On the links between some Ramanujan formulas, the golden ratio and various equations of several sectors of Black Hole Physics

Michele Nardelli¹, Antonio Nardelli

Abstract

The purpose of this paper is to show the links between some Ramanujan formulas, the golden ratio and the mathematical connections with various equations of several sectors of Black Hole Physics

¹ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" -Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

Monster black hole 100,000 times more massive than the sun is found in the heart of our galaxy (SMBH Sagittarius $A = 1,9891*10^{35}$) https://www.dailymail.co.uk/sciencetech/article-4850546/Mini-black-hole-25-000-light-years-Earth.html

https://wssrmnn.net/index.php/2017/01/23/man-saw-number-pi-dreams/

From

Page 86 - Manuscript Book 2 of Srinivasa Ramanujan

 $1/1^3 + 1/5^3 + 1/9^3 + \dots$

Input interpretation: $\frac{1}{1^3} + \frac{1}{5^3} + \frac{1}{9^3} + \cdots$

Infinite sum: $\sum_{n=1}^{\infty} \frac{1}{(4 n - 3)^3} = \frac{1}{64} \left(28 \zeta(3) + \pi^3 \right)$

 $\zeta(s)$ is the Riemann zeta function

Decimal approximation: 1.010372968262007190104202868584718670994451636740923068505... 1.010372968262.....

Convergence tests:

The ratio test is inconclusive.

The root test is inconclusive.

By the comparison test, the series converges.

Partial sum formula:

 $\sum_{n=1}^{m} \frac{1}{\left(-3+4\,n\right)^3} \,=\, \frac{1}{128} \left(\psi^{(2)}\!\left(m+\frac{1}{4}\right) - \psi^{(2)}\!\left(\frac{1}{4}\right)\right)$

Alternate form:

 $\frac{7\,\zeta(3)}{16} + \frac{\pi^3}{64}$

Series representations:

$$\begin{aligned} \frac{1}{64} \left(\pi^3 + 28\,\zeta(3)\right) &= \frac{\pi^3}{64} + \frac{7}{16}\sum_{k=1}^{\infty}\frac{1}{k^3} \\ \frac{1}{64} \left(\pi^3 + 28\,\zeta(3)\right) &= \frac{\pi^3}{64} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{(1+2\,k)^3} \\ \frac{1}{64} \left(\pi^3 + 28\,\zeta(3)\right) &= \frac{7}{16}\,e^{\sum_{k=1}^{\infty}P(3\,k)/k} + \frac{\pi^3}{64} \\ \frac{1}{64} \left(\pi^3 + 28\,\zeta(3)\right) &= \frac{1}{64}\left(\pi^3 + 14\sum_{n=0}^{\infty}\frac{\sum_{k=0}^{n}\frac{(-1)^k\binom{n}{k}}{(1+k)^2}}{1+n}\right) \end{aligned}$$

$$(Pi^{3})/64 + 7/16 zeta(3)$$
 (Note that S₃ is $\zeta(3)$)

Input: $\frac{\pi^3}{64} + \frac{7}{16} \zeta(3)$

 $\zeta(s)$ is the Riemann zeta function

Decimal approximation:

1.010372968262007190104202868584718670994451636740923068505...

1.010372968262....

Alternate form: $\frac{1}{64}\left(28\,\zeta(3)+\pi^3\right)$

Alternative representations:

$$\frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} = \frac{\pi^3}{64} + \frac{7\,\zeta(3,\,1)}{16}$$
$$\frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} = \frac{7\,S_{2,1}(1)}{16} + \frac{\pi^3}{64}$$

$$\frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} = -\frac{7\,\text{Li}_3(-1)}{\frac{3\times16}{4}} + \frac{\pi^3}{64}$$

Series representations:

$$\frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} = \frac{\pi^3}{64} + \frac{7}{16}\sum_{k=1}^{\infty}\frac{1}{k^3}$$
$$\frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} = \frac{\pi^3}{64} + \frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{(1+2\,k)^3}$$
$$\frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} = \frac{7}{16}\,e^{\sum_{k=1}^{\infty}P(3\,k)/k} + \frac{\pi^3}{64}$$

Integral representations:

$$\frac{\pi^3}{64} + \frac{\zeta(3)7}{16} = \frac{\pi^3}{64} - \frac{7}{48} \int_0^1 \frac{\log^3(1-t^2)}{t^3} dt$$

$$\frac{\pi^3}{64} + \frac{\zeta(3)7}{16} = \frac{\pi^3}{64} + \frac{1}{8} \int_0^\infty t^2 \operatorname{csch}(t) dt$$

$$\frac{\pi^3}{64} + \frac{\zeta(3)7}{16} = \frac{\pi^3}{64} + \frac{7}{32} \int_0^\infty \frac{t^2}{-1+e^t} dt$$

Thence:

 $1/1^3 + 1/5^3 + 1/9^3 + \dots = (Pi^3)/64 + 7/16 zeta(3)$

Input interpretation: $\frac{1}{1^3} + \frac{1}{5^3} + \frac{1}{9^3} + \dots = \frac{\pi^3}{64} + \frac{7}{16}\zeta(3)$

 $\zeta(s)$ is the Riemann zeta function

Result:

Result: $\frac{1}{64} \left(28\,\zeta(3) + \pi^3 \right) = \frac{7\,\zeta(3)}{16} + \frac{\pi^3}{64}$

Alternate form:

True

From the right-hand side of the expression, we obtain:

(((1/(((((Pi^3)/64 + 7/16 zeta(3))))))^1/12

Input:

Input:

$$12\sqrt{\frac{1}{\frac{\pi^3}{64}+\frac{7}{16}\zeta(3)}}$$

 $\zeta(s)$ is the Riemann zeta function

Exact result:

$$\frac{1}{1\sqrt[12]{\frac{7\zeta(3)}{16} + \frac{\pi^3}{64}}}$$

Decimal approximation:

0.999140408144708492742501571872941269617856182995634489415...

0.999140408144.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5}\sqrt[4]{5^{3}}}-1}} - \varphi + 1} = 1 - \frac{e^{-\pi\sqrt{5}}}{1+\frac{e^{-2\pi\sqrt{5}}}{1+\frac{e^{-3\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\dots}}}} \approx 0.9991104684$$

Alternate form:

$$\frac{\sqrt{2}}{\frac{12}{\sqrt{28}\zeta(3) + \pi^3}}$$

All 12th roots of $1/((7 \zeta(3))/16 + \pi^3/64)$:

$$\frac{e^{0}}{12\sqrt{\frac{7\zeta(3)}{16} + \frac{\pi^{3}}{64}}} \approx 0.99914 \text{ (real, principal root)}$$

$$\frac{e^{(i\pi)/6}}{12\sqrt{\frac{7\zeta(3)}{16} + \frac{\pi^{3}}{64}}} \approx 0.8653 + 0.49957 i$$

$$\frac{e^{(i\pi)/3}}{12\sqrt{\frac{7\zeta(3)}{16} + \frac{\pi^{3}}{64}}} \approx 0.49957 + 0.8653 i$$

$$\frac{e^{(i\pi)/2}}{12\sqrt{\frac{7\zeta(3)}{16} + \frac{\pi^{3}}{64}}} \approx 0.99914 i$$

$$\frac{e^{(2 i \pi)/3}}{\sqrt[12]{\frac{7 \zeta(3)}{16} + \frac{\pi^3}{64}}} \approx -0.49957 + 0.8653 i$$

Alternative representations:

Series representations:

Integral representations:

$$\frac{1}{1\sqrt[3]{\frac{1}{\frac{\pi^3}{64} + \frac{\zeta(3)7}{16}}}} = \frac{\sqrt{2}}{\sqrt[3]{\pi^3 + 8\int_0^\infty t^2 \operatorname{csch}(t) dt}}$$
$$\frac{1}{1\sqrt[3]{\frac{1}{\frac{\pi^3}{64} + \frac{\zeta(3)7}{16}}}} = \frac{\sqrt{2}}{\sqrt[3]{\pi^3 + 14\int_0^\infty \frac{t^2}{-1 + e^t} dt}}$$

$$\sqrt[12]{\frac{1}{\frac{\pi^3}{64} + \frac{\zeta(3)7}{16}}} = \frac{1}{\sqrt[12]{\frac{\pi^3}{64} - \frac{7}{48}\int_0^1 \frac{\log^3(1-t^2)}{t^3} dt}}$$

Now, we have that:

 $1/(1^3) + 1/(4^3) + 1/(7^3) + ... = (2Pi^3)/81$ sqrt2 + 13/27 zeta(3)

 $1/(1^3) + 1/(4^3) + 1/(7^3) + \dots$

Input interpretation: $\frac{1}{1^3} + \frac{1}{4^3} + \frac{1}{7^3} + \cdots$

Infinite sum: $\sum_{n=1}^{\infty} \frac{1}{(3 n - 2)^3} = \frac{1}{243} \left(117 \zeta(3) + 2\sqrt{3} \pi^3 \right)$

 $\zeta(s)$ is the Riemann zeta function

Decimal approximation:

1.020780044433363102823254739903981825353410937519069669735...

1.020780044433363...

Convergence tests:

The ratio test is inconclusive.

The root test is inconclusive.

By the comparison test, the series converges.

Partial sum formula:

 $\sum_{n=1}^{m} \frac{1}{(-2+3n)^3} = \frac{1}{54} \left(\psi^{(2)} \left(m + \frac{1}{3} \right) - \psi^{(2)} \left(\frac{1}{3} \right) \right)$

 $\psi^{(n)}(x)$ is the $n^{
m th}$ derivative of the digamma function

Alternate form:

 $\frac{13\,\zeta(3)}{27} + \frac{2\,\pi^3}{81\,\sqrt{3}}$

Series representations:

$$\frac{1}{243} \left(2\sqrt{3} \pi^3 + 117\zeta(3) \right) = \frac{2\pi^3}{81\sqrt{3}} + \frac{13}{27} \sum_{k=1}^{\infty} \frac{1}{k^3}$$
$$\frac{1}{243} \left(2\sqrt{3} \pi^3 + 117\zeta(3) \right) = \frac{2\pi^3}{81\sqrt{3}} + \frac{104}{189} \sum_{k=0}^{\infty} \frac{1}{(1+2k)^3}$$
$$\frac{1}{243} \left(2\sqrt{3} \pi^3 + 117\zeta(3) \right) = \frac{13}{27} e^{\sum_{k=1}^{\infty} P(3k)/k} + \frac{2\pi^3}{81\sqrt{3}}$$
$$\frac{1}{243} \left(2\sqrt{3} \pi^3 + 117\zeta(3) \right) = \frac{2}{243} \left(\sqrt{3} \pi^3 + 78 \times \sum_{n=0}^{\infty} 2^{-1-n} \sum_{k=0}^{n} \frac{(-1)^k \binom{n}{k}}{(1+k)^3} \right)$$

(2Pi^3)/(81sqrt2) + 13/27 zeta(3)

Input: $\frac{2\pi^{3}}{81\sqrt{2}} + \frac{13}{27}\zeta(3)$

Exact result:

 $\frac{13\,\zeta(3)}{27}+\frac{\sqrt{2}\,\pi^3}{81}$

Decimal approximation:

1.120119953372800115556848609058141510791754061631991953629...

1.1201199533728....

Alternate form:

 $\frac{1}{81} \left(39 \zeta(3) + \sqrt{2} \pi^3 \right)$

Alternative representations:

$$\frac{2\,\pi^3}{81\,\sqrt{2}} + \frac{\zeta(3)\,13}{27} = \frac{2\,\pi^3}{81\,\sqrt{2}} + \frac{13\,\zeta(3,\,1)}{27}$$

 $\zeta(s)$ is the Riemann zeta function

$$\frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)13}{27} = \frac{13S_{2,1}(1)}{27} + \frac{2\pi^3}{81\sqrt{2}}$$
$$\frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)13}{27} = -\frac{13\operatorname{Li}_3(-1)}{\frac{3\times27}{4}} + \frac{2\pi^3}{81\sqrt{2}}$$

Series representations:

$\frac{2 \pi^3}{81 \sqrt{2}}$	$+\frac{\zeta(3)13}{27}=$	$\frac{\sqrt{2} \pi^3}{81} +$	$\frac{13}{27}\sum_{k=1}^{\infty}\frac{1}{k^3}$
$\frac{2 \pi^3}{81 \sqrt{2}}$	$+\frac{\zeta(3)13}{27}=$	$\frac{\sqrt{2} \pi^3}{81} +$	$\frac{104}{189}\sum_{k=0}^{\infty}\frac{1}{(1+2k)^3}$
$\frac{2 \pi^3}{81 \sqrt{2}}$	$+\frac{\zeta(3)13}{27}=$	$\frac{13}{27} e^{\sum_{k=1}^{\infty}}$	$P(3k)/k + \frac{\sqrt{2}\pi^3}{81}$

Integral representations:

$\frac{2 \pi^3}{81 \sqrt{2}}$	$+\frac{\zeta(3)13}{27}=$	$=\frac{\sqrt{2}\pi^3}{81}$ -	$\frac{13}{81}\int_0^1$	$\frac{\log^3(1-t^2)}{t^3}dt$
$\frac{2\pi^3}{81\sqrt{2}}$	$+\frac{\zeta(3)13}{27}=$	$=\frac{\sqrt{2}\pi^3}{81}+$	$\frac{13}{54}\int_0^\infty$	$\frac{t^2}{-1+e^t}dt$
$\frac{2 \pi^3}{81 \sqrt{2}}$	$+\frac{\zeta(3)13}{27}=$	$=\frac{\sqrt{2}\pi^3}{81}+$	$\frac{26}{81}\int_0^\infty$	$\frac{t^2}{1+e^t}dt$

From which:

(((1/((((2Pi^3)/(81sqrt2) + 13/27 zeta(3))))))^1/128

Input: $\sqrt[128]{\frac{1}{\frac{2\pi^{3}}{81\sqrt{2}} + \frac{13}{27}\zeta(3)}}$

Exact result:

 $\zeta(s)$ is the Riemann zeta function

$$\frac{1}{128\sqrt{\frac{13\,\zeta(3)}{27}+\frac{\sqrt{2}\,\pi^3}{81}}}$$

Decimal approximation:

0.999114175536858768080401697435111237630999529642565743801...

0.999114175536... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5}\sqrt[4]{5^{3}}}-1}} - \varphi + 1}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1+\frac{e^{-2\pi\sqrt{5}}}{1+\frac{e^{-3\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\dots}}}}} \approx 0.9991104684$$

Alternate form: $\frac{\sqrt[32]{3}}{\sqrt[128]{39\,\zeta(3)+\sqrt{2}\,\pi^3}}$

All 128th roots of $1/((13 \zeta(3))/27 + (\operatorname{sqrt}(2) \pi^3)/81)$:

 $\frac{e}{128\sqrt{\frac{13\,\zeta(3)}{27} + \frac{\sqrt{2}\,\pi^3}{81}}} \approx 0.999114 \text{ (real, principal root)}$ $\frac{e^{(i\pi)/64}}{\frac{e^{(i\pi)/64}}{27} + \frac{\sqrt{2}\,\pi^3}{81}} \approx 0.997911 + 0.049024 i$ $\frac{e^{(i\pi)/32}}{\frac{128\sqrt{\frac{13\,\zeta(3)}{27} + \frac{\sqrt{2}\,\pi^3}{81}}}{\frac{e^{(3\,i\pi)/64}}{27} + \frac{\sqrt{2}\,\pi^3}{81}} \approx 0.994303 + 0.09793 i$ $\frac{e^{(3\,i\pi)/64}}{\frac{128\sqrt{\frac{13\,\zeta(3)}{27} + \frac{\sqrt{2}\,\pi^3}{81}}}{\frac{e^{(i\pi)/16}}{27} + \frac{\sqrt{2}\,\pi^3}{81}} \approx 0.988300 + 0.14660 i$

Alternative representations:

$$\begin{split} & \frac{1}{128} \frac{1}{\frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)\,13}{27}} = \frac{1}{128} \frac{1}{\frac{2\pi^3}{81\sqrt{2}} + \frac{13\,\zeta(3,1)}{27}} \\ & \frac{1}{128} \frac{1}{\frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)\,13}{27}} = \frac{1}{128} \frac{1}{\frac{13\,S_{2,1}(1)}{27} + \frac{2\pi^3}{81\sqrt{2}}} \\ & \frac{1}{128} \frac{1}{\frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)\,13}{27}} = \frac{1}{128} \frac{1}{\frac{-\frac{13\,\text{Li}_3(-1)}{3\times27} + \frac{2\pi^3}{81\sqrt{2}}}} \end{split}$$

Series representations:

Integral representations:

$$\begin{split} & \frac{1}{128} \frac{1}{\frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)\,13}{27}} = \frac{\frac{3^2\sqrt{3}}{128}}{\frac{128}{\sqrt{2}}\pi^3 - 13\int_0^1 \frac{\log^3(1-t^2)}{t^3}\,dt} \\ & \frac{1}{128} \frac{1}{\frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)\,13}{27}} = \frac{\frac{3^2\sqrt{3}}{128}}{\frac{128}{\sqrt{2}}\pi^3 + 26\int_0^\infty \frac{t^2}{1+t^4}\,dt} \\ & \frac{1}{128} \frac{1}{\frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)\,13}{27}} = \frac{\frac{3^2\sqrt{3}}{128}}{\frac{128}{\sqrt{2}}\pi^3 + 26\int_0^\infty t^3\operatorname{csch}^2(t)\,dt} \end{split}$$

Now, we have that:

 $(Pi^{3})/36sqrt3 + 91/216 zeta(3)$

 $1/(1^3) + 1/7^3 + 1/13^3 + \dots$

Input interpretation: $\frac{1}{1^3} + \frac{1}{7^3} + \frac{1}{13^3} + \cdots$

Infinite sum: $\sum_{n=1}^{\infty} \frac{1}{(6 n - 5)^3} = \frac{1}{216} \left(91 \zeta(3) + 2 \sqrt{3} \pi^3 \right)$

 $\zeta(s)$ is the Riemann zeta function

Decimal approximation:

1.003685515347952697063230137024860573152727843593893327866...

