 \text{ atanh } ((((1+(6^2+8^2)/(2*9^2)-(((1+(6^2+8^2)/(2*9^2))^2-1/81*sqrt(6^2*8^2)*(1/81*sqrt(6^2*8^2)-10)))^1/2))) / ((1/81*sqrt(6^2*8^2)-10))]$

 $(((1+(6^2+8^2)/(2*9^2))^2-1/81*sqrt(6^2*8^2)*(1/81*sqrt(6^2*8^2)-10)))^1/2$

Input:

$$\sqrt{\left(1 + \frac{6^2 + 8^2}{2 \times 9^2}\right)^2 - \frac{1}{81} \sqrt{6^2 \times 8^2} \left(\frac{1}{81} \sqrt{6^2 \times 8^2} - 10\right)}$$

Result:

$$\frac{\sqrt{53737}}{81}$$

Decimal approximation:

2.861881779887940244147018014647189581730989623566768581840...

2.86188177988794

$$81[1-(2.86188177988794) + 10 \text{ atanh } (((((((1+(6^2+8^2)/(2*9^2)-(2.86188177988794))))) / ((1/81*sqrt(6^2*8^2)-10)))))]$$

Input interpretation:

$$81 \left(1 - 2.86188177988794 + 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.86188177988794}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10} \right) \right)$$

 $\tanh^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

-43.017729954751...

-43.017729954751...

Alternative representations:

$$81 \left(1 - 2.861881779887940000 + 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10}\right)\right) = 81 \left(-1.861881779887940000 + 10 \sin^{-1} \left(\frac{-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}}{-10 + \frac{1}{81} \sqrt{6^2 \times 8^2}}\right) \mid 1\right)\right)$$

$$81 \left(1 - 2.861881779887940000 + 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10}\right)\right) = 81 \left(-1.861881779887940000 - 10 i sc^{-1} \left(\frac{i \left(-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}\right)\right)}{-10 + \frac{1}{81} \sqrt{6^2 \times 8^2}}\right)\right)\right)$$

$$81 \left(1 - 2.861881779887940000 + 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10}\right)\right) = 81 \left(-1.861881779887940000 + 5 \left(-\log \left(1 - \frac{-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}}{-10 + \frac{1}{81} \sqrt{6^2 \times 8^2}}\right)\right) + \log \left(1 + \frac{-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}}{-10 + \frac{1}{81} \sqrt{6^2 \times 8^2}}\right)\right)\right)$$

Series representations:

Integral representations:

We have that:

$$-3*81[1-(2.86188177988794) + 10 \text{ atanh } (((((((1+(6^2+8^2)/(2*9^2)-(2.86188177988794)))))} / ((1/81*sqrt(6^2*8^2)-10)))))]+47-4$$

Input interpretation:

$$-3 \times 81 \left(1 - 2.86188177988794 + 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.86188177988794}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10} \right) \right) + 47 - 4$$

 $\tanh^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

172.05318986425...

 $172.05318986425... \approx 172$ (Ramanujan taxicab number)

Alternative representations:

$$-3 \times 81 \left(1 - 2.861881779887940000 + \\ 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10}\right) + 47 - 4 = 43 - \\ 243 \left(-1.861881779887940000 + 10 \sin^{-1} \left(\frac{-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}}{-10 + \frac{1}{81} \sqrt{6^2 \times 8^2}}\right) \right| 1\right)\right) \\ -3 \times 81 \left(1 - 2.861881779887940000 + \\ 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10}\right) + 47 - 4 = 43 - 243 \\ \left(-1.861881779887940000 - 10 i sc^{-1} \left(\frac{i \left(-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}\right)}{-10 + \frac{1}{81} \sqrt{6^2 \times 8^2}}\right) \right| 0\right)\right)$$

$$-3 \times 81 \left(1 - 2.861881779887940000 + \\ 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10}\right) + 47 - 4 = 43 - \\ 243 \left(-1.861881779887940000 + 5 \left(-\log \left(1 - \frac{-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}}{-10 + \frac{1}{81} \sqrt{6^2 \times 8^2}}\right)\right) + \\ \log \left(1 + \frac{-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}}{-10 + \frac{1}{81} \sqrt{6^2 \times 8^2}}\right)\right) \right)$$

Series representations:

$$10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10} \right) + 47 - 4 =$$

495.437272512769420 + 1215.0000000000000000 log(2) -

1215.0000000000000000

Integral representations:

Input interpretation:

$$-\frac{1}{7} \left(81 \left(1 - 2.86188177988794 + 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.86188177988794}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10} \right) \right) \right)^3 + 89 + 7$$

 $\tanh^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

11468.19837370...

 $11468.1983737... \approx 11468$ (Ramanujan taxicab number)

Alternative representations:

$$\frac{1}{7} \left(81 \left(1 - 2.861881779887940000 + \right) \right) \left(1 - 2.861881779887940000 + \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179887940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179987940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179987940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179987940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179987940000 + \frac{6^2 + 8^2}{2 \times 9^2} \right) \left(1 - 2.86188179987940000 + \frac{6^2 + 8^2}{2 \times 9^2}$$

$$\frac{1}{7} \left(81 \left(1 - 2.861881779887940000 + 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10} \right) \right) \right)^3 (-1) + 10 \ln x \cdot 10 \ln x \cdot$$

$$\frac{1}{7} \left(81 \left(1 - 2.861881779887940000 + \right. \right. \right.$$

$$10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.861881779887940000}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10} \right) \right)^3 (-1) + 89 + 7 =$$

$$96 - \frac{1}{7} \left[81 \left[-1.861881779887940000 + 10 \coth^{-1} \left(\frac{1}{\frac{-1.861881779887940000 + \frac{6^2 + 8^2}{2 \times 9^2}}{\frac{-10 + \frac{1}{61} \sqrt{6^2 \times 8^2}}{2}} \right) \right]^3$$

Series representations:

Integral representations:

$$(-81[1-(2.86188177988794) + 10 \text{ atanh } (((((((1+(6^2+8^2)/(2*9^2)-(2.86188177988794))))) / ((1/81*sqrt(6^2*8^2)-10)))))))))((64*2)/10^3)$$

Input interpretation:

$$\left(-81 \left(1 - 2.86188177988794 + 10 \tanh^{-1} \left(\frac{1 + \frac{6^2 + 8^2}{2 \times 9^2} - 2.86188177988794}{\frac{1}{81} \sqrt{6^2 \times 8^2} - 10}\right)\right)\right)^{(64 \times 2)/10^3}$$

 $\tanh^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

1.618478291345236343849011468058325401351447944122400678325...

1.6184782913... result that is a very good approximation to the value of the golden ratio 1,618033988749...

1.6184782913452363438490114680583254013514479441224006

Input interpretation:

1.6184782913452363438490114680583254013514479441224006

1.6184782913...

$$\frac{574\,081\,862\,166\,558\,393\,704\,516\,348}{354\,704\,703\,323\,142\,342\,218\,284\,581} = 1 + \frac{219\,377\,158\,843\,416\,051\,486\,231\,767}{354\,704\,703\,323\,142\,342\,218\,284\,581}$$

Possible closed forms:

$$\cosh\left(\sinh\left(\frac{8411398}{9100445}\right)\right) \approx 1.6184782913452363440579$$

$$\left(\frac{41531845}{21856069}\right)^{3/4} \approx 1.618478291345236371937$$

$$\frac{2581 - 8048 e + 3077 e^2}{782 e} \approx 1.6184782913452363442987$$

$$\frac{\log\left(\frac{157732589}{2826767}\right)}{\log(12)} \approx 1.618478291345236343864055$$

```
\frac{4012714503\,\pi}{7788991963}\approx 1.618478291345236343871470
 root of 9146 x^3 - 57908 x^2 + 55621 x + 22892 near x = 1.61848
  1.618478291345236343852718
\pi root of 2599 x^4 + 2899 x^3 + 2620 x^2 - 2888 x + 213 near x = 0.515178 \approx
  1.618478291345236343860362
 root of 496 x^5 - 516 x^4 - 346 x^3 + 133 x^2 + 66 x - 956 near x = 1.61848
  1.618478291345236343869206
\pi root of 51239 x^3 + 136775 x^2 + 7267 x - 47051 near x = 0.515178 \approx
  1.618478291345236343851053
 root of 22892 x^3 + 55621 x^2 - 57908 x + 9146 near x = 0.617864
  1.618478291345236343852718
 root of 3295 x^4 - 7313 x^3 + 2616 x^2 - 559 x + 2447 near x = 1.61848
  1.61847829134523634384989152
\pi root of 1824 x^5 - 530 x^4 - 222 x^3 + 165 x^2 - 909 x + 426 near <math>x = 0.515178 \approx
  1.6184782913452363438434703
 root of 2447x^4 - 559x^3 + 2616x^2 - 7313x + 3295 near x = 0.617864
  1.61847829134523634384989152
3 \times 3^{1219/1860} e^{(683 \gamma)/310}
     8 × 2<sup>2131/2790</sup> ≈ 1.6184782913452363423785
\frac{645 + 686 \pi - 285 \pi^2}{-602 + 142 \pi + 15 \pi^2} \approx 1.61847829134523625287
```

From:

With our choices one can now revert to the ordinary variables ϕ^{kl} , solving eq. (3.49) for a with h_1 as in (3.51) and substituting in the Lagrangian (3.52). The end result (with the scale f of eq. (1.1) set to one for brevity),

$$\mathcal{L} = 1 - \sqrt{(1 + \text{Re} [\phi_t])^2 - |\phi_t|^2 - \text{Det}[\phi - \overline{\phi}] + 2\left(\text{Re} [\phi_d] - \sqrt{|\phi_d|^2}\right)}.$$
 (3.53)

has U(2) duality and reduces to the BI theory if the two Abelian field strengths coincide.

$$\mathcal{L} \ = \ 1 \ - \ \sqrt{ \left(1 + \operatorname{Re}\left[\phi_t\right] \right)^2 - \left|\phi_t\right|^2 - \operatorname{Det}[\phi - \overline{\phi}] + 2 \, \left(\operatorname{Re}\left[\phi_d\right] \ - \ \sqrt{\left|\phi_d\right|^2} \right) }$$

$$135^{-3} + 138^{3} = 172^{3} - 1$$

$$\phi_t = 9$$
; $\phi_d = 10$; $\phi = 138$; $\bar{\phi} = 135$

 $1-sqrt[((1+Re(9)))^2-9^2-Det\{\{1,\,138-135\},\,\{138-135,\,1\}\}+2(Re(10)-sqrt(10^2))]$

Input interpretation:

$$1 - \sqrt{\left(1 + \text{Re}(9)\right)^2 - 9^2 - \left| \begin{array}{cc} 1 & 138 - 135 \\ 138 - 135 & 1 \end{array} \right| + 2\left(\text{Re}(10) - \sqrt{10^2}\right)}$$

Re(z) is the real part of z|m| is the determinant

Result:

$$1 - 3\sqrt{3}$$

Decimal approximation:

-4.19615242270663188058233902451761710082841576143114188416...

-4.1961524227...

$$-[((((1-sqrt[((1+Re(9)))^2-9^2-Det\{\{1,138-135\},\{138-135,1\}\}+2(Re(10)-sqrt(10^2))])))^5+(144*2+3)]$$

Input interpretation:

$$-\left[\left(1 - \sqrt{(1 + \operatorname{Re}(9))^2 - 9^2 - \left| \frac{1}{138 - 135} \frac{138 - 135}{1} \right| + 2\left(\operatorname{Re}(10) - \sqrt{10^2}\right)}\right]^5 + (144 \times 2 + 3)\right]$$

Re(z) is the real part of z|m| is the determinant

Result:

$$-291 - \left(1 - 3\sqrt{3}\right)^5$$

Decimal approximation:

1009.937032397458408104668380615687569231729424476866451704...

 $1009.937... \approx 1010$ (Ramanujan taxicab number)

Alternate form:

$$3012\sqrt{3} - 4207$$

Input interpretation:

$$2 \times (-1) \left(1 - \sqrt{(1 + \operatorname{Re}(9))^2 - 9^2 - \left| \frac{1}{138 - 135} \right| + 2\left(\operatorname{Re}(10) - \sqrt{10^2} \right)} \right)^6$$

Re(z) is the real part of z

Result:

$$244 + 2 \left(1 - 3\sqrt{3}\right)^6$$

Decimal approximation:

11161.86016056674229506978399874664772784838890751756385979...

 $11161.8601605... \approx 11161$ (Ramanujan taxicab number)

Alternate forms:

$$62292 - 29520\sqrt{3}$$

 $-12(2460\sqrt{3} - 5191)$

$$-34(((1-sqrt[((1+Re(9)))^2-9^2-Det\{\{1,138-135\},\{138-135,1\}\}+2(Re(10)-sqrt(10^2))])))-18+1/golden\ ratio$$

Input interpretation:

$$-34 \left[1 - \sqrt{\left(1 + \operatorname{Re}(9)\right)^2 - 9^2 - \left|\frac{1}{138 - 135} \frac{138 - 135}{1}\right| + 2\left(\operatorname{Re}(10) - \sqrt{10^2}\right)}\right] - 18 + \frac{1}{\phi}$$

Re(z) is the real part of z |m| is the determinant ϕ is the golden ratio

Result:

$$\frac{1}{\phi} - 18 - 34 \left(1 - 3\sqrt{3}\right)$$

Decimal approximation:

 $125.2872163607753787880041136679646195458864450684645869238\dots \\$

125.28721636... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T=0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

$$\frac{1}{\phi} - 52 + 102\sqrt{3}$$

$$\frac{1}{\phi} - 18 + 34\left(3\sqrt{3} - 1\right)$$

$$\frac{2(51\sqrt{3} - 26)\phi + 1}{\phi}$$

$$-5+27*1/2*((((-34(((1-sqrt[((1+Re(9)))^2-9^2-Det{\{1, 138-135\}, \{$$

Input interpretation:

$$-5 + 27 \times \frac{1}{2} \left[-34 \left[1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2 - \left| \frac{1}{138 - 135} \right| + 2 \left(\text{Re}(10) - \sqrt{10^2} \right)} \right] - 18 + \pi + \frac{1}{\phi} \right]$$

Re(z) is the real part of z |m| is the determinant ϕ is the golden ratio

Result:

$$\frac{27}{2} \left(\frac{1}{\phi} - 18 - 34 \left(1 - 3\sqrt{3} \right) + \pi \right) - 5$$

Decimal approximation:

1728.788921693929822357301220191795652806128795315835852054... 1728.78892169...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

Property:

$$-5 + \frac{27}{2} \left(-18 - 34 \left(1 - 3\sqrt{3}\right) + \frac{1}{\phi} + \pi\right)$$
 is a transcendental number

Alternate forms:

$$\frac{27}{2} \left(\frac{1}{\phi} - 52 + 102\sqrt{3} + \pi \right) - 5$$
$$\frac{27}{2\phi} - 707 + 1377\sqrt{3} + \frac{27\pi}{2}$$

$$\frac{27}{2} \left(\frac{1}{\phi} - 18 + 34 \left(3\sqrt{3} - 1 \right) + \pi \right) - 5$$

Now, we have that:

Reverting to the field strengths, the Lagrangian takes finally the form

$$\mathcal{L} = 1 - \sqrt{(1 + \operatorname{Re}[\phi_t])^2 - |\phi_t|^2 - \operatorname{Det}[\phi - \overline{\phi}]}. \tag{3.63}$$

From

$$\mathcal{L} = 1 - \sqrt{(1 + \operatorname{Re}[\phi_t])^2 - |\phi_t|^2 - \operatorname{Det}[\phi - \overline{\phi}]} .$$

For $\phi_t = 9$; $\phi_d = 10$; $\phi = 138$; $\bar{\phi} = 135$, we obtain:

 $1-sqrt[((1+Re(9)))^2-9^2-Det\{\{1, 138-135\}, \{138-135, 1\}\}]$

Input interpretation:

$$1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2 - \begin{vmatrix} 1 & 138 - 135 \\ 138 - 135 & 1 \end{vmatrix}}$$

 $\operatorname{Re}(z)$ is the real part of z|m| is the determinant

Result:

$$1 - 3\sqrt{3}$$

Decimal approximation:

-4.19615242270663188058233902451761710082841576143114188416...

-4.1961524227..... the same previous result

We have also:

$$(-(((1-sqrt[((1+Re(9)))^2-9^2-Det\{\{1, 138-135\}, \{138-135, 1\}\}])))^1/3+5*1/10^3$$

Input interpretation:

$$\sqrt[3]{-\left(1-\sqrt{\left(1+\text{Re}(9)\right)^2-9^2-\left|\begin{array}{cc} 1 & 138-135 \\ 138-135 & 1 \end{array}\right|}\right)}+5\times\frac{1}{10^3}$$

Re(z) is the real part of z|m| is the determinant

Result:

$$\frac{1}{200} + \sqrt[3]{3\sqrt{3} - 1}$$

Decimal approximation:

1.617935813642020182463303405226893817920083356882506337493...

