On the Ramanujan's mathematics applied to some parameters of Extended Gauged Supergravity, Inflaton Potentials and some sectors of String Theory: New possible mathematical connections.

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have described some Ramanujan expressions applied to several parameters of Extended Gauged Supergravity, Inflaton Potentials and some sectors of String Theory, obtaining new possible mathematical connections.

[^0]
https://www.britannica.com/biography/Srinivasa-Ramanujan

https://futurism.com/brane-science-complex-notions-of-superstring-theory

From:
Axial Symmetric Kahler manifolds, the D-map of Inflaton Potentials and the Picard-Fuchs Equation - Pietro Fre, Alexander S. Sorin - arXiv:1310.5278v2 [hepth] 26 Oct 2013

We remember that $\mathrm{U}(\phi)$ is the potential of the inflaton field, ϕ
We have that:

As an illustration of reconstruction of the Kähler potential in the series (5.1), we utilize the best fit model $\gamma=-\frac{7}{6}$ proposed by Sagnotti. Inserting the value $\gamma=-\frac{7}{6}$ in eq.(8.1) and furthermore redefining the parameters as in equations (8.9), (8.10), (8.11), we obtain:

$$
\begin{equation*}
R_{-\frac{7}{6}}(\phi)=-\frac{2744+5996 e^{\frac{13 \delta}{\sqrt{3}}}+9844 e^{\frac{13 \phi}{\sqrt{3}}}+e^{\frac{13 \sqrt{3 \phi}}{2}}}{12\left(1+e^{\frac{13 \phi}{2 \sqrt{3}}}\right)^{2}\left(14+e^{\frac{13 \phi}{2 \sqrt{3}}}\right)} \tag{8.24}
\end{equation*}
$$

where the overall scale a and the parameter λ cancel. The function $R_{-\frac{7}{6}}(\phi)$ has the property:

$$
\begin{equation*}
R_{-\frac{7}{6}}(-\infty)=\frac{49}{12} \quad ; \quad R_{-\frac{7}{6}}(\infty)=\frac{1}{48} \tag{8.25}
\end{equation*}
$$

$$
\begin{equation*}
R_{-\frac{7}{6}}(\phi)=-\frac{2744+5996 e^{\frac{13 \phi}{2 \sqrt{3}}}+9844 e^{\frac{13 \phi}{\sqrt{3}}}+e^{\frac{13 \sqrt{3} \phi}{2}}}{12\left(1+e^{\frac{13 \phi}{2 \sqrt{3}}}\right)^{2}\left(14+e^{\frac{13 \phi}{2 \sqrt{3}}}\right)} \tag{8.24}
\end{equation*}
$$

$\mathrm{e}^{\wedge}(13 * \mathrm{x} /(2 \mathrm{sqrt} 3))=42.63931648=40.915$ for $\mathrm{x}=1$ or $\mathrm{x}=0.989$ (i.e. $\left.\phi\right)$ $\mathrm{e}^{\wedge}(13 * \mathrm{x} /(\mathrm{sqrt} 3))=1818.1113=1674.04$ as above
$\mathrm{e}^{\wedge}(\mathrm{x}(13 \mathrm{sqrt} 3) / 2)=77523.023543=68493.1$ as above
$-\left(2744+5996^{*}\left(\mathrm{e}^{\wedge}(13 * \mathrm{x} /(2 \mathrm{sqrt} 3))+9844^{*}\left(\mathrm{e}^{\wedge}(13 * \mathrm{x} /(\mathrm{sqrt} 3))\right)+\mathrm{e}^{\wedge}(\mathrm{x}(13 \mathrm{sqrt} 3) / 2)\right) /\right.$
$12\left(\left(\left(\left(1+\left(e^{\wedge}(13 * x /(2 s q r t 3))\right)^{\wedge} 2\left(14+e^{\wedge}(13 * x /(2 s q r t 3))\right)\right)\right)=49 / 12\right.\right.$

Input interpretation:

$-\frac{2744+5996 \times 42.63931648+9844 \times 1818.1113+77523.023543}{12(1+42.63931648)^{2}(14+42.63931648)}$

Result:

-14.0868213521128690592315012838303183739419265007086254459...
-14.086821352...

From which:
$-3(((-(2744+5996 * 42.63931648+9844 * 1818.1113+77523.023543) /$
$\left.\left.\left.\left(\left(\left(12(1+42.63931648)^{\wedge} 2(14+42.63931648)\right)\right)\right)\right)\right)\right)$

Input interpretation:

$-3\left(-\frac{2744+5996 \times 42.63931648+9844 \times 1818.1113+77523.023543}{12(1+42.63931648)^{2}(14+42.63931648)}\right)$

Result:

42.26046405633860717769450385149095512182577950212587633787...
42.260464...
$-(2744+5996 * 40.915+9844 * 1674.04+68493.1) /\left(\left(\left(12(1+40.915)^{\wedge} 2(14+40.915)\right)\right)\right)$

Input interpretation:

$2744+5996 \times 40.915+9844 \times 1674.04+68493.1$

$$
12(1+40.915)^{2}(14+40.915)
$$

Result:

-14.5074091940429788271474544775280445229326038202670939833.
-14.507409194...

With regard the eqs. (8.25)

$$
R_{-\frac{7}{6}}(-\infty)=\frac{49}{12} \quad ; \quad R_{-\frac{7}{6}}(\infty)=\frac{1}{48}
$$

where $49 / 12=4.08333 \ldots$ and $1 / 48=0.0208333 \ldots$ we have the following calculations:
$\left(\left(\left(-2744+5996^{*}\left(\mathrm{e}^{\wedge}(13 * \mathrm{x} /(2 \mathrm{sqrt} 3))+9844^{*}\left(\mathrm{e}^{\wedge}(13 * \mathrm{x} /(\operatorname{sqrt} 3))\right)+\mathrm{e}^{\wedge}(\mathrm{x}(13 \mathrm{sqrt} 3) / 2)\right)\right)\right)\right) /$ $\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}\left(13^{*} \mathrm{x} /(2 \operatorname{sqrt} 3)\right)\right)^{\wedge} 2\left(14+\mathrm{e}^{\wedge}\left(13^{*} \mathrm{x} /(2 \operatorname{sqrt} 3)\right)\right)\right)\right)\right)\right)\right)=49 / 12$

Input:

$$
\frac{-2744+5996\left(e^{13 \times x /(2 \sqrt{3})}+9844 e^{13 \times x / \sqrt{3}}+e^{x(1 / 2(13 \sqrt{3}))}\right)}{12\left(1+\left(e^{13 \times x /(2 \sqrt{3})}\right)^{2}\left(14+e^{13 \times x /(2 \sqrt{3})}\right)\right)}=\frac{49}{12}
$$

Exact result:

$$
\frac{5996\left(e^{(13 x) /(2 \sqrt{3})}+9844 e^{(13 x) / \sqrt{3}}+e^{(13 \sqrt{3} x) / 2}\right)-2744}{12\left(e^{(13 x) / \sqrt{3}}\left(e^{(13 x) /(2 \sqrt{3})}+14\right)+1\right)}=\frac{49}{12}
$$

Plot:

Solutions:

$$
\begin{aligned}
& x=\frac{2}{13} \sqrt{3}\left(2 i \pi c_{1}+\right. \\
& \log \left(\frac { 1 } { 5 9 4 7 } \left(-19674646+\frac{1}{3^{2 / 3}}\left(\left(\frac{1}{2}(-137086051000810387372047+5947 i\right.\right.\right.\right. \\
& \sqrt{6892239879645850388988114807})) \wedge(1 / 3))+ \\
& 1161275050017736 /\left(\int \frac{3}{2}(-137086051000810387372047+\right. \\
& 5947 i \sqrt{6892239879645850388988114807})) \wedge \\
& (1 / 3)))) \approx 0.266469 \\
& \left((6.28319 i) c_{1}-\left(4.98668+2.2017 \times 10^{-9} i\right)\right) \\
& \text { for } \\
& c_{1} \in \\
& \text { Z } \\
& x=\frac{2}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(-\frac{19674646}{5947}-\frac{1}{11894 \times 3^{2 / 3}}\right.\right. \\
& (1+i \sqrt{3})\left(\frac{1}{2}(-137086051000810387372047+\right. \\
& 5947 i \sqrt{6892239879645850388988114807})) \wedge \\
& (1 / 3)-(580637525008868(1-i \sqrt{3})) / \\
& \text { (5947 }\left(\frac{3}{2}(-137086051000810387372047+\right. \\
& 5947 i \sqrt{6892239879645850388988114807})) \wedge \\
& (1 / 3)))) \approx 0.266469 \\
& \left((6.28319 i) c_{1}-(4.97191-3.14159 i)\right) \text { for } c_{1} \in \\
& x=\frac{2}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(-\frac{19674646}{5947}-\frac{1}{11894 \times 3^{2 / 3}}\right.\right. \\
& (1-i \sqrt{3})\left(\frac{1}{2}(-137086051000810387372047+\right. \\
& 5947 i \sqrt{6892239879645850388988114807})) \wedge \\
& (1 / 3)-(580637525008868(1+i \sqrt{3})) / \\
& \text { (5947 }\left(\frac{3}{2}(-137086051000810387372047+\right. \\
& 5947 i \sqrt{6892239879645850388988114807})) \wedge \\
& (1 / 3))) \approx 0.266469 \\
& \left((9.20281-3.14159 i)+(6.28319 i) c_{1}\right) \text { for } c_{1} \in \\
& \text { Z }
\end{aligned}
$$

Real solution:

$x \approx-1.3288$
$-1.3288=\phi$

Solutions:

$$
\begin{array}{ll}
x \approx 0.266469((6.28319 i) n+(9.20281+3.14159 i)), & n \in \mathbb{Z} \\
x \approx 0.266469(-(4.97191-3.14159 i)+(6.28319 i) n), & n \in \mathbb{Z} \\
x \approx 0.266469((6.28319 i) n-4.98668), \quad n \in \mathbb{Z}
\end{array}
$$

z is the set of integers

Note that:
$\left(\left(\left(-2744+5996^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}-2 \mathrm{x} /(2 \mathrm{sqrt} 3)\right)+9844^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}-2 \mathrm{x} /(\operatorname{sqrt} 3)\right)\right)+\mathrm{e}^{\wedge}(-\right.\right.\right.\right.$ $2 \mathrm{x}(13 \mathrm{sqrt} 3) / 2))))) /\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}\left(13^{*}-2 \mathrm{x} /(2 \mathrm{sqrt} 3)\right)\right)^{\wedge} 2\left(14+\mathrm{e}^{\wedge}\left(13^{*}-2 \mathrm{x} /(2 \mathrm{sqrt} 3)\right)\right)\right)\right)\right)\right)\right)=$ 49/12

Input:

$$
\frac{-2744+5996\left(e^{13 \times(-2) \times x /(2 \sqrt{3})}+9844 e^{13 \times(-2) \times x / \sqrt{3}}+e^{-2 x(1 / 2(13 \sqrt{3}))}\right)}{12\left(1+\left(e^{13 \times(-2) \times x /(2 \sqrt{3})}\right)^{2}\left(14+e^{13 \times(-2) \times x /(2 \sqrt{3})}\right)\right)}=\frac{49}{12}
$$

Exact result:

$$
\frac{5996\left(9844 e^{-(26 x) / \sqrt{3}}+e^{-(13 x) / \sqrt{3}}+e^{-13 \sqrt{3} x}\right)-2744}{12\left(e^{-(26 x) / \sqrt{3}}\left(e^{-(13 x) / \sqrt{3}}+14\right)+1\right)}=\frac{49}{12}
$$

Plot:

Solutions:

$$
\begin{aligned}
& x=\frac{1}{13} \sqrt{3} \\
& \left(2 i \pi c_{1}+\log \left(\frac { 1 } { 8 3 7 9 } \left(5996+494597528518 /\left(\left(\frac{1}{2}(8897857349216929+\right.\right.\right.\right.\right. \\
& 8379 i \sqrt{6892239879645850388988114807})) \wedge \\
& (1 / 3))+\left(\frac{1}{2}(8897857349216929+8379 i\right. \\
& \sqrt{6892239879645850388988114807})) \wedge(1 / 3)))) \approx \\
& 0.133235\left(4.98668+(6.28319 i) c_{1}\right) \text { for } \\
& c_{1} \in \\
& \mathbb{Z} \\
& x=\frac{1}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(\frac{5996}{8379}-\right.\right. \\
& (247298764259(1+i \sqrt{3})) /\left(8 3 7 9 \left(\frac{1}{2}(8897857349216929+8379 i\right.\right. \\
& \sqrt{6892239879645850388988114807})) \wedge(1 / 3))- \\
& \frac{1}{16758}(1-i \sqrt{3})\left(\frac{1}{2}(8897857349216929+8379 i\right. \\
& \sqrt{6892239879645850388988114807})) \wedge(1 / 3))) \approx \\
& 0.133235\left((4.97191+3.14159 i)+(6.28319 i) c_{1}\right) \\
& \text { for } \\
& c_{1} \in \\
& \mathbb{Z} \\
& x=\frac{1}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(\frac{5996}{8379}-\right.\right. \\
& (247298764259(1-i \sqrt{3})) /\left(8 3 7 9 \left(\frac{1}{2}(8897857349216929+8379 i\right.\right. \\
& \sqrt{6892239879645850388988114807})) \wedge(1 / 3))- \\
& \frac{1}{16758}(1+i \sqrt{3})\left(\frac{1}{2}(8897857349216929+8379 i\right. \\
& \sqrt{6892239879645850388988114807})) \wedge(1 / 3))) \approx \\
& 0.133235\left((6.28319 i) c_{1}-(9.20281-3.14159 i)\right) \\
& \text { for } \\
& c_{1} \in \\
& \mathbb{Z}
\end{aligned}
$$