1.00368551534....

Convergence tests:

The ratio test is inconclusive.

The root test is inconclusive.

By the comparison test, the series converges.

Partial sum formula:

 $\sum_{n=1}^{m} \frac{1}{\left(-5+6\;n\right)^3} = \frac{1}{432} \left(\psi^{(2)} \left(m+\frac{1}{6}\right) - \psi^{(2)} \left(\frac{1}{6}\right)\right)$

 $\psi^{(n)}(x)$ is the $n^{ ext{th}}$ derivative of the digamma function

Alternate form:

 $\frac{91\,\zeta(3)}{216}+\frac{\pi^3}{36\,\sqrt{3}}$

Series representations:

$$\frac{1}{216} \left(2\sqrt{3} \pi^3 + 91\,\zeta(3) \right) = \frac{\pi^3}{36\,\sqrt{3}} + \frac{91}{216} \sum_{k=1}^{\infty} \frac{1}{k^3}$$

$$\frac{1}{216} \left(2\sqrt{3} \pi^3 + 91\zeta(3) \right) = \frac{\pi^3}{36\sqrt{3}} + \frac{13}{27} \sum_{k=0}^{\infty} \frac{1}{(1+2k)^3}$$
$$\frac{1}{216} \left(2\sqrt{3} \pi^3 + 91\zeta(3) \right) = \frac{91}{216} e^{\sum_{k=1}^{\infty} P(3k)/k} + \frac{\pi^3}{36\sqrt{3}}$$
$$\frac{1}{216} \left(2\sqrt{3} \pi^3 + 91\zeta(3) \right) = \frac{1}{432} \left(4\sqrt{3} \pi^3 + 91 \sum_{n=0}^{\infty} \frac{\sum_{k=0}^{n} \frac{(-1)^k \binom{n}{k}}{(1+k)^2}}{1+n} \right)$$

(Pi^3)/(36sqrt3) + 91/216 zeta(3)

 $\frac{\text{Input:}}{\frac{\pi^3}{36\sqrt{3}} + \frac{91}{216}\,\zeta(3)}$

Exact result:

 $\frac{91\,\zeta(3)}{216} + \frac{\pi^3}{36\,\sqrt{3}}$

Decimal approximation:

1.003685515347952697063230137024860573152727843593893327866...

1.003685515347933333

Alternate forms:

 $\frac{1}{216} \left(91\,\zeta(3) + 2\,\sqrt{3}\,\,\pi^3 \right)$ $\frac{91\sqrt{3}\,\,\zeta(3)+6\,\pi^3}{216\,\sqrt{3}}$

Alternative representations:

$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}$	$=\frac{\pi^3}{36\sqrt{3}}+\frac{91}{3}$	ζ(3, 1) 216
$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}$	$=\frac{91S_{2,1}(1)}{216}+$	$\frac{\pi^3}{36\sqrt{3}}$
$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}$	$= -\frac{91 \text{Li}_3(-1)}{\frac{3 \times 216}{4}}$	$+\frac{\pi^3}{36\sqrt{3}}$

 $\zeta(s)$ is the Riemann zeta function

Series representations:

$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}=$	$\frac{\pi^3}{36\sqrt{3}} + \frac{91}{216}\sum_{k=1}^{\infty}\frac{1}{k^3}$
$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}=$	$\frac{\pi^3}{36\sqrt{3}} + \frac{13}{27} \sum_{k=0}^{\infty} \frac{1}{(1+2k)^3}$
$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}=$	$\frac{91}{216} \ e^{\sum_{k=1}^{\infty} P(3k)/k} + \frac{\pi^3}{36\sqrt{3}}$

Integral representations:

1111151	ui i epi es	cintation	1	
$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}=$	$\frac{\pi^3}{36\sqrt{3}}$	$-\frac{91}{648}\int_0^{1}$	$\frac{\log^3(1-t^2)}{t^3} dt$
$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}=$	$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{91}{432}\int_{0}^{1}$	$^{\infty}\frac{t^2}{-1+e^t}dt$
$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{\zeta(3)91}{216}=$	$\frac{\pi^3}{36\sqrt{3}}$	$+\frac{91}{324}\int_0^{1}$	$\frac{t^2}{1+e^t} dt$

 $1/(1^3) + 1/(3^3) + 1/(5^3) + \dots$

Input interpretation: $\frac{1}{1^3} + \frac{1}{3^3} + \frac{1}{5^3} + \cdots$

Infinite sum: $\sum_{n=1}^{\infty} \frac{1}{(2 n - 1)^3} = \frac{7 \zeta(3)}{8}$

 $\zeta(s)$ is the Riemann zeta function

Decimal approximation:

1.051799790264644999724770891322518741919363005797936521568...

1.05179979026...

Convergence tests:

The ratio test is inconclusive.

The root test is inconclusive.

By the comparison test, the series converges.

Partial sum formula:

 $\sum_{n=1}^{m} \frac{1}{\left(-1+2n\right)^3} = \frac{1}{16} \left(\psi^{(2)} \left(m+\frac{1}{2}\right) - \psi^{(2)} \left(\frac{1}{2}\right)\right)$

 $\psi^{(n)}(x)$ is the n^{th} derivative of the digamma function

Series representations:

$$\frac{7\zeta(3)}{8} = \frac{7}{8} \sum_{k=1}^{\infty} \frac{1}{k^3}$$
$$\frac{7\zeta(3)}{8} = \sum_{k=0}^{\infty} \frac{1}{(1+2k)^3}$$
$$\frac{7\zeta(3)}{8} = \frac{7}{8} e^{\sum_{k=1}^{\infty} \frac{P(3k)}{k}}$$
$$\frac{7\zeta(3)}{8} = \frac{7}{6} \times \sum_{n=0}^{\infty} 2^{-1-n} \sum_{k=0}^{n} \frac{(-1)^k \binom{n}{k}}{(1+k)^3}$$

7/8 zeta(3)

Input: $\frac{7}{8}\zeta(3)$

 $\zeta(s)$ is the Riemann zeta function

Exact result:

 $7\zeta(3)$ 8

Decimal approximation:

1.051799790264644999724770891322518741919363005797936521568...

1.0517997902646...

Alternative representations:

 $\frac{\zeta(3)\,7}{8} = \frac{7\,\zeta(3,\,1)}{8}$

$$\frac{\zeta(3) 7}{8} = \frac{7 S_{2,1}(1)}{8}$$
$$\frac{\zeta(3) 7}{8} = -\frac{7 \operatorname{Li}_3(-1)}{\frac{3 \times 8}{4}}$$

Series representations:

$$\frac{\zeta(3)\,7}{8} = \frac{7}{8} \sum_{k=1}^{\infty} \frac{1}{k^3}$$
$$\frac{\zeta(3)\,7}{8} = \sum_{k=0}^{\infty} \frac{1}{(1+2\,k)^3}$$
$$\frac{\zeta(3)\,7}{8} = \frac{7}{8} e^{\sum_{k=1}^{\infty} P(3\,k)/k}$$

Integral representations:

$$\frac{\zeta(3)\,7}{8} = -\frac{7}{24} \int_0^1 \frac{\log^3(1-t^2)}{t^3} \, dt$$
$$\frac{\zeta(3)\,7}{8} = \frac{1}{4} \int_0^\infty t^2 \operatorname{csch}(t) \, dt$$
$$\frac{\zeta(3)\,7}{8} = \frac{7}{16} \int_0^\infty \frac{t^2}{-1+e^t} \, dt$$

Now, we perform the sum of the four expressions:

7/8 zeta(3)

(Note that S_3 is $\zeta(3)$)

 $(2Pi^{3})/(81sqrt2) + 13/27 zeta(3)$

 $(Pi^{3})/64 + 7/16 zeta(3)$

(Pi^3)/(36sqrt3) + 91/216 zeta(3)

We obtain:

 $7/8 \text{ zeta}(3) + (2\text{Pi}^3)/(81\text{sqrt}2) + 13/27 \text{ zeta}(3) + (\text{Pi}^3)/64 + 7/16 \text{ zeta}(3) + (\text{Pi}^3)/(36\text{sqrt}3) + 91/216 \text{ zeta}(3)$

Input: $\frac{7}{8}\zeta(3) + \frac{2\pi^3}{81\sqrt{2}} + \frac{13}{27}\zeta(3) + \frac{\pi^3}{64} + \frac{7}{16}\zeta(3) + \frac{\pi^3}{36\sqrt{3}} + \frac{91}{216}\zeta(3)$

 $\zeta(s)$ is the Riemann zeta function

Exact result:

 $\frac{319\,\zeta(3)}{144} + \frac{\pi^3}{64} + \frac{\sqrt{2}\,\pi^3}{81} + \frac{\pi^3}{36\,\sqrt{3}}$

Decimal approximation:

4.185978227247405002449052505990239496858296547764744871569...

4.185978227247...

Alternate forms:

 $\frac{\frac{319\,\zeta(3)}{144} + \frac{\left(81 + 64\,\sqrt{2} + 48\,\sqrt{3}\,\right)\pi^3}{5184}}{\frac{11\,484\,\zeta(3) + 81\,\pi^3 + 64\,\sqrt{2}\,\pi^3 + 48\,\sqrt{3}\,\pi^3}{5184}}{\frac{11\,484\,\sqrt{3}\,\zeta(3) + \left(144 + 81\,\sqrt{3} + 64\,\sqrt{6}\,\right)\pi^3}{5184\,\sqrt{3}}}$

Alternative representations:

$$\begin{aligned} \frac{\zeta(3)7}{8} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)7}{16} + \frac{\pi^3}{36\sqrt{3}} + \frac{\zeta(3)91}{216} &= \\ \frac{\pi^3}{64} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\pi^3}{36\sqrt{3}} + \frac{7\zeta(3,1)}{8} + \frac{7\zeta(3,1)}{16} + \frac{13\zeta(3,1)}{27} + \frac{91\zeta(3,1)}{216} \\ \frac{\zeta(3)7}{8} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)7}{16} + \frac{\pi^3}{36\sqrt{3}} + \frac{\zeta(3)91}{216} &= \\ \frac{7S_{2,1}(1)}{8} + \frac{7S_{2,1}(1)}{16} + \frac{13S_{2,1}(1)}{27} + \frac{91S_{2,1}(1)}{216} + \frac{\pi^3}{64} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\pi^3}{36\sqrt{3}} \\ \frac{\zeta(3)7}{8} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)7}{16} + \frac{\pi^3}{36\sqrt{3}} + \frac{\zeta(3)91}{216} &= \\ -\frac{7Li_3(-1)}{\frac{3\times8}{4}} - \frac{7Li_3(-1)}{\frac{3\times16}{4}} - \frac{13Li_3(-1)}{\frac{3\times27}{4}} - \frac{91Li_3(-1)}{\frac{3\times216}{4}} + \frac{\pi^3}{64} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\pi^3}{36\sqrt{3}} \\ -\frac{7Li_3(-1)}{\frac{3\times216}{4}} - \frac{7Li_3(-1)}{\frac{3\times27}{4}} - \frac{91Li_3(-1)}{\frac{3\times216}{4}} - \frac{91Li_3(-1)}{\frac{3\times$$

Series representations:

$$\frac{\zeta(3)\,7}{8} + \frac{2\,\pi^3}{81\,\sqrt{2}} + \frac{\zeta(3)\,13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} + \frac{\pi^3}{36\,\sqrt{3}} + \frac{\zeta(3)\,91}{216} = \frac{\pi^3}{64} + \frac{\sqrt{2}\,\pi^3}{81} + \frac{\pi^3}{36\,\sqrt{3}} + \frac{319}{144}\sum_{k=1}^{\infty}\frac{1}{k^3}$$

$$\begin{split} \frac{\zeta(3)\,7}{8} + \frac{2\,\pi^3}{81\,\sqrt{2}} + \frac{\zeta(3)\,13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} + \frac{\pi^3}{36\,\sqrt{3}} + \frac{\zeta(3)\,91}{216} = \\ \frac{\pi^3}{64} + \frac{\sqrt{2}\,\pi^3}{81} + \frac{\pi^3}{36\,\sqrt{3}} + \frac{319}{126}\sum_{k=0}^{\infty}\frac{1}{(1+2\,k)^3} \\ \frac{\zeta(3)\,7}{8} + \frac{2\,\pi^3}{81\,\sqrt{2}} + \frac{\zeta(3)\,13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)\,7}{16} + \frac{\pi^3}{36\,\sqrt{3}} + \frac{\zeta(3)\,91}{216} = \\ \frac{81\,\pi^3 + 64\,\sqrt{2}\,\pi^3 + 48\,\sqrt{3}\,\pi^3 + 5742\sum_{n=0}^{\infty}\frac{\sum_{k=0}^n\frac{(-1)^k\binom{n}{k}}{(1+k)^2}}{1+n}}{5184} \end{split}$$

Integral representations:

$$\begin{aligned} \frac{\zeta(3)7}{8} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)7}{16} + \frac{\pi^3}{36\sqrt{3}} + \frac{\zeta(3)91}{216} &= \\ \frac{\pi^3}{64} + \frac{\sqrt{2}\pi^3}{81} + \frac{\pi^3}{36\sqrt{3}} - \frac{319}{432} \int_0^1 \frac{\log^3(1-t^2)}{t^3} dt \\ \frac{\zeta(3)7}{8} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)7}{16} + \frac{\pi^3}{36\sqrt{3}} + \frac{\zeta(3)91}{216} &= \\ \frac{\pi^3}{64} + \frac{\sqrt{2}\pi^3}{81} + \frac{\pi^3}{36\sqrt{3}} + \frac{319}{288} \int_0^\infty \frac{t^2}{-1+e^t} dt \\ \frac{\zeta(3)7}{8} + \frac{2\pi^3}{81\sqrt{2}} + \frac{\zeta(3)13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)7}{16} + \frac{\pi^3}{36\sqrt{3}} + \frac{\zeta(3)91}{216} &= \\ \frac{\pi^3}{64} + \frac{\sqrt{2}\pi^3}{81\sqrt{2}} + \frac{\chi(3)13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)7}{16} + \frac{\pi^3}{36\sqrt{3}} + \frac{\zeta(3)91}{216} &= \\ \frac{\pi^3}{64} + \frac{\sqrt{2}\pi^3}{81\sqrt{2}} + \frac{\chi(3)13}{27} + \frac{\pi^3}{64} + \frac{\zeta(3)7}{16} + \frac{\pi^3}{36\sqrt{3}} + \frac{\zeta(3)91}{216} &= \\ \frac{\pi^3}{64} + \frac{\sqrt{2}\pi^3}{81} + \frac{\pi^3}{36\sqrt{3}} + \frac{319}{216} \int_0^\infty \frac{t^2}{1+e^t} dt \end{aligned}$$

From which:

 $((81 + 64 \text{ sqrt}(2) + 48 \text{ sqrt}(3)) \text{ x}^3)/5184 + (319 \zeta(3))/144 = 4.1859782272474$

 $\frac{(81+64\sqrt{2}+48\sqrt{3})x^3}{5184} + \frac{319\zeta(3)}{144} = 4.1859782272474$

 $\zeta(s)$ is the Riemann zeta function

Result: $\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)x^{3}}{5184}+\frac{319\,\zeta(3)}{144}=4.1859782272474$

Alternate forms:

$$\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)x^{3}}{5184} - 1.5230882820536 = 0$$
$$\frac{x^{3}}{36\sqrt{3}} + \frac{\sqrt{2}x^{3}}{81} + \frac{x^{3}}{64} - 1.5230882820536 = 0$$
$$\left(\frac{81+16\sqrt{59+24\sqrt{6}}}{5184}\right)x^{3} + \frac{319\,\zeta(3)}{144} = 4.1859782272474$$

Expanded form: $\frac{x^3}{36\sqrt{3}} + \frac{\sqrt{2}x^3}{81} + \frac{x^3}{64} + \frac{319\zeta(3)}{144} = 4.1859782272474$

Real solution:

 $x \approx 3.14159265359$

 $3.14159265359 \approx \pi$

Complex solutions:

 $x \approx -1.57079632679 - 2.72069904635 i$ $x \approx -1.57079632679 + 2.72069904635 i$

 $((81 + 64 \text{ sqrt}(2) + 48 \text{ sqrt}(3)) \pi^3)/5184 + (319 \zeta(3))/((x-1)/12) = 4.1859782272474$

Input interpretation:

 $\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^3}{5184}+\frac{319\,\zeta(3)}{\frac{x-1}{12}}=4.1859782272474$

 $\zeta(s)$ is the Riemann zeta function

Result:

 $\frac{3828\,\zeta(3)}{x-1} + \frac{\left(81+64\,\sqrt{2}\,+48\,\sqrt{3}\,\right)\pi^3}{5184} = 4.1859782272474$

Plot:

Alternate form assuming x is real:

Alternate form: $\frac{48\sqrt{3} \pi^{3} x + 64\sqrt{2} \pi^{3} x + 81\pi^{3} x + 19844352\zeta(3) - 48\sqrt{3} \pi^{3} - 64\sqrt{2} \pi^{3} - 81\pi^{3}}{5184(x-1)} =$

4.1859782272474

Solution:

 $x \approx 1729.000000000$ 1729

We note that, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

 $((((81 + 64 \text{ sqrt}(2) + 48 \text{ sqrt}(3)) \pi^3)/5184 + (319 \zeta(3))/144)))^{1/3}$

Input:

$$\sqrt[3]{\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^{3}}{5184}+\frac{319\,\zeta(3)}{144}}$$

 $\zeta(s)$ is the Riemann zeta function

Decimal approximation:

 $1.611631157728558233010611244286714690400108716561115072185\ldots$

1.6116311577.... result that is near to the value of the golden ratio 1,618033988749...