1.617935813642.... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate form:

$$\frac{1}{200} \left(1 + 200 \sqrt[3]{3\sqrt{3} - 1} \right)$$

We have that:

In terms of the field strengths, the Lagrangian becomes

$$\mathcal{L} = 1 - \sqrt{(1 + \text{Re}[\phi_t])^2 - |\phi_t|^2} . \tag{3.67}$$

 $1-sqrt[((1+Re(9)))^2-9^2]$

Input:
$$1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2}$$

Re(z) is the real part of z

Exact result:

$$1 - \sqrt{19}$$

Decimal approximation:

-3.35889894354067355223698198385961565913700392523244493689...

-3.3588989435...

Alternative representations:

$$1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} = 1 - \sqrt{-9^2 + (1 + \text{Im}(9 i))^2}$$

$$1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} = 1 - \sqrt{-9^2 + (1 - \text{Im}(-9 \,i))^2}$$

$$1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} = 1 - \sqrt{-9^2 + (10 - i \text{Im}(9))^2}$$

Series representations:

$$1 - \sqrt{(1 + \operatorname{Re}(9))^2 - 9^2} = 1 - \sqrt{-82 + (1 + \operatorname{Re}(9))^2} \sum_{k=0}^{\infty} {1 \choose 2 \choose k} (-82 + (1 + \operatorname{Re}(9))^2)^{-k}$$

$$1 - \sqrt{(1 + \operatorname{Re}(9))^2 - 9^2} = 1 - \sqrt{-82 + (1 + \operatorname{Re}(9))^2} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-82 + (1 + \operatorname{Re}(9))^2\right)^{-k}}{k!}$$

$$1 - \sqrt{\left(1 + \operatorname{Re}(9)\right)^2 - 9^2} = 1 - \sqrt{z_0} \sum_{k=0}^{\infty} \frac{\left(-1\right)^k \left(-\frac{1}{2}\right)_k \left(-81 + \left(1 + \operatorname{Re}(9)\right)^2 - z_0\right)^k z_0^{-k}}{k!}$$
 for not $\left(\left(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0\right)\right)$

Multiplying the previous result by -0.481715587144498 that is equal to:

$$1/233*-((((76-4)\pi)-(322+29+7)*1/\pi))$$

we obtain:

$$1/233*-((((76-4)\pi)-(322+29+7)*1/\pi))*(((1-sqrt[((1+Re(9)))^2-9^2])))$$

Input:

$$\frac{1}{233} \times (-1) \left((76 - 4) \pi - (322 + 29 + 7) \times \frac{1}{\pi} \right) \left(1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} \right)$$

Exact result:

$$-\frac{1}{233} \left(1 - \sqrt{19} \right) \! \left(72 \, \pi - \frac{358}{\pi} \right)$$

Decimal approximation:

 $1.618033976746729868559323994611158393657325290039278466390\dots$

1.618033976746... result that is the value of the golden ratio 1,618033988749...

Property:

$$-\frac{1}{233}\left(1-\sqrt{19}\right)\left(-\frac{358}{\pi}+72\,\pi\right)$$
 is a transcendental number

Alternate forms:

$$\frac{1}{233} \left(\sqrt{19} \, - 1 \right) \left(72 \, \pi - \frac{358}{\pi} \right)$$

$$-\frac{2(\sqrt{19}-1)(179-36\pi^2)}{233\pi}$$

$$\frac{2(\sqrt{19} - 1)(36 \pi^2 - 179)}{233 \pi}$$

Alternative representations:

$$-\frac{1}{233} \left((76 - 4) \pi - \frac{322 + 29 + 7}{\pi} \right) \left(1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} \right) =$$

$$-\frac{1}{233} \left(72 \pi - \frac{358}{\pi} \right) \left(1 - \sqrt{-9^2 + (1 + \text{Im}(9 \, i))^2} \right)$$

$$-\frac{1}{233} \left((76 - 4) \pi - \frac{322 + 29 + 7}{\pi} \right) \left(1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} \right) =$$

$$-\frac{1}{233} \left(72 \pi - \frac{358}{\pi} \right) \left(1 - \sqrt{-9^2 + (1 - \text{Im}(-9 i))^2} \right)$$

$$-\frac{1}{233} \left((76 - 4) \pi - \frac{322 + 29 + 7}{\pi} \right) \left(1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} \right) =$$

$$-\frac{1}{233} \left(72 \pi - \frac{358}{\pi} \right) \left(1 - \sqrt{-9^2 + (10 - i \operatorname{Im}(9))^2} \right)$$

Series representations:

$$-\frac{1}{233} \left((76 - 4) \pi - \frac{322 + 29 + 7}{\pi} \right) \left(1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} \right) = \frac{2 \left(-179 + 36 \pi^2 \right) \left(-1 + \sqrt{-82 + (1 + \text{Re}(9))^2} \right) \sum_{k=0}^{\infty} \left(\frac{1}{2} \right) \left(-82 + (1 + \text{Re}(9))^2 \right)^{-k} }{233 \pi}$$

$$-\frac{1}{233} \left((76 - 4) \pi - \frac{322 + 29 + 7}{\pi} \right) \left(1 - \sqrt{(1 + \text{Re}(9))^2 - 9^2} \right) = \frac{2 \left(-179 + 36 \pi^2 \right) \left(-1 + \sqrt{-82 + (1 + \text{Re}(9))^2} \right) \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2} \right)_k \left(-82 + (1 + \text{Re}(9))^2 \right)^{-k}}{k!} \right)}{233 \pi}$$

$$\begin{split} &-\frac{1}{233}\left((76-4)\,\pi-\frac{322+29+7}{\pi}\right)\!\left(1-\sqrt{\left(1+\operatorname{Re}(9)\right)^2-9^2}\,\right) = \\ &-\frac{2\left(-179+36\,\pi^2\right)\!\left(-1+\sqrt{z_0}\,\sum_{k=0}^{\infty}\frac{\left(-1\right)^k\left(-\frac{1}{2}\right)_k\left(-81+\left(1+\operatorname{Re}(9)\right)^2-z_0\right)^kz_0^{-k}}{k!}\right)}{233\,\pi} \\ &-\frac{233\,\pi}{} \\ &-\operatorname{for\ not\ }\left(\left(z_0\in\mathbb{R} \text{ and } -\infty < z_0 \le 0\right)\right) \end{split}$$

Now, we have that:

$$\mathcal{L} = 1 - \sqrt{\left[1 + \frac{1}{4} (\mathcal{F}^{+} \cdot \mathcal{F}^{-})\right]^{2} - \frac{1}{32} C - \frac{1}{32} \sqrt{D}},$$

$$(5.8-5.9)$$

$$C = \left| (\mathcal{F}^{+})^{2} \right|^{2} + (\mathcal{F}^{+} \cdot \mathcal{F}^{-})^{2} + \left| \mathcal{F}^{+} \cdot \widetilde{\mathcal{F}^{-}} \right|^{2} + \left| \mathcal{F}^{+} \cdot \widetilde{\mathcal{F}^{+}} \right|^{2},$$

$$(2^2)^2 + (2 \times 3)^2 + (2 \times 5)^2 + (2 \times 8)^2$$

408

C = 408

$$D = \left[\left(\mathcal{F}^{+} \cdot \mathcal{F}^{-} \right)^{2} - \left(\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}}^{-} \right)^{2} + \left| \mathcal{F}^{+} \cdot \widetilde{\mathcal{F}}^{+} \right|^{2} - \left| \mathcal{F}^{+2} \right|^{2} \right]^{2} + \left[\left(\mathcal{F}^{+} \right)^{2} \left(\mathcal{F}^{-} \cdot \widetilde{\mathcal{F}}^{-} \right) + \left(\mathcal{F}^{-} \right)^{2} \left(\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}}^{+} \right) - 2 \left(\mathcal{F}^{+} \cdot \mathcal{F}^{-} \right) \left(\mathcal{F}^{+} \cdot \widetilde{\mathcal{F}}^{-} \right) \right]^{2}$$

$$(5.10)$$

$$[(2*3)^2-(2*5)^2+(2*8)^2-(2^2)^2]^2$$

$$((2\times3)^2 - (2\times5)^2 + (2\times8)^2 - (2^2)^2)^2$$

30 976

$$[2^2*(3*5)+(3)^2(2*8)-2(2*3)(2*5)]^2$$

$$(2^2 (3 \times 5) + 3^2 (2 \times 8) - 2 (2 \times 3) (2 \times 5))^2$$

7056

$$\left(\left(2 \times 3 \right)^2 - \left(2 \times 5 \right)^2 + \left(2 \times 8 \right)^2 - \left(2^2 \right)^2 \right)^2 + \left(2^2 \left(3 \times 5 \right) + 3^2 \left(2 \times 8 \right) - 2 \left(2 \times 3 \right) \left(2 \times 5 \right) \right)^2 \\ 38\,032$$

$$D = 38032$$

Thence:

$$\mathcal{L} = 1 - \sqrt{\left[1 + \frac{1}{4} (\mathcal{F}^+ \cdot \mathcal{F}^-)\right]^2 - \frac{1}{32} C - \frac{1}{32} \sqrt{D}},$$

1-
$$\operatorname{sqrt}((((1+1/4(2*3))^2-1/32(408)-1/32(\operatorname{sqrt}(38032)))))$$

Input:

$$1 - \sqrt{\left(1 + \frac{1}{4} (2 \times 3)\right)^2 - \frac{1}{32} \times 408 - \frac{1}{32} \sqrt{38032}}$$

Result:

$$1-i\sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}$$

Decimal approximation:

1 -

3.54884641420623512949851258564743971100517368738485736186...i

Polar coordinates:

$$r \approx 3.68705$$
 (radius), $\theta \approx -74.2631^{\circ}$ (angle) 3.68705

Alternate forms:

$$\frac{1}{4}\left(4-i\sqrt{2\left(52+\sqrt{2377}\right)}\right)$$

$$1 - \frac{1}{2} i \sqrt{\frac{1}{2} \left(52 + \sqrt{2377}\right)}$$

1+ root of
$$64x^4 + 832x^2 + 327$$
 near $x = -3.54885i$

Minimal polynomial:

$$64 x^4 - 256 x^3 + 1216 x^2 - 1920 x + 1223$$

 $((((1-sqrt((((1+1/4(2*3))^2-1/32(408)-1/32(sqrt(38032))))))))^4 - 55i + (golden ratio)i$

Input:

$$\left(1 - \sqrt{\left(1 + \frac{1}{4}(2 \times 3)\right)^2 - \frac{1}{32} \times 408 - \frac{1}{32}\sqrt{38032}}\right)^4 - 55 i + \phi i$$

i is the imaginary unit

ø is the golden ratio

Result:

$$i\phi + -55i + \left(1 - i\sqrt{\frac{13}{2} + \frac{\sqrt{2377}}{8}}\right)^4$$

Decimal approximation:

84.0508011013711709689604386111978578060140271317272306163... + 111.203748236577129136527174054238412070089415979349593844... i

Polar coordinates:

 $r \approx 139.394$ (radius), $\theta \approx 52.917^{\circ}$ (angle)

139.394 result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$$\begin{split} &\frac{1}{256} \left(-256 \, i \, \sqrt{2 \left(52 + \sqrt{2377} \, \right)} \, + i \, 128 \, \sqrt{5} \, + 224 \, \sqrt{2377} \, + \right. \\ &\quad i \, 32 \, \sqrt{2 \left(511 \, 420 + 10 \, 489 \, \sqrt{2377} \, \right)} \, + 10 \, 596 - 13 \, 952 \, i \right) \\ &\quad i \, \phi + -55 \, i + \frac{1}{256} \left(\sqrt{2 \left(52 + \sqrt{2377} \, \right)} \, + 4 \, i \right)^4 \\ &\quad -55 \, i + \frac{1}{2} \, i \left(1 + \sqrt{5} \, \right) + \left(1 - i \, \sqrt{\frac{13}{2} + \frac{\sqrt{2377}}{8}} \, \right)^4 \end{split}$$

Minimal polynomial:

79 228 162 514 264 337 593 543 950 336 x¹⁶ -52 468 850 625 071 557 571 324 481 110 016 x¹⁵ + 25 603 209 435 281 972 755 860 841 943 793 664 x¹⁴ - $7811659199744319292480648689116774400x^{13} +$ 1889 513 057 074 708 850 625 002 823 926 260 170 752 x¹² -331 445 056 901 235 858 699 716 289 180 316 137 947 136 x¹¹ + $47408412254625986730031814559813076286177280x^{10}$ 5 126 006 746 536 899 430 283 499 907 416 593 546 516 365 312 x⁹ + 485 223 526 076 130 174 516 112 041 544 827 864 936 731 377 664 x⁸ - $35496972632655962563131854178692921904465860100096x^7 +$ 2542506 261596 162573 979 800 117 251 627 245 182534 906 019 840 x⁶ - $122685740194384795631175853162642773133485017715965952x^5 +$ $7309025101278312840883841728767300711022693629864968192x^4$ $208213217324652462788311546797027091890904626705224171520x^3 +$ 11 033 513 561 385 470 011 447 927 667 651 262 861 637 666 903 505 862 885 376 138 643 452 011 937 923 815 051 003 108 090 761 479 435 795 558 312 273 421 312 x +6862239017182423017112684822140702761241186549848175935164801

Expanded form:

$$\left(\frac{2649}{64} - \frac{109 i}{2}\right) + \frac{i\sqrt{5}}{2} + \frac{7\sqrt{2377}}{8} + \frac{22 i\sqrt{\frac{13}{2} + \frac{\sqrt{2377}}{8}}}{8} + \frac{1}{2} i\sqrt{\frac{2377}{2377}\left(\frac{13}{2} + \frac{\sqrt{2377}}{8}\right)}\right)$$

Series representations:

$$\left(1 - \sqrt{\left(1 + \frac{2 \times 3}{4}\right)^2 - \frac{408}{32} - \frac{\sqrt{38032}}{32}} - i55 + \phi i = \frac{-55 i + \phi i + \left(-1 + \sqrt{-\frac{15}{2}} - \frac{\sqrt{38032}}{32}\right)^{-\frac{1}{2}}}{2} \sum_{k=0}^{\infty} \left(\frac{1}{2}\right) \left(-\frac{15}{2} - \frac{\sqrt{38032}}{32}\right)^{-\frac{1}{2}}\right)^4 \\
\left(1 - \sqrt{\left(1 + \frac{2 \times 3}{4}\right)^2 - \frac{408}{32} - \frac{\sqrt{38032}}{32}} - \frac{\sqrt{38032}}{32}\right)^4 - i55 + \phi i = \frac{-55 i + \phi i + \left(-1 + \sqrt{-\frac{15}{2}} - \frac{\sqrt{38032}}{32}\right)^{-\frac{1}{2}}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-\frac{15}{2} - \frac{\sqrt{38032}}{32}\right)^{-\frac{1}{2}}}{k!}\right)^4 \\
\left(1 - \sqrt{\left(1 + \frac{2 \times 3}{4}\right)^2 - \frac{408}{32} - \frac{\sqrt{38032}}{32}} - \frac{\sqrt{38032}}{32}\right)^4 - i55 + \phi i = \frac{-55 i + \phi i + \left(-1 + \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-\frac{13}{2} - \frac{\sqrt{38032}}{32} - z_0\right)^k z_0^{-\frac{1}{2}}}{k!}\right)^4 \\
= -55 i + \phi i + \left(-1 + \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-\frac{13}{2} - \frac{\sqrt{38032}}{32} - z_0\right)^k z_0^{-\frac{1}{2}}}{k!}\right)^4$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

 $((((1-\operatorname{sqrt}((((1+1/4(2*3))^2-1/32(408)-1/32(\operatorname{sqrt}(38032))))))))^4-55i-13i-Pi*i+1/2(2*3))^2-1/32(408)$

Input:

$$\left(1 - \sqrt{\left(1 + \frac{1}{4}(2 \times 3)\right)^2 - \frac{1}{32} \times 408 - \frac{1}{32}\sqrt{38032}}\right)^4 - 55i - 13i - \pi i$$

i is the imaginary unit

Result:

$$-68 \, i + \left(1 - i \sqrt{\frac{13}{2} + \frac{\sqrt{2377}}{8}}\right)^4 - i \, \pi$$

Decimal approximation:

84.0508011013711709689604386111978578060140271317272306163... + 93.4441215942374410498599438365932710681719374001687251611... i

Property:

$$-68 i + \left(1 - i\sqrt{\frac{13}{2} + \frac{\sqrt{2377}}{8}}\right)^4 - i\pi$$
 is a transcendental number

Polar coordinates:

 $r \approx 125.683$ (radius), $\theta \approx 48.0294^{\circ}$ (angle)