Real solution:

$x \approx 0.66440$
$0.66440=-\phi / 2$

Solutions:

$x \approx 0.133235((6.28319 i) n+(4.97191+3.14159 i)), \quad n \in \mathbb{Z}$
$x \approx 0.133235(-(9.20281-3.14159 i)+(6.28319 i) n), \quad n \in \mathbb{Z}$
$x \approx 0.133235((6.28319 i) n+4.98668), \quad n \in \mathbb{Z}$
$\left(\left(\left(-2744+5996^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}(-1.3288) /(2 \mathrm{sqrt} 3)\right)+9844^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}(-1.3288) /(\mathrm{sqrt} 3)\right)\right)+\mathrm{e}^{\wedge}((-\right.\right.\right.\right.$ $1.3288)(13 \mathrm{sqrt} 3) / 2))))) /\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}(13 *(-1.3288) /(2 \mathrm{sqrt} 3))\right)^{\wedge} 2\left(14+\mathrm{e}^{\wedge}(13 *(-\right.\right.\right.\right.\right.\right.$ $1.3288) /(2 \mathrm{sqrt} 3)) \mathrm{)}))$)))

Input interpretation:

$-2744+5996\left(e^{13(-1.3288 /(2 \sqrt{3}))}+9844 e^{13(-1.3288 / \sqrt{3})}+e^{-1.3288(1 / 2(13 \sqrt{3}))}\right)$

$$
12\left(1+\left(e^{13(-1.3288 /(2 \sqrt{3}))}\right)^{2}\left(14+e^{13(-1.3288 /(2 \sqrt{3}))}\right)\right)
$$

Result:

4.07659..
4.07659... $249 / 12$

Series representations:

$$
\begin{aligned}
& \frac{-2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right)}{=} \\
& 12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right) \\
& -\left(e ^ { - 8 . 6 3 7 2 \sqrt { 2 } } \sum _ { k = 0 } ^ { \infty } 2 ^ { - k } (\begin{array} { c }
{ 1 / 2 } \\
{ k }
\end{array}) \left(-1499 e^{25.9116} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)_{-}\right.\right. \\
& 14756156 \exp \left(\frac{8.6372}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}+8.6372 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)- \\
& 1499 \exp \left(\frac{17.2744}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}+8.6372 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)+ \\
& \left.686 \exp \left(\frac{25.9116}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}+8.6372 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\right) / \\
& \left(3\left(1+14 e^{8.6372} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{25.9116} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right) \\
& 12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right) \\
& -\left(\int \operatorname { e x p } (- 8 . 6 3 7 2 \sqrt { 2 } \sum _ { k = 0 } ^ { \infty } \frac { (- \frac { 1 } { 2 }) ^ { k } (- \frac { 1 } { 2 }) _ { k } } { k ! }) \left(-1499 e^{\frac{25.9116}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}-}\right.\right. \\
& 14756156 \exp \left(\frac{8.6372}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}+8.6372 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)- \\
& 1499 \exp \left(\frac{17.2744}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}+8.6372 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& \left.686 \exp \left(\frac{25.9116}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}+8.6372 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / \\
& \left(3\left(1+14 e^{\frac{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{8.6372}}+e^{\sqrt{2} \sum_{k=0}^{\infty} \frac{25.9116}{\left.\frac{(-1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}} k{ }^{k!}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
& -2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right) \\
& 12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right) \\
& -\left(\left(\exp \left(-\frac{4.3186 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right.\right. \\
& \left(-1499 \exp \left(\frac{51.8232 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)-\right. \\
& 14756156 \exp \left(\frac{17.2744 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}+\right. \\
& \left.\frac{4.3186 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)- \\
& 1499 \exp \left(\frac{34.5488 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}+\right. \\
& \left.\frac{4.3186 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)+ \\
& 686 \exp \left(\frac{51.8232 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}+\right. \\
& \left.\left.\frac{4.3186 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right) / \\
& \left(3 \left(1+14 \exp \left(\frac{17.2744 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)+\right.\right. \\
& \left.\left.\left.\exp \left(\frac{51.8232 \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)\right)\right)\right)
\end{aligned}
$$

We have also:
$\left(\left(\left(()\left(\left(-2744+5996^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}(-1.3288) /(2 \mathrm{sqrt3})\right)+9844^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}(-1.3288) /(\mathrm{sqr} 3)\right)\right)\right)^{\wedge} \mathrm{e}^{\wedge}((-\right.\right.\right.\right.\right.$ $1.3288)(13 \mathrm{sqrt3}) / 2))))) /\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}\left(13^{*}(-1.3288) /(2 \mathrm{sqrt3})\right)\right)^{\wedge} 2\left(14+\mathrm{e}^{\wedge}\left(13^{*}(-\right.\right.\right.\right.\right.\right.\right.$
$1.3288) /(2 \mathrm{sqr} 3)))))))))$))) ${ }^{\wedge} 1 / \mathrm{e}$

Input interpretation:

$$
\sqrt[e]{\frac{-2744+5996\left(e^{13(-1.3288 /(2 \sqrt{3}))}+9844 e^{13(-1.3288 / \sqrt{3})}+e^{-1.3288(1 / 2(13 \sqrt{3}))}\right)}{12\left(1+\left(e^{13(-1.3288 /(2 \sqrt{3}))}\right)^{2}\left(14+e^{13(-1.3288 /(2 \sqrt{3}))}\right)\right)}}
$$

Result:

1.676933774582334581657001861376930679192936661895708451250...
1.67693377458233458....

Series representations:

$$
\begin{aligned}
& \sqrt{\frac{-2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right)}{12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right)}}= \\
& 12^{-1 / e}\left(\left(-2744+5996\left(9844 e^{-17.2744 /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)_{+}}\right.\right.\right. \\
& \left.\left.e^{-8.6372 /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)}+e^{-8.6372 \sqrt{2}} \sum_{k=0}^{\infty} 2^{-k(} \begin{array}{c}
1 / 2 \\
k
\end{array}\right)\right) / \\
& \left.\left(1+e^{-17.2744} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\left(14+e^{-8.6372 /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)}\right)\right)\right) \wedge_{(1 / e)} \\
& \sqrt{\sqrt{\frac{-2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right)}{12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right)}}=}= \\
& \left(\left(-2744+5996\left(9844 \exp \left(-\frac{17.2744}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)+\exp \left(-\frac{8.6372}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)+\right.\right.\right. \\
& \left.\exp \left(-8.6372 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / \\
& \left.\left.\left(1+\exp \left(-\frac{17.2744}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)\left(14+\exp \left(-\frac{8.6372}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)\right)\right)\right)\right) \wedge(1 / e)
\end{aligned}
$$

$$
\begin{gathered}
\sqrt{\frac{-2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right)}{12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right)}}= \\
12^{-1 / e}\left(\left(-2744+5996\left(9844 \exp \left(-\frac{34.5488 \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)+\right.\right.\right. \\
\\
\exp \left(-\frac{17.2744 \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)+ \\
\left.\left.\quad \exp \left(-\frac{4.3186 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right)\right) / \\
\left(1+\exp \left(-\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{}\right)\right) \\
\left.\left.\left(14+\exp \left(-\frac{17.2744 \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)\right)\right)\right)
\end{gathered}
$$

Integral representation:

$(1+z)^{a}=\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$
$\operatorname{Re}(z)$ is the real part of z
$\arg (z)$ is the complex argument
$|z|$ is the absolute value of z
i is the imaginary unit
and:

- (55+4)*1/10^3+[(((-2744+5996*(e^(13*(-1.3288)/(2sqrt3))+9844*(e^(13*(-
$1.3288) /($ sqrt3) $\left.\left.\left.\left.))+\mathrm{e}^{\wedge}((-1.3288)(13 \mathrm{sqrt} 3) / 2)\right)\right)\right)\right) /\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}\left(13^{*}(-\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.1.3288) /(2 \mathrm{sqrt3})))^{\wedge} 2\left(14+\mathrm{e}^{\wedge}\left(13^{*}(-1.3288) /(2 \mathrm{sqrt} 3)\right)\right)\right)\right)\right)\right)\right)\right]^{\wedge} 1 / \mathrm{e}$

Input interpretation:

$$
\sqrt{-(55+4) \times \frac{1}{10^{3}}+} \begin{array}{|}
\left(\frac{-2744+5996\left(e^{13(-1.3288 /(2 \sqrt{3}))}+9844 e^{13(-1.3288 / \sqrt{3})}+e^{-1.3288(1 / 2(13 \sqrt{3}))}\right)}{12\left(1+\left(e^{13(-1.3288 /(2 \sqrt{3}))}\right)^{2}\left(14+e^{13(-1.3288 /(2 \sqrt{3}))}\right)\right)}\right.
\end{array}
$$

Result:

1.617933774582334581657001861376930679192936661895708451250...
1.61793377458233.... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Series representations:

$$
\begin{aligned}
& -\frac{55+4}{10^{3}}+ \\
& -2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right) \\
& \sqrt[e]{ } 12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right) \\
& =-\frac{1}{125} \times 2^{-3-2 / e} \times 3^{-1 / e} \\
& \left(59 \sqrt[e]{12}-1000\left(\left(-2744+5996\left(9844 e^{-17.2744 /\left(\sqrt{2} \Sigma_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)}+\right.\right.\right.\right. \\
& \left.\left.e^{-8.6372 /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)}+e^{-8.6372 \sqrt{2}} \sum_{k=0}^{\infty} 2^{-k\binom{1 / 2}{k}}\right)\right) / \\
& \left.\left(1+e^{-17.2744} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\left(14+e^{-8.6372} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\right)\right)\right) \wedge_{(1 /} \\
& \text { e) }
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{55+4}{10^{3}}+ \\
& -2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right) \\
& \sqrt{12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right)} \\
& =-\frac{1}{125} \times 2^{-3-2 / e} \times 3^{-1 / e} \\
& \left(59 \sqrt[e]{12}-1000\left(-2744+5996\left(9844 \exp \left(-\frac{17.2744}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)+\right.\right.\right. \\
& \exp \left(-\frac{8.6372}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)+\exp (-8.6372 \sqrt{2} \\
& \left.\left.\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / / 1+\exp \left(-\frac{17.2744}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \\
& \left.\left.\left.\left(14+\exp \left(-\frac{8.6372}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)\right)\right)\right) \wedge(1 / e)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{55+4}{10^{3}}+ \\
& -2744+5996\left(e^{(13(-1.3288)) /(2 \sqrt{3})}+9844 e^{(13(-1.3288)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.3288}\right) \\
& \sqrt{12\left(1+\left(e^{(13(-1.3288)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.3288)) /(2 \sqrt{3})}\right)\right)} \\
& =-\frac{1}{125} \times 2^{-3-2 / e} \times 3^{-1 / e} \\
& \left(59 \sqrt[e]{12}-1000\left(\left(-2744+5996\left(9844 \exp \left(-\frac{34.5488 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)+\right.\right.\right.\right. \\
& \exp \left(-\frac{17.2744 \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)+ \\
& \left.\exp \left(-\frac{4.3186 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right) / \\
& \left(1+\exp \left(-\frac{34.5488 \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)\right. \\
& \left.\left.\left.\left(14+\exp \left(-\frac{17.2744 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)\right)\right)\right) \wedge(1 / e)\right)
\end{aligned}
$$

$\binom{n}{m}$ is the binomial coefficient
$\left(\left(\left(-2744+5996 *\left(\mathrm{e}^{\wedge}(13 * \mathrm{x} /(2 \mathrm{sqrt} 3))+9844^{*}\left(\mathrm{e}^{\wedge}(13 * \mathrm{x} /(\operatorname{sqrt} 3))\right)+\mathrm{e}^{\wedge}(\mathrm{x}(13 \mathrm{sqrt} 3) / 2)\right)\right)\right)\right) /$ $\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}\left(13^{*} \mathrm{x} /(2 \mathrm{sqrt} 3)\right)\right)^{\wedge} 2\left(14+\mathrm{e}^{\wedge}\left(13^{*} \mathrm{x} /(2 \mathrm{sqrt} 3)\right)\right)\right)\right)\right)\right)\right)=1 / 48$

Input:

$\frac{-2744+5996\left(e^{13 \times x /(2 \sqrt{3})}+9844 e^{13 \times x / \sqrt{3}}+e^{x(1 / 2(13 \sqrt{3}))}\right)}{\left.12\left(1+\left(e^{13 \times x /(2 \sqrt{3}}\right)\right)^{2}\left(14+e^{13 \times x /(2 \sqrt{3})}\right)\right)}=\frac{1}{48}$