Alternate forms:

$$\frac{\sqrt[3]{\frac{319\,\zeta(3)}{144} + \frac{\left(81+16\,\sqrt{59+24\,\sqrt{6}}\right)\pi^3}{5184}}}{\frac{1}{12}\,\sqrt[3]{\frac{1}{3}\left(11\,484\,\zeta(3) + \left(81+64\,\sqrt{2}\,+48\,\sqrt{3}\right)\pi^3\right)}}{\frac{1}{12\,\sqrt[3]{\frac{3}{11484\,\zeta(3)+81\pi^3+64\,\sqrt{2}\,\pi^3+48\,\sqrt{3}\,\pi^3}}}$$

All 3rd roots of $(319 \zeta(3))/144 + ((81 + 64 \text{ sqrt}(2) + 48 \text{ sqrt}(3)) \pi^3)/5184$:

$$e^{0} \sqrt[3]{\frac{319 \zeta(3)}{144} + \frac{(81 + 64\sqrt{2} + 48\sqrt{3})\pi^{3}}{5184}} \approx 1.6116 \text{ (real, principal root)}$$

$$e^{(2 i \pi)/3} \sqrt[3]{\frac{319 \zeta(3)}{144} + \frac{(81 + 64\sqrt{2} + 48\sqrt{3})\pi^{3}}{5184}} \approx -0.8058 + 1.3957 i$$

$$e^{-(2 i \pi)/3} \sqrt[3]{\frac{319 \zeta(3)}{144} + \frac{(81 + 64\sqrt{2} + 48\sqrt{3})\pi^{3}}{5184}} \approx -0.8058 - 1.3957 i$$

Alternative representations:

$$\frac{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{144}}{144}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})}{5184}} + \frac{319\,\zeta(3,1)}{144}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{144}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{144}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{144}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{144}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{144}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{144}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}} + \frac{319\,\zeta(3)}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}}} + \frac{319\,\zeta(3)\pi^{3}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^{3}}{5184}}} + \frac{319\,\zeta(3)\pi^{3}}{\sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3$$

Series representations:

$$\sqrt[3]{\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^{3}}{5184}+\frac{319\,\zeta(3)}{144}} = \sqrt[3]{\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^{3}}{5184}+\frac{319}{144}\sum_{k=1}^{\infty}\frac{1}{k^{3}}}$$

$$\begin{split} \sqrt[3]{\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^{3}}{5184}+\frac{319\,\zeta(3)}{144}} = \\ \sqrt[3]{\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^{3}}{5184}+\frac{319}{126}\sum_{k=0}^{\infty}\frac{1}{(1+2\,k)^{3}}} \\ \sqrt[3]{\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^{3}}{5184}+\frac{319\,\zeta(3)}{144}} = \\ \sqrt[3]{\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^{3}}{5184}+\frac{\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^{3}}{5184}} \end{split}$$

Integral representations:

$$\begin{split} \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^3}{5184}} + \frac{319\zeta(3)}{144} &= \\ \frac{1}{12}\sqrt[3]{\frac{1}{3}\left(81+64\sqrt{2}+48\sqrt{3}\right)\pi^3} + \frac{319\zeta(3)}{\pi^3} + 1914\int_0^\infty \frac{t^2}{-1+e^t} dt \\ \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^3}{5184}} + \frac{319\zeta(3)}{144} &= \\ \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^3}{5184}} + \frac{319\zeta(3)}{\pi^3} + \frac{319\zeta(3)}{\pi^3} + \frac{319\zeta(3)}{\pi^3} = \\ \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^3}{5184}} + \frac{319\zeta(3)}{144} = \\ \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^3}{5184}} + \frac{319\zeta(3)}{\pi^3} = \\ \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^3}{5184}} - \frac{319\zeta(3)\pi^3}{\pi^3} = \\ \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^3}{5184}} - \\ \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3})\pi^3}{5184}} - \\ \sqrt[3]{\frac{(81+64\sqrt{2}+48\sqrt{3}$$

Now, we have that:

 $\frac{1}{16*(2+sqrt2)^{(1/2)} \left[\ln(((((1+2(2+sqrt2)^{(1/2)+4})))/(((1-2(2+sqrt2)^{(1/2)+4})))) + 2 \tan^{-1}((2(2+sqrt2)^{(1/2)}/(1-4)))\right]}{(1/2)^{(1/2)}}$

Input:

$$\frac{1}{16}\sqrt{2+\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2+\sqrt{2}}+4}{1-2\sqrt{2+\sqrt{2}}+4}\right)+2\tan^{-1}\left(2\times\frac{\sqrt{2+\sqrt{2}}}{1-4}\right)\right)$$

log(x) is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\frac{1}{16}\sqrt{2+\sqrt{2}}\left(\log\left(\frac{5+2\sqrt{2+\sqrt{2}}}{5-2\sqrt{2+\sqrt{2}}}\right)-2\tan^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{3}\right)\right)$$

(result in radians)

Decimal approximation:

0.013764838311382013868966278430595886004523852083036857721...

(result in radians)

0.013764838311...

Alternate forms:

$$\frac{1}{8}\sqrt{2+\sqrt{2}}\left(\tanh^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{5}\right)-\tan^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{3}\right)\right)$$

$$\frac{1}{16}\sqrt{2+\sqrt{2}}\left(\log\left(\frac{1}{514}\left(1186+400\sqrt{2}+257\sqrt{\frac{1462400}{66049}+\frac{948800\sqrt{2}}{66049}}\right)\right)-2\tan^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{3}\right)\right)$$

$$-\frac{(\sqrt{1-i}+\sqrt{1+i})\left(2\tan^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{3}\right)-\log\left(\frac{5+2\sqrt{2+\sqrt{2}}}{5-2\sqrt{2+\sqrt{2}}}\right)\right)}{16\sqrt[4]{2}}$$

 $\tanh^{-1}(x)$ is the inverse hyperbolic tangent function

Alternative representations:

$$\frac{1}{16}\sqrt{2+\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2+\sqrt{2}}}{1-2\sqrt{2+\sqrt{2}}}+4\right)+2\tan^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{1-4}\right)\right)=\frac{1}{16}\left(2\tan^{-1}\left(1,-\frac{2}{3}\sqrt{2+\sqrt{2}}\right)+\log\left(\frac{5+2\sqrt{2+\sqrt{2}}}{5-2\sqrt{2+\sqrt{2}}}\right)\right)\sqrt{2+\sqrt{2}}$$

$$\frac{1}{16}\sqrt{2+\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2+\sqrt{2}}}{1-2\sqrt{2+\sqrt{2}}}+4\right)+2\tan^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{1-4}\right)\right)=\frac{1}{16}\left(2\tan^{-1}\left(-\frac{2}{3}\sqrt{2+\sqrt{2}}\right)+\log_{e}\left(\frac{5+2\sqrt{2+\sqrt{2}}}{5-2\sqrt{2+\sqrt{2}}}\right)\right)\sqrt{2+\sqrt{2}}$$

$$\frac{1}{16}\sqrt{2+\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2+\sqrt{2}}}{1-2\sqrt{2+\sqrt{2}}}+4\right)+2\tan^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{1-4}\right)\right)=\frac{1}{16}\left(2\tan^{-1}\left(-\frac{2}{3}\sqrt{2+\sqrt{2}}\right)+\log(a)\log_{a}\left(\frac{5+2\sqrt{2+\sqrt{2}}}{5-2\sqrt{2+\sqrt{2}}}\right)\right)\sqrt{2+\sqrt{2}}$$

Series representations:

$$\begin{split} \frac{1}{16} \sqrt{2 + \sqrt{2}} \left(\log \left(\frac{1 + 2\sqrt{2 + \sqrt{2}}}{1 - 2\sqrt{2 + \sqrt{2}}} + 4 \right) + 2 \tan^{-1} \left(\frac{2\sqrt{2 + \sqrt{2}}}{1 - 4} \right) \right) &= \\ -\frac{1}{8} \sqrt{2 + \sqrt{2}} \tan^{-1} \left(\frac{2\sqrt{2 + \sqrt{2}}}{3} \right) + \\ \frac{1}{16} \sqrt{2 + \sqrt{2}} \log \left(-1 + \frac{5 + 2\sqrt{2 + \sqrt{2}}}{5 - 2\sqrt{2 + \sqrt{2}}} \right) - \frac{1}{16} \sqrt{2 + \sqrt{2}} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2} - \frac{5}{4\sqrt{2 + \sqrt{2}}} \right)^k}{k} \\ \frac{1}{16} \sqrt{2 + \sqrt{2}} \left(\log \left(\frac{1 + 2\sqrt{2 + \sqrt{2}}}{1 - 2\sqrt{2 + \sqrt{2}}} + 4 \right) + 2 \tan^{-1} \left(\frac{2\sqrt{2 + \sqrt{2}}}{1 - 4} \right) \right) = \\ -\frac{1}{8} \sqrt{2 + \sqrt{2}} \tan^{-1} \left(\frac{2\sqrt{2 + \sqrt{2}}}{3} \right) + \\ \frac{1}{32} \sqrt{2 + \sqrt{2}} \tan^{-1} \left(\frac{2\sqrt{2 + \sqrt{2}}}{3} \right) + \\ \frac{1}{16} \sqrt{2 + \sqrt{2}} \log \left(2 + \sqrt{2} \right) + \frac{1}{16} \sqrt{2 + \sqrt{2}} \log \left(\frac{4}{5 - 2\sqrt{2 + \sqrt{2}}} \right) - \\ \frac{1}{16} \sqrt{2 + \sqrt{2}} \sum_{k=1}^{\infty} \frac{4^{-k} \left(2 + \sqrt{2} \right)^{-k/2} \left(-5 + 2\sqrt{2 + \sqrt{2}} \right)^k}{k} \end{split}$$

$$\begin{aligned} \frac{1}{16}\sqrt{2+\sqrt{2}} \left(\log\left(\frac{1+2\sqrt{2+\sqrt{2}}+4}{1-2\sqrt{2+\sqrt{2}}+4}\right) + 2\tan^{-1}\left(\frac{2\sqrt{2+\sqrt{2}}}{1-4}\right) \right) &= \\ -\frac{1}{8}\sqrt{2+\sqrt{2}} \left(\tan^{-1}(z_0) + \frac{1}{16}\sqrt{2+\sqrt{2}}\right) \log\left(-1+\frac{5+2\sqrt{2+\sqrt{2}}}{5-2\sqrt{2+\sqrt{2}}}\right) + \\ &\sum_{k=1}^{\infty} \left(\frac{(-1)^{-1+k}\sqrt{2+\sqrt{2}}\left(-1+\frac{5+2\sqrt{2+\sqrt{2}}}{5-2\sqrt{2+\sqrt{2}}}\right)^{-k}}{16k} - \frac{i\sqrt{2+\sqrt{2}}\left(-(-i-z_0)^{-k}+(i-z_0)^{-k}\right)\left(\frac{2\sqrt{2+\sqrt{2}}}{3}-z_0\right)^{k}}{16k} \right) \end{aligned}$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \le i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \le -1)))$

Integral representations:

$$\begin{aligned} \frac{1}{16}\sqrt{2+\sqrt{2}} \left(\log \left(\frac{1+2\sqrt{2+\sqrt{2}}}{1-2\sqrt{2+\sqrt{2}}} + 4 \right) + 2\tan^{-1} \left(\frac{2\sqrt{2+\sqrt{2}}}{1-4} \right) \right) &= \\ \int_{0}^{1} -\frac{3\left(2+\sqrt{2}\right)}{4\left(9+4\left(2+\sqrt{2}\right)t^{2}\right)} dt + \frac{1}{16}\sqrt{2+\sqrt{2}} \log \left(\frac{5+2\sqrt{2}+\sqrt{2}}{5-2\sqrt{2+\sqrt{2}}} \right) \\ \frac{1}{16}\sqrt{2+\sqrt{2}} \left(\log \left(\frac{1+2\sqrt{2+\sqrt{2}}}{1-2\sqrt{2+\sqrt{2}}} + 4 \right) + 2\tan^{-1} \left(\frac{2\sqrt{2+\sqrt{2}}}{1-4} \right) \right) &= \\ \int_{-i \, \omega+\gamma}^{i \, \omega+\gamma} \frac{i\left(2+\sqrt{2}\right)\left(1+\frac{4}{9}\left(2+\sqrt{2}\right)\right)^{-s}}{5-2\sqrt{2+\sqrt{2}}} \Gamma\left(\frac{1}{2}-s\right)\Gamma\left(1-s\right)\Gamma\left(s\right)^{2}}{1-4} \right) \\ \frac{1}{16}\sqrt{2+\sqrt{2}} \left(\log \left(\frac{1+2\sqrt{2+\sqrt{2}}}{5-2\sqrt{2+\sqrt{2}}} + 4 \right) + 2\tan^{-1} \left(\frac{2\sqrt{2+\sqrt{2}}}{1-4} \right) \right) &= \\ \int_{-i \, \omega+\gamma}^{i \, \omega+\gamma} \frac{48\pi^{3/2}}{5-2\sqrt{2+\sqrt{2}}} \right) \text{ for } 0 < \gamma < \frac{1}{2} \end{aligned}$$

 $\frac{1}{16*(2-sqrt2)^{(1/2)} \left[\ln(((((1+2(2-sqrt2)^{(1/2)+4})))/(((1-2(2-sqrt2)^{(1/2)+4})))) + 2 \tan^{-1}((2(2-sqrt2)^{(1/2)}/(1-4)))\right]}{(1/2)^{(1/2)}}$

Input:

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}+4}{1-2\sqrt{2-\sqrt{2}}+4}\right)+2\tan^{-1}\left(2\times\frac{\sqrt{2-\sqrt{2}}}{1-4}\right)\right)$$

log(x) is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right)-2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{3}\right)\right)$$

(result in radians)

Decimal approximation:

-0.01487888040278285650039035025666952617526559293627054867...

(result in radians)

-0.014878880402782...