125.683 result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

$$\begin{split} \frac{1}{256} \left(-256 \, i \, \sqrt{2 \left(52 + \sqrt{2377} \right)} + 224 \, \sqrt{2377} \, + \\ & i \, 32 \, \sqrt{2} \, \sqrt{511420 + 10489} \, \sqrt{2377} \, - 256 \, i \, \pi + 10596 - 17408 \, i \right) \\ -68 \, i + \frac{1}{256} \left(\sqrt{2 \left(52 + \sqrt{2377} \right)} + 4 \, i \right)^4 - i \, \pi \\ \frac{1}{64} \left((2649 - 4352 \, i) + 56 \, \sqrt{2377} \, + \\ & 352 \, i \, \sqrt{2 \left(52 + \sqrt{2377} \right)} + 8 \, i \, \sqrt{4754 \left(52 + \sqrt{2377} \right)} \right) - i \, \pi \end{split}$$

Expanded form:

$$\left(\frac{2649}{64}-68\,i\right)+\frac{7\sqrt{2377}}{8}+22\,i\,\sqrt{\frac{13}{2}+\frac{\sqrt{2377}}{8}}\right.\\ \left.+\frac{1}{2}\,i\,\sqrt{2377\left(\frac{13}{2}+\frac{\sqrt{2377}}{8}\right)}-i\,\pi\right)$$

Series representations:

$$\left(1 - \sqrt{\left(1 + \frac{2 \times 3}{4}\right)^2 - \frac{408}{32} - \frac{\sqrt{38032}}{32}}\right)^4 - i55 - i13 - i\pi =$$

$$-68 i - i\pi + \left(-1 + \sqrt{-\frac{15}{2} - \frac{\sqrt{38032}}{32}} \sum_{k=0}^{\infty} {\frac{1}{2} \choose k} \left(-\frac{15}{2} - \frac{\sqrt{38032}}{32}\right)^{-k}\right)^4$$

$$\left(1 - \sqrt{\left(1 + \frac{2 \times 3}{4}\right)^2 - \frac{408}{32} - \frac{\sqrt{38032}}{32}}\right)^4 - i55 - i13 - i\pi = \\ -68 i - i\pi + \left(-1 + \sqrt{-\frac{15}{2} - \frac{\sqrt{38032}}{32}}\right)^{-k} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-\frac{15}{2} - \frac{\sqrt{38032}}{32}\right)^{-k}}{k!}\right)^4$$

$$\left(1 - \sqrt{\left(1 + \frac{2 \times 3}{4}\right)^2 - \frac{408}{32} - \frac{\sqrt{38032}}{32}}\right)^4 - i55 - i13 - i\pi = \\ -68 i - i\pi + \left(-1 + \sqrt{z_0}\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-\frac{13}{2} - \frac{\sqrt{38032}}{32} - z_0\right)^k z_0^{-k}}{k!}\right)^4$$
 for not $\left(\left(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0\right)\right)$

From:

Integrable Scalar Cosmologies I. Foundations and links with String Theory P. Fre, A. Sagnotti and A.S. Sorin - arXiv:1307.1910v3 [hep-th] 16 Oct 2013

Depending on the choice made for the real exponent γ , these potentials can describe barriers or wells of different shapes, and the presence of the second term restricts in general the domain to the region $\varphi > 0$. For the sake of brevity and simplicity, we shall concentrate on a special but very significant case of potential wells, with $\gamma = \frac{1}{3}$, which affords relatively handy solutions in terms of elliptic functions. The potentials that we would like to discuss here in detail are thus

with $\lambda > 0$, since a relative factor between the two exponentials can clearly be absorbed into a shift of φ . One can also assume, without any loss of generality, that $0 < \gamma < 1$, so that the first

$$V_{IIIa}(\varphi) = \frac{\lambda}{16} \left[\left(1 - \frac{1}{3\sqrt{3}} \right) e^{-6\varphi/5} + \left(7 + \frac{1}{\sqrt{3}} \right) e^{-2\varphi/5} + \left(7 - \frac{1}{\sqrt{2}} \right) e^{2\varphi/5} + \left(1 + \frac{1}{2\sqrt{2}} \right) e^{6\varphi/5} \right]. \tag{5.18}$$

From the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{5}}} \approx 0.9991104684$$

$$1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \dots}}$$

$$1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}$$

We put for $\varphi > 0$ $\varphi = 4$ and for $\lambda > 0$ $\lambda = 0.9991104$, an obtain:

$$0.9991104/16[(1-1/(3sqrt3))*e^{(-24/5)}+(7+1/(sqrt3))*e^{(-8/5)}+(7-1/(sqrt3))*e^{(8/5)}+(1+1/(3sqrt3))*e^{(24/5)}]$$

Input interpretation:
$$\frac{0.9991104}{16} \left(\left(1 - \frac{1}{3\sqrt{3}}\right) e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}}\right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}}\right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}}\right) e^{24/5} \right)$$

Result:

11.13029...

11.13029...

Series representations:

$$\frac{1}{16} \left(\left(1 - \frac{1}{3\sqrt{3}} \right) e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}} \right) e^{24/5} \right) 0.99911 = \frac{1}{e^{24/5}} \left(0.0624444 + 0.437111 e^{16/5} + \frac{1}{24\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}} \right) e^{24/5} \right) 0.99911 = \frac{1}{e^{24/5}} \left(0.0624444 + 0.437111 e^{16/5} + \frac{1}{24\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{-8/5} +$$

$$0.437111 e^{32/5} + 0.0624444 e^{48/5} + \frac{0.0208148 \left(-1 + e^{16/5}\right)^3}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k} \left(\frac{1}{2} \atop k\right)}$$

$$\begin{split} \frac{1}{16} \left(\left(1 - \frac{1}{3\sqrt{3}} \right) e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}} \right) e^{24/5} \right) 0.99911 = \\ \frac{1}{e^{24/5}} \left(0.0624444 + 0.437111 \, e^{16/5} + \right. \\ 0.437111 \, e^{32/5} + 0.0624444 \, e^{48/5} + \frac{0.0208148 \, (-1 + e^{16/5})^3}{\sqrt{2} \, \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2} \right)^k \left(-\frac{1}{2} \right)_k}{k!}} \right) \\ \frac{1}{16} \left(\left(1 - \frac{1}{3\sqrt{3}} \right) e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}} \right) e^{24/5} \right) 0.99911 = \\ \frac{1}{e^{24/5}} \left(0.0624444 + 0.437111 \, e^{16/5} + 0.437111 \, e^{32/5} + \right. \\ 0.0624444 \, e^{48/5} + \frac{0.0416296 \, (-1 + e^{16/5})^3 \, \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{6}+j} \, 2^{-s} \, \Gamma\left(-\frac{1}{2} - s \right) \Gamma(s)} \right) \end{split}$$

$$((((((0.9991104/16[(1-1/(3sqrt3))*e^{(-24/5)}+(7+1/(sqrt3))*e^{(-8/5)}+(7-1/(sqrt3))*e^{(8/5)}+(1+1/(3sqrt3))*e^{(24/5)}]))))^2+11+(1/(sqrt3))^3$$

Input interpretation:
$$\left(\frac{0.9991104}{16} \left(\left(1 - \frac{1}{3\sqrt{3}} \right) e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}} \right) e^{24/5} \right) \right)^2 + 11 + \left(\frac{1}{\sqrt{3}} \right)^3$$

Result:

135.0758...

 $135.0758... \approx 135$ (Ramanujan taxicab number)

Series representations:

$$\left(\frac{1}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5} + \left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5} + \left(7-\frac{1}{\sqrt{3}}\right)e^{8/5} + \left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right) \\ 0.99911\right)^2 + 11 + \left(\frac{1}{\sqrt{3}}\right)^3 = 11 + \frac{8\sqrt{\pi}^3}{\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma(-\frac{1}{2}-s)\Gamma(s)\right)^3} + \frac{1}{\left(0.00173302\left((-1+e^{16/5})^3\sqrt{\pi} + (1.5+10.5e^{16/5}+10.5e^{32/5}+1.5e^{48/5}\right)\right)} \\ \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^2 \right) / \left(e^{48/5}\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^2 / \left(e^{48/5}\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^2 + \left(\frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{2}\left(\frac{1}{2}\right)^2 + \frac{1}{2}\left(\frac{1}{2}\right)^3 + \frac{1}{2}\left($$

$$\begin{split} \left(\frac{1}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5} + \left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5} + \left(7-\frac{1}{\sqrt{3}}\right)e^{8/5} + \left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right) \\ 0.99911\right)^2 + 11 + \left(\frac{1}{\sqrt{3}}\right)^3 &= \\ \left(0.0038993\left(256.456\,e^{48/5} + 0.111111\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!} - \right. \\ 0.666667\,e^{16/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!} + 1.66667\,e^{32/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!} - \\ 2.22222\,e^{48/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!} + 1.66667\,e^{64/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!} - \\ 0.666667\,e^{16}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!} + 0.111111\,e^{96/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!} - \\ 0.666667\,\sqrt{2}\,2\,\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2 - 2.66667\,e^{16/5}\,\sqrt{2}\,^2 \\ \left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2 + 7.33333\,e^{32/5}\,\sqrt{2}\,^2\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2 - 7.33333\,e^{32/5}\,\sqrt{2}\,^2\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2 + \\ 0.666667\,e^{96/5}\,\sqrt{2}\,^2\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2 + 2.66667\,e^{16}\,\sqrt{2}\,^2\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2 + \\ 14\,e^{16/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3 + 63\,e^{32/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3 + \\ 14\,e^{16}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3 + 63\,e^{64/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3 + \\ 14\,e^{16}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3 + e^{96/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3 + \\ 14\,e^{16}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k$$

 $(((((0.9991104/16[(1-1/(3sqrt3))*e^{-(-24/5)}+(7+1/(sqrt3))*e^{-(-8/5)}+(7-1/(sqrt3))*e^{-(-8/$ $1/(sqrt3))*e^{(8/5)+(1+1/(3sqrt3))}*e^{(24/5)}))))^2+13+(1/(sqrt3))^3+golden ratio^2$

Input interpretation:
$$\left(\frac{0.9991104}{16} \left(\left(1 - \frac{1}{3\sqrt{3}} \right) e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}} \right) e^{24/5} \right) \right)^2 + 13 + \left(\frac{1}{\sqrt{3}} \right)^3 + \phi^2$$

ø is the golden ratio

Result:

139.6938...

139.6938... result practically equal to the rest mass of Pion meson 139.57 MeV

Series representations:

$$\begin{split} \left(\frac{1}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5}+\left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5}+\left(7-\frac{1}{\sqrt{3}}\right)e^{8/5}+\left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right)\\ &0.99911\right)^2+13+\left(\frac{1}{\sqrt{3}}\right)^3+\phi^2=\\ 13+\phi^2+\frac{8\sqrt{\pi}^3}{\left(\sum_{j=0}^{\infty}\operatorname{Res}_{s=-\frac{1}{2}+j}2^{-s}\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^3}+\\ \left(0.00173302\left(\left(-1+e^{16/5}\right)^3\sqrt{\pi}\right.+\left(1.5+10.5\,e^{16/5}+10.5\,e^{32/5}+1.5\,e^{48/5}\right)\right.\\ &\left.\left.\sum_{j=0}^{\infty}\operatorname{Res}_{s=-\frac{1}{2}+j}2^{-s}\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^2\right)/\\ \left(e^{48/5}\left(\sum_{j=0}^{\infty}\operatorname{Res}_{s=-\frac{1}{2}+j}2^{-s}\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^2\right) \end{split}$$

$$\begin{split} \left(\frac{1}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5} + \left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5} + \left(7-\frac{1}{\sqrt{3}}\right)e^{8/5} + \left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right) \\ 0.99911\right)^2 + 13 + \left(\frac{1}{\sqrt{3}}\right)^3 + \phi^2 = \\ \left(0.0038993\left(256.456\,e^{48/5} + 0.1111111\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right) - \\ 0.666667\,e^{16/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right) + 1.66667\,e^{32/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right) - \\ 2.22222\,e^{48/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right) + 1.66667\,e^{64/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right) - \\ 0.666667\,e^{16}\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right) + 0.1111111\,e^{96/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right) - \\ 0.666667\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^2 - 2.66667\,e^{16/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^2 + \\ 7.33333\,e^{32/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^2 + 2.66667\,e^{16}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^2 + \\ 0.666667\,e^{96/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^2 + \sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^3 + \\ 14\,e^{16/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^3 + 63\,e^{32/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^3 + \\ 14\,e^{16}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^3 + e^{96/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^3 + \\ 256.456\,e^{48/5}\,\phi^2\,\sqrt{2}\,^3\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^3\right) \right) / \left(e^{48/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^3\right) \right) \end{split}$$

$$\begin{split} &\left(\frac{1}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5}+\left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5}+\left(7-\frac{1}{\sqrt{3}}\right)e^{8/5}+\left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right) \\ &0.99911\right)^{2}+13+\left(\frac{1}{\sqrt{3}}\right)^{3}+\phi^{2}=\\ &\left(0.0038993\left(256.456\,e^{48/5}+0.111111\,\sqrt{2}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}-\right.\\ &0.666667\,e^{16/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.66667\,e^{32/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}-\right.\\ &2.22222\,e^{48/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.66667\,e^{64/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}-\\ &0.666667\,e^{16}\,\sqrt{2}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+0.111111\,e^{96/5}\,\sqrt{2}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}-\\ &0.666667\,\sqrt{2}\,\left(\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}\right)^{2}+7.33333\,e^{32/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}-2.66667\,e^{16/5}\,\sqrt{2}\,\left(\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}\right)^{2}-7.33333\,e^{44/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+2.66667\,e^{16}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+\\ &14\,e^{16/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+63\,e^{64/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+\\ &14\,e^{16}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+e^{96/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}+\\ &256.456\,e^{48/5}\,\phi^{2}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)\right)\right)\right)\right\}\\ \left[e^{48/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)\right]\right)\right\}\\ \left[e^{48/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)\right]\right)\right\}\\ \left[e^{48/5}\,\sqrt{2}\,\left(\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}\right)\right]\right)\right]$$

 $(((((0.9991104/16[(1-1/(3sqrt3))*e^{-24/5})+(7+1/(sqrt3))*e^{-8/5})+(7-1/(sqrt3))*e^{-8/5})+(7-1/(sqrt3))*e^{-8/5})$ $1/(sqrt3))*e^{(8/5)+(1+1/(3sqrt3))}*e^{(24/5)}))))^2+(1/(sqrt3))^3 + golden ratio$

Input interpretation:
$$\left(\frac{0.9991104}{16} \left(\left(1 - \frac{1}{3\sqrt{3}} \right) e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}} \right) e^{24/5} \right) \right)^2 + \left(\frac{1}{\sqrt{3}} \right)^3 + \phi$$

ø is the golden ratio

Result:

125.6938...

125.6938... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

$$\begin{split} \left(\frac{1}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5}+\left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5}+\left(7-\frac{1}{\sqrt{3}}\right)e^{8/5}+\left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right)\\ &0.99911\right)^2+\left(\frac{1}{\sqrt{3}}\right)^3+\phi=\phi+\frac{8\sqrt{\pi}^3}{\left(\sum_{j=0}^\infty\operatorname{Res}_{s=-\frac{1}{2}+j}2^{-s}\,\Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^3}+\\ &\left(0.00173302\left(\left(-1+e^{16/5}\right)^3\sqrt{\pi}\right.+\left(1.5+10.5\,e^{16/5}+10.5\,e^{32/5}+1.5\,e^{48/5}\right)\right.\\ &\left.\left.\sum_{j=0}^\infty\operatorname{Res}_{s=-\frac{1}{2}+j}2^{-s}\,\Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^2\right)/\\ &\left.\left(e^{48/5}\left(\sum_{j=0}^\infty\operatorname{Res}_{s=-\frac{1}{2}+j}2^{-s}\,\Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)\right)^2\right)\right. \end{split}$$

$$\begin{split} \left(\frac{1}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5} + \left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5} + \left(7-\frac{1}{\sqrt{3}}\right)e^{8/5} + \left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right) \\ 0.99911\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^3 + \phi = \\ \left(0.0038993\left(256.456\,e^{48/5} + 0.1111111\,\sqrt{2}\,\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right) - \\ 0.666667\,e^{16/5}\,\sqrt{2}\,\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right) + 1.66667\,e^{32/5}\,\sqrt{2}\,\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right) - \\ 2.22222\,e^{48/5}\,\sqrt{2}\,\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right) + 1.66667\,e^{64/5}\,\sqrt{2}\,\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right) - \\ 0.666667\,e^{16}\,\sqrt{2}\,\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right) + 0.1111111\,e^{96/5}\,\sqrt{2}\,\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right) - \\ 0.666667\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^2 - 2.66667\,e^{16/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^2 + \\ 7.33333\,e^{32/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^2 + 2.66667\,e^{16}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^2 + \\ 0.666667\,e^{96/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^2 + \sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 + \\ 14\,e^{16/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 + 63\,e^{32/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 + \\ 14\,e^{16}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 + e^{96/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 + \\ 14\,e^{16}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 + e^{96/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 + \\ 256.456\,e^{48/5}\,\phi\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 \right) / \left(e^{48/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 \right) \right) / \left(e^{48/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty 2^{-k}\left(\frac{1}{2}\right)\right)^3 \right) \right)$$

$$\begin{split} &\left(\frac{1}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5}+\left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5}+\left(7-\frac{1}{\sqrt{3}}\right)e^{8/5}+\left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right) \\ &0.99911\right)^2+\left(\frac{1}{\sqrt{3}}\right)^3+\phi=\\ &\left(0.0038993\left(256.456\,e^{48/5}+0.111111\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-\right.\right.\\ &0.666667\,e^{16/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}+1.66667\,e^{32/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-\right.\\ &2.22222\,e^{48/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}+1.66667\,e^{64/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-\\ &0.666667\,e^{16}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}+0.111111\,e^{96/5}\,\sqrt{2}\,\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-\\ &0.666667\,\sqrt{2}\,\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2+2.66667\,e^{16/5}\,\sqrt{2}\,^2\right.\\ &\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2+7.33333\,e^{32/5}\,\sqrt{2}\,\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2-\\ &\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2+0.666667\,e^{96/5}\,\sqrt{2}\,^2\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^2+\\ &\left(3\,e^{32/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3+14\,e^{16/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3+\\ &\left(3\,e^{64/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3+14\,e^{16}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3+\\ &\left(e^{48/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3+256.456\,e^{48/5}\,\phi\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3\right)\right]\right)\right)\right\}\\ &\left(e^{48/5}\,\sqrt{2}\,^3\left(\sum_{k=0}^\infty\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)^3\right)\right)\right)$$

where $729 = 9^3$ (see Ramanujan cubes)

Input interpretation:

$$\sqrt{729} \times \frac{1}{2} \\
\left(\left(\frac{0.9991104}{16} \left(\left(1 - \frac{1}{3\sqrt{3}} \right) e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}} \right) e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}} \right) e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}} \right) e^{24/5} \right) \right)^{2} + 4 + \left(\frac{1}{\sqrt{3}} \right)^{2} \right) - 2$$

Result:

1728.925...