Exact result:

$$
\frac{5996\left(e^{(13 x) /(2 \sqrt{3})}+9844 e^{(13 x) / \sqrt{3}}+e^{(13 \sqrt{3} x) / 2}\right)-2744}{12\left(e^{(13 x) / \sqrt{3}}\left(e^{(13 x) /(2 \sqrt{3})}+14\right)+1\right)}=\frac{1}{48}
$$

Plot:

Solutions:

$$
\begin{array}{r}
x=\frac{2}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(\frac{1}{23983}\right.\right. \\
\left(-78699494+\frac{1}{3^{2 / 3}}\left(\left(\frac{1}{2}(-8773811611228315720231623+23983 i\right.\right.\right. \\
\sqrt{1733678535658161449854094472687}))
\end{array}
$$

$(1 / 3))+18580830492359836 /$

$$
\left(\left(\frac{3}{2}(-8773811611228315720231623+23983 i\right.\right.
$$

$$
\sqrt{1733678535658161449854094472687}))
$$

$(1 / 3))))) \approx 0.266469\left(-4.99555+(6.28319 i) c_{1}\right)$ for $c_{1} \in \mathbb{Z}$

$$
\begin{gathered}
\begin{array}{r}
x=\frac{2}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(-\frac{78699494}{23983}-\frac{1}{47966 \times 3^{2 / 3}}\right.\right. \\
(1+i \sqrt{3})\left(\frac{1}{2}(-8773811611228315720231623+\right. \\
23983 i \sqrt{1733678535658161449854094472687})) \wedge \\
(1 / 3)-(9290415246179918(1-i \sqrt{3})) / \\
\left(2 3 9 8 3 \left(\frac{3}{2}(-8773811611228315720231623+23983 i\right.\right.
\end{array} \\
\sqrt{1733678535658161449854094472687})) \wedge(1 / \\
3))) \approx 0.266469 \\
\begin{array}{r}
\begin{array}{r}
\left.(6.28319 i) c_{1}-(4.98065+3.14159 i)\right) \text { for } c_{1} \in \mathbb{Z} \\
\frac{2}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(-\frac{78699494}{23983}-\frac{1}{47966 \times 3^{2 / 3}}\right.\right. \\
(1-i \sqrt{3})\left(\frac{1}{2}(-8773811611228315720231623+\right.
\end{array} \\
23983 i \sqrt{1733678535658161449854094472687})) \wedge \\
(1 / 3)-(9290415246179918(1+i \sqrt{3})) / \\
\left(2 3 9 8 3 \left(\frac{3}{2}(-8773811611228315720231623+23983 i\right.\right.
\end{array} \\
\sqrt{1733678535658161449854094472687})) \wedge(1 / \\
3))) \approx 0.266469 \\
\left((9.19466+3.14159 i)+(6.28319 i) c_{1}\right) \text { for } c_{1} \in
\end{gathered}
$$

Real solution:

$x \approx-1.3312$
$-1.3312=\phi$

Solutions:

$$
\begin{array}{ll}
x \approx 0.266469((6.28319 i) n+(9.19466+3.14159 i)), & n \in \mathbb{Z} \\
x \approx 0.266469(-(4.98065-3.14159 i)+(6.28319 i) n), & n \in \mathbb{Z} \\
x \approx 0.266469((6.28319 i) n-4.99555), \quad n \in \mathbb{Z} &
\end{array}
$$

Note that:
$\left(\left(\left(-2744+5996^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}-2 \mathrm{x} /(2 \mathrm{sqrt} 3)\right)+9844^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}-2 \mathrm{x} /(\mathrm{sqrt} 3)\right)\right)+\mathrm{e}^{\wedge}(-\right.\right.\right.\right.$
$2 \mathrm{x}(13 \mathrm{sqrt} 3) / 2))))) /\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}\left(13^{*}-2 \mathrm{x} /(2 \mathrm{sqrt} 3)\right)\right)^{\wedge} 2\left(14+\mathrm{e}^{\wedge}\left(13^{*}-2 \mathrm{x} /(2 \mathrm{sqrt} 3)\right)\right)\right)\right)\right)\right)\right)=$ 1/48

Input:

$\frac{-2744+5996\left(e^{13 \times(-2) \times x /(2 \sqrt{3})}+9844 e^{13 \times(-2) \times x / \sqrt{3}}+e^{-2 x(1 / 2(13 \sqrt{3}))}\right)}{12\left(1+\left(e^{13 x(-2) \times x /(2 \sqrt{3})}\right)^{2}\left(14+e^{13 \times(-2) \times x /(2 \sqrt{3})}\right)\right)}=\frac{1}{48}$

Exact result:

$\left.\frac{5996\left(9844 e^{-(26 x) / \sqrt{3}}+e^{-(13 x) / \sqrt{3}}+e^{-13 \sqrt{3} x}\right)-2744}{12\left(e^{-(26 x)} / \sqrt{3}\right.}\left(e^{-(13 x) / \sqrt{3}}+14\right)+1\right) \quad=\frac{1}{48}$

Plot:

Solutions:

$$
\left.\begin{array}{r}
x=\frac{1}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(\frac{1}{32931}\right.\right. \\
\left(23984+7775534342998 /\left(\left(\frac{1}{2}(559529475824767381+32931 i\right.\right.\right. \\
\sqrt{1733678535658161449854094472687}))
\end{array}\right)
$$

$$
\begin{aligned}
& x=\frac{1}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(\frac{23984}{32931}-(3887767171499(1+i \sqrt{3})) /\right.\right. \\
& \text { (32931 (} \frac{1}{2}(559529475824767381+32931 i \\
& \sqrt{1733678535658161449854094472687)}) \wedge \\
& (1 / 3))-\frac{1}{65862}(1-i \sqrt{3}) \\
& \left(\frac{1}{2}(559529475824767381+32931 i\right. \\
& \left.\left.\sqrt{1733678535658161449854094472687}))^{\wedge}(1 / 3)\right)\right) \approx \\
& 0.133235\left((4.98065-3.14159 i)+(6.28319 i) c_{1}\right) \\
& \text { for } \\
& c_{1} \in \\
& \text { Z } \\
& x=\frac{1}{13} \sqrt{3}\left(2 i \pi c_{1}+\log \left(\frac{23984}{32931}-(3887767171499(1-i \sqrt{3})) /\right.\right. \\
& \text { (32931 (} \frac{1}{2}(559529475824767381+32931 i \\
& \sqrt{1733678535658161449854094472687}))^{\wedge} \\
& (1 / 3))-\frac{1}{65862}(1+i \sqrt{3}) \\
& \left(\frac{1}{2}(559529475824767381+32931 i\right. \\
& \left.\left.\sqrt{1733678535658161449854094472687}))^{\wedge}(1 / 3)\right)\right) \approx \\
& 0.133235\left((6.28319 i) c_{1}-(9.19466-3.14159 i)\right) \\
& \text { for } \\
& c_{1} \in \\
& \text { Z }
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Real solution:

$x \approx 0.66558$
$0.66558=-\phi / 2$

Solutions:

$$
\begin{array}{ll}
x \approx 0.133235((6.28319 i) n+(4.98065+3.14159 i)), & n \in \mathbb{Z} \\
x \approx 0.133235(-(9.19466-3.14159 i)+(6.28319 i) n), & n \in \mathbb{Z} \\
x \approx 0.133235((6.28319 i) n+4.99555), \quad n \in \mathbb{Z}
\end{array}
$$

$\left(\left(\left(-2744+5996^{*}\left(\mathrm{e}^{\wedge}(13 *(-1.33116109) /(2 \mathrm{sqrt} 3))+9844^{*}\left(\mathrm{e}^{\wedge}(13 *(-\right.\right.\right.\right.\right.$
$1.33116109) /($ sqrt 3$\left.\left.\left.\left.)))+\mathrm{e}^{\wedge}((-1.33116109)(13 \mathrm{sqrt} 3) / 2)\right)\right)\right)\right) /\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}\left(13^{*}(-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.1.33116109) /(2 \mathrm{sqrt} 3)))^{\wedge} 2\left(14+\mathrm{e}^{\wedge}(13 *(-1.33116109) /(2 \mathrm{sqrt} 3))\right)\right)\right)\right)\right)\right)$

Input interpretation:

$(-2744+5996$

$$
\left.\left(e^{13(-1.33116109 /(2 \sqrt{3}))}+9844 e^{13(-1.33116109 / \sqrt{3})}+e^{-1.33116109(1 / 2(13 \sqrt{3}))}\right)\right) /
$$

$\left(12\left(1+\left(e^{13(-1.33116109 /(2 \sqrt{3}))}\right)^{2}\left(14+e^{13(-1.33116109 /(2 \sqrt{3}))}\right)\right)\right)$

Result:

0.0208481...
$0.0208481 \ldots \approx 1 / 48$

Series representations:

$$
\begin{aligned}
& \frac{-2744+5996\left(e^{(13(-1.33116)) /(2 \sqrt{3})}+9844 e^{(13(-1.33116)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.33116}\right)}{12\left(1+\left(e^{(13(-1.33116)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.33116)) /(2 \sqrt{3})}\right)\right)}= \\
& -\left(e ^ { - 8 . 6 5 2 5 5 \sqrt { 2 } } \sum _ { k = 0 } ^ { \infty } 2 ^ { - k } (\begin{array} { c }
{ 1 / 2 } \\
{ k }
\end{array}) \left(-1499 e^{25.9576} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)_{-}\right.\right. \\
& 14756156 \exp \left(\frac{8.65255}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}+8.65255 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)- \\
& 1499 \exp \left(\frac{17.3051}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}+8.65255 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)+ \\
& \left.686 \exp \left(\frac{25.9576}{\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}+8.65255 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\right) / \\
& \left(3\left(1+14 e^{8.65255} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)+e^{25.9576} /\left(\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-2744+5996\left(e^{(13(-1.33116)) /(2 \sqrt{3})}+9844 e^{(13(-1.33116)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.33116}\right)}{12\left(1+\left(e^{(13(-1.33116)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.33116)) /(2 \sqrt{3})}\right)\right)}= \\
& -\left(\operatorname { e x p } (- 8 . 6 5 2 5 5 \sqrt { 2 } \sum _ { k = 0 } ^ { \infty } \frac { (- \frac { 1 } { 2 }) ^ { k } (- \frac { 1 } { 2 }) _ { k } } { k ! }) \left(-1499 e^{\frac{25.9576}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}-}-\right.\right. \\
& 14756156 \exp \left(\frac{8.65255}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}+8.65255 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)- \\
& 1499 \exp \left(\frac{17.3051}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}+8.65255 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& \left.686 \exp \left(\frac{25.9576}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}+8.65255 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / \\
& \left(3\left(1+14 e^{\frac{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)}{k!}}{k .65255}}+e^{\left.\frac{25.9576}{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)}{k!}}\right)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-2744+5996\left(e^{(13(-1.33116)) /(2 \sqrt{3})}+9844 e^{(13(-1.33116)) / \sqrt{3}}+e^{1 / 2(13 \sqrt{3})(-1) 1.33116}\right)}{12\left(1+\left(e^{(13(-1.33116)) /(2 \sqrt{3})}\right)^{2}\left(14+e^{(13(-1.33116)) /(2 \sqrt{3})}\right)\right)}= \\
& -\left(\left(\exp \left(-\frac{4.32627 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right.\right. \\
& \left(-1499 \exp \left(\frac{51.9153 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)-\right. \\
& 14756156 \exp \left(\frac{17.3051 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}+\right. \\
& \left.\frac{4.32627 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)- \\
& 1499 \exp \left(\frac{34.6102 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}+\right. \\
& \left.\frac{4.32627 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)+ \\
& 686 \exp \left(\frac{51.9153 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}+\right. \\
& \left.\left.\frac{4.32627 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)\right) / \\
& \left(3 \left(1+14 \exp \left(\frac{17.3051 \sqrt{\pi}}{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)+\right.\right. \\
& \left.\left.\left.\exp \left(\frac{51.9153 \sqrt{\pi}}{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\right)\right)\right)\right)
\end{aligned}
$$

We have also that:
$\left[\left(\left(\left(-2744+5996^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}(-1.33116) /(2 \text { sqrt3) })+9844^{*}\left(\mathrm{e}^{\wedge}\left(13^{*}(-1.33116) /(\mathrm{sqr} 3)\right)\right)\right)^{\mathrm{e}}{ }^{\wedge}((-\right.\right.\right.\right.\right.$ $1.33116)(13 \mathrm{sqrt3}) / 2))))) /\left(\left(\left(12\left(\left(1+\left(\mathrm{e}^{\wedge}\left(13^{*}(-1.33116) /(2 \mathrm{sqr} 3)\right)\right)^{\wedge} 2\left(14+\mathrm{e}^{\wedge}\left(13^{*}(-\right.\right.\right.\right.\right.\right.\right.$ $1.33116) /(2 \mathrm{sqrt3}))))))))]^{\wedge} 1 / 4096$

Input interpretation:

$\sqrt[4096]{\frac{-2744+5996\left(e^{13(-1.33116 /(2 \sqrt{3}))}+9844 e^{13(-1.33116 / \sqrt{3})}+e^{-1.33116(1 / 2(13 \sqrt{3}))}\right)}{12\left(1+\left(e^{13(-1.33116 /(2 \sqrt{3}))}\right)^{2}\left(14+e^{13(-1.33116 /(2 \sqrt{3}))}\right)\right)}}$

Result:

0.9990555 result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$
$2 *$ sqrt(((log base $0.9990555(0.020848078167772438))))-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \sqrt{\log _{0.9990555}(0.020848078167772438)}-\pi+\frac{1}{\phi}$

Result:

125.476...
125.476.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representation:

$$
\begin{aligned}
& 2 \sqrt{\log _{0.999056}(0.0208480781677724380000)}-\pi+\frac{1}{\phi}= \\
& -\pi+\frac{1}{\phi}+2 \sqrt{\frac{\log (0.0208480781677724380000)}{\log (0.999056)}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 2 \sqrt{\log _{0.999056}(0.0208480781677724380000)}-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi+2 \sqrt{-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.9791519218322275620000)^{k}}{k}}{\log (0.999056)}}
\end{aligned}
$$

$$
2 \sqrt{\log _{0.999056}(0.0208480781677724380000)}-\pi+\frac{1}{\phi}=
$$

$$
\frac{1}{\phi}-\pi+2 \sqrt{-1+\log _{0.999056}(0.0208480781677724380000)}
$$

$$
\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\log _{0.999056}(0.0208480781677724380000)\right)^{-k}
$$

$$
2 \sqrt{\log _{0.999056}(0.0208480781677724380000)}-\pi+\frac{1}{\phi}=
$$

$$
\frac{1}{\phi}-\pi+2 \sqrt{-1+\log _{0.999056}(0.0208480781677724380000)}
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\log _{0.999056}(0.0208480781677724380000)\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

$2 * \operatorname{sqrt}(((\log$ base $0.9990555(0.020848078167772438))))+11+1 /$ golden ratio

Input interpretation:

$2 \sqrt{\log _{0.0990555}(0.020848078167772438)}+11+\frac{1}{\phi}$

Result:

139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representation:

$$
2 \sqrt{\log _{0.999056(0.0208480781677724380000)}}+11+\frac{1}{\phi}=
$$

$$
11+\frac{1}{\phi}+2 \sqrt{\frac{\log (0.0208480781677724380000)}{\log (0.999056)}}
$$

Series representations:

$$
\begin{aligned}
& 2 \sqrt{\log _{0.990056}(0.0208480781677724380000)}+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}+2 \sqrt{-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.9791519218322275620000)^{k}}{k}}{\log (0.999056)}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sqrt{\log _{0.099056}(0.0208480781677724380000)}+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}+2 \sqrt{-1+\log _{0.099056}(0.0208480781677724380000)} \\
& \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\log _{0.099056}(0.0208480781677724380000)\right)^{-k}
\end{aligned}
$$

$$
2 \sqrt{\log _{0.999056}(0.0208480781677724380000)}+11+\frac{1}{\phi}=
$$

$$
11+\frac{1}{\phi}+2 \sqrt{-1+\log _{0.099056}(0.0208480781677724380000)}
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\log _{0.099056}(0.0208480781677724380000)\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

Note that the two values of the field $-1.3312=\phi$ and $-1.3288=\phi$ are very near to the value of the following $5^{\text {th }}$ order Ramanujan mock theta function:

$$
f(q)=1+\frac{q}{1+q}+\frac{q^{4}}{(1+q)\left(1+q^{2}\right)}+\frac{q^{0}}{(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right)}+\ldots .
$$

$$
\left.1+0.449329 /(1+0.449329)+0.449329^{\wedge} 4 /\left(\left((1+0.449329)\left(1+0.449329^{\wedge} 2\right)\right)\right)\right)
$$

Input interpretation:

$$
1+\frac{0.449329}{1+0.449329}+\frac{0.449329^{4}}{(1+0.449329)\left(1+0.449329^{2}\right)}
$$

Result:

1.333425959911272680899883774926957939703837145947480074487...
$\mathrm{f}(\mathrm{q})=1.333425959 \ldots$

We have also:
$(4.076594584857+0.020848078167) * 10$

Input interpretation:

$(4.076594584857+0.020848078167) \times 10$

Result:

40.97442663024
40.97442663024

And:
$(4.076594584857) * 10=40.76594584857$

Furthermore:
$(4.076594584857+0.020848078167)$

Input interpretation:

$4.076594584857+0.020848078167$

Result:

4.097442663024
4.097442663024

And:
(4.076594584857-0.020848078167)

Input interpretation:

4.076594584857-0.020848078167

Result:

4.05574650669
4.05574650669

From the sum of the two results, considering 49/12 and 1/48, we obtain: 4.104166666
We note that $10 * 4.10416666=41.04166666$

From:
On a Polya functional for rhombi, isosceles triangles, and thinning convex sets. M. van den Berg, V. Ferone, C. Nitsch, C. Trombetti - arXiv:1811.04503v2 [math.AP] 21 May 2019

Let Ω be an open convex set in \mathbb{R}^{m} with finite width, and with boundary $\partial \Omega$. Let $v \Omega$ be the torsion function for Ω, i.e. the solution of $-\Delta v=1,\left.v\right|_{\theta \Omega}=0$. An upper bound is obtained for the product of $\left\|v_{\Omega}\right\|_{L^{\infty}(\Omega)} \lambda(\Omega)$, where $\lambda(\Omega)$ is the bottom of the spectrum of the Dirichlet Laplacian acting in $L^{2}(\Omega)$. The upper bound is sharp in the limit of a thinning sequence of convex sets. For planar rhombi and isosceles triangles with area 1, it is shown that $\left\|v_{\Omega}\right\|_{L^{1}(\Omega)} \lambda(\Omega) \geq \frac{\pi^{2}}{24}$, and that this bound is sharp.

Theorem 1.2 If \triangle_{β} is an isosceles triangle with angles $\beta, \beta, \pi-2 \beta$, and if $0<\beta \leq \frac{\pi}{3}$ then

$$
\begin{align*}
T\left(\Delta_{\beta}\right) \lambda\left(\Delta_{\beta}\right) & \leq{ }_{24}^{\pi^{2}}\left(1 \mid 81(\tan \beta)^{2 / 3}\right) . \tag{1.14}
\end{align*}
$$

Theorem 1.3 If \diamond_{β} is a rhombus with argles $\beta, \pi-\beta, \beta, \pi-\beta$, and if $\beta \leq \frac{\pi}{3}$ then

$$
\begin{equation*}
\frac{T\left(\searrow_{\beta}\right) \lambda\left(\circlearrowleft_{\beta}\right)}{\left|\circlearrowleft_{\beta}\right|} \leq \frac{\pi^{2}}{24}\left(1+15(\tan \beta)^{2 / 3}\right) \tag{1.15}
\end{equation*}
$$

I'heorem 1.4 If \rangle_{β} is as in Theorem 1.3, then

$$
\begin{equation*}
\frac{\left.T\left(\diamond_{\beta}\right) \lambda(\rangle_{\beta}\right)}{\left\rangle_{\beta}\right|} \geq \frac{\pi^{2}}{24} \tag{1.16}
\end{equation*}
$$

Theorem 1.5 If \triangle_{β} is an isosceles triangle with angles $\beta, \beta, 2 \pi-\beta$, then

$$
\begin{equation*}
\frac{T\left(\triangle_{\beta}\right) \lambda\left(\triangle_{\beta}\right)}{\left|\wedge_{\beta}\right|} \geq \frac{\pi^{2}}{24} \tag{1.17}
\end{equation*}
$$

$$
\begin{aligned}
\frac{T\left(\triangle_{\beta}\right) \lambda\left(\triangle_{\beta}\right)}{\left|\triangle_{\beta}\right|} & \leq \frac{\pi^{2}}{24}\left(1+d^{2}\right)^{2}\left(1+7\left(\frac{d}{2}\right)^{2 / 3}\right) \\
& \leq \frac{\pi^{2}}{24}\left(1+81 d^{2 / 3}\right) \\
& =\frac{\pi^{2}}{24}\left(1+81(\tan \beta)^{2 / 3}\right), 0<\beta \leq \frac{\pi}{3} .
\end{aligned}
$$

For $\beta=\pi / 4$
$\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+81\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)$

Input:

$$
\frac{\pi^{2}}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)
$$

Exact result:

$\frac{41 \pi^{2}}{12}$

Decimal approximation:

$33.72114837038864194768451091624351637898847297473936797357 \ldots$
33.72114837...

Property:

$\frac{41 \pi^{2}}{12}$ is a transcendental number

Alternative representations:
$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+81\left(\frac{1}{\cot \left(\frac{\pi}{4}\right)}\right)^{2 / 3}\right)$
$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+81 \cot ^{2 / 3}\left(\frac{\pi}{2}-\frac{\pi}{4}\right)\right)$
$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)$

Series representations:

$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{41}{2} \sum_{k=1}^{\infty} \frac{1}{k^{2}}$
$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=-41 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}$
$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{82}{3} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{2}}$

Integral representations:

$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{41}{3}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{2}$
$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{164}{3}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{2}$
$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{41}{3}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{2}$

Multiple-argument formulas:

$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+81 \times 2^{2 / 3}\left(-\frac{\tan \left(\frac{\pi}{8}\right)}{-1+\tan ^{2}\left(\frac{\pi}{8}\right)}\right)^{2 / 3}\right)$
$\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+81\left(\frac{\tan \left(\frac{\pi}{12}\right)\left(-3+\tan ^{2}\left(\frac{\pi}{12}\right)\right)}{-1+3 \tan ^{2}\left(\frac{\pi}{12}\right)}\right)^{2 / 3}\right)$

$$
\begin{aligned}
& \frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+81\left(\frac{\tan \left(-\frac{3 \pi}{4}\right)+\tan (\pi)}{1-\tan \left(-\frac{3 \pi}{4}\right) \tan (\pi)}\right)^{2 / 3}\right) \\
& \frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+81\left(\frac{U_{-\frac{3}{4}}(\cos (\pi)) \sin (\pi)}{T_{1}(\cos (\pi))}\right)^{2 / 3}\right)
\end{aligned}
$$

$$
\frac{\left.T\left(\triangle_{\beta}\right) \lambda\left(\triangle_{\beta}\right)\right)}{\left|\triangle_{\beta}\right|} \geq \frac{\pi^{2}}{24}, 0<\beta \leq \frac{\pi}{3}
$$

$$
\begin{aligned}
\frac{T\left(\diamond_{\beta}\right) \lambda\left(\diamond_{\beta}\right)}{\left|\searrow_{\beta}\right|} & \leq \frac{\pi^{2}}{24}\left(1+\frac{d^{2}}{4}\right)^{2}\left(1+\frac{9 d^{2}}{32}\right)\left(1+7\left(\frac{d}{2}\right)^{2 / 3}\right) \\
& \leq \frac{\pi^{2}}{24}\left(1+15\left(\frac{d}{2}\right)^{2 / 3}\right) \\
& =\frac{\pi^{2}}{24}\left(1+15(\tan \beta)^{2 / 3}\right), 0<\beta \leq \frac{\pi}{3}
\end{aligned}
$$

$\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+15\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)$

Input:

$\frac{\pi^{2}}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)$

Exact result:

$\frac{2 \pi^{2}}{3}$

Decimal approximation:

6.579736267392905745889660666584100756875799604827193750942...
$6.579736267 \ldots$

Property:

$\frac{2 \pi^{2}}{3}$ is a transcendental number

Alternative representations:

$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+15\left(\frac{1}{\cot \left(\frac{\pi}{4}\right)}\right)^{2 / 3}\right)$
$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+15 \cot ^{2 / 3}\left(\frac{\pi}{2}-\frac{\pi}{4}\right)\right)$
$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)$

Series representations:

$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=4 \sum_{k=1}^{\infty} \frac{1}{k^{2}}$
$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=-8 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}$
$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{16}{3} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{2}}$

Integral representations:

$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{32}{3}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{2}$
$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{8}{3}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{2}$
$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{8}{3}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{2}$

Multiple-argument formulas:

$\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+15 \times 2^{2 / 3}\left(-\frac{\tan \left(\frac{\pi}{8}\right)}{-1+\tan ^{2}\left(\frac{\pi}{8}\right)}\right)^{2 / 3}\right)$

$$
\begin{aligned}
& \frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+15\left(\frac{\tan \left(\frac{\pi}{12}\right)\left(-3+\tan ^{2}\left(\frac{\pi}{12}\right)\right)}{-1+3 \tan ^{2}\left(\frac{\pi}{12}\right)}\right)^{2 / 3}\right) \\
& \frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+15\left(\frac{\tan \left(-\frac{3 \pi}{4}\right)+\tan (\pi)}{1-\tan \left(-\frac{3 \pi}{4}\right) \tan (\pi)}\right)^{2 / 3}\right) \\
& \frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=\frac{1}{24} \pi^{2}\left(1+15\left(\frac{\left.\left.U_{-\frac{3}{4}(\cos (\pi)) \sin (\pi)}^{T_{1}(\cos (\pi))}\right)^{2 / 3}\right)}{4}\right)\right. \\
& \frac{\lambda\left(\nabla_{\beta}\right) T\left(\delta_{\beta}\right)}{\left|\nabla_{\beta}\right|} \geq \frac{\pi^{2}}{24} \frac{16+24 d^{2}+d^{4}}{\left(1+\frac{3}{4} d^{2}\right)\left(16+4 d^{2}\right)} \geq \frac{\pi^{2}}{24}, \quad 0 \leq d \leq 2 .
\end{aligned}
$$