Alternate forms:

$$\frac{1}{8}\sqrt{2-\sqrt{2}}\left(\tanh^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{5}\right)-\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{3}\right)\right)$$
$$-\frac{(\sqrt{-1-i}+\sqrt{-1+i})\left(2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{3}\right)-\log\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right)\right)}{16\sqrt[4]{2}}$$
$$-\frac{1}{16}i\sqrt{2-\sqrt{2}}\log\left(1-\frac{2}{3}i\sqrt{2-\sqrt{2}}\right)+$$
$$\frac{1}{16}i\sqrt{2-\sqrt{2}}\log\left(1+\frac{2}{3}i\sqrt{2-\sqrt{2}}\right)+\frac{1}{16}\sqrt{2-\sqrt{2}}\log\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right)$$

 $\tanh^{-1}(x)$ is the inverse hyperbolic tangent function

Alternative representations:

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}}{1-2\sqrt{2-\sqrt{2}}}+4\right)+2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right)\right)=\frac{1}{16}\left(2\tan^{-1}\left(1,-\frac{2}{3}\sqrt{2-\sqrt{2}}\right)+\log\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right)\right)\sqrt{2-\sqrt{2}}$$

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}}{1-2\sqrt{2}-\sqrt{2}}+4\right)+2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right)\right)=\frac{1}{16}\left(2\tan^{-1}\left(-\frac{2}{3}\sqrt{2-\sqrt{2}}\right)+\log_{e}\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right)\right)\sqrt{2-\sqrt{2}}$$

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}}{1-2\sqrt{2-\sqrt{2}}}+4\right)+2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right)\right)=\frac{1}{16}\left(2\tan^{-1}\left(-\frac{2}{3}\sqrt{2-\sqrt{2}}\right)+\log(a)\log_{a}\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right)\right)\sqrt{2-\sqrt{2}}$$

Series representations:

Series representations:

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}+4}{1-2\sqrt{2-\sqrt{2}}+4}\right)+2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right)\right) = -\frac{1}{8}\sqrt{2-\sqrt{2}}\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{3}\right) - \frac{1}{16}\sqrt{2-\sqrt{2}}\sum_{k=1}^{\infty}\frac{4^{k}\left(2-\sqrt{2}\right)^{k/2}\left(\frac{1}{-5+2\sqrt{2-\sqrt{2}}}\right)^{k}}{k}$$

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}}{1-2\sqrt{2-\sqrt{2}}}+4\right)+2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right)\right)=-\frac{1}{16}\sqrt{2-\sqrt{2}}$$
$$\left(\sum_{k=1}^{\infty}\frac{4^{k}\left(2-\sqrt{2}\right)^{k/2}\left(\frac{1}{-5+2\sqrt{2-\sqrt{2}}}\right)^{k}}{k}+2\sum_{k=0}^{\infty}\frac{(-1)^{k}2^{1+2k}\times 3^{-1-2k}\left(2-\sqrt{2}\right)^{1/2+k}}{1+2k}\right)$$

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}}{1-2\sqrt{2-\sqrt{2}}}+4\right)+2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right)\right)=$$
$$-\frac{1}{8}\sqrt{2-\sqrt{2}}\tan^{-1}(z_0)+\sum_{k=1}^{\infty}\left(\frac{(-1)^{1+k}4^{-2+k}\left(2-\sqrt{2}\right)^{1/2+k/2}\left(5-2\sqrt{2-\sqrt{2}}\right)^{-k}}{k}-\frac{i\sqrt{2-\sqrt{2}}}{(-(-i-z_0)^{-k}+(i-z_0)^{-k})\left(\frac{2\sqrt{2-\sqrt{2}}}{3}-z_0\right)^k}{16k}\right)$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \le i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \le -1)))$

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}+4}{1-2\sqrt{2-\sqrt{2}}+4}\right)+2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right)\right)=$$
$$-\frac{1}{8}\sqrt{2-\sqrt{2}}\tan^{-1}(z_0)+\sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k}\sqrt{2-\sqrt{2}}\left(-1+\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right)^k}{16k}-\frac{i\sqrt{2-\sqrt{2}}\left(-(-i-z_0)^{-k}+(i-z_0)^{-k}\right)\left(\frac{2\sqrt{2-\sqrt{2}}}{3}-z_0\right)^k}{16k}\right)$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \leq i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \leq -1)))$

Integral representations:

$$\begin{aligned} \frac{1}{16}\sqrt{2-\sqrt{2}} \left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}}{1-2\sqrt{2-\sqrt{2}}} + 4\right) + 2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right) \right) &= \\ \int_{0}^{1} \frac{6-3\sqrt{2}}{4\left(-9+4\left(-2+\sqrt{2}\right)t^{2}\right)} dt + \frac{1}{16}\sqrt{2-\sqrt{2}} \log\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right) \\ \frac{1}{16}\sqrt{2-\sqrt{2}} \left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}}{1-2\sqrt{2-\sqrt{2}}} + 4\right) + 2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right) \right) &= \\ \int_{-i \leftrightarrow +\gamma}^{i \leftrightarrow +\gamma} -\frac{i\left(\frac{17}{9} - \frac{4\sqrt{2}}{9}\right)^{-s} \left(-2+\sqrt{2}\right)\Gamma\left(\frac{1}{2} - s\right)\Gamma\left(1-s\right)\Gamma\left(s\right)^{2}}{1-4} ds + \\ \frac{1}{16}\sqrt{2-\sqrt{2}} \log\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right) for \ 0 < \gamma < \frac{1}{2} \end{aligned}$$

$$\frac{1}{16}\sqrt{2-\sqrt{2}}\left(\log\left(\frac{1+2\sqrt{2-\sqrt{2}}+4}{1-2\sqrt{2-\sqrt{2}}+4}\right)+2\tan^{-1}\left(\frac{2\sqrt{2-\sqrt{2}}}{1-4}\right)\right)=$$
$$\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma}\frac{i\,2^{-7/2-3\,s}\times3^{-1+2\,s}\left(-1+\sqrt{2}\right)\left(2+\sqrt{2}\right)^{s}\,\Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\,\Gamma(s)}{\pi\,\Gamma\left(\frac{3}{2}-s\right)}\,ds+$$
$$\frac{1}{16}\sqrt{2-\sqrt{2}}\,\log\left(\frac{5+2\sqrt{2-\sqrt{2}}}{5-2\sqrt{2-\sqrt{2}}}\right)\,\text{for }0<\gamma<\frac{1}{2}$$

(0.0137648383113820138-0.0148788804027828565)

Input interpretation:

0.0137648383113820138 - 0.0148788804027828565

Result:

-0.0011140420914008427

-0.0011140420914008427

Thence, we obtain:

(-(0.0137648383113820138-0.0148788804027828565))^1/1024

Input interpretation:

Input interpretation: $\sqrt[1024]{-(0.0137648383113820138 - 0.0148788804027828565)}$

Result:

0.99338160770505236256...

0.9933816077... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5}\sqrt[4]{5^{3}}}-1}} - \varphi + 1} = 1 - \frac{e^{-\pi\sqrt{5}}}{1+\frac{e^{-2\pi\sqrt{5}}}{1+\frac{e^{-3\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\dots}}}} \approx 0.9991104684$$

 $1/10^{52}(((1+(-(0.0137648383-0.0148788804))+0.08+0.02+0.0047-0.0002)))$

Input interpretation:

 $\frac{1}{10^{52}} \left(1 - (0.0137648383 - 0.0148788804) + 0.08 + 0.02 + 0.0047 - 0.0002)\right)$

Result:

 $1.1056140421 \times 10^{-52}$ 1.1056140421*10^{-52} result practically equal to the value of Cosmological Constant $1.1056*10^{-52}~m^{-2}$

Now, we have that:

(page 97)

 $A_{10} = \frac{1}{4} \tan^{-1} x - \frac{1}{20} \tan^{-1} x^{5} + \frac{1}{4} \sqrt{3} - \tan^{-1} \frac{1}{1} + \frac{1}{40} \sqrt{10 - 2} \sqrt{5} \log \frac{1 + \frac{2}{3}}{1 - \frac{2}{3}} \sqrt{10 - 2} \sqrt{5} + \frac{1}{1} + \frac{1}{40} \sqrt{10 - 2} \sqrt{5} \log \frac{1 + \frac{2}{3}}{1 - \frac{2}{3}} \sqrt{10 - 2} \sqrt{5} + \frac{1}{2} + \frac{1}{40} \sqrt{10 + 2} \sqrt{5} \log \frac{1 + \frac{2}{3}}{1 - \frac{2}{3}} \sqrt{10 + 2} \sqrt{5} + \frac{1}{2} \sqrt{5} + \frac{$

 $((1/4 \tan^{-1} (2))) - ((1/20 \tan^{-1} (2)^{5})) + 1/(4 \operatorname{sqrt5}) \tan^{-1}(((((2-2^{3})\operatorname{sqrt5})) / ((1-3^{2}2^{2}+2^{4})))) + 1/40 (10-2 \operatorname{sqrt5})^{(1/2)*} \ln (((1+1(10-2 \operatorname{sqrt5})^{(1/2)+4}))/(((1-1(10-2 \operatorname{sqrt5})^{(1/2)+4}))))$

Input:

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{1}{4\sqrt{5}} \tan^{-1}\left(\frac{(2-2^3)\sqrt{5}}{1-3\times 2^2 + 2^4}\right) + \frac{1}{40} \sqrt{10 - 2\sqrt{5}} \log\left(\frac{1+1\sqrt{10-2\sqrt{5}}+4}{1-1\sqrt{10-2\sqrt{5}}+4}\right)$$

 $\tan^{-1}(x)$ is the inverse tangent function

log(x) is the natural logarithm

Exact Result:

$$\frac{1}{40}\sqrt{10-2\sqrt{5}} \log \left(\frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right) + \frac{1}{4}\tan^{-1}(2) - \frac{1}{20}\tan^{-1}(2)^5 - \frac{\tan^{-1}\left(\frac{6}{\sqrt{5}}\right)}{4\sqrt{5}}$$

(result in radians)

Decimal approximation:

 $0.117871277524338220859857341320591906495581624687993036863\ldots$

(result in radians)

0.1178712775243382208598...

Alternate forms: $\frac{1}{20}\sqrt{\frac{1}{2}(5-\sqrt{5})}\log\left(\frac{1}{41}\left(109-20\sqrt{5}+2\sqrt{10(305-109\sqrt{5})}\right)\right) + \frac{1}{4}\tan^{-1}(2) - \frac{1}{20}\tan^{-1}(2)^{5} - \frac{\tan^{-1}\left(\frac{6}{\sqrt{5}}\right)}{4\sqrt{5}}$

$$4 20 4\sqrt{5}$$

$$\frac{1}{8} i (\log(1-2i) - \log(1+2i)) - \frac{1}{640} i (\log(1-2i) - \log(1+2i))^5 - \frac{1}{640} i (\log(1-2i) - \log(1+2i))^5 - \frac{1}{640} i (\log(1-2i) - \log(1+2i))^5 - \frac{1}{600} \left(\frac{1-\frac{6i}{\sqrt{5}}}{8\sqrt{5}} \right) - \log\left(1+\frac{6i}{\sqrt{5}}\right) + \frac{1}{40} \sqrt{10-2\sqrt{5}} \log\left(\frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right) - \frac{1}{600} \left(\sqrt{10-2\sqrt{5}} \left(\log\left(5+\sqrt{10-2\sqrt{5}}\right) - \log\left(5-\sqrt{10-2\sqrt{5}}\right)\right) + \frac{1}{10} \tan^{-1}(2) - 2\tan^{-1}(2)^5 - 2\sqrt{5} \tan^{-1}\left(\frac{6}{\sqrt{5}}\right) \right)$$

Alternative representations:

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{\tan^{-1}\left(\frac{(2-2^3)\sqrt{5}}{1-3\times2^2+2^4}\right)}{4\sqrt{5}} + \frac{1}{40} \sqrt{10 - 2\sqrt{5}} \log\left(\frac{1+1\sqrt{10-2\sqrt{5}}}{1-1\sqrt{10-2\sqrt{5}}} + 4\right) = \frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{1}{40} \log_e\left(\frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right) \sqrt{10-2\sqrt{5}} + \frac{\tan^{-1}\left(-\frac{6\sqrt{5}}{-11+2^4}\right)}{4\sqrt{5}}$$

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{\tan^{-1}\left(\frac{(2-2^3)\sqrt{5}}{1-3\times2^2+2^4}\right)}{4\sqrt{5}} + \frac{1}{40} \sqrt{10-2\sqrt{5}} \log\left(\frac{1+1\sqrt{10-2\sqrt{5}}}{1-1\sqrt{10-2\sqrt{5}}} + 4\right) = \frac{1}{4} \tan^{-1}(1,2) - \frac{1}{20} \tan^{-1}(1,2)^5 + \frac{1}{40} \log\left(\frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right) \sqrt{10-2\sqrt{5}} + \frac{\tan^{-1}\left(1,-\frac{6\sqrt{5}}{-11+2^4}\right)}{4\sqrt{5}}$$

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{\tan^{-1}\left(\frac{(2-2^3)\sqrt{5}}{1-3\times2^2+2^4}\right)}{4\sqrt{5}} + \frac{1}{40} \sqrt{10-2\sqrt{5}} \log\left(\frac{1+1\sqrt{10-2\sqrt{5}}}{1-1\sqrt{10-2\sqrt{5}}} + 4\right) = \frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{1}{40} \log_a\left(\frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right) \sqrt{10-2\sqrt{5}} + \frac{\tan^{-1}\left(-\frac{6\sqrt{5}}{-11+2^4}\right)}{4\sqrt{5}}$$

Series representations:

Series representations:

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^{5} + \frac{\tan^{-1}\left(\frac{(2-2^{3})\sqrt{5}}{1-3\times2^{2}+2^{4}}\right)}{4\sqrt{5}} + \frac{1}{40}\sqrt{10-2\sqrt{5}} \log\left(\frac{1+1\sqrt{10-2\sqrt{5}}+4}{1-1\sqrt{10-2\sqrt{5}}+4}\right) = \frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^{5} - \frac{\tan^{-1}\left(\frac{6}{\sqrt{5}}\right)}{4\sqrt{5}} + \frac{1}{40}\sqrt{10-2\sqrt{5}} \log\left(-1 + \frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right) - \frac{1}{40}\sqrt{10-2\sqrt{5}} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2} - \frac{5}{2\sqrt{10-2\sqrt{5}}}\right)^{k}}{k}$$

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^{5} + \frac{\tan^{-1}\left(\frac{(2-3)^{2}+2^{2}}{1-3-2^{2}+2^{2}}\right)}{4\sqrt{5}} + \frac{1}{40} \sqrt{10 - 2\sqrt{5}} \log\left(\frac{1+1\sqrt{10 - 2\sqrt{5}}}{1-1\sqrt{10 - 2\sqrt{5}}} + 4\right) = \frac{1}{40} \sqrt{10 - 2\sqrt{5}} \log\left(\frac{1+1\sqrt{10 - 2\sqrt{5}}}{1-1\sqrt{10 - 2\sqrt{5}}} + 4\right) = \frac{1}{160} \left(\frac{160 \tan^{-1}(z_{0}) - 32\sqrt{5} \tan^{-1}(z_{0}) - 32 \tan^{-1}(z_{0})^{5} + \frac{16\sqrt{2}\left(5-\sqrt{5}\right)}{5-\sqrt{10 - 2\sqrt{5}}}\right) - 16\sqrt{2}\left(5-\sqrt{5}\right)} \left(\frac{-\frac{1}{-1+\frac{5+\sqrt{10 - 2\sqrt{5}}}{5-\sqrt{10 - 2\sqrt{5}}}}\right) - 16\sqrt{2}\left(5-\sqrt{5}\right)}{\sqrt{10 - 2\sqrt{5}}} + \frac{16\sqrt{2}\left(5-\sqrt{5}\right)}{5-\sqrt{10 - 2\sqrt{5}}}\right) + \frac{16\sqrt{2}\left(5-\sqrt{5}\right)}{\sqrt{10 - 2\sqrt{5}}} + \frac{16\sqrt{2}\left(5-\sqrt{5}\right)}{\sqrt{10 - 2\sqrt{5}}} + \frac{16\sqrt{2}\left(5-\sqrt{5}\right)}{\sqrt{10 - 2\sqrt{5}}} + \frac{16\sqrt{10 - 2\sqrt{5}}}{\sqrt{10 - 2\sqrt{5}}} + \frac{16\sqrt{2}\left(5-\sqrt{5}\right)}{\sqrt{10 - 2\sqrt{5}}} + \frac{16\sqrt{10 - 2\sqrt{5}}}{\sqrt{5}} + \frac{16\sqrt{10 - 2\sqrt{5}}}{\sqrt{5}} + \frac{16\sqrt{10 - 2\sqrt{5}}}{\sqrt{5}} + \frac{16\sqrt{10 - 2\sqrt{5}}}{\sqrt{5}} + \frac{16\sqrt{2}\left(5-\sqrt{5}\right)}{\sqrt{5}} + \frac{16\sqrt{10 - 2\sqrt{5}}}{\sqrt{5}} + \frac{16\sqrt{10 - 2\sqrt{5}}}{\sqrt$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \le i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \le -1)))$

$$1/40 (10+2sqrt5)^{(1/2)*} \ln (((1+1(10+2sqrt5)^{(1/2)+4}))/(((1-1(10+2sqrt5)^{(1/2)+4}))))$$

Input:

$$\frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{1-1\sqrt{10+2\sqrt{5}}+4}\right)$$

log(x) is the natural logarithm

Exact result:

$$\frac{1}{40} \sqrt{10 + 2\sqrt{5}} \log \left(\frac{5 + \sqrt{10 + 2\sqrt{5}}}{5 - \sqrt{10 + 2\sqrt{5}}} \right)$$

Decimal approximation:

0.189872557940113444479006186860777045433398567588140907800...

0.18987255794...