1728.925...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

$$\begin{split} \frac{1}{2}\sqrt{729}\left(\left(\frac{1}{16}\times0.99911\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5}+\left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5}+\right.\right.\right.\\ &\left.\left(7-\frac{1}{\sqrt{3}}\right)e^{8/5}+\left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right)\right)^2+4+\left(\frac{1}{\sqrt{3}}\right)^2\right)-2=\\ -2+\frac{1}{2}\sqrt{728}\left(4+0.0038993\left(e^{8/5}\left(7-\frac{1}{\sqrt{2}\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)}{\left(7-\frac{1}{\sqrt{2}\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)}{\left(8-24/5\right)}\right)}\right)+\frac{1-\frac{1}{3\sqrt{2}\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)}}{e^{24/5}}+\\ e^{24/5}\left(1+\frac{1}{3\sqrt{2}\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)}\right)+\frac{7+\frac{1}{\sqrt{2}\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)}}{e^{8/5}}\right)^2+\\ \frac{1}{\sqrt{2}^2\left(\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\right)\right)^2}\sum_{k=0}^{\infty}728^{-k}\left(\frac{1}{2}\right)\\ k\right) \end{split}$$

$$\frac{1}{2}\sqrt{729}\left(\left(\frac{1}{16} > 0.99911\left(\left(1 - \frac{1}{3\sqrt{3}}\right)e^{-24/5} + \left(7 + \frac{1}{\sqrt{3}}\right)e^{-8/5} + \left(7 - \frac{1}{\sqrt{3}}\right)e^{8/5} + \left(1 + \frac{1}{3\sqrt{3}}\right)e^{24/5}\right)\right)^2 + 4 + \left(\frac{1}{\sqrt{3}}\right)^2\right) - 2 = -2 + \frac{1}{2}\sqrt{728}$$

$$\left(4 + 0.0038993\left(e^{8/5}\left(7 - \frac{1}{\sqrt{2}\sum_{k=0}^{\infty}\left(\frac{-\frac{1}{2}\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\right)} + \frac{1 - \frac{1}{3\sqrt{2}\sum_{k=0}^{\infty}\left(\frac{-\frac{1}{2}\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\right)}}{e^{24/5}} + \frac{2^{4/5}}{e^{24/5}} + \frac{1}{\sqrt{2}\sum_{k=0}^{\infty}\left(\frac{-\frac{1}{2}\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\right)}}{e^{3/5}}\right)^2 + \frac{1}{\sqrt{2}}\frac{1}{2\sum_{k=0}^{\infty}\left(\frac{-\frac{1}{2}\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\right)}}{e^{3/5}} + \frac{1}{\sqrt{2}}\frac{1}{2\sum_{k=0}^{\infty}\left(\frac{-\frac{1}{2}\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\right)}}{e^{3/5}} + \frac{7 + \frac{1}{\sqrt{2}\sum_{k=0}^{\infty}\left(\frac{-\frac{1}{2}\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\right)}}{e^{3/5}} + \frac{1}{\sqrt{2}}\frac{1}{2\sum_{k=0}^{\infty}\left(\frac{-\frac{1}{2}\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\right)^2 + 4 + \left(\frac{1}{\sqrt{3}}\right)^2\right) - 2} = -2 + \frac{1}{2}\sqrt{2o}\left(4 + 0.0038993\left(e^{8/5}\left(7 - \frac{1}{\sqrt{2o}\sum_{k=0}^{\infty}\left(\frac{-1\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\left(3-z_0\binom{k}{z_0}k}\right)}{e^{24/5}}\right) + \frac{1}{\sqrt{2o}\sum_{k=0}^{\infty}\frac{\left(-1\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\left(3-z_0\binom{k}{z_0}k}\right)}{e^{3/5}} + \frac{2^{24/5}}{e^{3/5}} + \frac{1}{\sqrt{2o}\sum_{k=0}^{\infty}\frac{\left(-1\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\left(3-z_0\binom{k}{z_0}k}\right)}{e^{3/5}} + \frac{1}{\sqrt{2o}\sum_{k=0}^{\infty}\frac{\left(-1\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\left(3-z_0\binom{k}{z_0}k}\right)}{e^{3/5}} + \frac{1}{\sqrt{2o}\sum_{k=0}^{\infty}\frac{\left(-1\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\left(3-z_0\binom{k}{z_0}k}\right)}{e^{3/5}} + \frac{1}{\sqrt{2o}\sum_{k=0}^{\infty}\frac{\left(-1\binom{k}{2}\left(-\frac{1}{2}\right)k}{k!}\left(3-z_0\binom{k}{z_0}k}\right)}{e^{3/5}}} + \frac{1}{\sqrt{2o}\sum_{k=0}^{\infty}\frac{\left(-1\binom{k}{2$$

 $((((((((0.9991104/16[(1-1/(3sqrt3))*e^{(-24/5)}+(7+1/(sqrt3))*e^{(-8/5)}+(7-1/(sqrt3))*e^{(-8/$ $1/(sqrt3))*e^{(8/5)+(1+1/(3sqrt3))*e^{(24/5)}))))))^{1/5}$

Input interpretation:

$$\sqrt[5]{\frac{0.9991104}{16}\left(\left(1-\frac{1}{3\sqrt{3}}\right)e^{-24/5}+\left(7+\frac{1}{\sqrt{3}}\right)e^{-8/5}+\left(7-\frac{1}{\sqrt{3}}\right)e^{8/5}+\left(1+\frac{1}{3\sqrt{3}}\right)e^{24/5}\right)}$$

Result:

1.6192030...

1.6192030... result that is a good approximation to the value of the golden ratio 1,618033988749...

Now, we have that:

$$\mathcal{V}_{IIIb}(\varphi) = \frac{\lambda}{16} \left[\left(2 - 18\sqrt{3} \right) e^{-6\varphi/5} + \left(6 + 30\sqrt{3} \right) e^{-2\varphi/5} + \left(6 - 30\sqrt{3} \right) e^{2\varphi/5} + \left(2 + 18\sqrt{3} \right) e^{6\varphi/5} \right] .$$
(5.23)

We put for $\varphi > 0$ $\varphi = 4$ and for $\lambda > 0$ $\lambda = 0.9991104$, an obtain:

$$0.9991104/16[(2-18(sqrt3))*e^{(-24/5)}+(6+30(sqrt3))*e^{(-8/5)}+(6+30$$

Input interpretation: 0.9991104

$$\frac{16}{\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)}$$

Result:

238.2350...

238.235...

$$\frac{1}{16} \left(\left(2 - 18\sqrt{3} \right) e^{-24/5} + \left(6 + 30\sqrt{3} \right) e^{-8/5} + \left(6 - 30\sqrt{3} \right) e^{8/5} + \left(2 + 18\sqrt{3} \right) e^{24/5} \right)$$

$$0.99911 = \frac{1}{e^{24/5}} \left(0.124889 \left(1. + e^{16/5} \right)^3 + \left(-1.124 + 1.87333 e^{16/5} - 1.87333 e^{32/5} + 1.124 e^{48/5} \right) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k} \left(\frac{1}{2} \right) \right)$$

$$\frac{1}{16} \left(\left(2 - 18\sqrt{3} \right) e^{-24/5} + \left(6 + 30\sqrt{3} \right) e^{-8/5} + \left(6 - 30\sqrt{3} \right) e^{8/5} + \left(2 + 18\sqrt{3} \right) e^{24/5} \right) \\
0.99911 = \frac{1}{e^{24/5}} \left(0.124889 \left(1. + e^{16/5} \right)^3 + \left(-1.124 + 1.87333 e^{16/5} - 1.87333 e^{32/5} + 1.124 e^{48/5} \right) \sqrt{2} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2} \right)^k \left(-\frac{1}{2} \right)_k}{k!} \right) \right) \\$$

$$\begin{split} \frac{1}{16} \left(\left(2 - 18\sqrt{3} \right) e^{-24/5} + \left(6 + 30\sqrt{3} \right) e^{-8/5} + \left(6 - 30\sqrt{3} \right) e^{8/5} + \left(2 + 18\sqrt{3} \right) e^{24/5} \right) \\ 0.99911 &= \frac{1}{e^{24/5} \sqrt{\pi}} \left(0.124889 \left(1. + e^{16/5} \right)^3 \sqrt{\pi} + \left(-0.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5} \right) \\ \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \end{split}$$

$$1/2*(((0.9991104/16[(2-18(sqrt3))*e^{(-24/5)}+(6+30(sqrt3))*e^{(-8/5)}+(6-30(sqrt3))*e^{(8/5)}+(2+18(sqrt3))*e^{(24/5)})))+11+8-Pi$$

Input interpretation:

$$\frac{1}{2} \left(\frac{0.9991104}{16} \left(\left(2 - 18\sqrt{3} \right) e^{-24/5} + \left(6 + 30\sqrt{3} \right) e^{-8/5} + \left(6 - 30\sqrt{3} \right) e^{8/5} + \left(2 + 18\sqrt{3} \right) e^{24/5} \right) \right) + 11 + 8 - \pi$$

Result:

134.9759...

 $134.9759... \approx 135$ (Ramanujan taxicab number) and practically equal to the rest mass of Pion meson 134.9766 MeV

$$0.99911 ((2 - 18\sqrt{3}) e^{-24/5} + (6 + 30\sqrt{3}) e^{-8/5} + (6 - 30\sqrt{3}) e^{8/5} + (2 + 18\sqrt{3}) e^{24/5}) + 11 + 8 - \pi = 19 + \frac{0.0624444}{e^{24/5}} + \frac{0.187333}{e^{8/5}} + 0.187333 e^{8/5} + 0.0624444 e^{24/5} - \pi + \frac{(-0.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} 2^{-k} \binom{\frac{1}{2}}{k}}{e^{24/5}} + \frac{0.187333}{e^{8/5}} + (6 + 30\sqrt{3}) e^{-8/5} + (6 - 30\sqrt{3}) e^{8/5} + (2 + 18\sqrt{3}) e^{24/5})}{16 \times 2} + \frac{11 + 8 - \pi = 19 + \frac{0.0624444}{e^{24/5}} + \frac{0.187333}{e^{8/5}} + 0.187333 e^{8/5} + 0.0624444 e^{24/5} - \pi + \frac{(-0.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} \frac{(-\frac{1}{2})^k (-\frac{1}{2})_k}{e^{24/5}} + \frac{(-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} \frac{(-\frac{1}{2})^k (-\frac{1}{2})_k}{e^{24/5}} + \frac{(-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} \frac{(-\frac{1}{2})^k (-\frac{1}{2})_k}{e^{24/5}} + \frac{(-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} \frac{(-\frac{1}{2})^k (-\frac{1}{2})_k}{e^{24/5}} + \frac{(-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} \frac{(-\frac{1}{2})^k (-\frac{1}{2})_k}{e^{24/5}} + \frac{(-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} \frac{(-\frac{1}{2})^k (-\frac{1}{2})_k}{e^{24/5}} + \frac{(-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} \frac{(-\frac{1}{2})^k (-\frac{1}{2})_k}{e^{24/5}} + \frac{(-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} \sum_{k=0}^{\infty} \frac{(-1.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} + (-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} + (-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} + (-2.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5}) \sqrt{2} + (-2.562 + 0.936666 e^{16/5} - 0.$$

$$\frac{0.99911 \left(\left(2 - 18 \sqrt{3} \right) e^{-24/5} + \left(6 + 30 \sqrt{3} \right) e^{-8/5} + \left(6 - 30 \sqrt{3} \right) e^{8/5} + \left(2 + 18 \sqrt{3} \right) e^{24/5} \right)}{16 \times 2}$$

$$+ 11 + 8 - \pi = \frac{1}{e^{24/5} \sqrt{\pi}}$$

$$\left(\left(0.0624444 + 0.187333 e^{16/5} + 0.187333 e^{32/5} + 0.0624444 e^{48/5} + e^{24/5} \left(19 - \pi \right) \right) \right)$$

$$\sqrt{\pi} + \left(-0.281 + 0.468333 e^{16/5} - 0.468333 e^{32/5} + 0.281 e^{48/5} \right)$$

$$\sum_{j=0}^{\infty} \text{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2} - s \right) \Gamma(s)$$

 $1/2*(((0.9991104/16[(2-18(sqrt3))*e^{-24/5})+(6+30(sqrt3))*e^{-8/5})+(6-3)*e^{-8/5})$ $30(sqrt3))*e^{(8/5)+(2+18(sqrt3))}*e^{(24/5)}))+8-Pi+golden ratio$

Input interpretation:
$$\frac{1}{2} \left(\frac{0.9991104}{16} \left(\left(2 - 18\sqrt{3} \right) e^{-24/5} + \left(6 + 30\sqrt{3} \right) e^{-8/5} + \left(6 - 30\sqrt{3} \right) e^{8/5} + \left(2 + 18\sqrt{3} \right) e^{24/5} \right) \right) + 8 - \pi + \phi$$

ø is the golden ratio

Result:

125.5939...

125.5939... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

$$\begin{array}{c} \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)}\\ 16\times2 \\ 8+\frac{8-\pi+\phi=}{0.0624444} + \frac{0.187333}{e^{8/5}} + 0.187333e^{8/5} + 0.0624444e^{24/5} + \phi - \pi + \\ \underline{\left(-0.562+0.936666e^{16/5}-0.936666e^{32/5}+0.562e^{48/5}\right)\sqrt{2}}\\ \underline{c^{24/5}} \\ \\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)}\\ 16\times2 \\ 8+\frac{0.0624444}{e^{24/5}} + \frac{0.187333}{e^{8/5}} + 0.187333e^{8/5} + 0.0624444e^{24/5} + \phi - \pi + \\ \underline{\left(-0.562+0.936666e^{16/5}-0.936666e^{32/5}+0.562e^{48/5}\right)\sqrt{2}}\\ \underline{c^{24/5}} \\ \underline{c^{24/5}} \\ \\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)}\\ \underline{16\times2} \\ +8-\pi+\phi=\\ \underline{\frac{1}{e^{24/5}\sqrt{\pi}}\left(\left(0.0624444+0.187333e^{16/5}+0.187333e^{32/5}+0.0624444e^{48/5}+e^{24/5}\right)}\\ \underline{16\times2} \\ +8-\pi+\phi=\\ \underline{\frac{1}{e^{24/5}\sqrt{\pi}}\left(\left(0.0624444+0.187333e^{16/5}+0.187333e^{32/5}+0.0624444e^{48/5}+e^{24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)}\\ \underline{16\times2} \\ +8-\pi+\phi=\\ \underline{\frac{1}{e^{24/5}\sqrt{\pi}}\left(\left(0.0624444+0.187333e^{16/5}+0.187333e^{32/5}+0.0624444e^{48/5}+e^{24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{-8/5}+\left(2+18\sqrt{3}\right)e^{-24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{-8/5}+\left(2+18\sqrt{3}\right)e^{-24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-24/5}+\left(6-30\sqrt{3}\right)e^{-24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-24/5}}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-24/5}+\left(6-30\sqrt{3}\right)e^{-24/5}+\left(6-30\sqrt{3}\right)e^{-24/5}\right)}\\ \underline{0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-24/$$

 $1/2*(((0.9991104/16[(2-18(sqrt3))*e^{(-24/5)}+(6+30(sqrt3))*e^{(-8/5)}+(6-30(sqrt3))*e^{(8/5)}+(2+18(sqrt3))*e^{(24/5)})))+11-e+1/golden ratio$

Input interpretation:

$$\frac{1}{2} \left(\frac{0.9991104}{16} \left(\left(2 - 18\sqrt{3} \right) e^{-24/5} + \left(6 + 30\sqrt{3} \right) e^{-8/5} + \left(6 - 30\sqrt{3} \right) e^{8/5} + \left(2 + 18\sqrt{3} \right) e^{24/5} \right) + 11 - e + \frac{1}{\phi} \right)$$

φ is the golden ratio

Result:

128.0173...