From the sum of the four results, we obtain:
$\left(\left(\left(33.72114837038864+6.5797362673929057+\left(\mathrm{Pi}^{\wedge} 2\right) / 24+\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)$

Input interpretation:

$33.72114837038864+6.5797362673929057+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}$

Result:

41.12335167120566...
$41.1233516 \ldots$ result very near to the previous results: $1 / 48=4.104166666$, from which we obtain $10 * 4.10416666=41.04166666$ and 40.97442663024
$(4.076594584857+0.020848078167) \times 10$

Alternative representations:

$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$ $40.300884637781545700+\frac{2}{24}\left(180^{\circ}\right)^{2}$
$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$ $40.300884637781545700+\frac{2}{24}(-i \log (-1))^{2}$
$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$ $40.300884637781545700+\frac{12 \xi(2)}{24}$

Series representations:

$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$ $40.300884637781545700+1.3333333333333333333\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{2}$
$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$ $40.300884637781545700+\frac{1}{3}\left(-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right)^{2}$
$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$ $40.300884637781545700+0.083333333333333333333\left(\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\right)^{2}$

Integral representations:

$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$
$40.300884637781545700+0.33333333333333333333\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{2}$
$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$
$40.300884637781545700+1.3333333333333333333\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{2}$
$33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}=$ $40.300884637781545700+0.33333333333333333333\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{2}$

From the sum of the four results, performing the following calculations, we obtain:
$1+$ sqrt729/(((33.72114837038864 $\left.\left.\left.+6.5797362673929057+\left(\mathrm{Pi}^{\wedge} 2\right) / 24+\left(\mathrm{Pi}^{\wedge} 2\right) / 24\right)\right)\right)$
Where $729=9^{3}$ (see Ramanujan cubes)

Input interpretation:

$$
1+\frac{\sqrt{729}}{33.72114837038864+6.5797362673929057+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}}
$$

Result:

1.656561270002349...
$1.65656127 \ldots$. result very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$

Series representations:


```
\(1+\frac{\sqrt{729}}{33.721148370388640000+6.57973626739290570000+\frac{\pi^{2}}{24}+\frac{\pi^{2}}{24}}=\)
    \(1+\underline{6.000000000000000000 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 728^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}\)
    \(1+\longrightarrow\left(483.61061565337854840+\pi^{2}\right) \sqrt{\pi}\)
```

Note that, we obtain:
$41.12335167120566+(((1 / 60($ Fibonacci factorial constant +67$))))$
Where:

Fibonacci factorial constant
$\left(-\frac{1}{\phi^{2}} ;-\frac{1}{\phi^{2}}\right)_{\infty}$
1.226742010720353244417630230455361655871409690440250419643
$1.2267420107 . .$.

Input interpretation:

$41.12335167120566+\frac{1}{60}\left(\mathcal{F}_{\mathrm{FF}}+67\right)$
\tilde{F}_{FF} is the Fbonacci factorial constant

Result:

42.26046403805100...
42.260464... result equal to above first result 42.260464... obtained from the formula $-3\left(-\frac{2744+5996 \times 42.63931648+9844 \times 1818.1113+77523.023543}{12(1+42.63931648)^{2}(14+42.63931648)}\right)$

From:

MANUSCRIPT BOOK 2
OF
SRINIVASA RAMANUIAN
we have that:
Page 109

$\mathrm{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2$

Input:

$\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
$\log (x)$ is the natural logarithm

Decimal approximation:

$0.237559901279160814745406988237856727292432712764725456322 \ldots$
$0.23755990127916 \ldots$

Alternate forms:

$\frac{1}{24}\left(\pi^{2}-18 \operatorname{csch}^{-1}(2)^{2}\right)$
$\frac{1}{24}\left(\pi^{2}-18 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$

$$
\frac{1}{24}\left(\pi^{2}-18(\log (\sqrt{5}-1)-\log (2))^{2}\right)
$$

$\operatorname{csch}^{-1}(x)$ is the inverse hyperbolic cosecant function

Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right) \\
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2} \\
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4}\left(-\mathrm{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2} \\
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\
& \quad \frac{1}{24}\left(\pi^{2}-18\left(2 i \pi\left[\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}\right)
\end{aligned}
$$

$$
\text { for } x<0
$$

$$
\begin{aligned}
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\
& \frac{\pi^{2}}{24}-\frac{3}{4}\left(2 i \pi\left[\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right.\right)^{2}\right.
\end{aligned}
$$

$$
\text { for } x<0
$$

Integral representation:
$\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$
$\left.\left(\left(\left(\left(\operatorname{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))\right)^{\wedge} 2\right)\right)\right)\right)^{\wedge} 1 / 128$
Input:
$\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)}$
$\log (x)$ is the natural logarithm

Decimal approximation:

0.988833628580485387235048704408866760465401974342081212010...
$0.988833628580 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Alternate forms:

$$
\frac{\sqrt[128]{\frac{\pi^{2}}{3}-6 \operatorname{csch}^{-1}(2)^{2}}}{2^{3 / 128}}
$$

$$
\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4}(\log (\sqrt{5}-1)-\log (2))^{2}}
$$

$$
\frac{\sqrt[128]{\frac{1}{3}\left(\pi^{2}-18 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)}}{2^{3 / 128}}
$$

All 128th roots of $\pi^{\wedge} 2 / 24-3 / 4 \log ^{\wedge} 2(1 / 2(\operatorname{sqrt}(5)-1))$:

$$
e^{0} \sqrt[128]{\frac{\pi^{2}}{24}}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) \approx 0.98883 \text { (real, principal root) }
$$

$$
e^{(i \pi) / 64} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.98764+0.04852 i
$$

$$
e^{(i \pi) / 32} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.98407+0.09692 i
$$

$$
e^{(3 i \pi) / 64} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.97813+0.14509 i
$$

$$
e^{(i \pi) / 16} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.96983+0.19291 i
$$

Alternative representations:

$$
\sqrt[128]{\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)}
$$

$$
\sqrt[128]{\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}}
$$

$$
\sqrt[128]{\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4}\left(-\operatorname{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}}
$$

Integral representation:

$$
\sqrt[128]{\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}}
$$

\log base $0.988833628580485\left(\left(\left(\left(\mathrm{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1)}) / 2))))^{\wedge} 2\right)\right)\right)\right)-$ $\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\log _{0.988833628580485}\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

125.4764413352...
$125.4764413352 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

Alternative representations:

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$
$-\pi+\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)+\frac{1}{\phi}$
$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{\log \left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)}{\log (0.9888336285804850000)}
$$

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$
$-\pi+\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)+\frac{1}{\phi}$

Series representations:

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
\left.\frac{1}{\phi}-\pi+\log _{0.9888336285804850000}\left(\frac{1}{24}\left(\pi^{2}-18\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}\right)\right)\right)
$$

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$
$\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{24}\right)^{k}\left(-24+\pi^{2}-18 \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{k}}{k}}{\log (0.9888336285804850000)}$

Integral representation:

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$
$\frac{1}{\phi}-\pi+\log _{0.9888336285804850000}\left(\frac{1}{24}\left(\pi^{2}-18\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}\right)\right)$

Adding the previous analyzed expression:
$\frac{\pi^{2}}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)$
with
$\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
we obtain:
$\left(\left(\left(\operatorname{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1)} / 2)))))^{\wedge} 2\right)\right)\right)+$ $\left(\left(\left(\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+81\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right)\right)\right)$

Input:

$\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{\pi^{2}}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)$

Exact result:

$$
\frac{83 \pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)
$$

Decimal approximation:

33.95870827166780276242991790448137310628090568750409342990...
$33.95870827 \ldots \approx 34$ (Fibonacci number)

Alternate forms:

$$
\begin{aligned}
& \frac{83 \pi^{2}}{24}-\frac{3}{4} \operatorname{csch}^{-1}(2)^{2} \\
& \frac{1}{24}\left(83 \pi^{2}-18 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right) \\
& \frac{83 \pi^{2}}{24}-\frac{3}{4}(\log (\sqrt{5}-1)-\log (2))^{2}
\end{aligned}
$$

$\operatorname{csch}^{-1}(x)$ is the inverse hyperbolic cosecant function

Alternative representations:

$$
\begin{aligned}
& \left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)+\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}= \\
& \frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)
\end{aligned}
$$

$$
\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)+\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=
$$

$$
\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)+\frac{1}{24} \pi^{2}\left(1+81\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)
$$

$$
\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)+\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}=
$$

$$
\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)+\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}= \\
& \frac{83 \pi^{2}}{24}-\frac{3}{4}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2} \\
& \left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)+\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}= \\
& \frac{83 \pi^{2}}{24}+\frac{3}{4}\left(2 \pi\left|\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right|-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)+\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}= \\
& \frac{83 \pi^{2}}{24}-\frac{3}{4}\left(2 i \pi\left|\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right|+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}
\end{aligned}
$$

for $x<0$

Integral representation:

$$
\begin{aligned}
& \left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)+\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}= \\
& \frac{83 \pi^{2}}{24}-\frac{3}{4}\left(\int_{1}^{1}(-1+\sqrt{5}) \frac{1}{t} d t\right)^{2}
\end{aligned}
$$

Multiple-argument formula:

$$
\begin{aligned}
& \left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)+\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}= \\
& \frac{83 \pi^{2}}{24}-\frac{3}{4}(-\log (2)+\log (-1+\sqrt{5}))^{2}
\end{aligned}
$$

In conclusion:
$1 / 21^{*}\left[\left(\left(\left(\mathrm{Pi}^{\wedge} 2 /(24)-3 / 4\left(\left(\left(\ln \left(\left(\operatorname{sqrt5-1)/2)))))^{\wedge }2)))+}\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left(\left(\left(\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+81\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right)\right)\right)\right]$

Input:

$\frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{\pi^{2}}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)$

Exact result:

$\frac{1}{21}\left(\frac{83 \pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$

Decimal approximation:

1.617081346269895369639519900213398719346709794643052068090...
$1.61708134626 \ldots$ result that is a nearly approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$\frac{1}{504}\left(83 \pi^{2}-18 \operatorname{csch}^{-1}(2)^{2}\right)$
$\frac{83 \pi^{2}}{504}-\frac{1}{28} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
$\frac{1}{504}\left(83 \pi^{2}-18 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)= \\
& \quad \frac{1}{21}\left(\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)= \\
& \frac{1}{21}\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)+\frac{1}{24} \pi^{2}\left(1+81\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)\right) \\
& \frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)= \\
& \frac{1}{21}\left(\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)= \\
& \frac{83 \pi^{2}}{504}-\frac{1}{28}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}
\end{aligned}
$$

$$
\frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)=
$$

$$
\frac{1}{21}\left(\frac{83 \pi^{2}}{24}+\frac{3}{4}\left(2 \pi\left[\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right)-\right.\right.
$$

$$
\left.\left.i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}\right) \text { for } x<0
$$

$$
\frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)=
$$

$$
\frac{1}{21}\left(\frac{83 \pi^{2}}{24}-\frac{3}{4}\left(2 i \pi\left\lfloor\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right]+\log (x)-\right.\right.
$$

$$
\left.\left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}\right) \text { for } x<0
$$

Integral representation:

$$
\begin{aligned}
& \frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)= \\
& \frac{83 \pi^{2}}{504}-\frac{1}{28}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}
\end{aligned}
$$

Multiple-argument formula:

$$
\begin{aligned}
& \frac{1}{21}\left(\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)+\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)\right)= \\
& \quad \frac{1}{21}\left(\frac{83 \pi^{2}}{24}-\frac{3}{4}(-\log (2)+\log (-1+\sqrt{5}))^{2}\right)
\end{aligned}
$$

Now, to the Ramanujan expression, adding to the two precedent expressions, we obtain:
$\left[\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+81\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right]+\left[\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+15\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right]+$ $\left[\mathrm{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqr} 5-1) / 2))))^{\wedge} 2\right]$

Input:

$$
\frac{\pi^{2}}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\frac{\pi^{2}}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)
$$

Exact result:

$$
\frac{33 \pi^{2}}{8}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)
$$

Decimal approximation:

40.53844453906070850831957857106547386315670529233128718084...
40.538444539 . \qquad result very near to the value of the following expression:
$(4.076594584857) * 10=40.76594584857$

Alternate forms:

$\frac{1}{8}\left(33 \pi^{2}-6 \operatorname{csch}^{-1}(2)^{2}\right)$
$\frac{3}{8}\left(11 \pi^{2}-2 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\frac{33 \pi^{2}}{8}-\frac{3}{4}(\log (\sqrt{5}-1)-\log (2))^{2}$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)= \\
& \frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)+ \\
& \quad \frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)
\end{aligned}
$$

$$
\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)=
$$

$$
\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)+
$$

$$
\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}
$$

$$
\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)=
$$

$$
\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)+\frac{1}{24} \pi^{2}\left(1+15\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)+
$$

$$
\frac{1}{24} \pi^{2}\left(1+81\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)= \\
& \frac{33 \pi^{2}}{8}-\frac{3}{4}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2} \\
& \frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)= \\
& \frac{33 \pi^{2}}{8}+\frac{3}{4}\left(2 \pi\left|\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right|-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}
\end{aligned}
$$

for $x<0$

$$
\begin{aligned}
& \frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)= \\
& \frac{33 \pi^{2}}{8}-\frac{3}{4}\left(2 i \pi\left|\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right|+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}
\end{aligned}
$$

for $x<0$

Integral representation:

$$
\begin{aligned}
& \frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)= \\
& \frac{33 \pi^{2}}{8}-\frac{3}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}
\end{aligned}
$$

Multiple-argument formula:

$$
\begin{aligned}
& \frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)= \\
& \frac{33 \pi^{2}}{8}-\frac{3}{4}(-\log (2)+\log (-1+\sqrt{5}))^{2}
\end{aligned}
$$

From which, dividing by 10 , we obtain:
$1 / 10\left(\left(\left(\left[\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+81\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right]+\right.\right.\right.$
$\left.\left.\left.\left[\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+15\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right]+\left[\mathrm{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2\right]\right)\right)\right)$

Input:

$$
\frac{1}{10}\left(\frac{\pi^{2}}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\frac{\pi^{2}}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)
$$

Exact result:

$\frac{1}{10}\left(\frac{33 \pi^{2}}{8}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$

Decimal approximation:

4.053844453906070850831957857106547386315670529233128718084.
$4.0538444539 \ldots$. result very near to the previous value of the following expression:
$\frac{-2744+5996\left(e^{13(-1.3288 /(2 \sqrt{3}))}+9844 e^{13(-1.3288 / \sqrt{3})}+e^{-1.3288(1 / 2(13 \sqrt{3}))}\right)}{12\left(1+\left(e^{13(-1.3288 /(2 \sqrt{3}))}\right)^{2}\left(14+e^{13(-1.3288 /(2 \sqrt{3}))}\right)\right)}$
4.07659 ..
4.07659... $\approx 49 / 12$

Alternate forms:

$\frac{1}{80}\left(33 \pi^{2}-6 \operatorname{csch}^{-1}(2)^{2}\right)$
$\frac{33 \pi^{2}}{80}-\frac{3}{40} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
$\frac{3}{80}\left(11 \pi^{2}-2 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\operatorname{csch}^{-1}(x)$ is the inverse hyperbolic cosecant function

Alternative representations:

$$
\begin{aligned}
& \frac{1}{10}\left(\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\right. \\
& \left.\quad \frac{1}{24} \pi^{2}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)= \\
& \frac{1}{10}\left(\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)+\right. \\
& \left.\quad \frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)
\end{aligned}
$$

$$
\frac{1}{10}\left(\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\right.
$$

$$
\left.\frac{1}{24} \pi^{2}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)=
$$

$$
\frac{1}{10}\left(\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)+\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\right.
$$

$$
\left.\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)
$$

$$
\begin{aligned}
& \frac{1}{10}\left(\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\right. \\
& \left.\frac{1}{24} \pi^{2}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)= \\
& \frac{1}{10}\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)+\frac{1}{24} \pi^{2}\left(1+15\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)+\right. \\
& \left.\frac{1}{24} \pi^{2}\left(1+81\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{10}\left(\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\frac{1}{24} \pi^{2}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\right. \\
& \left.\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)=\frac{33 \pi^{2}}{80}-\frac{3}{40}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}
\end{aligned}
$$

$$
\frac{1}{10}\left(\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\frac{1}{24} \pi^{2}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\right.
$$

$$
\left.\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)=\frac{1}{10}\left(\frac{33 \pi^{2}}{8}+\right.
$$

$$
\left.\frac{3}{4}\left(2 \pi\left[\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right]-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}\right)
$$

for $x<0$

$$
\begin{aligned}
& \frac{1}{10}\left(\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\right. \\
& \left.\frac{1}{24} \pi^{2}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)= \\
& \frac{1}{10}\left(\frac{33 \pi^{2}}{8}-\frac{3}{4}\left(2 i \pi\left|\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right|+\log (x)-\right.\right. \\
& \left.\left.\left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}\right) \text { for } x<0
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \frac{1}{10}\left(\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\frac{1}{24} \pi^{2}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\right. \\
& \left.\quad\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)=\frac{33 \pi^{2}}{80}-\frac{3}{40}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}
\end{aligned}
$$

Multiple-argument formula:

$$
\begin{aligned}
& \frac{1}{10}\left(\frac{1}{24} \pi^{2}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\frac{1}{24} \pi^{2}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\right. \\
& \left.\quad\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)=\frac{1}{10}\left(\frac{33 \pi^{2}}{8}-\frac{3}{4}(-\log (2)+\log (-1+\sqrt{5}))^{2}\right)
\end{aligned}
$$

We have also:
$\mathrm{Pi}^{*}\left(\left(\left(\left[\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+81\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right]+\right.\right.\right.$
$\left.\left.\left.\left[\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+15\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right]+\left[\mathrm{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2\right]\right)\right)\right)-2$

Input:

$\pi\left(\frac{\pi^{2}}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\frac{\pi^{2}}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)-2$

Exact result:

$\pi\left(\frac{33 \pi^{2}}{8}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-2$

Decimal approximation:

125.3552795518703938576422532990510192508810645896080865529...
$125.3552795 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$-2+\frac{33 \pi^{3}}{8}-\frac{3}{4} \pi \operatorname{csch}^{-1}(2)^{2}$
$-2+\frac{33 \pi^{3}}{8}-\frac{3}{4} \pi \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
$\frac{1}{8}\left(-16+33 \pi^{3}-6 \pi \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$

Alternative representations:

$$
\begin{gathered}
\pi\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)- \\
2=-2+\pi\left(\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)+\right. \\
\left.\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)
\end{gathered}
$$

$$
\pi\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)-
$$

$$
2=-2+\pi\left(\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)+\right.
$$

$$
\left.\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)
$$

$$
\pi\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)-
$$

$$
2=-2+\pi\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)+\right.
$$

$$
\left.\frac{1}{24} \pi^{2}\left(1+15\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)+\frac{1}{24} \pi^{2}\left(1+81\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)\right)
$$

Series representations:

$$
\begin{gathered}
\pi\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)- \\
2=-2+\frac{33 \pi^{3}}{8}-\frac{3}{4} \pi\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2} \\
\pi\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)- \\
2=-2+\pi\left(\frac{33 \pi^{2}}{8}+\frac{3}{4}\left(2 \pi \left(\left.\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi} \right\rvert\,-\right.\right.\right. \\
\left.\left.i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}\right) \text { for } x<0
\end{gathered}
$$

$$
\begin{gathered}
\pi\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)- \\
2=-2+\pi\left(\frac{33 \pi^{2}}{8}-\frac{3}{4}\left(2 i \pi\left\lfloor\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right)+\log (x)-\right.\right. \\
\left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right) \mid \text { for } x<0
\end{gathered}
$$

Integral representation:

$$
\begin{aligned}
& \pi\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)- \\
& 2=-2+\frac{33 \pi^{3}}{8}-\frac{3}{4} \pi\left(\int_{1}^{2}(-1+\sqrt{5}) \frac{1}{t} d t\right)^{2}
\end{aligned}
$$

Multiple-argument formula:

$$
\begin{aligned}
& \pi\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)- \\
& 2=-2+\pi\left(\frac{33 \pi^{2}}{8}-\frac{3}{4}(-\log (2)+\log (-1+\sqrt{5}))^{2}\right)
\end{aligned}
$$

$3 *\left(\left(\left(\left[\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+81\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right]+\left[\left(\mathrm{Pi}^{\wedge} 2\right) /(24)^{*}\left(\left(1+15\left(\tan (\mathrm{Pi} / 4)^{\wedge}(2 / 3)\right)\right)\right)\right]\right.\right.\right.$ $\left.\left.\left.+\left[\operatorname{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2\right]\right)\right)\right)+13+3+$ golden ratio

Input:

$$
\begin{aligned}
& 3\left(\frac{\pi^{2}}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\frac{\pi^{2}}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right)+\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)+ \\
& 13+3+\phi
\end{aligned}
$$

Exact result:

$\phi+16+3\left(\frac{33 \pi^{2}}{8}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$

Decimal approximation:

139.2333676059320203731633225475620597071904250567996244046...
$139.233367 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$\phi+16+\frac{99 \pi^{2}}{8}-\frac{9}{4} \operatorname{csch}^{-1}(2)^{2}$
$\phi+16+\frac{9}{8}\left(11 \pi^{2}-2 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\frac{1}{8}\left(132+4 \sqrt{5}+99 \pi^{2}-18 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\operatorname{csch}^{-1}(x)$ is the inverse hyperbolic cosecant function

Alternative representations:

$$
\begin{aligned}
& 3\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\right. \\
& \left.\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)+13+3+\phi= \\
& 16+\phi+3\left(\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)+\right. \\
& \left.\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)
\end{aligned}
$$

$$
3\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\right.
$$

$$
\left.\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)+13+3+\phi=
$$

$$
16+\phi+3\left(\frac{\pi^{2}}{24}+\frac{1}{24} \pi^{2}\left(1+15\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)+\right.
$$

$$
\left.\frac{1}{24} \pi^{2}\left(1+81\left(-\cot \left(-\frac{\pi}{2}+\frac{\pi}{4}\right)\right)^{2 / 3}\right)-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)
$$

$$
3\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\right.
$$

$$
\left.\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)+13+3+\phi=
$$

$$
16+\phi+3\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)+\frac{1}{24} \pi^{2}\left(1+15\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)+\right.
$$

$$
\left.\frac{1}{24} \pi^{2}\left(1+81\left(-i+\frac{2 i}{1+e^{(2 i \pi) / 4}}\right)^{2 / 3}\right)\right)
$$

Series representations:

$$
\begin{aligned}
& 3\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\right. \\
& \left.\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)+ \\
& 13+3+\phi=16+\phi+\frac{99 \pi^{2}}{8}-\frac{9}{4}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2} \\
& 3\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\right. \\
& \left.\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)+13+3+\phi= \\
& 16+\phi+3\left(\frac{33 \pi^{2}}{8}+\frac{3}{4}\left(2 \pi \left\lvert\, \frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right.\right)-\right. \\
& \left.\left.i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}\right) \text { for } x<0
\end{aligned}
$$

$$
3\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\right.
$$

$$
\left.\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)+13+3+\phi=
$$

$$
16+\phi+3\left(\frac{33 \pi^{2}}{8}-\frac{3}{4}\left(2 i \pi\left[\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right)+\log (x)-\right.\right.
$$

$$
\left.\left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}\right) \text { for } x<0
$$

Integral representation:

$$
\begin{aligned}
& 3\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\right. \\
& \left.\quad \frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)+ \\
& 13+3+\phi=16+\phi+\frac{99 \pi^{2}}{8}-\frac{9}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}
\end{aligned}
$$

Multiple-argument formula:

$$
\begin{gathered}
3\left(\frac{1}{24}\left(1+81 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\frac{1}{24}\left(1+15 \tan ^{2 / 3}\left(\frac{\pi}{4}\right)\right) \pi^{2}+\right. \\
\left.\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)\right)+13+3+\phi= \\
16+\phi+3\left(\frac{33 \pi^{2}}{8}-\frac{3}{4}(-\log (2)+\log (-1+\sqrt{5}))^{2}\right)
\end{gathered}
$$

From:

Integrable Scalar Cosmologies II. Can they fit into Gauged Extended

Supergavity or be encoded in $\mathbf{N}=1$ superpotentials? - P. Fre, A.S. Sorin and M. Trigiante - arXiv:1310.5340v1 [hep-th] 20 Oct 2013

We have that:

$$
\begin{equation*}
T_{c} \stackrel{t \rightarrow \infty}{\simeq} \frac{125 e^{\frac{12 t \nu}{5}}}{12 \nu^{5}} \tag{5.65}
\end{equation*}
$$

$$
T_{c} \stackrel{t \rightarrow \infty}{\sim} \frac{125 e^{\frac{12 t \nu}{5}}}{12 \nu^{5}}
$$

$125^{*} \mathrm{e}^{\wedge}\left(\left(12 * 0.25^{*} \mathrm{x}\right) / 5\right) /\left(\left(12^{*} 0.25^{\wedge} 5\right)\right)=\mathrm{y}$

Input:

$125 \times \frac{e^{1 / 5(12 \times 0.25 x)}}{12 \times 0.25^{5}}=y$
Result:
$10666.7 e^{0.6 x}=y$

Implicit plot:

Alternate form assuming \mathbf{x} and \mathbf{y} are real:
$10666.7 e^{0.6 x}+0=y$

Real solution:

$y \approx 10666.7 \times 2.71828^{0.6 x}$

Solution:

$y=\frac{32000}{3} e^{(3 x) / 5}$

Partial derivatives:

$\frac{\partial}{\partial x}\left(10666.7 e^{0.6 x}\right)=6400 . e^{0.6 x}$
$\frac{\partial}{\partial y}\left(10666.7 e^{0.6 x}\right)=0$

Implicit derivatives:

$\begin{aligned} \frac{\partial x(y)}{\partial y} & =\frac{26388279066624 e^{-(1351079888211149 x) / 2251799813685248}}{168884986026393625} \\ \frac{\partial y(x)}{\partial x} & =\frac{1351079888211149 y}{2251799813685248}\end{aligned}$

Limit:

$\lim _{x \rightarrow-\infty} 10666.7 e^{0.6 x}=0 \approx 0$

For
$y \approx 10666.7 \times 2.71828^{0.6 x}$
we obtain:
$125^{*} \mathrm{e}^{\wedge}\left(\left(12^{*} 0.25^{*} \mathrm{x}\right) / 5\right) /\left(\left(12^{*} 0.25^{\wedge} 5\right)\right)=10666.7^{*} 2.71828^{\wedge}(0.6 \mathrm{x})$
Input interpretation:
$125 \times \frac{e^{1 / 5(12 \times 0.25 x)}}{12 \times 0.25^{5}}=10666.7 \times 2.71828^{0.6 x}$

Result:
$10666.7 e^{0.6 x}=10666.7 \times 2.71828^{0.6 x}$

Plot:

Alternate forms:
$e^{0.6 x}=1 . \times 2.71828^{0.6 x}$
$10666.7 e^{0.6 x}=10666.7 e^{0.6 x}$
Alternate form assuming x is positive:

```
e
```

Alternate form assuming x is real:
$10666.7 e^{0.6 x}+0=10666.7 \times 2.71828^{0.6 x}+0$

Real solution:

$x \approx 7.74296$
7.74296

Solution:

$$
x \approx\left(2.47775 \times 10^{6} i\right)\left(6.28319 n+\left(-3.125 \times 10^{-6} i\right)\right), \quad n \in \mathbb{Z}
$$

$125^{*} \mathrm{e}^{\wedge}\left(\left(12^{*} 0.25^{*} 7.74296\right) / 5\right) /\left(\left(12^{*} 0.25^{\wedge} 5\right)\right)$
Input interpretation:
$125 \times \frac{e^{1 / 5(12 \times 0.25 \times 7.74296)}}{12 \times 0.25^{5}}$

Result:

$1.11087 \ldots \times 10^{6}$
$1.11087 \ldots * 10^{6}$

Alternative representation:

$\frac{125 e^{(12 \times 0.25 \times 7.74296) / 5}}{12 \times 0.25^{5}}=\frac{125 \exp ^{\frac{12 \times 0.25 \times 7.74296}{5}}(z)}{12 \times 0.25^{5}}$ for $z=1$

Series representations:

$$
\begin{aligned}
& \frac{125 e^{(12 \times 0.25 \times 7.74296) / 5}}{12 \times 0.25^{5}}=10666.7\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4.64578} \\
& \frac{125 e^{(12 \times 0.25 \times 7.74296) / 5}}{12 \times 0.25^{5}}=426.099\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{4.64578} \\
& \frac{125 e^{(12 \times 0.25 \times 7.74296) / 5}}{12 \times 0.25^{5}}=10666.7\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{4.64578} \\
& T_{c}(t) \equiv \int_{0}^{t} d x \exp [\mathbf{B}(x, \nu)]=\frac{25 t}{\nu^{4}}-\frac{125 e^{\frac{6 t \nu}{5}}}{3 \nu^{5}}+\frac{125 e^{\frac{12 t \nu}{5}}}{12 \nu^{5}}+\frac{125}{4 \nu^{5}}
\end{aligned}
$$

For $\mathrm{t}=7.74296$ and $v=1 / 4=0.25$, we obtain:
$\left(25^{*} 7.74296\right) / 0.25^{\wedge} 4-\left(\left(125^{*} \mathrm{e}^{\wedge}\left(\left(6^{*} 7.74296^{*} 0.25\right) / 5\right)\right)\right) /\left(3^{*} 0.25^{\wedge} 5\right)+$ $\left(\left(125^{*} \mathrm{e}^{\wedge}\left(\left(12 * 7.74296^{*} 0.25\right) / 5\right)\right)\right) /\left(12 * 0.25^{\wedge} 5\right)+125 /\left(4^{*} 0.25^{\wedge} 5\right)$

Input interpretation:

$\frac{25 \times 7.74296}{0.25^{4}}-\frac{125 e^{1 / 5(6 \times 7.74296 \times 0.25)}}{3 \times 0.25^{5}}+\frac{125 e^{1 / 5(12 \times 7.74296 \times 0.25)}}{12 \times 0.25^{5}}+\frac{125}{4 \times 0.25^{5}}$

Result:

$7.57008 \ldots \times 10^{5}$
7.57008...* 10^{5}

Alternative representation:

$$
\begin{aligned}
& \frac{25 \times 7.74296}{0.25^{4}}-\frac{125 e^{(6 \times 7.74296 \times 0.25) / 5}}{3 \times 0.25^{5}}+\frac{125 e^{(12 \times 7.74296 \times 0.25) / 5}}{12 \times 0.25^{5}}+\frac{125}{4 \times 0.25^{5}}= \\
& \frac{25 \times 7.74296}{0.25^{4}}-\frac{125 \exp ^{\frac{6}{7.74296} 50.25}(z)}{5 \times 0.25^{5}}+ \\
& \frac{125 \exp ^{\frac{12 \times 742960.25}{5}}(z)}{12 \times 0.25^{5}}+\frac{125}{4 \times 0.25^{5}} \text { for } z=1
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{25 \times 7.74296}{0.25^{4}}-\frac{125 e^{(6 \times 7.74296 \times 0.25) / 5}}{3 \times 0.25^{5}}+\frac{125 e^{(12 \times 7.74296 \times 0.25) / 5}}{12 \times 0.25^{5}}+\frac{125}{4 \times 0.25^{5}}= \\
& -42666.7\left(-1.91144+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2.32289}-0.25\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4.64578}\right) \\
& \frac{25 \times 7.74296}{0.25^{4}}-\frac{125 e^{(6 \times 7.74296 \times 0.25) / 5}}{3 \times 0.25^{5}}+\frac{125 e^{(12 \times 7.74296 \times 0.25) / 5}}{12 \times 0.25^{5}}+\frac{125}{4 \times 0.25^{5}}= \\
& -8527.66\left(-9.56358+\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{2.32289}-0.0499667\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{4.64578}\right) \\
& \frac{25 \times 7.74296}{0.25^{4}}-\frac{125 e^{(6 \times 7.74296 \times 0.25) / 5}}{3 \times 0.25^{5}}+\frac{125 e^{(12 \times 7.74296 \times 0.25) / 5}}{12 \times 0.25^{5}}+\frac{125}{4 \times 0.25^{5}}= \\
& -42666.7\left(-1.91144+\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{2.32289}-0.25\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{4.64578}\right)
\end{aligned}
$$

To work out the behavior at very early times it is more complicated, yet we can predict it by inspecting the behavior of the energy density and of the pressure. Inserting the form of the solution and of the potential in eq.(1.5) we obtain the parametric time behavior of the energy density and of the pressure ${ }^{8}$:

$$
\begin{align*}
& \rho=\frac{3 \nu^{8}\left(-4 \nu^{2}+2 e^{\frac{6 t \nu}{5}}\left(2 \nu^{2}+5\right)+e^{\frac{12 t \nu}{5}}\left(3 \nu^{2}-5\right)-5\right)}{15625\left(-1+e^{\frac{6 t \nu}{5}}\right)^{6}} \tag{5.68}\\
& p=\frac{3 \nu^{8}\left(4 \nu^{2}-2 e^{\frac{6 t \nu}{5}}\left(2 \nu^{2}+5\right)+e^{\frac{12 \nu}{5}}\left(3 \nu^{2}+5\right)+5\right)}{15625\left(-1+e^{\frac{6 t \nu}{5}}\right)^{6}} \tag{5.69}
\end{align*}
$$

We have that:

$$
\begin{align*}
& \rho=\frac{3 \nu^{8}\left(-4 \nu^{2}+2 e^{\frac{6 t \nu}{5}}\left(2 \nu^{2}+5\right)+e^{\frac{12 t \nu}{5}}\left(3 \nu^{2}-5\right)-5\right)}{15625\left(-1+e^{\frac{6 t \nu}{5}}\right)^{6}} \tag{5.68}\\
& p=\frac{3 \nu^{8}\left(4 \nu^{2}-2 e^{\frac{6 t \nu}{5}}\left(2 \nu^{2}+5\right)+e^{\frac{12 t \nu}{5}}\left(3 \nu^{2}+5\right)+5\right)}{15625\left(-1+e^{\frac{6 t \nu}{5}}\right)^{6}} \tag{5.69}
\end{align*}
$$

For $\mathrm{t}=7.74296$ and $v=1 / 4=0.25$, we obtain:
$3 * 0.25^{\wedge} 8(()(-$
$4^{*} 0.25^{\wedge} 2+2 \mathrm{e}^{\wedge}\left(\left(6^{*} 7.74296^{*} 0.25\right) / 5\right) *\left(2 * 0.25^{\wedge} 2+5\right)+\mathrm{e}^{\wedge}\left(\left(12^{*} 7.74296^{*} 0.25\right) / 5\right)^{*}\left(3^{*} 0.2\right.$
$\left.\left.\left.\left.\left.5^{\wedge} 2-5\right)-5\right)\right)\right)\right)$ * $\left(\left(1 /\left(\left(\left(\left(15625\left(\left(-1+\mathrm{e}^{\wedge}\left(\left(6^{*} 7.74296 * 0.25\right) / 5\right)\right)\right)^{\wedge} 6\right)\right)\right)\right)\right)\right)$

Input interpretation:

3×0.25^{8}

$$
\begin{aligned}
& \left(\left(-4 \times 0.25^{2}+2 e^{1 / 5(6 \times 7.7429660 .25)}\left(2 \times 0.25^{2}+5\right)+e^{1 / 5(12 \times 7.742960 .25)}\left(3 \times 0.25^{2}-5\right)-\right.\right. \\
& \left.5) \times \frac{1}{15625\left(-1+e^{1 / 5(6 \times 7.74296 \cdot 0.25)}\right)^{6}}\right)
\end{aligned}
$$

Result:

$-1.93510 \ldots \times 10^{-12}$
$-1.93510 \ldots * 10^{-12}=\rho$

Alternative representation:

$\left(\left(3 \times 0.25^{8}\right)\left(-4 \times 0.25^{2}+2 e^{(6 \times 7.74296 \times 0.25) / 5}\left(2 \times 0.25^{2}+5\right)+e^{(12 \times 7.74296 \times 0.25) / 5}\right.\right.$

$$
\begin{aligned}
& \left.\left.\left(3 \times 0.25^{2}-5\right)-5\right)\right) /\left(15625\left(-1+e^{(6 \times 7.74296 \times 0.25) / 5}\right)^{6}\right)= \\
& \left((3 \times 0 . 2 5 ^ { 8 }) \left(-4 \times 0.25^{2}+2 \exp ^{6} \frac{7.74296}{0.25} \text { (z) }\left(2 \times 0.25^{2}+5\right)+\right.\right. \\
& \left.\left.\exp \begin{array}{c}
12 \times 7.74296 \\
5
\end{array}(z)\left(3 \times 0.255^{2}-5\right)-5\right)\right) / \\
& \left(15625\left(-1+\exp ^{\frac{6.7 .74296}{} \quad 0.25}(z)\right)^{6}\right) \text { for } z=1
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left((3 \times 0 . 2 5 ^ { 8 }) \left(-4 \times 0.25^{2}+2 e^{(6 \times 7.74296 \times 0.25) / 5}\left(2 \times 0.25^{2}+5\right)+\right.\right. \\
& \left.\left.e^{(12 \times 7.74296 \times 0.25) / 5}\left(3 \times 0.25^{2}-5\right)-5\right)\right) / \\
& \left(15625\left(-1+e^{(6 \times 7.74296 \times 0.25) / 5}\right)^{6}\right)= \\
& 3.00293 \times 10^{-8}\left(-0.512195+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2.32289}-0.469512\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4.64578}\right) \\
& \left(-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2.32289}\right)^{6} \\
& \left((3 \times 0 . 2 5 ^ { 8 }) \left(-4 \times 0.25^{2}+2 e^{(6 \times 7.74296 \times 0.25) / 5}\left(2 \times 0.25^{2}+5\right)+\right.\right. \\
& \left.\left.e^{(12 \times 7.74296 \times 0.25) / 5}\left(3 \times 0.25^{2}-5\right)-5\right)\right) / \\
& \left(15625\left(-1+e^{(6 \times 7.74296 \times 0.25) / 5}\right)^{6}\right)= \\
& 0.0000941543\left(-2.56268+\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{2.32289}-0.09384\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{4.64578}\right) \\
& \left(-5.00333+\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{2.32289}\right)^{6} \\
& \left((3 \times 0 . 2 5 ^ { 8 }) \left(-4 \times 0.25^{2}+2 e^{(6 \times 7.74296 \times 0.25) / 5}\left(2 \times 0.25^{2}+5\right)+\right.\right. \\
& \left.\left.e^{(12 \times 7.74296 \times 0.25) / 5}\left(3 \times 0.25^{2}-5\right)-5\right)\right) / \\
& \left(15625\left(-1+e^{(6 \times 7.74296 \times 0.25) / 5}\right)^{6}\right)= \\
& 3.00293 \times 10^{-8}\left(-0.512195+\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{2.32289}-0.469512\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{4.64578}\right) \\
& \left(-1+\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{2.32289}\right)^{6} \\
& p=\frac{3 \nu^{8}\left(4 \nu^{2}-2 e^{\frac{6 t \nu}{5}}\left(2 \nu^{2}+5\right)+e^{\frac{12 t \nu}{5}}\left(3 \nu^{2}+5\right)+5\right)}{15625\left(-1+e^{\frac{6 t \nu}{5}}\right)^{6}}
\end{aligned}
$$