Property: $\frac{1}{40}\sqrt{10+2\sqrt{5}} \log\left(\frac{5+\sqrt{10+2\sqrt{5}}}{5-\sqrt{10+2\sqrt{5}}}\right) \text{ is a transcendental number}$

Alternate forms:

$$\frac{1}{20}\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)}\log\left(\frac{1}{82}\left(218+40\sqrt{5}+41\sqrt{\frac{48\,800}{1681}}+\frac{17440\sqrt{5}}{1681}\right)\right)$$
$$\frac{\left(\sqrt{1-2\,i}+\sqrt{1+2\,i}\right)\log\left(\frac{5+\sqrt{2\left(5+\sqrt{5}\right)}}{5-\sqrt{2\left(5+\sqrt{5}\right)}}\right)}{8\times 5^{3/4}}$$
$$\frac{1}{20}\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)}\left(\log\left(5+\sqrt{2\left(5+\sqrt{5}\right)}\right)-\log\left(5-\sqrt{2\left(5+\sqrt{5}\right)}\right)\right)$$

Alternative representations:

$$\frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{1-1\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{40}\log_e\left(\frac{5+\sqrt{10+2\sqrt{5}}}{5-\sqrt{10+2\sqrt{5}}}\right)\sqrt{10+2\sqrt{5}}$$
$$\frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{5-\sqrt{10+2\sqrt{5}}}\right) = \frac{1}{40}\log_e\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{5-\sqrt{10+2\sqrt{5}}}\right) = \frac{1}{40}\log_e\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{5-\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{40}\log_e\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{5-\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{40}\log_e\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{5-\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{40}\log_e\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{5-\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{40}\log_e\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{5-\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{40}\log_e\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{5-\sqrt{10+2\sqrt{5}}+4}\right)$$

_

$$\frac{1}{40} \sqrt{10 + 2\sqrt{5}} \log \left(\frac{1}{1 - 1\sqrt{10 + 2\sqrt{5}}} + 4 \right)^{=}$$
$$\frac{1}{40} \log(a) \log_a \left(\frac{5 + \sqrt{10 + 2\sqrt{5}}}{5 - \sqrt{10 + 2\sqrt{5}}} \right) \sqrt{10 + 2\sqrt{5}}$$

$$\frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{1-1\sqrt{10+2\sqrt{5}}+4}\right) = -\frac{1}{40}\operatorname{Li}_{1}\left(1-\frac{5+\sqrt{10+2\sqrt{5}}}{5-\sqrt{10+2\sqrt{5}}}\right)\sqrt{10+2\sqrt{5}}$$

Series representations:

$$\frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{1-1\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(-1+\frac{5+\sqrt{10+2\sqrt{5}}}{5-\sqrt{10+2\sqrt{5}}}\right) - \frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(-1+\frac{5+\sqrt{10+2\sqrt{5}}}{5-\sqrt{10+2\sqrt{5}}}\right) - \frac{1}{40}\sqrt{10+2\sqrt{5}}\sum_{k=1}^{\infty}\frac{\left(\frac{1}{2}-\frac{5}{2\sqrt{2(5+\sqrt{5})}}\right)^{k}}{k}$$

$$\begin{aligned} \frac{1}{40} \sqrt{10 + 2\sqrt{5}} & \log \left(\frac{1 + 1\sqrt{10 + 2\sqrt{5}} + 4}{1 - 1\sqrt{10 + 2\sqrt{5}} + 4} \right) = \\ & \frac{1}{20} \sqrt{\frac{1}{2} \left(5 + \sqrt{5}\right)} & \log \left(-\frac{2\sqrt{2} \left(5 + \sqrt{5}\right)}{-5 + \sqrt{2} \left(5 + \sqrt{5}\right)} \right) - \\ & \frac{1}{20} \sqrt{\frac{1}{2} \left(5 + \sqrt{5}\right)} & \sum_{k=1}^{\infty} \frac{2^{-(3k)/2} \left(5 + \sqrt{5}\right)^{-k/2} \left(-5 + \sqrt{2} \left(5 + \sqrt{5}\right)\right)^k}{k} \end{aligned}$$
$$\frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{1-1\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(-1+\frac{5+\sqrt{10+2\sqrt{5}}}{5-\sqrt{10+2\sqrt{5}}}\right) - \frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(-1+\frac{5+\sqrt{10+2\sqrt{5}}}{5-\sqrt{10+2\sqrt{5}}}\right) - \frac{1}{40}\sqrt{10+2\sqrt{5}}\sum_{k=1}^{\infty}\frac{\left(-\frac{1}{-1+\frac{5+\sqrt{10+2\sqrt{5}}}{5-\sqrt{10+2\sqrt{5}}}}\right)}{k}$$

Integral representations:

$$\frac{1}{40}\sqrt{10+2\sqrt{5}}\log\left(\frac{1+1\sqrt{10+2\sqrt{5}}+4}{1-1\sqrt{10+2\sqrt{5}}+4}\right) = \frac{1}{20}\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)}\int_{1}^{\frac{5+\sqrt{2}\left(5+\sqrt{5}\right)}{5-\sqrt{2}\left(5+\sqrt{5}\right)}}\frac{1}{t}\,dt$$

$$\frac{1}{40} \sqrt{10 + 2\sqrt{5}} \log \left(\frac{1 + 1\sqrt{10 + 2\sqrt{5}} + 4}{1 - 1\sqrt{10 + 2\sqrt{5}} + 4} \right) = -\frac{i\sqrt{10 + 2\sqrt{5}}}{80\pi} \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \left(-1 + \frac{5 + \sqrt{10 + 2\sqrt{5}}}{5 - \sqrt{10 + 2\sqrt{5}}} \right)^{-s} \Gamma(-s)^2 \Gamma(1+s) ds \text{ for } -1 < \gamma < 0$$

 $\begin{array}{l} ((1/4 \tan^{-1}(2))) - ((1/20 \tan^{-1}(2)^5)) + 1/(4 \operatorname{sqrt5}) \tan^{-1}[(((2-2^3) \operatorname{sqrt5})) / ((1-3^2(2+2^4))] + 1/40 (10-2 \operatorname{sqrt5})^{(1/2)*} \ln [((1+1(10-2 \operatorname{sqrt5})^{(1/2)+4}))/((1-1(10-2 \operatorname{sqrt5})^{(1/2)+4}))] + 0.18987255794 \end{array}$

Input interpretation:

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{1}{4\sqrt{5}} \tan^{-1}\left(\frac{(2-2^3)\sqrt{5}}{1-3\times2^2+2^4}\right) + \frac{1}{40} \sqrt{10-2\sqrt{5}} \log\left(\frac{1+1\sqrt{10-2\sqrt{5}}+4}{1-1\sqrt{10-2\sqrt{5}}+4}\right) + 0.18987255794$$

 $\tan^{-1}(x)$ is the inverse tangent function

Г

log(x) is the natural logarithm

Result:

0.30774383546...

(result in radians)

0.30774383546...

Alternative representations:

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{\tan^{-1}\left(\frac{(2-2^3)\sqrt{5}}{1-3\times2^2+2^4}\right)}{4\sqrt{5}} + \frac{1}{40} \sqrt{10 - 2\sqrt{5}} \log\left(\frac{1+1\sqrt{10-2\sqrt{5}}+4}{1-1\sqrt{10-2\sqrt{5}}+4}\right) + 0.189872557940000 = 0.189872557940000 + \frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{1}{40} \log_e\left(\frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right) \sqrt{10-2\sqrt{5}} + \frac{\tan^{-1}\left(-\frac{6\sqrt{5}}{-11+2^4}\right)}{4\sqrt{5}}$$

$$\frac{1}{4}\tan^{-1}(2) - \frac{1}{20}\tan^{-1}(2)^{5} + \frac{\tan^{-1}\left(\frac{(2-2^{3})\sqrt{5}}{1-3\times2^{2}+2^{4}}\right)}{4\sqrt{5}} + \frac{1}{40}\sqrt{10-2\sqrt{5}}\log\left(\frac{1+1\sqrt{10-2\sqrt{5}}+4}{1-1\sqrt{10-2\sqrt{5}}+4}\right) + 0.189872557940000 = 0.189872557940000 + \frac{1}{4}\tan^{-1}(1,2) - \frac{1}{20}\tan^{-1}(1,2)^{5} + \frac{1}{40}\log\left(\frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right)\sqrt{10-2\sqrt{5}} + \frac{\tan^{-1}\left(1,-\frac{6\sqrt{5}}{-11+2^{4}}\right)}{4\sqrt{5}}$$

$$\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{\tan^{-1}\left(\frac{(2-2^3)\sqrt{5}}{1-3\times 2^2+2^4}\right)}{4\sqrt{5}} + \frac{1}{40} \sqrt{10-2\sqrt{5}} \log\left(\frac{1+1\sqrt{10-2\sqrt{5}}+4}{1-1\sqrt{10-2\sqrt{5}}+4}\right) + 0.189872557940000 = 0.189872557940000 + \frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^5 + \frac{1}{40} \log_a\left(\frac{5+\sqrt{10-2\sqrt{5}}}{5-\sqrt{10-2\sqrt{5}}}\right) \sqrt{10-2\sqrt{5}} + \frac{\tan^{-1}\left(-\frac{6\sqrt{5}}{-11+2^4}\right)}{4\sqrt{5}}$$

$$\frac{\frac{1}{4} \tan^{-1}(2) - \frac{1}{20} \tan^{-1}(2)^{5} + \frac{\tan^{-1}\left(\frac{(2-2^{3})\sqrt{5}}{1-3\cdot (2^{2}+2^{4})^{2}}\right)}{4\sqrt{5}} + \frac{1}{4\sqrt{5}} \\ - \frac{1}{40}\sqrt{10 - 2\sqrt{5}} \log \left(\frac{1+1\sqrt{10 - 2\sqrt{5}} + 4}{1-1\sqrt{10 - 2\sqrt{5}} + 4}\right) + 0.189872557940000 = \\ 0.189872557940000 - \frac{8}{5\left(1 + \frac{8}{K+1}\frac{4k^{2}}{1+2k}\right)^{5}} + \frac{1}{2\left(1 + \frac{8}{K+1}\frac{4k^{2}}{1+2k}\right)} - \frac{1}{5\left(1 + \frac{8}{K+1}\frac{4k^{2}}{1+2k}\right)} + \frac{\left(-1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5-\sqrt{10 - 2\sqrt{5}}}\right)\sqrt{10 - 2\sqrt{5}}}{10\left(1 + \frac{8}{K+1}\frac{\frac{2k}{2}}{1+2k}\right)} + \frac{\left(-1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5-\sqrt{10 - 2\sqrt{5}}}\right)\sqrt{10 - 2\sqrt{5}}}{1+k} \right) = \\ 0.189872557940000 - \frac{8}{5\left(1 + \frac{4}{3 + \frac{16}{5 + \frac{36}{9 + \dots}}}\right)^{5}} + \frac{1}{2\left(1 + \frac{4}{3 + \frac{16}{5 + \frac{36}{9 + \dots}}}\right)} - \frac{5\left(1 + \frac{4}{3 + \frac{16}{5 + \frac{36}{9 + \dots}}}\right)^{5}}{5\left(1 + \frac{4}{3 + \frac{16}{5 + \frac{36}{9 + \dots}}}\right)^{5}} + \frac{1}{2\left(1 + \frac{4}{3 + \frac{16}{5 + \frac{36}{9 + \dots}}}\right)} - \frac{3}{5\left(1 + \frac{4}{5\left(5 + \frac{324}{5\left(7 + \frac{576}{5(9 + \dots)}\right)}\right)}\right)} + \frac{40\left(1 + \frac{-1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5 - \sqrt{10 - 2\sqrt{5}}}\right)}{1 + \frac{1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5 - \sqrt{10 - 2\sqrt{5}}}}\right)} - \frac{3}{10\left(1 + \frac{36}{5\left(5 + \frac{324}{5\left(7 + \frac{576}{5(9 + \dots)}\right)}\right)}\right)} + \frac{40\left(1 + \frac{-1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5 - \sqrt{10 - 2\sqrt{5}}}\right)}{1 + \frac{4}{5\left(-1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5 - \sqrt{10 - 2\sqrt{5}}}\right)}}} + \frac{1}{4\left(-1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5 - \sqrt{10 - 2\sqrt{5}}}\right)}} + \frac{1}{4\left(-1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5 - \sqrt{10 - 2\sqrt{5}}}\right)}} + \frac{1}{4\left(-1 + \frac{5+\sqrt{10 - 2\sqrt{5}}}{5 - \sqrt{10 - 2\sqrt{5}}}\right)}} + \frac{1}{5\left(1 + \frac{4}{5\left(5 + \frac{576}{5(9 + \dots)}\right)}\right)}} + \frac{1}{5\left(1 + \frac{4}{5\left(5 + \frac{576}{5(9 + \dots)}\right)}\right)}} + \frac{1}{5\left(1 + \frac{4}{5\left(5 + \frac{576}{5(9 + \dots)}\right)}}\right)} + \frac{1}{5\left(1 + \frac{1}{5 + \frac{5}{5}\left(1 - 2\sqrt{5}\right)}} + \frac{1}{5\left(1 + \frac{5}{5 + \frac{5}{5}\left(1 - 2\sqrt{5}\right)}}\right)} + \frac{1}{5\left(1 + \frac{5}{5 + \frac{5}{5}\left(1 - 2\sqrt{5}\right)}}\right)} + \frac{1}{5\left(1 + \frac{5}{5 + \frac{5}{5}\left(1 - 2\sqrt{5}\right)}}\right)} + \frac{1}{5\left(1 + \frac{5}{5 + \frac{5}{5}\left(1 - \frac{5}{5}\right)}\right)} + \frac{1}{5\left(1 + \frac{5}{5 + \frac{5}{5}\left(1 - \frac{5}$$

$$\frac{\frac{1}{4}\tan^{-1}(2) - \frac{1}{20}\tan^{-1}(2)^{5} + \frac{\tan^{-1}\left(\frac{(2-2^{3})\sqrt{5}}{1-3+2^{2}+2^{2}}\right)}{4\sqrt{5}} + \frac{4\sqrt{5}}{1-\sqrt{10-2\sqrt{5}}} + \frac{4\sqrt{5}}{1-\sqrt{10-2\sqrt{5}}} + \frac{1}{2(1+\sum_{k=1}^{K}\frac{4k^{2}}{1+2k})} - \frac{1}{2(1+\sum_$$

From which, we obtain:

1+1/((5(0.3077438354643382208))))

Input interpretation: $1 + \frac{1}{5 \times 0.3077438354643382208}$

Result:

1.649891165807531749109751987002000473628420124271935712962...

 $1.649891165807... \approx \zeta(2) = \frac{\pi^2}{6} = 1.644934...$

 $1/2 \tan^{-1}(2) + 1/6 \tan^{-1}(8) + 1/(4 \operatorname{sqrt3}) \ln (((1+2 \operatorname{sqrt3}+4)/(1-2 \operatorname{sqrt3}+4)))$

Input:

$$\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{1}{4\sqrt{3}}\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)$$

 $\tan^{-1}(x)$ is the inverse tangent function

log(x) is the natural logarithm

Exact Result:

$$\frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} + \frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8)$$

(result in radians)

Decimal approximation:

 $1.040991496732833639573748611915498201204183344336196931089\ldots$

(result in radians)

1.040991496...