128.0173...

$$\frac{0.99911 \left(\left(2-18\sqrt{3} \right) e^{-24/5} + \left(6+30\sqrt{3} \right) e^{-8/5} + \left(6-30\sqrt{3} \right) e^{8/5} + \left(2+18\sqrt{3} \right) e^{24/5} \right)}{16\times 2} + 11 - e + \frac{1}{\phi} = \\ 11 + \frac{0.0624444}{e^{24/5}} + \frac{0.187333}{e^{8/5}} - e + 0.187333 e^{8/5} + 0.0624444 e^{24/5} + \frac{1}{\phi} + \\ \sum_{k=0}^{\infty} \frac{2^{-k} \left(-0.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5} \right) \left(\frac{1}{2} \right) \sqrt{2}}{e^{24/5}}$$

$$\frac{0.99911 \left(\left(2 - 18\sqrt{3} \right) e^{-24/5} + \left(6 + 30\sqrt{3} \right) e^{-8/5} + \left(6 - 30\sqrt{3} \right) e^{8/5} + \left(2 + 18\sqrt{3} \right) e^{24/5} \right)}{16 \times 2}$$

$$+ 11 - e + \frac{1}{\phi} =$$

$$11 + \frac{0.0624444}{e^{24/5}} + \frac{0.187333}{e^{8/5}} - e + 0.187333 e^{8/5} + 0.0624444 e^{24/5} + \frac{1}{\phi} +$$

$$\frac{\left(-0.562 + 0.936666 e^{16/5} - 0.936666 e^{32/5} + 0.562 e^{48/5} \right) \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2} \right)^k \left(-\frac{1}{2} \right)_k}{e^{24/5}}$$

$$\begin{array}{c} 0.99911\left(\left(2-18\sqrt{3}\right)e^{-24/5}+\left(6+30\sqrt{3}\right)e^{-8/5}+\left(6-30\sqrt{3}\right)e^{8/5}+\left(2+18\sqrt{3}\right)e^{24/5}\right)\\ 16\times2\\ +11-e+\frac{1}{\phi}=\\ 11+\frac{0.0624444}{e^{24/5}}+\frac{0.187333}{e^{8/5}}-e+0.187333\,e^{8/5}+0.0624444\,e^{24/5}+\\ \frac{1}{\phi}+\frac{1}{e^{24/5}}\left(-0.562+0.936666\,e^{16/5}-0.936666\,e^{32/5}+0.562\,e^{48/5}\right)\\ \sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k\left(3-z_0\right)^kz_0^{-k}}{k!} \quad \text{for not}\left(\left(z_0\in\mathbb{R} \text{ and } -\infty < z_0\leq 0\right)\right) \end{array}$$

Input interpretation:

$$\sqrt{729} \times \frac{1}{2} \left(\frac{1}{2} \left(\frac{0.9991104}{16} \left(\left(2 - 18\sqrt{3} \right) e^{-24/5} + \left(6 + 30\sqrt{3} \right) e^{-8/5} + \left(6 - 30\sqrt{3} \right) e^{8/5} + \left(2 + 18\sqrt{3} \right) e^{24/5} \right) \right) + 11 - e + \frac{1}{\phi} \right) + \frac{4}{5}$$

ø is the golden ratio

Result:

1729.033...

1729.033...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

$$\begin{split} \frac{1}{2} \sqrt{729} \left(\frac{1}{2 \times 16} 0.99911 \left(\left(2 - 18 \sqrt{3} \right) e^{-24/5} + \left(6 + 30 \sqrt{3} \right) e^{-8/5} + \right. \\ \left. \left(6 - 30 \sqrt{3} \right) e^{8/5} + \left(2 + 18 \sqrt{3} \right) e^{24/5} \right) + 11 - e + \frac{1}{\phi} \right) + \frac{4}{5} &= \\ \frac{1}{e^{24/5} \phi} 0.281 \left(2.84698 \, e^{24/5} \phi + 1.77936 \, e^{24/5} \sqrt{728} \, \sum_{k=0}^{\infty} 728^{-k} \left(\frac{1}{2} \right) + \\ 0.111111 \phi \sqrt{728} \, \sum_{k=0}^{\infty} 728^{-k} \left(\frac{1}{2} \right) + 0.333333 \, e^{16/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} 728^{-k} \left(\frac{1}{2} \right) + \\ 19.573 \, e^{24/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} 728^{-k} \left(\frac{1}{2} \right) - 1.77936 \, e^{29/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} 728^{-k} \left(\frac{1}{2} \right) + \\ 0.333333 \, e^{32/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} 728^{-k} \left(\frac{1}{2} \right) + \\ 0.111111 \, e^{48/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} 728^{-k} \left(\frac{1}{2} \right) + \\ 0.111111 \, e^{48/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \\ 1.66667 \, e^{16/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \right) + \\ e^{48/5} \phi \sqrt{2} \, \sqrt{228} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} 2^{-k_1 - 3k_2} \times 91^{-k_2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left($$

$$\begin{split} \frac{1}{2} \sqrt{729} \left(\frac{1}{2 \times 16} 0.99911 \left(\left(2 - 18 \sqrt{3} \right) e^{-24/5} + \left(6 + 30 \sqrt{3} \right) e^{-8/5} + \right. \\ \left. \left(6 - 30 \sqrt{3} \right) e^{8/5} + \left(2 + 18 \sqrt{3} \right) e^{24/5} \right) + 11 - e + \frac{1}{\phi} \right) + \frac{4}{5} = \\ \frac{1}{e^{24/5} \phi} 0.281 \left(2.84698 \, e^{24/5} \phi + 1.77936 \, e^{24/5} \sqrt{728} \, \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728} \right)^k \left(-\frac{1}{2} \right)_k}{k!} + \right. \\ 0.111111 \phi \sqrt{728} \, \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728} \right)^k \left(-\frac{1}{2} \right)_k}{k!} + \\ 0.333333 \, e^{16/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728} \right)^k \left(-\frac{1}{2} \right)_k}{k!} + \\ 19.573 \, e^{24/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728} \right)^k \left(-\frac{1}{2} \right)_k}{k!} - \\ 1.77936 \, e^{29/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728} \right)^k \left(-\frac{1}{2} \right)_k}{k!} + \\ 0.333333 \, e^{32/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728} \right)^k \left(-\frac{1}{2} \right)_k}{k!} + \\ 0.111111 \, e^{48/5} \phi \sqrt{728} \, \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{728} \right)^k \left(-\frac{1}{2} \right)_k}{k!} - \\ \phi \left(\sqrt{2} \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{\left(-\frac{1}{728} \right)^k \left(-\frac{1}{2} \right)_k}{k!} - \\ \frac{1.66667 \, e^{16/5} \phi \sqrt{2} \sqrt{728}}{k!} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{1} \right)^{k+k_2} 2^{-k_1-3k_2} \times 91^{-k_2} \left(-\frac{1}{2} \right)_{k_1} \left(-\frac{1}{2} \right)_{k_2}}{k!} + \\ e^{48/5} \phi \sqrt{2} \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{\left(-1 \right)^{k_1+k_2} 2^{-k_1-3k_2} \times 91^{-k_2} \left(-\frac{1}{2} \right)_{k_1} \left(-\frac{1}{2} \right)_{k_2}}{k_1! \, k_2!} + \\ e^{48/5} \phi \sqrt{2} \sqrt{728} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{\left(-1 \right)^{k_1+k_2} 2^{-k_1-3k_2} \times 91^{-k_2} \left(-\frac{1}{2} \right)_{k_1} \left(-\frac{1}{2} \right)_{k_2}}{k_1! \, k_2!} \right)$$

$$\begin{split} \frac{1}{2} \sqrt{729} \left(\frac{1}{2 \times 16} 0.99911 \left(\left(2 - 18 \sqrt{3} \right) e^{-24/5} + \left(6 + 30 \sqrt{3} \right) e^{-8/5} + \right. \\ \left. \left(6 - 30 \sqrt{3} \right) e^{8/5} + \left(2 + 18 \sqrt{3} \right) e^{24/5} \right) + 11 - e + \frac{1}{\phi} \right) + \frac{4}{5} &= \\ \frac{1}{e^{24/5} \phi \sqrt{\pi^2}} 0.8 \left(e^{24/5} \phi \sqrt{\pi^2} + 0.3125 e^{24/5} \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) + \\ 0.0195139 \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) + \\ 0.0585416 e^{16/5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) + \\ 3.4375 e^{24/5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) - \\ 0.3125 e^{29/5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) + \\ 0.0585416 e^{32/5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) + \\ 0.0195139 e^{48/5} \phi \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) - 0.0878124 \phi \\ \sum_{j_1=0}^{\infty} \sum_{j_2=0}^{\infty} \left(\operatorname{Res}_{s=-\frac{1}{2}+j_1} 2^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \left(\operatorname{Res}_{s=-\frac{1}{2}+j_2} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) - \\ 0.146354 e^{32/5} \phi \sum_{j_1=0}^{\infty} \sum_{j_2=0}^{\infty} \left(\operatorname{Res}_{s=-\frac{1}{2}+j_1} 2^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) + 0.0878124 e^{48/5} \phi \\ \sum_{j_1=0}^{\infty} \sum_{j_2=0}^{\infty} \left(\operatorname{Res}_{s=-\frac{1}{2}+j_1} 2^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) + 0.0878124 e^{48/5} \phi \\ \sum_{j_1=0}^{\infty} \sum_{j_2=0}^{\infty} \left(\operatorname{Res}_{s=-\frac{1}{2}+j_1} 2^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \left(\operatorname{Res}_{s=-\frac{1}{2}+j_2} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \right) \\ \left(\operatorname{Res}_{s=-\frac{1}{2}+j_2} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \left(\operatorname{Res}_{s=-\frac{1}{2}+j_2} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \right) \right) \\ \left(\operatorname{Res}_{s=-\frac{1}{2}+j_1} 2^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \left(\operatorname{Res}_{s=-\frac{1}{2}+j_2} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \right) \right) \\ \left(\operatorname{Res}_{s=-\frac{1}{2}+j_1} 2^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \left(\operatorname{Res}_{s=-\frac{1}{2}+j_2} 728^{-s} \Gamma \left(-\frac{1}{2} - s \right) \Gamma(s) \right) \right) \right)$$

Now, we have that:

$$\mathcal{V}_{Va}(\varphi) = \lambda \left[a \cosh^{\frac{4}{3}} \left(\frac{3\varphi}{5} \right) + b \frac{\sinh^{2} \left(\frac{3\varphi}{5} \right)}{\cosh^{\frac{2}{3}} \left(\frac{3\varphi}{5} \right)} \right]
= \frac{a - b + (a + b) \cosh \left(\frac{6\varphi}{5} \right)}{2 \cosh^{\frac{2}{3}} \left(\frac{3\varphi}{5} \right)},$$
(5.29)

We put for $\phi > 0$ $\phi = 4$ and for $\lambda > 0$ $\lambda = 0.9991104$, and a = 138, b = 135 and obtain:

$$((138-135+(138+135)\cosh(24/5)))/((2\cosh^2(2/3)(12/5)))$$

Input:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}$$

 $\cosh(x)$ is the hyperbolic cosine function

Exact result:

$$\frac{3+273\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}$$

Decimal approximation:

2644.031410843619594106656897494426919135475769955533719560...

2644.03141084...

Alternate forms:

$$\frac{3\left(1+91\cosh\left(\frac{24}{5}\right)\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}$$

$$\frac{3}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \frac{273\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}$$

$$\frac{3 \left(91+2 \, e^{24/5}+91 \, e^{48/5}\right)}{2 \, \sqrt[3]{2} \, e^{16/5} \left(1+e^{24/5}\right)^{2/3}}$$

Alternative representations:

$$\frac{138-135+(138+135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}=\frac{3+273\cos\left(\frac{24i}{5}\right)}{2\cos^{2/3}\left(\frac{12i}{5}\right)}$$

$$\frac{138-135+(138+135)\cosh\!\left(\frac{24}{5}\right)}{2\cosh^{2/3}\!\left(\frac{12}{5}\right)}=\frac{3+273\cos\!\left(-\frac{24\,i}{5}\right)}{2\cos^{2/3}\!\left(-\frac{12\,i}{5}\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} = \frac{3 + \frac{273}{\sec\left(\frac{24}{5}\right)}}{2\left(\frac{1}{\sec\left(\frac{12}{5}\right)}\right)^{2/3}}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} = \frac{3\left(1 + 91\sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^k}{(2k)!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^k}{(2k)!}\right)^{2/3}}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} = \frac{3\left(1 + 91\sum_{k=0}^{\infty} \frac{(-i)^k\cos\left(\frac{k\pi}{2} - i\,z_0\right)\left(\frac{24}{5} - z_0\right)^k}{k!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{(-i)^k\cos\left(\frac{k\pi}{2} - i\,z_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3}}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} = \frac{3\left(1 + 91I_0\left(\frac{24}{5}\right) + 182\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{24}{5}\right)\right)}{2\left(I_0\left(\frac{12}{5}\right) + 2\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{12}{5}\right)\right)^{2/3}}$$

Integral representations:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} = \frac{3\left(1 + 91\int_{i\pi}^{\frac{24}{5}}\sinh(t)\,dt\right)}{2\left(\int_{i\pi}^{\frac{12}{5}}\sinh(t)\,dt\right)^{2/3}}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} = \frac{6\left(115 + 546\int_{0}^{1}\sinh\left(\frac{24t}{5}\right)dt\right)}{\sqrt[3]{5}\left(5 + 12\int_{0}^{1}\sinh\left(\frac{12t}{5}\right)dt\right)^{2/3}}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} &= \\ \frac{3\sqrt[3]{-i\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma}\frac{e^{36/(25\,s)+s}}{\sqrt{s}}\,ds}\left(2\,i\,\sqrt{\pi}\,+91\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma}\frac{e^{144/(25\,s)+s}}{\sqrt{s}}\,ds\right)}{2\sqrt[3]{2}\sqrt[6]{\pi}\,\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma}\frac{e^{36/(25\,s)+s}}{\sqrt{s}}\,ds} &\text{for } \gamma>0 \end{split}$$

 $((138-135+(138+135)\cosh(24/5)))/((2\cosh^2(2/3)(12/5)))$ + golden ratio

Input:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \phi$$

 $\cosh(x)$ is the hyperbolic cosine function

ø is the golden ratio

Exact result:

$$\phi + \frac{3 + 273 \cosh\left(\frac{24}{5}\right)}{2 \cosh^{2/3}\left(\frac{12}{5}\right)}$$

Decimal approximation:

2645.649444832369488954861484328792557253196079135339482422...