$3^{*} 0.25^{\wedge} 8\left(()\left(4^{*} 0.25^{\wedge} 2-\right.\right.$
$\left.\left.2 \mathrm{e}^{\wedge}\left(\left(6^{*} 7.74296^{*} 0.25\right) / 5\right) *\left(2 * 0.25^{\wedge} 2+5\right)+\mathrm{e}^{\wedge}\left(\left(12 * 7.74296^{*} 0.25\right) / 5\right) *\left(3 * 0.25^{\wedge} 2+5\right)+5\right)\right)$
$)) *\left(\left(1 /\left(\left(\left(\left(15625\left(\left(-1+\mathrm{e}^{\wedge}\left(\left(6^{*} 7.74296^{*} 0.25\right) / 5\right)\right)\right)^{\wedge} 6\right)\right)\right)\right)\right)\right)$

Input interpretation:

3×0.25^{8}

$$
\begin{aligned}
& \left(\left(4 \times 0.25^{2}-2 e^{1 / 5(6 \times 7.74296 \times 0.25)}\left(2 \times 0.25^{2}+5\right)+e^{1 / 5(12 \times 7.74296 \times 0.25)}\left(3 \times 0.25^{2}+5\right)+\right.\right. \\
& \left.5) \times \frac{1}{15625\left(-1+e^{1 / 5(6 \times 7.74296 \times 0.25)}\right)^{6}}\right)
\end{aligned}
$$

Result:

2.12317... $\times 10^{-12}$
$2.12317 \ldots * 10^{-12}=p$

Alternative representation:

$\left(\left(3 \times 0.25^{8}\right)\left(4 \times 0.25^{2}-2 e^{(6 \times 7.74296 \times 0.25) / 5}\left(2 \times 0.25^{2}+5\right)+e^{(12 \times 7.74296 \times 0.25) / 5}\right.\right.$

$$
\left.\left.\left(3 \times 0.25^{2}+5\right)+5\right)\right) /\left(15625\left(-1+e^{(6 \times 7.74296 \times 0.25) / 5}\right)^{6}\right)=
$$

$$
\begin{aligned}
& \left((3 \times 0 . 2 5 ^ { 8 }) \left(4 \times 0.25^{2}-2 \exp \begin{array}{cc}
6 & 7.74296 \\
5 & 0.25 \\
(z) & \left(2 \times 0.25^{2}+5\right)+ \\
\hline
\end{array}\right.\right. \\
& \left.\exp ^{\begin{array}{c}
12 \times 7.74296 \\
5
\end{array}}\left(\begin{array}{c}
0.25 \\
(z) \\
\hline
\end{array}\left(3 \times 0.25^{2}+5\right)+5\right)\right) / \\
& \left(15625\left(-1+\exp ^{\frac{6 \times 7.74296}{5} \quad 0.25}(z)\right)^{6}\right) \text { for } z=1
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left((3 \times 0 . 2 5 ^ { 8 }) \left(4 \times 0.25^{2}-2 e^{(6 \times 7.74296 \times 0.25) / 5}\left(2 \times 0.25^{2}+5\right)+\right.\right. \\
& \left.\left.e^{(12 \times 7.74296 \times 0.25) / 5}\left(3 \times 0.25^{2}+5\right)+5\right)\right) / \\
& -\frac{\left(15625\left(-1+e^{(6 \times 7.74296 \times 0.25) / 5}\right)^{6}\right)=}{\left(-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2.32289}\right)^{6}} \\
& \left((3 \times 0 . 2 5 ^ { 8 }) \left(4 \times 0.25^{2}-2 e^{(6 \times 7.74296 \times 0.25) / 5}\left(2 \times 0.25^{2}+5\right)+\right.\right. \\
& \left.\left.e^{(12 \times 7.74296 \times 0.25) / 5}\left(3 \times 0.25^{2}+5\right)+5\right)\right) / \\
& -\frac{\left(15625\left(-1+e^{(6 \times 7.74296 \times 0.25) / 5}\right)^{6}\right)=}{0.0000941543\left(-2.56268+\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{2.32289}-0.101152\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{4.64578}\right)} \\
& \left(-5.00333+\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{2.32289}\right)^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \left((3 \times 0 . 2 5 ^ { 8 }) \left(4 \times 0.25^{2}-2 e^{(6 \times 7.74296 \times 0.25) / 5}\left(2 \times 0.25^{2}+5\right)+\right.\right. \\
& \left.\left.e^{(12 \times 7.74296 \times 0.25) / 5}\left(3 \times 0.25^{2}+5\right)+5\right)\right) / \\
& -\frac{\left(15625\left(-1+e^{(6 \times 7.74296 \times 0.25) / 5}\right)^{6}\right)=}{3.00293 \times 10^{-8}\left(-0.512195+\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{2.32289}-0.506098\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{4.64578}\right)} \\
& \left(-1+\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{2.32289}\right)^{6}
\end{aligned}
$$

From the ratio between p and ρ, after some calculations, we obtain:
$1 /\left(2.123169628766854516 \times 10^{\wedge}-12 / 1.935101496001104582 \times 10^{\wedge}-12\right)$

Input interpretation:

$\frac{2.123169628766854516 \times 10^{-12}}{1.935101496001104582 \times 10^{-12}}$

Result:

0.911421051706084989513479994595973573934537306508437006585 .
0.9114210517...

We know that α^{\prime} is the Regge slope (string tension). With regard the Omega mesons, a value is also:

$$
\omega \left\lvert\, \begin{array}{l|l|l|l}
\omega & m_{u / d}=0-60 & 0.910-0.918
\end{array}\right.
$$

(see ref. Rotating strings confronting PDG mesons - Jacob Sonnenschein and Dorin Weissman - arXiv:1402.5603v1 [hep-ph] 23 Feb 2014)
$\left(\left(\left(1 /\left(2.123169628766854516 \times 10^{\wedge}-12 / 1.935101496001104582 \times 10^{\wedge}-12\right)\right)\right)\right)^{\wedge} 1 / 128$

Input interpretation:

1
$\sqrt[128]{\frac{2.123169628766854516 \times 10^{-12}}{1.935101496001104582 \times 10^{-12}}}$

Result:

0.999275650731654233824 ..
$0.9992756507 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$
\log base $0.99927565\left(\left(\left(1 /\left(2.123169628766854516 \times 10^{\wedge}-12 /\right.\right.\right.\right.$
$\left.\left.\left.\left.1.935101496001104582 \times 10^{\wedge}-12\right)\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\log _{0.99927565}\left(\frac{1}{\frac{2.123169628766854516 \times 10^{-12}}{1.935101496001104582 \times 10^{-12}}}\right)-\pi+\frac{1}{\phi}$
$\log _{b}(x)$ is the base $-b$ logarithm
ϕ is the golden ratio

Result:

125.476...
125.476... result very near to the dilaton mass calculated as a type of Higgs boson:

125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV
\log base $0.99927565\left(\left(\left(1 /\left(2.123169628766854516 \times 10^{\wedge}-12 /\right.\right.\right.\right.$
$\left.\left.\left.\left.1.935101496001104582 \times 10^{\wedge}-12\right)\right)\right)\right)+11+1 /$ golden ratio

Input interpretation:

$\log _{0.99927565}\left(\frac{1}{\frac{2.123169628766854516 \times 10^{-12}}{1.935101496001104582 \times 10^{-12}}}\right)+11+\frac{1}{\phi}$

Result:

139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

Appendix

DILATON VALUE CALCULATIONS 0.989117352243
from:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan
Quarterly Journal of Mathematics, XLV, 1914, 350-372
We have that:
5. Since G_{n} and g_{n} can be expressed as roots of algebraical equations with rational coefficients, the same is true of G_{n}^{24} or g_{n}^{24}. So let us suppose that

$$
1=a g_{n}^{-24}-b g_{n}^{-48}+\cdots
$$

or

$$
g_{n}^{24}=a-b g_{n}^{-24}+\cdots .
$$

But we know that

$$
\begin{array}{r}
64 e^{-\pi \sqrt{n}} g_{n}^{24}=1-24 e^{-\pi \sqrt{n}}+276 e^{-2 \pi \sqrt{n}}-\cdots, \\
64 g_{n}^{24}=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots, \\
64 a-64 b g_{n}^{-24}+\cdots=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots, \\
64 a-4096 b e^{-\pi \sqrt{n}}+\cdots=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots,
\end{array}
$$

that is

$$
\begin{equation*}
e^{\pi \sqrt{n}}=(64 a+24)-(4096 b+276) e^{-\pi \sqrt{n}}+\cdots \tag{13}
\end{equation*}
$$

Similarly, if

$$
1=a G_{n}^{-24}-b G_{n}^{-48}+\cdots
$$

then

$$
\begin{equation*}
e^{\pi \sqrt{n}}=(64 a-24)-(4096 b+276) e^{-\pi \sqrt{n}}+\cdots \tag{14}
\end{equation*}
$$

From (13) and (14) we can find whether $e^{\pi \sqrt{n}}$ is very nearly an integer for given values of n, and ascertain also the number of 9 's or 0 's in the decimal part. But if G_{n} and g_{n} be simple quadratic surds we may work independently as follows. We have, for example,

$$
g_{22}=\sqrt{(1+\sqrt{2})}
$$

Hence

$$
\begin{aligned}
64 g_{22}^{24} & =e^{\pi \sqrt{22}} & 241276 e^{-\pi \sqrt{22}} & \cdots \\
64 g_{22}^{-24} & = & & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{aligned}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)-e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots-64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{\tau}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots \\
64 G_{37}^{-24}= & 1096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{3 i}{ }^{24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978
$$

Similarly, from

$$
g_{58}-\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain

$$
64\left(g_{58}^{24} \mid g_{58}^{-24}\right)=e^{\pi \sqrt{58}} \quad 24\left|4372 e^{-\pi \sqrt{58}}\right| \cdots=64\left\{\left.\left(\frac{5+\sqrt{29}}{2}\right)^{12} \right\rvert\,\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\} .
$$

Нене

$$
e^{\pi \sqrt{58}}=24591257751.09909982 \ldots
$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

Now, we have that:
From the following vacuum equations:

$$
\begin{aligned}
& T e^{\gamma_{E} \phi}=-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
& 16 k^{\prime} e^{2 C}=\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
&\left(A^{\prime}\right)^{2}-k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

We have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore with respect to the exponential of the vacuum equation, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.
phi $=-\mathrm{Pi}^{*} \operatorname{sqrt}(18)+6 \mathrm{C}$, for $\mathrm{C}=1$, we obtain:
$\exp ((-\mathrm{Pi} * \mathrm{sqrt}(18))$

Input:

$\exp (-\pi \sqrt{18})$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:

$1.6272016226072509292942156739117979541838581136954016 \ldots \times 10^{-6}$
$1.6272016 \ldots * 10^{-6}$

Now:
$e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}$
$e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}$
$\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{-6}$
$0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}$
$\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}$
$\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)$
Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...
$0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}$

Dividing both sides by 0.000244140625 , we obtain:
$\frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}}$
$e^{-6 C+\phi}=0.0066650177536$
$\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right)^{*} 1 / 0.000244140625$
Input interpretation:
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
0.00666501785...
$e^{-6 C+\phi}=0.0066650177536$
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}=$
$e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625}$
$=0.00666501785 \ldots$
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
-5.010882647757...

Now:
$-6 C+\phi=-5.010882647757 \ldots$
For $\mathrm{C}=1$, we obtain:
$\phi=-5.010882647757+6=\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\phi$

Conclusions

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

References

Axial Symmetric Kahler manifolds, the D-map of Inflaton Potentials and the Picard-Fuchs Equation - Pietro Fre, Alexander S. Sorin - arXiv:1310.5278v2 [hepth] 26 Oct 2013

On a Polya functional for rhombi, isosceles triangles, and thinning convex sets. M. van den Berg, V. Ferone, C. Nitsch, C. Trombetti - arXiv:1811.04503v2 [math.AP] 21 May 2019

MANUSCRIPT BOOK 2
 OF

SRINIVASA RAMANUJAN

Integrable Scalar Cosmologies II. Can they fit into Gauged Extended Supergavity or be encoded in $\mathbf{N}=1$ superpotentials? - P. Fre, A.S. Sorin and M. Trigiante - arXiv:1310.5340v1 [hep-th] 20 Oct 2013

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