Alternate forms:

$$\frac{1}{12} \left(\sqrt{3} \log \left(\frac{1}{13} \left(37 + 20 \sqrt{3} \right) \right) + 6 \tan^{-1}(2) + 2 \tan^{-1}(8) \right)$$

$$\frac{\log \left(\frac{1}{13} \left(37 + 20 \sqrt{3} \right) \right)}{4 \sqrt{3}} + \frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8)$$

$$\frac{1}{12} \left(\sqrt{3} \log \left(\frac{5 + 2 \sqrt{3}}{5 - 2 \sqrt{3}} \right) + 6 \tan^{-1}(2) + 2 \tan^{-1}(8) \right)$$

Alternative representations:

$$\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log_e\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} - \frac{\log_e\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} = \frac{1}{2}\tan^{-1}(2) + \frac{\log_e\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} - \frac{\log_e$$

$$\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \frac{1}{2}\tan^{-1}(1,2) + \frac{1}{6}\tan^{-1}(1,8) + \frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}}$$

$$\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log(a)\log_a\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}}$$

Series representations:

Series representations:

$$\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{4}{13}\left(6+5\sqrt{3}\right)\right)}{4\sqrt{3}} - \frac{\sum_{k=1}^{\infty} \frac{\left(\frac{1}{12}\left(6-5\sqrt{3}\right)\right)^{k}}{4\sqrt{3}}}{4\sqrt{3}}$$

$$\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(-1+\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} - \frac{\sum_{k=1}^{\infty}\frac{\left(\frac{1}{12}\left(6-5\sqrt{3}\right)\right)^k}{4\sqrt{3}}}{4\sqrt{3}}$$

$$\begin{aligned} \frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \\ \frac{2}{3}\tan^{-1}(z_0) + \frac{\log\left(-1+\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} + \sum_{k=1}^{\infty} \left(\frac{(-1)^{-1+k}\left(-1+\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)^{-k}}{4\sqrt{3}k} + \frac{i\left(-(-i-z_0)^{-k}+(i-z_0)^{-k}\right)(2-z_0)^k}{4k} + \frac{i\left(-(-i-z_0)^{-k}+(i-z_0)^{-k}\right)(8-z_0)^k}{12k}\right)\end{aligned}$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \leq i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \leq -1)))$

$$\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \int_{0}^{1}\left(\frac{1}{1+4t^{2}} + \frac{4}{3+192t^{2}}\right)dt + \frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}}$$

$$\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \int_{1}^{1} \frac{1}{1+\frac{4(1-t)^2}{(1+\frac{1}{13}\left(-37-20\sqrt{3}\right))^2}} + \frac{4}{3\left(1+\frac{64(1-t)^2}{(1+\frac{1}{13}\left(-37-20\sqrt{3}\right))^2}\right)} + \frac{1}{4\sqrt{3}t} dt$$

$$\begin{split} &\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \\ &\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} - \frac{i\,65^{-s}\,(4+3\times13^s)\,\Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\,\Gamma(s)^2}{12\,\pi^{3/2}} \,d\,s + \frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} \quad \text{for} \\ &0 < \gamma < \frac{1}{2} \end{split}$$

$$\frac{\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} + \frac{1}{1+\frac{K}{K}}\frac{\frac{4k^2}{1+2k}}{1+2k} + \frac{4}{3\left(1+\frac{K}{K}}\frac{\frac{64k^2}{1+2k}\right)} = \frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} + \frac{1}{1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}}}}} + \frac{4}{3\left(1+\frac{64}{3+\frac{256}{5+\frac{576}}}\right)}$$

$$\frac{\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} + \frac{1}{1+\frac{K}{k=1}\frac{4k^2}{1+2k}} + \frac{4}{3\left(1+\frac{K}{k=1}\frac{64k^2}{1+2k}\right)} = \frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} + \frac{1}{1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}}}}} + \frac{4}{3\left(1+\frac{64}{3+\frac{256}{5+\frac{576}{7+\frac{1024}{9+\dots}}}}\right)}$$

$$\frac{\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} = \frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} + \frac{1}{1+\frac{K}{k=1}}\frac{1}{\frac{4(1-2k)^2}{5-6k}} + \frac{4}{3\left(1+\frac{K}{k=1}}\frac{\frac{64(1-2k)^2}{65-126k}\right)} = \frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} + \frac{1}{1+\frac{4}{-1+\frac{36}{-7+\frac{100}{-13+\frac{196}{-19+\dots}}}}} + \frac{4}{3\left(1+\frac{64}{-61+\frac{576}{-187+\frac{1600}{-313+\frac{3136}{-439+\dots}}}}\right)$$

((((1/2 tan^-1 (2) + 1/6 tan^-1 (8) + 1/(4sqrt3) ln (((1+2sqrt3+4)/(1-2sqrt3+4))))))^12

Input:

$$\left(\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{1}{4\sqrt{3}}\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)\right)^{12}$$

 $\tan^{-1}(x)$ is the inverse tangent function

log(x) is the natural logarithm

Exact Result:

$$\left(\frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} + \frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8)\right)^{12}$$

(result in radians)

Decimal approximation:

 $1.619444930152370038737329829009437718851016351898044916404\ldots$

(result in radians)

1.619444930152... result that is a good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$$\frac{\left(\frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}}+\frac{1}{2}\tan^{-1}(2)+\frac{1}{6}\tan^{-1}(8)\right)^{12}}{\left(\sqrt{3}\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)+6\tan^{-1}(2)+2\tan^{-1}(8)\right)^{12}}{8916100448256}$$
$$\frac{\left(3\log\left(-\frac{5+2\sqrt{3}}{2\sqrt{3}-5}\right)+2\sqrt{3}\left(3\tan^{-1}(2)+\tan^{-1}(8)\right)\right)^{12}}{32}$$

6499837226778624

Alternative representations:

$$\begin{split} \left(\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}}\right)^{12} &= \\ \left(\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log_{e}\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}}\right)^{12} &= \\ \left(\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}}\right)^{12} &= \\ \left(\frac{1}{2}\tan^{-1}(1,2) + \frac{1}{6}\tan^{-1}(1,8) + \frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}}\right)^{12} &= \\ \left(\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}}\right)^{12} &= \\ \left(\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log(a)\log_{a}\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}}\right)^{12} &= \\ \left(\frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8) + \frac{\log(a)\log_{a}\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}}\right)^{12} &= \\ \end{array}$$

Series representations:

$$\left(\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} \right)^{12} = \left(\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(-1 + \frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right) - \sum_{k=1}^{\infty} \frac{\left(\frac{1}{12}\left(6-5\sqrt{3}\right)\right)^k}{k}}{4\sqrt{3}} \right)^{12}$$

$$\left(\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} \right)^{12} = \frac{1}{8\,916\,100\,448\,256} \left(8\,\tan^{-1}(z_0) + \sqrt{3}\,\log\left(-1 + \frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right) - \frac{\sqrt{3}}{\sqrt{3}} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{12}\left(6-5\sqrt{3}\right)\right)^k}{k} + 3\,i\sum_{k=1}^{\infty} \frac{\left(-(-i-z_0)^{-k} + (i-z_0)^{-k}\right)(2-z_0)^k}{k} + \frac{i\sum_{k=1}^{\infty} \frac{\left(-(-i-z_0)^{-k} + (i-z_0)^{-k}\right)(8-z_0)^k}{k}}{k} + \frac{i\sum_{k=1}^{\infty} \frac{\left(-(-i-z_0)^{-k} + (i-z_0)^{-k}\right)(8-z_0)^k}{k}}{k} \right)^{12}$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \le i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \le -1)))$

$$\left(\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} \right)^{12} = \left(\frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} + \frac{1}{1+\frac{K}{k=1}}\frac{4k^2}{1+2k} + \frac{4}{3\left(1+\frac{K}{k=1}}\frac{64k^2}{1+2k}\right)}{3\left(1+\frac{K}{k=1}\frac{64k^2}{1+2k}\right)} \right)^{12} = \left(\frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} + \frac{1}{1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}}}}} + \frac{4}{3\left(1+\frac{64}{3+\frac{256}{5+\frac{576}}}\right)} \right)^{12} \right)^{12} = \frac{1}{1+\frac{1}{3}}$$

$$\left(\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}} \right)^{12} = \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} + \frac{1}{1+\frac{K}{k=1}} \frac{4k^2}{1+2k} + \frac{4}{3\left(1+\frac{K}{k=1}} \frac{64k^2}{1+2k}\right)}{3\left(1+\frac{K}{k=1}} \right)^{12} = \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} + \frac{1}{1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}}}}} + \frac{4}{3\left(1+\frac{64}{3+\frac{256}{5+\frac{576}{7+\frac{1024}{9+\dots}}}}\right)^{12}} \right)^{12} = \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{1024}{9+\dots}}}\right)}{4\sqrt{3}} + \frac{1}{1+\frac{64}{3+\frac{256}{5+\frac{576}{7+\frac{1024}{9+\dots}}}}} \right)^{12} = \frac{1}{3} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{1024}{9+\dots}}}\right)}{1+\frac{64}{9+\frac{10}{3}}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{1024}{9+\dots}}}\right)}{1+\frac{64}{9+\frac{10}{3}}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{1024}{9+\dots}}}\right)}{1+\frac{64}{9+\frac{10}{3}}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{1024}{9+\dots}}}\right)}{1+\frac{10}{3}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{1024}{9+\dots}}}\right)}{1+\frac{10}{3}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{1024}{9+\dots}}}\right)}{1+\frac{10}{3}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{10}{9+\dots}}}\right)}{1+\frac{10}{3}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{10}{9+\dots}}}\right)}{1+\frac{10}{3}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{10}{9+\dots}}}\right)^{12}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{7+\frac{10}{9+\dots}}}\right)^{12}} \right)^{12} = \frac{1}{3} \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5+\frac{576}{5+\frac{576}{9+\frac{576}{5+$$

$$\left(\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{\log\left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4}\right)}{4\sqrt{3}}\right)^{12} = \left(\frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} + \frac{1}{1+\frac{K}{k=1}} \frac{1}{\frac{4(1-2k)^2}{5-6k}} + \frac{4}{3\left(1+\frac{K}{k=1}}\frac{\frac{64(1-2k)^2}{65-126k}\right)}{\frac{64}{65-126k}} \right)^{12} = \left(\frac{\log\left(\frac{1}{13}\left(37+20\sqrt{3}\right)\right)}{4\sqrt{3}} + \frac{1}{1+\frac{4}{-1+\frac{4}{36}}} + \frac{1}{1+\frac{4}{-1+\frac{36}{-19+\dots}}} + \frac{1}{1+\frac{196}{-13+\frac{196}{-19+\dots}}} + \frac{4}{3\left(1+\frac{64}{-61+\frac{576}{-187+\frac{1600}{-439+\dots}}}\right)} \right)^{12} = \frac{4}{3\left(1+\frac{64}{-61+\frac{576}{-439+\dots}}\right)}^{12} = \frac{4}{3\left(1+\frac{6}{-61+\frac{576}{-439+\dots}}\right)}^{12} = \frac{4}{3\left(1+\frac{6}{-61+\frac{576}{-61+\frac{576}{-439+\dots}}\right)}^{12} = \frac{4}{3\left(1+\frac{6}{-61+\frac{576}{-61+\frac{5$$

 $1/10^{27}(((((((1/2 tan^-1 (2) + 1/6 tan^-1 (8) + 1/(4 sqrt3) ln (((1+2 sqrt3+4)/(1-2 sqrt3+4)))))^{12} + (55-2)*1/10^{3})))$

Input:

$$\frac{1}{10^{27}} \left(\left(\frac{1}{2} \tan^{-1}(2) + \frac{1}{6} \tan^{-1}(8) + \frac{1}{4\sqrt{3}} \log \left(\frac{1+2\sqrt{3}+4}{1-2\sqrt{3}+4} \right) \right)^{12} + (55-2) \times \frac{1}{10^3} \right)^{12} + (55-2) \times \frac{1}{10^3} \right)^{12} + (55-2) \times \frac{1}{10^3} + \frac{$$

 $\tan^{-1}(x)$ is the inverse tangent function $\log(x)$ is the natural logarithm

Exact Result:

$$\frac{53}{1000} + \left(\frac{\log\left(\frac{5+2\sqrt{3}}{5-2\sqrt{3}}\right)}{4\sqrt{3}} + \frac{1}{2}\tan^{-1}(2) + \frac{1}{6}\tan^{-1}(8)\right)^{12}$$

 $1\,000\,000\,000\,000\,000\,000\,000\,000\,000$

(result in radians)

Decimal approximation:

 $1.6724449301523700387373298290094377188510163518980449...\times 10^{-27}$

(result in radians)

1.6724449301523...*10⁻²⁷ result practically equal to the proton mass

Alternate forms:

 $1\,000\,000\,000\,000\,000\,000\,000\,000\,000$

We have that:

 $\frac{1}{20 \ln((((1+2)^5)/(1+2^5))) + 1}{(4 \text{sqrt5}) \ln((((((1+2*((\text{sqrt5-1})/2)+4))) / (((1-2*(((\text{sqrt5-1})/2)+4)))))) + 1}{20 (10-2 \text{sqrt5})^{(1/2)} \tan^{-1} (((((2*(10-2 \text{sqrt5})^{(1/2)})))) + 1}{(2 (\text{sqrt5+1})))))) + 1}$

Input:

$$\frac{1}{20} \log \left(\frac{(1+2)^5}{1+2^5} \right) + \frac{1}{4\sqrt{5}} \log \left(\frac{1+2\left(\frac{1}{2}\left(\sqrt{5}-1\right)\right)+4}{1-2\left(\frac{1}{2}\left(\sqrt{5}-1\right)\right)+4} \right) + \frac{1}{20} \sqrt{10-2\sqrt{5}} \tan^{-1} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)} \right)$$

 $\log(x)$ is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\frac{1}{20}\log\left(\frac{81}{11}\right) + \frac{\log\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}}\tan^{-1}\left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(1+\sqrt{5}\right)}\right)$$

(result in radians)

Decimal approximation:

0.028517407231721521731978720428288813074858647677244607539...

(result in radians)

0.0285174072...

Alternate forms:

$$\frac{1}{20} \log\left(\frac{81}{11}\right) + \frac{\log\left(\frac{1}{31}\left(29+10\sqrt{5}\right)\right)}{4\sqrt{5}} - \frac{1}{10}\sqrt{\frac{1}{2}\left(5-\sqrt{5}\right)} \tan^{-1}\left(\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)}\right)$$
$$\frac{1}{20} \left(\log\left(\frac{81}{11}\right) + \sqrt{5} \log\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right) + \sqrt{2\left(5-\sqrt{5}\right)} \tan^{-1}\left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(1+\sqrt{5}\right)}\right)\right)$$
$$\frac{1}{20} \log\left(\frac{81}{11}\right) + \frac{\log\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\sqrt{5}} + \frac{1}{40}i\sqrt{10-2\sqrt{5}}\log\left(1-\frac{2i\sqrt{10-2\sqrt{5}}}{4-2\left(1+\sqrt{5}\right)}\right) - \frac{1}{40}i\sqrt{10-2\sqrt{5}}\log\left(1+\frac{2i\sqrt{10-2\sqrt{5}}}{4-2\left(1+\sqrt{5}\right)}\right)$$

Alternative representations:

$$\frac{1}{20}\log\left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log\left(\frac{1+\frac{2}{2}\left(\sqrt{5}-1\right)+4}{1-\frac{2}{2}\left(\sqrt{5}-1\right)+4}\right)}{4\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}}\tan^{-1}\left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)}\right) = \frac{1}{20}\log\left(\frac{3^5}{1+2^5}\right) + \frac{1}{20}\tan^{-1}\left(1,\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(1+\sqrt{5}\right)}\right)\sqrt{10-2\sqrt{5}} + \frac{\log\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\sqrt{5}}$$

$$\begin{aligned} &\frac{1}{20}\log\left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log\left(\frac{1+\frac{2}{2}\left(\sqrt{5}-1\right)+4}{1-\frac{2}{2}\left(\sqrt{5}-1\right)+4}\right)}{4\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}}\tan^{-1}\left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)}\right) = \\ &\frac{1}{20}\log(a)\log_a\left(\frac{3^5}{1+2^5}\right) + \\ &\frac{1}{20}\tan^{-1}\left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(1+\sqrt{5}\right)}\right)\sqrt{10-2\sqrt{5}} + \frac{\log(a)\log_a\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\sqrt{5}} \end{aligned}$$

$$\frac{1}{20} \log \left(\frac{(1+2)^5}{1+2^5} \right) + \frac{\log \left(\frac{1+\frac{2}{2} \left(\sqrt{5}-1\right)+4}{1-\frac{2}{2} \left(\sqrt{5}-1\right)+4} \right)}{4 \sqrt{5}} + \frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan^{-1} \left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2 \left(\sqrt{5}+1\right)} \right) = \frac{1}{20} \log_e \left(\frac{3^5}{1+2^5} \right) + \frac{1}{20} \tan^{-1} \left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2 \left(1+\sqrt{5}\right)} \right) \sqrt{10-2 \sqrt{5}} + \frac{\log_e \left(\frac{4+\sqrt{5}}{6-\sqrt{5}} \right)}{4 \sqrt{5}}$$

$$\frac{1}{20}\log\left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log\left(\frac{1+\frac{2}{2}\left(\sqrt{5}-1\right)+4}{1-\frac{2}{2}\left(\sqrt{5}-1\right)+4}\right)}{4\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}}\tan^{-1}\left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)}\right) = \int_0^1 \frac{-5+3\sqrt{5}}{10\left(-3+\sqrt{5}+\left(-5+\sqrt{5}\right)t^2\right)}dt + \frac{1}{20}\log\left(\frac{81}{11}\right) + \frac{\log\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\sqrt{5}}$$

$$\begin{split} \frac{1}{20} \log & \left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log \left(\frac{1+\frac{2}{2}\left(\sqrt{5}-1\right)+4}{1-\frac{2}{2}\left(\sqrt{5}-1\right)+4}\right)}{4\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}} \tan^{-1} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)}\right) = \\ & \int_{1}^{\frac{81}{11}} \left(\frac{11}{70} \left(\frac{1}{\left(4-2\left(1+\sqrt{5}\right)\right)\left(1+\frac{121\left(10-2\sqrt{5}\right)\left(1-t\right)^2}{1225\left(4-2\left(1+\sqrt{5}\right)\right)^2}\right)} - \frac{1}{\sqrt{5}\left(4-2\left(1+\sqrt{5}\right)\right)\left(1+\frac{121\left(10-2\sqrt{5}\right)\left(1-t\right)^2}{1225\left(4-2\left(1+\sqrt{5}\right)\right)^2}\right)}\right) - \\ & \frac{1}{\sqrt{5}\left(4-2\left(1+\sqrt{5}\right)\right)\left(1+\frac{121\left(10-2\sqrt{5}\right)\left(1-t\right)^2}{1225\left(4-2\left(1+\sqrt{5}\right)\right)^2}\right)}\right) + \\ & \frac{1}{20t} - \frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4\sqrt{5}\left(-\frac{81}{11}+\frac{4+\sqrt{5}}{6-\sqrt{5}}+t-\frac{\left(4+\sqrt{5}\right)t}{6-\sqrt{5}}\right)}\right) dt \end{split}$$

$$\begin{aligned} \frac{1}{20} \log \left(\frac{(1+2)^5}{1+2^5} \right) + \frac{\log \left(\frac{1+\frac{2}{2} \left(\sqrt{5}-1\right)+4}{1-\frac{2}{2} \left(\sqrt{5}-1\right)+4} \right)}{4 \sqrt{5}} + \frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan^{-1} \left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2 \left(\sqrt{5}+1\right)} \right) \\ &- \frac{i \left(10-2 \sqrt{5}\right)}{40 \left(4-2 \left(1+\sqrt{5}\right)\right) \pi^{3/2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \left(1 + \frac{4 \left(10-2 \sqrt{5}\right)}{\left(4-2 \left(1+\sqrt{5}\right)\right)^2} \right)^{-s} \Gamma \left(\frac{1}{2} - s \right) \Gamma (1-s) \Gamma (s)^2 \, ds + \\ &\frac{1}{20} \log \left(\frac{81}{11} \right) + \frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}} \right)}{4 \sqrt{5}} \quad \text{for } 0 < \gamma < \frac{1}{2} \end{aligned}$$

$$(((10+2sqrt5)^{(1/2)}))/20 \tan^{-1} ((((2*(10+2sqrt5)^{(1/2)})/((4+2(sqrt5-1)))))))$$

Input:
$$\left(\frac{1}{20}\sqrt{10+2\sqrt{5}}\right) \tan^{-1}\left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)}\right)$$

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\frac{1}{20}\sqrt{10+2\sqrt{5}} \tan^{-1}\left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)}\right)$$

(result in radians)

Decimal approximation:

0.164708638338231507885004448413669921250834714283698623665...