2645.649444832... result practically equal to the rest mass of charmed Xi baryon 2645.9

Alternate forms:

$$\frac{1}{2} + \frac{\sqrt{5}}{2} + \frac{3}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \frac{273\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}$$

$$\frac{3 + cosh^{2/3}\left(\frac{12}{5}\right) + \sqrt{5} \ cosh^{2/3}\left(\frac{12}{5}\right) + 273 \ cosh\left(\frac{24}{5}\right)}{2 \ cosh^{2/3}\left(\frac{12}{5}\right)}$$

$$\phi + \frac{e^{8/5} \left(\frac{3}{\sqrt[3]{2}} + \frac{273}{2\sqrt[3]{2}} + \frac{273}{2\sqrt[3]{2}} + \frac{273}{2\sqrt[3]{2}} \right)}{\left(1 + e^{24/5} \right)^{2/3}}$$

Alternative representations:

$$\frac{138-135+(138+135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}+\phi=\phi+\frac{3+273\cos\left(\frac{24\,i}{5}\right)}{2\cos^{2/3}\left(\frac{12\,i}{5}\right)}$$

$$\frac{138-135+(138+135)\cosh\!\left(\frac{24}{5}\right)}{2\cosh^{2/3}\!\left(\frac{12}{5}\right)}+\phi=\phi+\frac{3+273\cos\!\left(-\frac{24\,i}{5}\right)}{2\cos^{2/3}\!\left(-\frac{12\,i}{5}\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \phi = \phi + \frac{3 + \frac{273}{\sec\left(\frac{24}{5}\right)}}{2\left(\frac{1}{\sec\left(\frac{12}{5}\right)}\right)^{2/3}}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \phi &= \\ \frac{3 + \left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^k}{(2k)!}\right)^{2/3} + \sqrt{5}\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^k}{(2k)!}\right)^{2/3} + 273\sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^k}{(2k)!}}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^k}{(2k)!}\right)^{2/3}} \end{split}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \phi &= \\ \left(3 + 273\,I_0\left(\frac{24}{5}\right) + \left(I_0\left(\frac{12}{5}\right) + 2\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{12}{5}\right)\right)^{2/3} + \sqrt{5}\left(I_0\left(\frac{12}{5}\right) + 2\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{12}{5}\right)\right)^{2/3} + \\ 546\,\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{24}{5}\right)\right) / \left(2\left(I_0\left(\frac{12}{5}\right) + 2\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{12}{5}\right)\right)^{2/3}\right) \end{split}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \phi &= \left(3 + \left(\sum_{k=0}^{\infty} \frac{(-i)^k \cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3} + \\ \sqrt{5} \left(\sum_{k=0}^{\infty} \frac{(-i)^k \cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3} + \\ 273 \sum_{k=0}^{\infty} \frac{(-i)^k \cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{24}{5} - z_0\right)^k}{k!}\right) / \\ \left(2 \left(\sum_{k=0}^{\infty} \frac{(-i)^k \cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3}\right) \end{split}$$

Integral representations:

Integral representations:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \phi = \frac{3 + \left(\int_{i\pi}^{\frac{12}{5}} \sinh(t) dt\right)^{2/3} + \sqrt{5}\left(\int_{i\pi}^{\frac{12}{5}} \sinh(t) dt\right)^{2/3} + 273\int_{i\pi}^{\frac{24}{5}} \sinh(t) dt}{2\left(\int_{i\pi}^{\frac{12}{5}} \sinh(t) dt\right)^{2/3}} + 273\int_{i\pi}^{\frac{24}{5}} \sinh(t) dt$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \phi &= \\ \left(1380 \times 5^{2/3} + 5\left(5 + 12\int_{0}^{1}\sinh\left(\frac{12\,t}{5}\right)dt\right)^{2/3} + 5\sqrt{5}\left(5 + 12\int_{0}^{1}\sinh\left(\frac{12\,t}{5}\right)dt\right)^{2/3} + \\ 6552 \times 5^{2/3}\int_{0}^{1}\sinh\left(\frac{24\,t}{5}\right)dt\right) \Big/ \left(10\left(5 + 12\int_{0}^{1}\sinh\left(\frac{12\,t}{5}\right)dt\right)^{2/3}\right) \end{split}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \phi = \frac{2\cosh^{2/3}\left(\frac{12}{5}\right)}{\left(6i2^{2/3}\sqrt{\pi} \sqrt[3]{-i\int_{-i\,\omega+\gamma}^{i\,\omega+\gamma}\frac{e^{36/(25\,s)+s}}{\sqrt{s}}\,ds + 2\sqrt[3]{\pi}\int_{-i\,\omega+\gamma}^{i\,\omega+\gamma}\frac{e^{36/(25\,s)+s}}{\sqrt{s}}\,ds + 2\sqrt[3]{\pi}\int_{-i\,\omega+\gamma}^{i\,\omega+\gamma}\frac{e^{36$$

 $(((1/3((138-135+(138+135)\cosh(24/5)))/((2\cosh^2(2/3)(12/5)))))-76+7-34*1/10^2$

$$\frac{1}{3} \times \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 76 + 7 - 34 \times \frac{1}{10^2}$$

 $\cosh(x)$ is the hyperbolic cosine function

Exact result:

$$\frac{3 + 273 \cosh\left(\frac{24}{5}\right)}{6 \cosh^{2/3}\left(\frac{12}{5}\right)} - \frac{3467}{50}$$

Decimal approximation:

812.0038036145398647022189658314756397118252566518445731867...

 $812.0038036145... \approx 812$ (Ramanujan taxicab number)

Alternate forms:

$$-\frac{-25 + 3467 \cosh^{2/3}\left(\frac{12}{5}\right) - 2275 \cosh\left(\frac{24}{5}\right)}{50 \cosh^{2/3}\left(\frac{12}{5}\right)}$$

$$-\frac{3467}{50} + \frac{1}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \frac{91\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}$$

$$\frac{91\cosh\!\left(\frac{24}{5}\right)}{2\cosh^{2/3}\!\left(\frac{12}{5}\right)} - \frac{3467\cosh^{2/3}\!\left(\frac{12}{5}\right) - 25}{50\cosh^{2/3}\!\left(\frac{12}{5}\right)}$$

Alternative representations:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} = -69 - \frac{34}{10^2} + \frac{3 + 273\cos\left(\frac{24}{5}\right)}{3\left(2\cos^{2/3}\left(\frac{12}{5}\right)\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} = -69 - \frac{34}{10^2} + \frac{3 + 273\cos\left(-\frac{24\,i}{5}\right)}{3\left(2\cos^{2/3}\left(-\frac{12\,i}{5}\right)\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} = -69 - \frac{34}{10^2} + \frac{3 + \frac{273}{\sec\left(\frac{24i}{5}\right)}}{3\left(2\left(\frac{1}{\sec\left(\frac{12i}{5}\right)}\right)^{2/3}\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} =$$

$$-\frac{-25 + 3467\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^k}{(2k)!}\right)^{2/3} - 2275\sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^k}{(2k)!}}{50\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^k}{(2k)!}\right)^{2/3}}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} &= \\ -\frac{-25 - 2275\,I_0\!\left(\frac{24}{5}\right) + 3467\left(I_0\!\left(\frac{12}{5}\right) + 2\sum_{k=1}^{\infty}I_{2\,k}\!\left(\frac{12}{5}\right)\right)^{2/3} - 4550\,\sum_{k=1}^{\infty}I_{2\,k}\!\left(\frac{24}{5}\right)}{50\left(I_0\!\left(\frac{12}{5}\right) + 2\sum_{k=1}^{\infty}I_{2\,k}\!\left(\frac{12}{5}\right)\right)^{2/3}} \end{split}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} &= \\ -25 + 3467\left(\sum_{k=0}^{\infty}\frac{(-i)^k\cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3} - 2275\sum_{k=0}^{\infty}\frac{(-i)^k\cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{24}{5} - z_0\right)^k}{k!} \\ &- \frac{50\left(\sum_{k=0}^{\infty}\frac{(-i)^k\cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3}} \end{split}$$

Integral representations:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} = \\ -\frac{-25 + 3467\left(\int_{i\pi}^{\frac{12}{5}}\sinh(t)\,dt\right)^{2/3} - 2275\int_{i\pi}^{\frac{24}{5}}\sinh(t)\,dt}{50\left(\int_{i\pi}^{\frac{12}{5}}\sinh(t)\,dt\right)^{2/3}}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} = \\ \frac{2300 \times 5^{2/3} - 3467\left(5 + 12\int_0^1 \sinh\left(\frac{12t}{5}\right)dt\right)^{2/3} + 10920 \times 5^{2/3}\int_0^1 \sinh\left(\frac{24t}{5}\right)dt}{50\left(5 + 12\int_0^1 \sinh\left(\frac{12t}{5}\right)dt\right)^{2/3}} \end{split}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{\left(2\cosh^{2/3}\left(\frac{12}{5}\right)\right)3} - 76 + 7 - \frac{34}{10^2} = \left[50 i 2^{2/3} \sqrt{\pi} \sqrt[3]{-i} \int_{-i + \gamma}^{i + \gamma} \frac{e^{36/(25 s) + s}}{\sqrt{s}} ds - 6934 \sqrt[6]{\pi} \int_{-i + \gamma}^{i + \gamma} \frac{e^{36/(25 s) + s}}{\sqrt{s}} ds + 2275 \times 2^{2/3} \sqrt[3]{-i} \int_{-i + \gamma}^{i + \gamma} \frac{e^{36/(25 s) + s}}{\sqrt{s}} ds \int_{-i + \gamma}^{i + \gamma} \frac{e^{144/(25 s) + s}}{\sqrt{s}} ds\right] / \left[100 \sqrt[6]{\pi} \int_{-i + \gamma}^{i + \gamma} \frac{e^{36/(25 s) + s}}{\sqrt{s}} ds\right] \text{ for } \gamma > 0$$

 $(((138-135+(138+135)\cosh(24/5)))/((2\cosh^2(2/3)(12/5))))-843-76+4$

Input:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4$$

 $\cosh(x)$ is the hyperbolic cosine function

Exact result:

$$\frac{3 + 273 \cosh\left(\frac{24}{5}\right)}{2 \cosh^{2/3}\left(\frac{12}{5}\right)} - 915$$

Decimal approximation:

1729.031410843619594106656897494426919135475769955533719560...

1729.031410843...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

Alternate forms:
$$-915 + \frac{3}{2\cosh^{2/3}\left(\frac{12}{5}\right)} + \frac{273\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - \frac{3\left(-1 + 610\cosh^{2/3}\left(\frac{12}{5}\right) - 91\cosh\left(\frac{24}{5}\right)\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - \frac{273\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - \frac{3\left(610\cosh^{2/3}\left(\frac{12}{5}\right) - 1\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)}$$

Alternative representations:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 = -915 + \frac{3 + 273\cos\left(\frac{24}{5}\right)}{2\cos^{2/3}\left(\frac{12}{5}\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 = -915 + \frac{3 + 273\cos\left(-\frac{24\,i}{5}\right)}{2\cos^{2/3}\left(-\frac{12\,i}{5}\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 = -915 + \frac{3 + \frac{273}{\sec\left(\frac{24i}{5}\right)}}{2\left(\frac{1}{\sec\left(\frac{12i}{5}\right)}\right)^{2/3}}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 &= \\ -\frac{3\left(-1 + 610\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2\,k)!}\right)^{2/3} - 91\sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^{k}}{(2\,k)!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^{k}}{(2\,k)!}\right)^{2/3}} \end{split}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 &= \\ -\frac{3\left(-1 - 91\,I_0\left(\frac{24}{5}\right) + 610\left(I_0\left(\frac{12}{5}\right) + 2\,\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{12}{5}\right)\right)^{2/3} - 182\,\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{24}{5}\right)}{2\left(I_0\left(\frac{12}{5}\right) + 2\,\sum_{k=1}^{\infty}I_{2\,k}\left(\frac{12}{5}\right)\right)^{2/3}} \end{split}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 &= \\ -\frac{3\left(-1 + 610\left(\sum_{k=0}^{\infty}\frac{(-i)^k\cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3} - 91\sum_{k=0}^{\infty}\frac{(-i)^k\cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{24}{5} - z_0\right)^k}{k!}\right)}{2\left(\sum_{k=0}^{\infty}\frac{(-i)^k\cos\left(\frac{k\pi}{2} - iz_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3}} \end{split}$$

Integral representations:

Integral representations:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 = 2\cosh^{2/3}\left(\frac{12}{5}\right)$$

$$-\frac{3\left(-1 + 610\left(\int_{i\pi}^{\frac{12}{5}}\sinh(t)\,dt\right)^{2/3} - 91\int_{i\pi}^{\frac{24}{5}}\sinh(t)\,dt\right)}{2\left(\int_{i\pi}^{\frac{12}{5}}\sinh(t)\,dt\right)^{2/3}}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 &= \\ \frac{3\left(230 \times 5^{2/3} - 1525\left(5 + 12\int_{0}^{1}\sinh\left(\frac{12t}{5}\right)dt\right)^{2/3} + 1092 \times 5^{2/3}\int_{0}^{1}\sinh\left(\frac{24t}{5}\right)dt\right)}{5\left(5 + 12\int_{0}^{1}\sinh\left(\frac{12t}{5}\right)dt\right)^{2/3}} \end{split}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - 843 - 76 + 4 = \frac{2\cosh^{2/3}\left(\frac{12}{5}\right)}{\left(3\left(2i2^{2/3}\sqrt{\pi}\sqrt{s}\right)^{3} - i\int_{-i\,\omega+\gamma}^{i\,\omega+\gamma}\frac{e^{36/(25\,s)+s}}{\sqrt{s}}\,ds - 1220\sqrt[6]{\pi}\int_{-i\,\omega+\gamma}^{i\,\omega+\gamma}\frac{e^{36/(25\,s)+s}}{\sqrt{s}}\,ds + \frac{91\times2^{2/3}\sqrt{s}}{\sqrt{s}}\sqrt{s}}\sqrt{s}\sqrt{s}\sqrt{s}}\,ds - 1220\sqrt[6]{\pi}\int_{-i\,\omega+\gamma}^{i\,\omega+\gamma}\frac{e^{36/(25\,s)+s}}{\sqrt{s}}\,ds\right) \Big|/\left(4\sqrt[6]{\pi}\int_{-i\,\omega+\gamma}^{i\,\omega+\gamma}\frac{e^{36/(25\,s)+s}}{\sqrt{s}}\,ds\right) \text{ for } \gamma>0$$

$$(((138-135+(138+135)\cosh(24/5))) / ((2\cosh^2(2/3)(12/5)))) - (2452.9-1535)$$

where 2452.9 and 1535 are the rest mass of the charmed Sigma baryon and Xi baryon

Input interpretation:
$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535)$$

 $\cosh(x)$ is the hyperbolic cosine function

Result:

1726.13...

1726.13... result very near to the mass of candidate glueball $f_0(1710)$ meson.

Alternative representations:

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535) = -917.9 + \frac{3 + 273\cos\left(\frac{24}{5}\right)}{2\cos^{2/3}\left(\frac{12}{5}\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535) = -917.9 + \frac{3 + 273\cos\left(-\frac{24i}{5}\right)}{2\cos^{2/3}\left(-\frac{12i}{5}\right)}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535) = -917.9 + \frac{3 + \frac{273}{\sec\left(\frac{24\,i}{5}\right)}}{2\left(\frac{1}{\sec\left(\frac{12\,i}{5}\right)}\right)^{2/3}}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535) &= \\ -\frac{917.9\left(-0.00163416 + \left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^k}{(2\,k)!}\right)^{2/3} - 0.148709\sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^k}{(2\,k)!}\right)}{\left(\sum_{k=0}^{\infty} \frac{\left(\frac{144}{25}\right)^k}{(2\,k)!}\right)^{2/3}} \end{split}$$

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535) &= \\ -\left(\left(917.9 \left(-0.00163416 + \left(\sum_{k=0}^{\infty} \frac{(-i)^k \cosh\left(\frac{ik\pi}{2} + z_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3} - \\ 0.148709 \sum_{k=0}^{\infty} \frac{(-i)^k \cosh\left(\frac{ik\pi}{2} + z_0\right)\left(\frac{24}{5} - z_0\right)^k}{k!}\right)\right) / \\ \left(\sum_{k=0}^{\infty} \frac{(-i)^k \cosh\left(\frac{ik\pi}{2} + z_0\right)\left(\frac{12}{5} - z_0\right)^k}{k!}\right)^{2/3} \right) \end{split}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535) = \frac{1}{i\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5} - \frac{i\pi}{2}\right)^{1+2k}}{(1+2k)!}} + \frac{1}{i\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5} - \frac{i\pi}{2}\right)^{1+2k}}{(1+2k)!}} + \frac{1}{i\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5} - \frac{i\pi}{2}\right)^{1+2k}}{(1+2k)!}} + i\sqrt[3]{i\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5} - \frac{i\pi}{2}\right)^{1+2k}}{(1+2k)!}} \sum_{k=0}^{\infty} \frac{\left(\frac{24}{5} - \frac{i\pi}{2}\right)^{1+2k}}{(1+2k)!}$$

Integral representations:

$$\begin{split} \frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535) &= \\ -\frac{917.9\left(-0.00163416 + \left(\int_{i\pi}^{\frac{12}{5}}\sinh(t)\,dt\right)^{2/3} - 0.148709\int_{i\pi}^{\frac{24}{5}}\sinh(t)\,dt\right)}{\left(\int_{i\pi}^{\frac{12}{5}}\sinh(t)\,dt\right)^{2/3}} \end{split}$$

$$\frac{138 - 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\cosh^{2/3}\left(\frac{12}{5}\right)} - (2452.9 - 1535) = \\ \left(1.5 \left(-611.933\sqrt{\pi} \int_{-i\,\omega+\gamma}^{i\,\omega+\gamma} \frac{e^{36/(25\,s)+s}}{\sqrt{s}} \,d\,s + 1.5874\,i\,\pi\,\sqrt[3]{\frac{\sqrt{\pi}}{i\,\pi}} \int_{-i\,\omega+\gamma}^{i\,\omega+\gamma} \frac{e^{36/(25\,s)+s}}{\sqrt{s}} \,d\,s \right. + \\ \left. 72.2267 \left(\int_{-i\,\omega+\gamma}^{i\,\omega+\gamma} \frac{e^{144/(25\,s)+s}}{\sqrt{s}} \,d\,s\right) \sqrt{\pi} \,\sqrt[3]{\frac{\sqrt{\pi}}{i\,\pi}} \int_{-i\,\omega+\gamma}^{i\,\omega+\gamma} \frac{e^{36/(25\,s)+s}}{\sqrt{s}} \,d\,s\right) \right| / \\ \left(\sqrt{\pi} \int_{-i\,\omega+\gamma}^{i\,\omega+\gamma} \frac{e^{36/(25\,s)+s}}{\sqrt{s}} \,d\,s\right) \text{ for } \gamma > 0$$

From

$$\mathcal{V}_{Vb}(\varphi) = \lambda \left[a \sinh^{\frac{4}{3}} \left(\frac{3\varphi}{5} \right) + b \frac{\cosh^{2} \left(\frac{3\varphi}{5} \right)}{\sinh^{\frac{2}{3}} \left(\frac{3\varphi}{5} \right)} \right]$$

$$= \frac{-a + b + (a + b) \cosh \left(\frac{6\varphi}{5} \right)}{2 \sinh^{\frac{2}{3}} \left(\frac{3\varphi}{5} \right)}, \qquad (5.33)$$

We obtain:

for
$$\varphi > 0$$
 $\varphi = 4$ and for $\lambda > 0$ $\lambda = 0.9991104$, and $a = 138$, $b = 135$ and obtain: $((-138+135+(138+135)\cosh(24/5))) / ((2\sinh^{(2/3)}(12/5)))$

Input:

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)}$$

 $\cosh(x)$ is the hyperbolic cosine function

sinh(x) is the hyperbolic sine function

Exact result:

$$\frac{273\cosh\left(\frac{24}{5}\right) - 3}{2\sinh^{2/3}\left(\frac{12}{5}\right)}$$

Decimal approximation:

2672.237998872641217733820876740236691949476671178658401997...