(result in radians)

0.164708638...

Alternate forms:

$$\frac{1}{10}\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)} \operatorname{cot}^{-1}\left(\sqrt{\frac{1}{10}\left(5+\sqrt{5}\right)}\right)$$
$$\frac{1}{10}\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)} \tan^{-1}\left(\sqrt{\frac{1}{2}\left(5-\sqrt{5}\right)}\right)$$
$$(\sqrt{1-2i} + \sqrt{1+2i}) \tan^{-1}\left(\frac{\sqrt{2(5+\sqrt{5})}}{1+\sqrt{5}}\right)$$

4×5

 $\cot^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = \frac{1}{20} \operatorname{sc}^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(-1+\sqrt{5})} \right) \left(0 \right) \sqrt{10+2\sqrt{5}}$$

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = \frac{1}{20} \tan^{-1} \left(1, \frac{2\sqrt{10+2\sqrt{5}}}{4+2(-1+\sqrt{5})} \right) \sqrt{10+2\sqrt{5}}$$

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = \frac{1}{20} i \tanh^{-1} \left(-\frac{2i\sqrt{10+2\sqrt{5}}}{4+2(-1+\sqrt{5})} \right) \sqrt{10+2\sqrt{5}}$$

Series representations:

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = \frac{1}{40} \sqrt{10+2\sqrt{5}} \pi - \frac{1}{20} \sqrt{10+2\sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^k 2^{-1-2k} (10+2\sqrt{5})^{1/2(-1-2k)} (4+2(-1+\sqrt{5}))^{1+2k}}{1+2k}$$

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = -\frac{1}{20} i \sqrt{\frac{1}{2}(5+\sqrt{5})}$$

$$\left(\log(2) + \log(1+\sqrt{5}) - \log(1+\sqrt{5}-i\sqrt{2(5+\sqrt{5})}) - \sum_{k=1}^{\infty} \frac{\left(\frac{1+\sqrt{5}-i\sqrt{2(5+\sqrt{5})}}{2+2\sqrt{5}}\right)^k}{k} \right)$$

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = -\frac{1}{40} i \sqrt{10+2\sqrt{5}} \log(2) + \frac{1}{40} i \sqrt{10+2\sqrt{5}} \log\left(-i \left(i + \frac{2\sqrt{10+2\sqrt{5}}}{4+2(-1+\sqrt{5})}\right)\right) + \frac{1}{40} i \sqrt{10+2\sqrt{5}} \sum_{k=1}^{\infty} \frac{\left(\frac{1+\sqrt{5}-i \sqrt{2(5+\sqrt{5})}}{2+2\sqrt{5}}\right)^k}{k}$$

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = \frac{(3+\sqrt{5})(5+\sqrt{5})}{10(1+\sqrt{5})} \int_0^1 \frac{1}{3+\sqrt{5}+(5+\sqrt{5})t^2} dt$$

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = -\frac{i(10+2\sqrt{5})}{40(4+2(-1+\sqrt{5}))\pi^{3/2}} \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \left(1 + \frac{4(10+2\sqrt{5})}{(4+2(-1+\sqrt{5}))^2} \right)^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^2 \, ds \text{ for } 0 < \gamma < \frac{1}{2}$$

$$\frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = -\frac{i(10+2\sqrt{5})}{40(4+2(-1+\sqrt{5}))\pi} \\ \int_{-i\infty+\gamma}^{i\infty+\gamma} \frac{(4(10+2\sqrt{5}))^{-s}(4+2(-1+\sqrt{5}))^{2s}\Gamma(\frac{1}{2}-s)\Gamma(1-s)\Gamma(s)}{\Gamma(\frac{3}{2}-s)} ds \text{ for } 0 < \frac{1}{2}$$

$$\begin{aligned} \frac{1}{20} \tan^{-1} & \left(\frac{2\sqrt{10+2\sqrt{5}}}{4+2(\sqrt{5}-1)} \right) \sqrt{10+2\sqrt{5}} = \\ & \frac{5+\sqrt{5}}{10(1+\sqrt{5}) \left(1+\frac{K}{1} \cdot \frac{(5+\sqrt{5})(1-2k)^2}{4(4+\sqrt{5}-2k)} \right)}{\left(1+\frac{4(4+\sqrt{5}-2k)}{(1+\sqrt{5})^2} \right)} = \left(5+\sqrt{5} \right) / \left(10 \left(1+\sqrt{5} \right) \left(1+\left(5+\sqrt{5} \right) \right) / \left(\left(3+\sqrt{5} \right) \left(\frac{4\sqrt{5}}{(1+\sqrt{5})^2} + \left(9\left(5+\sqrt{5} \right) \right) \right) / \left(\left(3+\sqrt{5} \right) \left(\frac{4\sqrt{5}}{(1+\sqrt{5})^2} + \frac{49(5+\sqrt{5})}{(1+\sqrt{5})^2} + \frac{25(5+\sqrt{5})}{(3+\sqrt{5}) \left(\frac{4(-2+\sqrt{5})}{(1+\sqrt{5})^2} + \frac{49(5+\sqrt{5})}{(1+\sqrt{5})^2} + \cdots \right)} \right) \right) \end{aligned}$$

thence, we obtain:

 $\frac{1}{20 \ln((((1+2)^5)/(1+2^5))) + 1}{(4 \text{sqrt5}) \ln((((((1+2*((\text{sqrt5-1})/2)+4))) / (((1-2*(((\text{sqrt5-1})/2)+4)))))) + 1}{20 (10-2 \text{sqrt5})^{(1/2)} \tan^{-1}(((((2*(10-2 \text{sqrt5})^{(1/2)})))) + 0.164708638338$

Input interpretation:

$$\frac{1}{20} \log \left(\frac{(1+2)^5}{1+2^5} \right) + \frac{1}{4\sqrt{5}} \log \left(\frac{1+2\left(\frac{1}{2}\left(\sqrt{5}-1\right)\right)+4}{1-2\left(\frac{1}{2}\left(\sqrt{5}-1\right)\right)+4} \right) + \frac{1}{20} \sqrt{10-2\sqrt{5}} \tan^{-1} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)} \right) + 0.164708638338$$

 $\log(x)$ is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

Result:

0.193226045570...

(result in radians)

0.19322604557...

Alternative representations:

$$\frac{1}{20} \log \left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log \left(\frac{1+\frac{2}{2}\left(\sqrt{5}-1\right)+4}{1-\frac{2}{2}\left(\sqrt{5}-1\right)+4}\right)}{4\sqrt{5}} + \frac{1}{20} \sqrt{10-2\sqrt{5}} \tan^{-1} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)}\right) + 0.1647086383380000 = 0.1647086383380000 + \frac{1}{20} \log \left(\frac{3^5}{1+2^5}\right) + \frac{1}{20} \tan^{-1} \left(1, \frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(1+\sqrt{5}\right)}\right) \sqrt{10-2\sqrt{5}} + \frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\sqrt{5}}$$

$$\frac{1}{20} \log \left(\frac{(1+2)^5}{1+2^5} \right) + \frac{\log \left(\frac{1+\frac{2}{2} \left(\sqrt{5}-1\right)+4}{1-\frac{2}{2} \left(\sqrt{5}-1\right)+4} \right)}{4 \sqrt{5}} + \frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan^{-1} \left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2 \left(\sqrt{5}+1\right)} \right) + 0.1647086383380000 = 0.1647086383380000 + \frac{1}{20} \log(a) \log_a \left(\frac{3^5}{1+2^5} \right) + \frac{1}{20} \tan^{-1} \left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2 \left(1+\sqrt{5}\right)} \right) \sqrt{10-2 \sqrt{5}} + \frac{\log(a) \log_a \left(\frac{4+\sqrt{5}}{6-\sqrt{5}} \right)}{4 \sqrt{5}}$$

$$\frac{1}{20} \log \left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log \left(\frac{1+\frac{2}{2}\left(\sqrt{5}-1\right)+4}{1-\frac{2}{2}\left(\sqrt{5}-1\right)+4}\right)}{4\sqrt{5}} + \frac{1}{20} \sqrt{10-2\sqrt{5}} \tan^{-1} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)}\right) + 0.1647086383380000 = 0.1647086383380000 + \frac{1}{20} \log_e \left(\frac{3^5}{1+2^5}\right) + \frac{1}{20} \tan^{-1} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(1+\sqrt{5}\right)}\right) \sqrt{10-2\sqrt{5}} + \frac{\log_e \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\sqrt{5}}$$

$$\frac{1}{20} \log \left(\frac{(1+2)^5}{1+2^5} \right) + \frac{\log \left(\frac{1+\frac{2}{2} \left(\sqrt{5} - 1\right) + 4}{1-\frac{2}{2} \left(\sqrt{5} - 1\right) + 4} \right)}{4 \sqrt{5}} + \frac{1}{20} \sqrt{10 - 2 \sqrt{5}} \tan^{-1} \left(\frac{2 \sqrt{10 - 2 \sqrt{5}}}{4 - 2 \left(\sqrt{5} + 1\right)} \right) + 0.1647086383380000 = 0.1647086383380000 + \int_0^1 - \frac{\left(-5 + \sqrt{5}\right) \left(-1 + \sqrt{5}\right)}{20 t^2 \left(-5 + \sqrt{5}\right) - 10 \left(-1 + \sqrt{5}\right)^2} dt + \frac{1}{20} \log \left(\frac{81}{11} \right) + \frac{\log \left(\frac{4 + \sqrt{5}}{6 - \sqrt{5}} \right)}{4 \sqrt{5}}$$

$$\begin{aligned} \frac{1}{20} \log\left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log\left(\frac{1+\frac{2}{2}\left(\sqrt{5}-1\right)+4}{1-\frac{2}{2}\left(\sqrt{5}-1\right)+4}\right)}{4\sqrt{5}} + \\ \frac{1}{20} \sqrt{10-2\sqrt{5}} \tan^{-1}\left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)}\right) + 0.1647086383380000 = \\ 0.1647086383380000 + \int_{1}^{\frac{81}{11}} \left(\frac{1}{20t} - \frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4\sqrt{5}\left(-\frac{81}{11}+t+\frac{4+\sqrt{5}}{6-\sqrt{5}}-\frac{t\left(4+\sqrt{5}\right)}{6-\sqrt{5}}\right)}\right) + \\ \frac{11}{70} \left(\frac{1}{\left(4-2\left(1+\sqrt{5}\right)\right)\left(1+\frac{121\left(1-t\right)^2\left(10-2\sqrt{5}\right)}{1225\left(4-2\left(1+\sqrt{5}\right)\right)^2}\right)} - \frac{\sqrt{5}}{5\left(4-2\left(1+\sqrt{5}\right)\right)\left(1+\frac{121\left(1-t\right)^2\left(10-2\sqrt{5}\right)}{1225\left(4-2\left(1+\sqrt{5}\right)\right)^2}\right)}\right)}\right) dt\end{aligned}$$

$$\begin{split} \frac{1}{20} \log & \left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log \left(\frac{1+\frac{2}{2}\left(\sqrt{5}-1\right)+4}{1-\frac{2}{2}\left(\sqrt{5}-1\right)+4}\right)}{4\sqrt{5}} + \\ & \frac{1}{20} \sqrt{10-2\sqrt{5}} \tan^{-1} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2\left(\sqrt{5}+1\right)}\right) + 0.1647086383380000 = \\ & 0.1647086383380000 + \frac{1}{20} \log \left(\frac{81}{11}\right) + \frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\sqrt{5}} - \frac{i\left(10-2\sqrt{5}\right)}{40\pi^{3/2}\left(4-2\left(1+\sqrt{5}\right)\right)} \\ & \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \Gamma \left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^2 \left(1 + \frac{4\left(10-2\sqrt{5}\right)}{\left(4-2\left(1+\sqrt{5}\right)\right)^2}\right)^{-s} ds \text{ for } 0 < \gamma < \frac{1}{2} \end{split}$$

$$\frac{1}{20} \log\left(\frac{(1+2)^3}{1+2^5}\right) + \frac{\log\left(\frac{1+\frac{5}{2}(\sqrt{5}-1)+4}{4\sqrt{5}}\right)}{4\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}} \tan^{-1}\left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2(\sqrt{5}+1)}\right) + \frac{1}{22\left(1+\frac{5}{6\times1}\frac{11}{1+2}\right)} + \frac{1}{22\left(1+\frac{5}{6\times1}\frac{11}{1+2}\right)} + \frac{10-2\sqrt{5}}{22\left(1+\frac{5}{6\times1}\frac{11}{1+2}\right)} + \frac{10-2\sqrt{5}}{22\left(1+\frac{5}{6\times1}\frac{11}{1+2}\right)} + \frac{10-2\sqrt{5}}{4\left(1+\frac{5}{6\times1}\frac{11}{1+2}\right)} + \frac{10-2\sqrt{5}}{4\left(1+2\left(1+\sqrt{5}\right)\right)^2} \left(1+\frac{4\sqrt{5}}{1+\frac{4}{6}\sqrt{5}}\right)} + \frac{10-2\sqrt{5}}{4\left(1+2\left(1+\sqrt{5}\right)\right)^2} \left(1+\frac{10-2\sqrt{5}}{1+\frac{10}{6}\sqrt{5}}\right)} + \frac{10-2\sqrt{5}}{4\sqrt{5}} + \frac{10-2\sqrt{5}}{4\left(1+\frac{70}{6}\sqrt{5}\right)}} + \frac{10-2\sqrt{5}}{4\left(1+\frac{70}{6}\sqrt{5}\right)} + \frac{10-2\sqrt{5}}{4\left(1-1+\frac{4+\sqrt{5}}{6}\sqrt{5}}\right)} + \frac{10-2\sqrt{5}}{4\left(1-1+\frac{4+\sqrt{5}}{6}\sqrt{5}}\right)} + \frac{10-2\sqrt{5}}{4\left(1-1+\frac{4+\sqrt{5}{5}}{6}\sqrt{5}\right)} + \frac{10-2\sqrt{5}}{4\left(1-1+\frac{4+\sqrt{5}}{6}\sqrt{5}\right)} + \frac{10-2\sqrt{5}}{4\left(1-1+\frac{4+\sqrt{5}}{6}\sqrt{5}\right)}} + \frac{10-2\sqrt{5}}{4\left(1-1+\frac{4+\sqrt{5}}{6}\sqrt{5}\right)} + \frac{10-2\sqrt{5}}{2+\frac{10-4}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10-4}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10-4}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10-4}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10}{6}\sqrt{5}} + \frac{10-2\sqrt{5}}{2+\frac{10}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}{2+\frac{10}{6}\sqrt{5}}} + \frac{10-2\sqrt{5}}$$