2672.23799887...

Alternate forms:

$$\frac{3\left(91\cosh\left(\frac{24}{5}\right)-1\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)}$$

$$\frac{273 \cosh\!\left(\!\frac{24}{5}\right)}{2 \sinh^{2/3}\!\left(\!\frac{12}{5}\right)} - \frac{3}{2 \sinh^{2/3}\!\left(\!\frac{12}{5}\right)}$$

$$\frac{3 \left(91-2 \, e^{24/5}+91 \, e^{48/5}\right)}{2 \, \sqrt[3]{2} \, e^{16/5} \left(e^{24/5}-1\right)^{2/3}}$$

Alternative representations:

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} = \frac{-3 + 273\cos\left(\frac{24i}{5}\right)}{2\left(\frac{1}{2}\left(-e^{-12/5} + e^{12/5}\right)\right)^{2/3}}$$

$$\frac{-138+135+(138+135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} = \frac{-3+273\cos\left(-\frac{24\,i}{5}\right)}{2\left(\frac{1}{2}\left(-e^{-12/5}+e^{12/5}\right)\right)^{2/3}}$$

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} = \frac{-3 + 273\cos\left(-\frac{24i}{5}\right)}{2\left(i\cos\left(\frac{\pi}{2} + \frac{12i}{5}\right)\right)^{2/3}}$$

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} = \frac{3\left(-1 + 91\sum_{k=0}^{\infty} \frac{\left(\frac{5/6}{25}\right)^k}{(2k)!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3}}$$

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} = \frac{3i\left(i + 91\sum_{k=0}^{\infty} \frac{\left(\frac{24}{5} - \frac{i\pi}{2}\right)^{1+2k}}{(1+2k)!}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3}}$$

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} = -\frac{3i\left(-1 + 91\sum_{k=0}^{\infty} \frac{\left(\frac{576}{25}\right)^k}{(2k)!}\right)\sqrt[3]{i\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5} - \frac{i\pi}{2}\right)^{2k}}{(2k)!}}}{2\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5} - \frac{i\pi}{2}\right)^{2k}}{(2k)!}}$$

Integral representations:

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} = \frac{3\sqrt[3]{\frac{3}{10}}\left(75 + 364\int_0^1 \sinh\left(\frac{24t}{5}\right)dt\right)}{2\left(\int_0^1 \cosh\left(\frac{12t}{5}\right)dt\right)^{2/3}}$$

$$\frac{-138+135+(138+135)\cosh\Bigl(\frac{24}{5}\Bigr)}{2\sinh^{2/3}\Bigl(\frac{12}{5}\Bigr)}=\frac{\sqrt[3]{\frac{3}{2}}}{5\sqrt[3]{\frac{3}{2}}}\frac{5^{2/3}\left(-1+91\int_{\frac{1}{2}\pi}^{\frac{24}{5}}\sinh(t)\,dt\right)}{4\left(\int_{0}^{1}\cosh\Bigl(\frac{12t}{5}\Bigr)dt\right)^{2/3}}$$

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} = \frac{2\sinh^{2/3}\left(\frac{12}{5}\right)}{-\frac{\sqrt[3]{\frac{3}{2}}}{5}5^{2/3}\left(2\sqrt{\pi} + 91i\int_{-i\infty+\gamma}^{i\infty+\gamma}\frac{e^{144/(25s)+s}}{\sqrt{s}}ds\right)}{8\sqrt{\pi}\left(\int_{0}^{1}\cosh\left(\frac{12t}{5}\right)dt\right)^{2/3}} \quad \text{for } \gamma > 0$$

 $((-138+135+(138+135)\cosh(24/5))) / ((2\sinh^2(2/3)(12/5))) + 21 + Pi - 1/golden ratio)$

Input:

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi}$$

 $\cosh(x)$ is the hyperbolic cosine function

 $\sinh(x)$ is the hyperbolic sine function

Exact result:

$$-\frac{1}{\phi} + 21 + \pi + \frac{273 \cosh\left(\frac{24}{5}\right) - 3}{2 \sinh^{2/3}\left(\frac{12}{5}\right)}$$

Decimal approximation:

2695.761557537481116124078933289150556715953531398227744956...

2695.7615575... result practically equal to the rest mass of charmed Omega baryon 2695.2

Alternate forms:

$$-\frac{1}{\phi} + 21 + \pi + \frac{3\left(91\cosh\left(\frac{24}{5}\right) - 1\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)}$$

$$\frac{1}{2} \left(43 - \sqrt{5} \right) + \pi + \frac{273 \cosh\left(\frac{24}{5}\right) - 3}{2 \sinh^{2/3}\left(\frac{12}{5}\right)}$$

$$21 - \frac{2}{1 + \sqrt{5}} + \pi - \frac{3}{2 \sinh^{2/3} \left(\frac{12}{5}\right)} + \frac{273 \cosh\left(\frac{24}{5}\right)}{2 \sinh^{2/3} \left(\frac{12}{5}\right)}$$

Alternative representations:

$$\frac{-138+135+(138+135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\!\left(\frac{12}{5}\right)}+21+\pi-\frac{1}{\phi}=21+\pi-\frac{1}{\phi}+\frac{-3+273\cos\!\left(\frac{24\,i}{5}\right)}{2\left(\frac{1}{2}\left(-e^{-12/5}+e^{12/5}\right)\right)^{2/3}}$$

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi} = 21 + \pi - \frac{1}{\phi} + \frac{-3 + 273\cos\left(-\frac{24i}{5}\right)}{2\left(\frac{1}{2}\left(-e^{-12/5} + e^{12/5}\right)\right)^{2/3}}$$

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi} = 21 + \pi - \frac{1}{\phi} + \frac{-3 + 273\cos\left(-\frac{24i}{5}\right)}{2\left(i\cos\left(\frac{\pi}{2} + \frac{12i}{5}\right)\right)^{2/3}}$$

$$\begin{split} &\frac{-138+135+(138+135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi} = \\ &\left(-3-3\sqrt{5}+273\sum_{k=0}^{\infty}\frac{\left(\frac{576}{25}\right)^k}{(2\,k)!} + 273\sqrt{5}\sum_{k=0}^{\infty}\frac{\left(\frac{576}{25}\right)^k}{(2\,k)!} + 38\left(\sum_{k=0}^{\infty}\frac{\left(\frac{12}{5}\right)^{1+2\,k}}{(1+2\,k)!}\right)^{2/3} + \\ &42\sqrt{5}\left(\sum_{k=0}^{\infty}\frac{\left(\frac{12}{5}\right)^{1+2\,k}}{(1+2\,k)!}\right)^{2/3} + 2\,\pi\left(\sum_{k=0}^{\infty}\frac{\left(\frac{12}{5}\right)^{1+2\,k}}{(1+2\,k)!}\right)^{2/3} + 2\,\sqrt{5}\,\pi\left(\sum_{k=0}^{\infty}\frac{\left(\frac{12}{5}\right)^{1+2\,k}}{(1+2\,k)!}\right)^{2/3}\right) \right/ \\ &\left(2\left(1+\sqrt{5}\right)\left(\sum_{k=0}^{\infty}\frac{\left(\frac{12}{5}\right)^{1+2\,k}}{(1+2\,k)!}\right)^{2/3}\right) \end{split}$$

$$\frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi} = \left(-3 - 3\sqrt{5} + 38\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3} + 42\sqrt{5}\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3} + 2\sqrt{5}\pi\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3} + 273i\sum_{k=0}^{\infty} \frac{\left(\frac{24}{5} - \frac{i\pi}{2}\right)^{1+2k}}{(1+2k)!} + 273i\sqrt{5}\sum_{k=0}^{\infty} \frac{\left(\frac{24}{5} - \frac{i\pi}{2}\right)^{1+2k}}{(1+2k)!}\right) / \left(2\left(1 + \sqrt{5}\right)\left(\sum_{k=0}^{\infty} \frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3}\right)$$

$$\begin{split} &\frac{-138+135+(138+135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi} = \\ &\left(-3-3\sqrt{5}+38\left(\sum_{k=0}^{\infty}\frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3} + 42\sqrt{5}\left(\sum_{k=0}^{\infty}\frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3} + 2\pi\left(\sum_{k=0}^{\infty}\frac{\left(\frac{12}{5}\right)^{1+2k}}{(1+2k)!}\right)^{2/3} + 2\pi\left(\sum_{$$

Integral representations:

$$\begin{split} &\frac{-138+135+(138+135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi} = \\ &\left(1125\times2^{2/3}\sqrt[3]{3}\sqrt[3]{5} + 225\sqrt[3]{3}\sqrt{3}\right)^{10^{2/3}} + \\ &380\left(\int_{0}^{1}\cosh\left(\frac{12\,t}{5}\right)dt\right)^{2/3} + 420\sqrt{5}\left(\int_{0}^{1}\cosh\left(\frac{12\,t}{5}\right)dt\right)^{2/3} + \\ &20\,\pi\left(\int_{0}^{1}\cosh\left(\frac{12\,t}{5}\right)dt\right)^{2/3} + 20\sqrt{5}\,\pi\left(\int_{0}^{1}\cosh\left(\frac{12\,t}{5}\right)dt\right)^{2/3} + \\ &5460\times2^{2/3}\sqrt[3]{3}\sqrt[3]{5}\int_{0}^{1}\sinh\left(\frac{24\,t}{5}\right)dt + 1092\sqrt[3]{3}\sqrt[3]{3}\sqrt[3]{5} \sinh\left(\frac{24\,t}{5}\right)dt + \\ &\left(20\left(1+\sqrt[6]{5}\right)\left(1-\sqrt[6]{5}+\sqrt[3]{5}\right)\left(\int_{0}^{1}\cosh\left(\frac{12\,t}{5}\right)dt\right)^{2/3}\right) \end{split}$$

$$\begin{split} &\frac{-138+135+(138+135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi} = \\ &\left(-5 \times 2^{2/3} \sqrt[3]{3} \sqrt[6]{5} - \sqrt[3]{3} \sqrt{10^{2/3}} + 152 \left(\int_{0}^{1} \cosh\left(\frac{12\,t}{5}\right) dt\right)^{2/3} + \\ &168 \sqrt{5} \left(\int_{0}^{1} \cosh\left(\frac{12\,t}{5}\right) dt\right)^{2/3} + \\ &8\,\pi \left(\int_{0}^{1} \cosh\left(\frac{12\,t}{5}\right) dt\right)^{2/3} + 8\,\sqrt{5}\,\pi \left(\int_{0}^{1} \cosh\left(\frac{12\,t}{5}\right) dt\right)^{2/3} + \\ &455 \times 2^{2/3} \sqrt[3]{3} \sqrt[6]{5} \int_{\frac{1\pi}{2}}^{\frac{24}{5}} \sinh(t) \, dt + 91 \sqrt[3]{3} \sqrt[3]{5} \int_{\frac{1\pi}{2}}^{\frac{24}{5}} \sinh(t) \, dt \right) / \\ &\left(8\left(1 + \sqrt[6]{5}\right) \left(1 - \sqrt[6]{5} + \sqrt[3]{5}\right) \left(\int_{0}^{1} \cosh\left(\frac{12\,t}{5}\right) dt\right)^{2/3}\right) \end{split}$$

$$\begin{split} \frac{-138 + 135 + (138 + 135)\cosh\left(\frac{24}{5}\right)}{2\sinh^{2/3}\left(\frac{12}{5}\right)} + 21 + \pi - \frac{1}{\phi} &= \\ -\left(\left(10 \times 2^{2/3} \sqrt[3]{3}\right) \sqrt[6]{5} \sqrt{\pi} + 2\sqrt[3]{3} 10^{2/3} \sqrt{\pi} + 455 i 2^{2/3} \sqrt[3]{3} \sqrt[6]{5}\right) \\ \int_{-i + \gamma}^{i + \gamma} \frac{e^{144/(25 s) + s}}{\sqrt{s}} ds + 91 i \sqrt[3]{3} 10^{2/3} \int_{-i + \gamma}^{i + \gamma} \frac{e^{144/(25 s) + s}}{\sqrt{s}} ds - \\ 304 \sqrt{\pi} \left(\int_{0}^{1} \cosh\left(\frac{12 t}{5}\right) dt\right)^{2/3} - 16 \pi^{3/2} \left(\int_{0}^{1} \cosh\left(\frac{12 t}{5}\right) dt\right)^{2/3} - \\ 16 \sqrt{5} \pi^{3/2} \left(\int_{0}^{1} \cosh\left(\frac{12 t}{5}\right) dt\right)^{2/3} - 336 \sqrt{5} \pi \left(\int_{0}^{1} \cosh\left(\frac{12 t}{5}\right) dt\right)^{2/3}\right) / \\ \left(16 \left(1 + \sqrt[6]{5}\right) \left(1 - \sqrt[6]{5} + \sqrt[3]{5}\right) \sqrt{\pi} \left(\int_{0}^{1} \cosh\left(\frac{12 t}{5}\right) dt\right)^{2/3}\right) \int \text{for } \gamma > 0 \end{split}$$

Now:

It is thus convenient to define the two fields

$$\Phi_t = \sqrt{\frac{d-2}{2(d-1)}} \left(\frac{3}{2} \phi - \frac{10-d}{d-2} \sigma \right) , \qquad (6.7)$$

$$\Phi_s = \sqrt{\frac{10 - d}{2(d - 1)}} \left(\frac{1}{2} \phi + 3\sigma\right) , \qquad (6.8)$$

One can add to this discussion a further degree of freedom, allowing for an off-critical bulk of dimension d. Confining our attention to the case d > 10, let us add some cursory remarks on the resulting potential after a compactification to four dimensions. For simplicity, let us confine our attention to the contributions arising from D9 branes and from the conformal anomaly originally described by Polyakov in [43]. Up to shifts of the two fields Φ_s and Φ_t , the resulting potential

contains again two terms with identical normalizations, and assuming again that Φ_s is somehow stabilized, one is finally confronted with

$$V = V_0 \left(e^{\sqrt{3} \gamma_9 \Phi_t} + e^{\sqrt{3} \gamma_\Lambda \Phi_t} \right) , \qquad (6.18)$$

where

$$\gamma_9 = \sqrt{\frac{d^2 - 14d + 184}{24(d - 4)}}, \quad \gamma_{\Lambda} = -\frac{10}{3} \frac{(d - 4)(d - 10)}{\sqrt{2(d^2 - 14d + 184)}}$$
(6.19)

Interestingly, for d slightly larger than ten γ_{Λ} is small and negative while γ_{9} is very close to one, so that one has a potential well which combines a steep wall with a rather flat one. As a result, the scalar is essentially bound to emerge from the initial singularity with the scalar descending along the mild wall and to stabilize readily at the bottom as the Universe enters a de Sitter phase.

for d = 11,
$$\phi$$
 = 6, σ = 8 and $V_0 > 0$; $V_0 = 0.5$
 (((sqrt(((11-2)/((2(11-1)))))))) * (3/2 * 6 - ((10-11)*8/(11-2)))

Input:

$$\sqrt{\frac{11-2}{2(11-1)}} \left(\frac{3}{2} \times 6 - (10-11) \times \frac{8}{11-2} \right)$$

Result:

Decimal approximation:

6.633668333249376099347215217236119498473834466847526315336...

$$6.6336683... = \Phi_t$$

Alternate form:

$$\frac{89\sqrt{5}}{30}$$

$$sqrt((((10-11)/(2(11-1))))) (1/2 * 6 + 3*8)$$

Input:

$$\sqrt{\frac{10-11}{2\,(11-1)}}\,\,\left(\frac{1}{2}\times 6 + 3\times 8\right)$$

Result:

$$\frac{27 i}{2 \sqrt{5}}$$

Decimal approximation:

6.037383539249432180304768905574445835689669570951119455531... i

Polar coordinates:

$$r \approx 6.03738$$
 (radius), $\theta = 90^{\circ}$ (angle) $6.03738 = \Phi_{\rm s}$

$$\gamma_9 = \sqrt{\frac{d^2 - 14d + 184}{24(d - 4)}}, \quad \gamma_{\Lambda} = -\frac{10}{3} \frac{(d - 4)(d - 10)}{\sqrt{2(d^2 - 14d + 184)}}$$

sqrt[(((11^2-14*11+184)))/((24(11-4)))]

Input:

$$\sqrt{\frac{11^2 - 14 \times 11 + 184}{24 (11 - 4)}}$$

Result:

$$\frac{\sqrt{\frac{151}{42}}}{2}$$

Decimal approximation:

0.948055654384026027535475008086838750296780006857956458452...

 $0.948055654 = \gamma_9$ - result very near to the spectral index n_s , to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{5}}}{\sqrt{(\varphi - 1)\sqrt{5}} - \varphi + 1} = 1 - \frac{e^{-\pi}}{1 + \frac{e^{-2\pi}}{1 + \frac{e^{-3\pi}}{1 + \frac{e^{-4\pi}}{1 + \dots}}}} \approx 0.9568666373$$

From:

Astronomy & Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_s = 0.965 \pm 0.004$, consistent with the predictions of slow-roll, single-field, inflation.

72

Alternate form:

$$\frac{\sqrt{6342}}{84}$$

 $-10/3*(((11-4)(11-10)))/((2(11^2-14*11+184)))^1/2$

Input:

$$-\frac{10}{3} \times \frac{(11-4)(11-10)}{\sqrt{2(11^2-14\times11+184)}}$$

Result:

$$-\frac{35\sqrt{\frac{2}{151}}}{3}$$

Decimal approximation:

-1.34268245451301731435134380946037693444224131610524948089...

$$-1.342682454... = \gamma_{\Lambda}$$

Alternate form:

$$-\frac{35\sqrt{302}}{453}$$

Thence:

$$V = V_0 \left(e^{\sqrt{3} \gamma_9 \Phi_t} + e^{\sqrt{3} \gamma_\Lambda \Phi_t} \right)$$

 $0.5(e^{(sqrt3*0.948055654*6.6336683)} + e^{(sqrt3*-1.342682454*6.6336683)})$

Input interpretation:

0.5
$$\left(e^{\sqrt{3}\times0.948055654\times6.6336683} + e^{\sqrt{3}\times(-1.342682454)\times6.6336683}\right)$$

Result:

26899.7...

26899.7...

$$0.5 \left(e^{\sqrt{3} \cdot 0.948056 \times 6.63367} + e^{\left(\sqrt{3} \cdot 6.63367\right)(-1) \cdot 1.34268} \right) = \\ 0.5 \left(e^{-8.90691 \sqrt{2} \cdot \sum_{k=0}^{\infty} 2^{-k} {\binom{1/2}{k}}} \left(1 + e^{-15.196 \sqrt{2} \cdot \sum_{k=0}^{\infty} 2^{-k} {\binom{1/2}{k}}} \right) \right)$$

$$0.5 \left(e^{\sqrt{3} \cdot 0.948056 \times 6.63367} + e^{\left(\sqrt{3} \cdot 6.63367\right)(-1) \cdot 1.34268} \right) =$$

$$0.5 \exp \left(-8.90691 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^k \left(-\frac{1}{2}\right)_k}{k!} \right) \left(1 + e^{15.196 \sqrt{2} \cdot \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^k \left(-\frac{1}{2}\right)_k}{k!}} \right)$$

$$0.5 \left(e^{\sqrt{3} 0.948056 \times 6.63367} + e^{\left(\sqrt{3} 6.63367\right)(-1)1.34268} \right) =$$

$$0.5 \exp \left(-\frac{4.45346 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}} \right)$$

$$\left(1 + \exp \left(\frac{7.598 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}} \right) \right)$$

Now, from the formula of coefficients of the '5th order' mock theta function $\psi_1(q)$: (A053261 OEIS Sequence)

$$\operatorname{sqrt}(\operatorname{golden\ ratio}) * \exp(\operatorname{Pi*sqrt}(n/15)) / (2*5^{(1/4)} \operatorname{sqrt}(n))$$

for n = 294 and subtracting 322 that is a Lucas number and adding the conjugate of the golden ratio, we obtain:

(((sqrt(golden ratio) * exp(Pi*sqrt(294/15)) / (2*5^(1/4)*sqrt(294))))) - 322 +1/golden ratio

Input:

$$\sqrt{\phi} \times \frac{\exp\left(\pi \sqrt{\frac{294}{15}}\right)}{2\sqrt[4]{5}\sqrt{294}} - 322 + \frac{1}{\phi}$$

φ is the golden ratio

Exact result:

$$\frac{e^{7\sqrt{2/5} \pi} \sqrt{\frac{\phi}{6}}}{14 \sqrt[4]{5}} + \frac{1}{\phi} - 322$$

Decimal approximation:

26899.31667422566335943323798656204015406864467228630180239...

26899.3166...

Property:

$$-322 + \frac{e^{7\sqrt{2/5} \pi} \sqrt{\frac{\phi}{6}}}{14\sqrt[4]{5}} + \frac{1}{\phi} \text{ is a transcendental number}$$

Alternate forms:

$$\frac{1}{2} \left(\sqrt{5} - 645 \right) + \frac{1}{28} \sqrt{\frac{1}{15} \left(5 + \sqrt{5} \right)} e^{7\sqrt{2/5} \pi}$$

$$-322 + \frac{2}{1 + \sqrt{5}} + \frac{\sqrt{1 + \sqrt{5}} e^{7\sqrt{2/5} \pi}}{28\sqrt{3} \sqrt[4]{5}}$$

$$\frac{14\sqrt[4]{5} \sqrt{6} (1 - 322\phi) + e^{7\sqrt{2/5} \pi} \phi^{3/2}}{14\sqrt[4]{5} \sqrt{6} \phi}$$

$$\begin{split} \frac{\sqrt{\phi} \ \exp\!\left(\pi\sqrt{\frac{294}{15}}\right)}{2\sqrt[4]{5} \sqrt{294}} - 322 + \frac{1}{\phi} &= \\ \left(10\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!} - 3220 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!} + 5^{3/4} \,\phi \right. \\ &\left. \exp\!\left(\pi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(\frac{98}{5} - z_0\right)^k z_0^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (\phi - z_0)^k z_0^{-k}}{k!} \right) / \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \right. \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ \\ &\left. \left(10 \,\phi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (294 - z_0)^k z_0^{-k}}{k!}\right) \right. \\ \\ &\left. \left(10 \,\phi \sum_{k$$

$$\begin{split} & \frac{\sqrt{\phi} \, \exp \left(\pi \sqrt{\frac{294}{15}} \right)}{2\sqrt[4]{5} \sqrt{294}} - 322 + \frac{1}{\phi} = \\ & \left(10 \exp \left(i \, \pi \left\lfloor \frac{\arg(294 - x)}{2 \, \pi} \right\rfloor \right) \sum_{k=0}^{\infty} \frac{(-1)^k \, (294 - x)^k \, x^{-k} \, \left(-\frac{1}{2} \right)_k}{k!} - \right. \\ & 3220 \, \phi \exp \left(i \, \pi \left\lfloor \frac{\arg(294 - x)}{2 \, \pi} \right\rfloor \right) \sum_{k=0}^{\infty} \frac{(-1)^k \, (294 - x)^k \, x^{-k} \, \left(-\frac{1}{2} \right)_k}{k!} + \\ & 5^{3/4} \, \phi \exp \left(i \, \pi \left\lfloor \frac{\arg(\phi - x)}{2 \, \pi} \right\rfloor \right) \exp \left(\pi \exp \left(i \, \pi \left\lfloor \frac{\arg\left(\frac{98}{5} - x \right)}{2 \, \pi} \right\rfloor \right) \sqrt{x} \right. \\ & \left. \sum_{k=0}^{\infty} \frac{(-1)^k \, \left(\frac{98}{5} - x \right)^k \, x^{-k} \, \left(-\frac{1}{2} \right)_k}{k!} \right) \sum_{k=0}^{\infty} \frac{(-1)^k \, (\phi - x)^k \, x^{-k} \, \left(-\frac{1}{2} \right)_k}{k!} \right) / \left. \left(10 \, \phi \exp \left(i \, \pi \left\lfloor \frac{\arg(294 - x)}{2 \, \pi} \right\rfloor \right) \sum_{k=0}^{\infty} \frac{(-1)^k \, (294 - x)^k \, x^{-k} \, \left(-\frac{1}{2} \right)_k}{k!} \right) \right. \end{split}$$

for $(x \in \mathbb{R} \text{ and } x < 0)$

We have also that:

$$(((0.5(e^{(sqrt3*0.948055654*6.6336683)} + e^{(sqrt3*-1.342682454*6.6336683))))^{1/2+8}$$

Input interpretation:

$$\sqrt{0.5\left(e^{\sqrt{3}\times0.948055654\times6.6336683}+e^{\sqrt{3}\times(-1.342682454)\times6.6336683}\right)}+8$$

Result:

172.011...

 $172.011.... \approx 172$ (Ramanujan taxicab number)

$$\sqrt{0.5 \left(e^{\sqrt{3} \cdot 0.948056 \times 6.63367} + e^{\left(\sqrt{3} \cdot 6.63367\right)(-1) \cdot 1.34268}\right)} + 8 = 0.707107 \left(11.3137 + \sqrt{e^{-8.90691 \sqrt{2} \cdot \sum_{k=0}^{\infty} 2^{-k} \binom{1/2}{k}} \left(1 + e^{15.196 \sqrt{2} \cdot \sum_{k=0}^{\infty} 2^{-k} \binom{1/2}{k}}\right)\right)$$

$$\sqrt{0.5 \left(e^{\sqrt{3} \cdot 0.948056 \times 6.63367} + e^{\left(\sqrt{3} \cdot 6.63367\right)(-1) \cdot 1.34268}\right) + 8} = 0.707107$$

$$\left(11.3137 + \sqrt{\exp\left(-8.90691\sqrt{2} \cdot \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right) \left(1 + e^{15.196\sqrt{2} \cdot \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^k \left(-\frac{1}{2}\right)_k}{k!}}\right)}\right)$$

$$\sqrt{0.5 \left(e^{\sqrt{3} \cdot 0.948056 \times 6.63367} + e^{\left(\sqrt{3} \cdot 6.63367\right)(-1) \cdot 1.34268}\right)} + 8 = 0.707107 \left(11.3137 + \sqrt{\left(\exp\left(-\frac{4.45346 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)}{\sqrt{\pi}}\right) \left(1 + \exp\left(\frac{7.598 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right)\right)$$

(((0.5(e^(sqrt3*0.948055654*6.6336683) + e^(sqrt3*-1.342682454*6.6336683))))^1/2-34-5

Input interpretation:

$$\sqrt{0.5 \left(e^{\sqrt{3} \times 0.948055654 \times 6.6336683} + e^{\sqrt{3} \times (-1.342682454) \times 6.6336683}\right)} - 34 - 5$$

Result:

125.011...

125.011... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

$$\sqrt{0.5 \left(e^{\sqrt{3} \cdot 0.948056 + 6.63367} + e^{\left(\sqrt{3} \cdot 6.63367\right)(-1) \cdot 1.34268}\right) - 34 - 5} = 0.707107 \left(-55.1543 + \sqrt{e^{-8.90691 \sqrt{2} \cdot \sum_{k=0}^{\infty} 2^{-k} \binom{1/2}{k}} \left(1 + e^{15.196 \sqrt{2} \cdot \sum_{k=0}^{\infty} 2^{-k} \binom{1/2}{k}}\right)\right)$$

$$\sqrt{0.5 \left(e^{\sqrt{3} \cdot 0.948056 + 6.63367} + e^{\left(\sqrt{3} \cdot 6.63367\right)(-1) \cdot 1.34268}\right) - 34 - 5} = 0.707107$$

$$\left(-55.1543 + \sqrt{\exp\left(-8.90691 \sqrt{2} \cdot \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right)} \left(1 + e^{15.196\sqrt{2} \cdot \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^k \left(-\frac{1}{2}\right)_k}{k!}}\right)\right)$$

$$\sqrt{0.5 \left(e^{\sqrt{3} \cdot 0.948056 + 6.63367} + e^{\left(\sqrt{3} \cdot 6.63367\right)(-1) \cdot 1.34268}\right) - 34 - 5} = 0.707107 \left(-55.1543 + \sqrt{\left(\exp\left(-\frac{4.45346 \cdot \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \cdot \Gamma\left(-\frac{1}{2} - s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right)$$

$$\left(1 + \exp\left(\frac{7.598 \cdot \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \cdot \Gamma\left(-\frac{1}{2} - s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right)\right)$$

And:

 $sqrt729*1/2*(((((0.5(e^{(sqrt3*0.948055654*6.6336683)} + e^{(sqrt3*-1.342682454*6.6336683)))))^1/2-34-2))+4/5$

Input interpretation:

$$\sqrt{729} \times \frac{1}{2} \left(\sqrt{0.5 \left(e^{\sqrt{3} \times 0.948055654 \times 6.6336683} + e^{\sqrt{3} \times (-1.342682454) \times 6.6336683} \right)} - 34 - 2 \right) + \frac{4}{5} + \frac{1}{5} + \frac{$$

Result:

1728.95...

1728.95...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

$$\begin{split} \frac{1}{2} \sqrt{729} \left(\sqrt{0.5 \left(e^{\sqrt{3} \ 0.948056 \times 6.63367} + e^{\sqrt{3} \ (-1.34268) \, 6.63367} \right)} - 34 - 2 \right) + \frac{4}{5} = \\ 0.353553 \left(2.26274 - 50.9117 \sqrt{728} \sum_{k=0}^{\infty} 728^{-k} \left(\frac{1}{2} \right) + \left(\frac{1}$$

$$\frac{1}{2}\sqrt{729}\left(\sqrt{0.5\left(e^{\sqrt{3}}0.948056\times6.63367}+e^{\sqrt{3}(-1.34268)6.63367}\right)}-34-2\right)+\frac{4}{5}=0.353553\left(2.26274-50.9117\sqrt{728}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\frac{15.196\sqrt{2}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(1+e^{15.196\sqrt{2}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}$$

$$\sqrt{728}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{728}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}$$

$$\begin{split} \frac{1}{2} \sqrt{729} \left(\sqrt{0.5 \left(e^{\sqrt{3} \ 0.948056 \times 6.63367} + e^{\sqrt{3} \ (-1.34268) \, 6.63367} \right)} - 34 - 2 \right) + \frac{4}{5} &= \\ 0.353553 \left(2.26274 - 50.9117 \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2} \right)_k (729 - z_0)^k z_0^{-k}}{k!} + \right. \\ \left. \sqrt{\left(\exp\left[-8.90691 \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2} \right)_k (3 - z_0)^k z_0^{-k}}{k!} \right) } \right. \\ \left. \left(1 + \exp\left[15.196 \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2} \right)_k (3 - z_0)^k z_0^{-k}}{k!} \right) \right] \sqrt{z_0} \right. \\ \left. \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2} \right)_k (729 - z_0)^k z_0^{-k}}{k!} \right) \text{ for not } \left(\left(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0 \right) \right) \end{split}$$

 $(((((0.5(e^{(sqrt3*0.948055654*6.6336683)} + e^{(sqrt3*-1.342682454*6.6336683))))))^{1/21-7*1/10^{3}}$

Input interpretation:

$$21\sqrt{0.5\left(e^{\sqrt{3}\times0.948055654\times6.6336683}+e^{\sqrt{3}\times(-1.342682454)\times6.6336683}\right)}-7\times\frac{1}{10^3}$$

Result:

1.618325531898728836063509055847500751410065335542606770967...

1.6183255318.... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Observations

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants π , ϕ , $1/\phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

We would like to thank Professor Augusto Sagnotti theoretical physicist at Scuola Normale Superiore (Pisa – Italy) for his very useful explanations and his availability.
References
Two–Field Born–Infeld with Diverse Dualities S. Ferrara, A. Sagnotti and A. Yeranyan - arXiv:1602.04566v3 [hep-th] 8 Jul 2016
Integrable Scalar Cosmologies I. Foundations and links with String Theory P. Fre, A. Sagnotti and A.S. Sorin - arXiv:1307.1910v3 [hep-th] 16 Oct 2013