$$\begin{split} \frac{1}{20} \log & \left(\frac{(1+2)^5}{1+2^5}\right) + \frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)\cdot4}{4\sqrt{5}}\right)}{4\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}} \tan^{-1} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2(\sqrt{5}+1)}\right) + \\ & 0.1647086383380000 = 0.1647086383380000 + \frac{7}{22\left(1+\frac{8}{k-1}\frac{12(1+\frac{1}{2})}{1+k}\right)} + \\ & \frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\left(1+\frac{8}{k-1}\frac{\left(\frac{1+k+\sqrt{5}}{2}\right)^2(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}})}{1+k}\right)\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}} \\ & \left(-\frac{8\left(10-2\sqrt{5}\right)^{3/2}}{\left(\frac{4(1+(-1)^{1+k}+k)^2(10-2\sqrt{5})}{1+k}\right)\sqrt{5}} + \frac{1}{20}\sqrt{10-2\sqrt{5}}\right) \\ & \left(-\frac{8\left(10-2\sqrt{5}\right)^{3/2}}{\left(\frac{4-2(1+\sqrt{5}))^2}{3+2k}\right)} + \frac{2\sqrt{10-2\sqrt{5}}}{4-2(1+\sqrt{5})}\right) \\ & 0.1647086383380000 + \frac{1}{20}\sqrt{10-2\sqrt{5}} \left(\frac{2\sqrt{10-2\sqrt{5}}}{4-2(1+\sqrt{5}))^3} - \left(8\left(10-2\sqrt{5}\right)\right)/\left(\left(4-2\left(1+\sqrt{5}\right)\right)^2\left(5+\left(16\left(10-2\sqrt{5}\right)\right)\right)/\left(\left(4-2\left(1+\sqrt{5}\right)\right)^2\right) \\ & \left(\left(4-2\left(1+\sqrt{5}\right)\right)^2\left(5+\left(16\left(10-2\sqrt{5}\right)\right)\right)/\left(\left(4-2\left(1+\sqrt{5}\right)\right)^2\right) \\ & \left(9+\frac{64(10-2\sqrt{5})}{(4-2(1+\sqrt{5}))^2(11+\ldots)}\right)\right)\right)\right)\right)\right) + \\ \\ & \frac{7}{12\left(1+\frac{70}{11}\left(\frac{1}{2+\frac{70}{11}\left(\frac{280}{(1+(2+1))}\right)}\right)\right)} + \frac{1}{12\left(1+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4+\frac{4\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4+\frac{4\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{5+\ldots}}\right)} \\ \end{array}$$

From which:

 $1 + 1/(((1/(0.1932260455697215217319))))^{1/4} - (47 - 2)^{*1/10^{3}}$

Input interpretation:

$$1 + \frac{1}{\sqrt[4]{\frac{1}{0.1932260455697215217319}}} - (47 - 2) \times \frac{1}{10^3}$$

Result:

1.6180044090197911797693...

1.618004409... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Now, we have that:

 $1/(4sqrt2) \ln (((1+2sqrt2+4)/(1-2sqrt2+4)))+1/(2sqrt2) \tan^{-1}(((2sqrt2)/(1-4)))$

Input:

$$\frac{1}{4\sqrt{2}} \log \left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4} \right) + \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{2\sqrt{2}}{1-4} \right)$$

log(x) is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

(result in radians)

Decimal approximation:

 $-0.04059304540290341402684888493340270092590079222787614185\ldots$

(result in radians)

-0.0405930454029034.....

Alternate forms:

$$\frac{\log\left(\frac{1}{17}\left(33+20\sqrt{2}\right)\right)-2\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{4\sqrt{2}}$$
$$\frac{\log\left(\frac{1}{17}\left(33+20\sqrt{2}\right)\right)}{4\sqrt{2}}-\frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}$$
$$\frac{\log\left(-\frac{1}{2\sqrt{2}-5}\right)+\log(5+2\sqrt{2})-2\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{4\sqrt{2}}$$

Alternative representations:

$$\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} = \frac{\tan^{-1}\left(1, -\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}} + \frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}}$$
$$\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} = \frac{\tan^{-1}\left(-\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}} + \frac{\log_e\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}}$$
$$\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} = \frac{\tan^{-1}\left(-\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}} + \frac{\log(a)\log_a\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}}$$

Series representations:

$$\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} = -\frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}} + \frac{\log\left(\frac{4}{17}\left(4+5\sqrt{2}\right)\right)}{4\sqrt{2}} - \frac{\sum_{k=1}^{\infty}\frac{\left(\frac{1}{8}\left(4-5\sqrt{2}\right)\right)^{k}}{4\sqrt{2}}}{4\sqrt{2}}$$

$$\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} = \frac{\log\left(\frac{4}{17}\left(4+5\sqrt{2}\right)\right) - \sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}\left(4-5\sqrt{2}\right)\right)^{k}}{k} - 2\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{3/2+3k} \times 3^{-1-2k}}{1+2k}}{4\sqrt{2}}$$

$$\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} = \frac{\log\left(-1 + \frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right) - \sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}\left(4-5\sqrt{2}\right)\right)^{k}}{k} - 2\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{3/2+3k} \times 3^{-1-2k}}{1+2k}}{4\sqrt{2}}$$

$$\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} = -\frac{\tan^{-1}(z_0)}{2\sqrt{2}} + \frac{\log\left(-1 + \frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} + \sum_{k=1}^{\infty} \left(\frac{(-1)^{-1+k}\left(-1 + \frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)^{-k}}{4\sqrt{2}k} - \frac{i\left(-(-i-z_0)^{-k} + (i-z_0)^{-k}\right)\left(\frac{2\sqrt{2}}{3} - z_0\right)^k}{4\sqrt{2}k}\right)$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \leq i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \leq -1)))$

$$\begin{aligned} \frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} &= -3\int_{0}^{1}\frac{1}{9+8t^{2}} dt + \frac{\log\left(\frac{1}{17}\left(33+20\sqrt{2}\right)\right)}{4\sqrt{2}} \\ \frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} &= \\ \int_{1}^{1}\frac{1}{17}\left(33+20\sqrt{2}\right) \left(-\frac{3}{\left(-1+\frac{1}{17}\left(33+20\sqrt{2}\right)\right)\left(9+\frac{8\left(1-t\right)^{2}}{\left(1+\frac{1}{17}\left(-33-20\sqrt{2}\right)\right)^{2}}\right)} + \frac{1}{4\sqrt{2}t}\right) dt \end{aligned}$$

$$\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} = \frac{i}{12\pi^{3/2}} \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \left(\frac{9}{17}\right)^s \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^2 \, ds + \frac{\log\left(\frac{1}{17}\left(33+20\sqrt{2}\right)\right)}{4\sqrt{2}} \quad \text{for } 0 < \gamma < \frac{1}{2}$$

(64+8)* -1/((((1/(4sqrt2) ln (((1+2sqrt2+4)/(1-2sqrt2+4)))+1/(2sqrt2) tan^- 1(((2sqrt2)/(1-4))))))-47+Pi-(2-sqrt3+1/2)

Input:

$$\frac{(64+8)\times(-1)}{\frac{1}{4\sqrt{2}}\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right) + \frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right)$$

log(x) is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

(result in radians)

Decimal approximation:

1729.076485545783498627045199243170759302009962238176748102...

(result in radians)

1729.076485545...

We know that 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

Alternate forms:

$$-\frac{99}{2} + \sqrt{3} + \pi + \frac{144\sqrt{2}}{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right) - \tanh^{-1}\left(\frac{2\sqrt{2}}{5}\right)}$$
$$-\frac{99}{2} + \sqrt{3} + \pi + \frac{288\sqrt{2}}{\log\left(\frac{17}{33+20\sqrt{2}}\right) + 2\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}$$
$$-\frac{99}{2} + \sqrt{3} + \pi - \frac{288\sqrt{2}}{\log\left(-\frac{5+2\sqrt{2}}{2\sqrt{2}-5}\right) - 2\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}$$

 $tanh^{-1}(x)$ is the inverse hyperbolic tangent function

Alternative representations:

$$\frac{\frac{(64+8)(-1)}{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) = \frac{1}{2\sqrt{2}}}{\frac{4\sqrt{2}}{\sqrt{2}}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} + \frac{72}{\sqrt{2}} + \frac{72}{\frac{\tan^{-1}\left(1, -\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} + \frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}}}$$

$$\frac{(64+8)(-1)}{\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) = \frac{99}{2} + \pi - \frac{72}{\frac{\tan^{-1}\left(-\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} + \frac{\log_e\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} + \sqrt{3}$$

$$\frac{\frac{(64+8)(-1)}{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) =}{\frac{99}{2} + \pi - \frac{72}{\frac{\tan^{-1}\left(1-\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} + \frac{\log_e\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} + \sqrt{3}$$

Series representations:

$$\frac{(64+8)(-1)}{\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) = \frac{6}{2}$$
$$-\frac{99}{2} + \sqrt{3} + \pi + \frac{288\sqrt{2}}{2\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right) + \log\left(\frac{1}{8}\left(-4 + 5\sqrt{2}\right)\right) + \sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}\left(4 - 5\sqrt{2}\right)\right)^k}{k}}{k}$$

$$\frac{(64+8)(-1)}{\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{\frac{4\sqrt{2}}{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) = \frac{1}{2\sqrt{2}} - \frac{99}{2} + \sqrt{3} + \pi - \frac{72}{-\frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} + \frac{\log\left(-1 + \frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right) - \sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}\left(4 - 5\sqrt{2}\right)\right)^{k}}{k}}{4\sqrt{2}}$$

$$\frac{\frac{(64+8)(-1)}{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{\frac{4\sqrt{2}}{2\sqrt{2}}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} - \frac{47+\pi - \left(2-\sqrt{3}+\frac{1}{2}\right)}{2\sqrt{2}} - \frac{72}{\frac{99}{2}+\sqrt{3}+\pi - \frac{72}{\frac{\log\left(-1+\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)-\sum_{k=1}^{\infty}\left(\frac{1}{8}\left(4-5\sqrt{2}\right)\right)^{k}}{4\sqrt{2}}}{\frac{\log\left(-1+\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)-\sum_{k=1}^{\infty}\left(\frac{1}{8}\left(4-5\sqrt{2}\right)\right)^{k}}{4\sqrt{2}}} - \frac{\sum_{k=0}^{\infty}\frac{(-1)^{k}2^{3/2+3k}\times 3^{-1-2k}}{2\sqrt{2}}}{2\sqrt{2}}$$

$$\frac{\frac{(64+8)(-1)}{\log\left(\frac{1+2\sqrt{2}+4}{4\sqrt{2}}\right)} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}}{\frac{72}{5-2\sqrt{2}}} - \frac{47+\pi - \left(2-\sqrt{3}+\frac{1}{2}\right) = -\frac{99}{2} + \sqrt{3}+\pi - \frac{1}{2}}{72}$$

$$\frac{1}{1} \frac{\log\left(-1+\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right) - \sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}\left(4-5\sqrt{2}\right)\right)^k}{k}}{4\sqrt{2}}}{\sqrt{2}} - \frac{\tan^{-1}(z_0) + \frac{1}{2}i\sum_{k=1}^{\infty} \frac{\left(-(-i-z_0)^{-k}+(i-z_0)^{-k}\right)\left(\frac{2\sqrt{2}}{3}-z_0\right)^k}{2\sqrt{2}}}{2\sqrt{2}}$$

 $\begin{array}{c} \hline & 4\sqrt{2} & 2\sqrt{2} \\ \text{for } (i \, z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \leq i \, z_0 < \infty) \text{ and } \text{ not } (-\infty < i \, z_0 \leq -1))) \end{array}$

Continued fraction representations:

From which:

Input:

$$\frac{15}{\sqrt{\frac{1}{\frac{1}{4\sqrt{2}}\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right) + \frac{1}{2\sqrt{2}}\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right)$$

log(x) is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

(result in radians)

Decimal approximation:

1.643820076464536773658593726009304251173902735647061794707...

(result in radians)

$$1.6438200764645... \approx \zeta(2) = \frac{\pi^2}{6} = 1.644934...$$

Alternate forms:

$$\int_{15}^{15} -\frac{99}{2} + \sqrt{3} + \pi + \frac{144\sqrt{2}}{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right) - \tanh^{-1}\left(\frac{2\sqrt{2}}{5}\right)}$$

$$\int_{15}^{15} \sqrt{\frac{-99}{2} + \sqrt{3} + \pi} + \frac{288\sqrt{2}}{\log\left(\frac{17}{33+20\sqrt{2}}\right) + 2\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}$$

$$\int_{15}^{15} \sqrt{\frac{1}{2} \left(2\sqrt{3} - 99\right) + \pi} - \frac{72}{\frac{\log\left(\frac{1}{17}\left(33+20\sqrt{2}\right)\right)}{4\sqrt{2}} - \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}}$$

 $tanh^{-1}(x)$ is the inverse hyperbolic tangent function

All 15th roots of $-99/2 + \text{sqrt}(3) + \pi - 72/(\log((5 + 2 \text{ sqrt}(2))/(5 - 2 \text{ sqrt}(2)))/(4 \text{ sqrt}(2)) - (\tan^{(-1)}((2 \text{ sqrt}(2))/3))/(2 \text{ sqrt}(2))):$

72 e ≈ 1.6438 (real, principal root) 3 2 $\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)$ $\tan^{-1}\left(\frac{2\sqrt{2}}{2}\right)$ 3 $4\sqrt{2}$ $2\sqrt{2}$ $-\frac{99}{2} + \sqrt{3} + \pi -$ 72 $e^{(2 i \pi)/15}$ ≈1.5017+0.6686 i $\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)$ $\tan^{-1}\left(\frac{2\sqrt{2}}{\sqrt{2}}\right)$

$$\begin{split} e^{(4\,i\,\pi)/15} & \sqrt{-\frac{99}{2} + \sqrt{3} + \pi - \frac{72}{\frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} - \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} \approx 1.0999 + 1.2216\,i \\ e^{(2\,i\,\pi)/5} & \sqrt{-\frac{99}{2} + \sqrt{3} + \pi - \frac{72}{\frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} - \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} \approx 0.5080 + 1.5634\,i \\ e^{(8\,i\,\pi)/15} & \sqrt{-\frac{99}{2} + \sqrt{3} + \pi - \frac{72}{\frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} - \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} \approx -0.1718 + 1.6348\,i \\ e^{(8\,i\,\pi)/15} & \sqrt{-\frac{99}{2} + \sqrt{3} + \pi - \frac{72}{\frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} - \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} \approx -0.1718 + 1.6348\,i \\ \end{split}$$

Alternative representations:

$$\frac{(64+8)(-1)}{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) = \frac{15}{\sqrt{2}} + \frac{99}{2} + \pi - \frac{72}{\frac{\tan^{-1}\left(1, -\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} + \frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} + \sqrt{3}$$

$$\frac{(64+8)(-1)}{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) = \frac{15}{\sqrt{2}} + \frac{99}{2} + \pi - \frac{72}{\frac{\tan^{-1}\left(-\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}}} + \frac{\log_{e}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} + \sqrt{3}$$

$$\frac{(64+8)(-1)}{\sqrt{2}} + \frac{72}{\sqrt{2}} + \frac{\log_{e}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}} = \frac{15}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} = \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} = \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} = \frac{10}{\sqrt{2}} + \frac{10}{\sqrt{2}} +$$

$$\frac{15}{\sqrt{\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}} - \frac{47 + \pi - \left(2 - \sqrt{3} + \frac{\pi}{2}\right)}{2\sqrt{2}}}{\sqrt{2}} = \frac{15}{\sqrt{\frac{-\frac{99}{2} + \pi - \frac{72}{\frac{\tan^{-1}\left(1, -\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}}{4\sqrt{2}}} + \sqrt{3}}}{\frac{15}{\sqrt{\frac{15}{2}}} + \frac{10}{\sqrt{2}}}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}}{\sqrt{2}} + \frac{\log_{\ell}\left(\frac{1+2\sqrt{2}}{5-2\sqrt{2}}\right)}{\sqrt{2}} + \frac{\log_{\ell$$

Series representations:

$$\begin{split} & \sqrt{\frac{(64+8)(-1)}{\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right)} = \\ & \sqrt{\frac{99}{2} + \sqrt{3}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} - \frac{72}{-\frac{\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)}{2\sqrt{2}} + \frac{\log\left(-1 + \frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right) - \sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}\left(4 - 5\sqrt{2}\right)\right)^{k}}{k}}{4\sqrt{2}}} \end{split}$$

$$\begin{split} \frac{(64+8)(-1)}{15} & \frac{(64+8)(-1)}{\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}}{\sqrt{2}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) = \\ & \sqrt{2} \\ \sqrt{2$$

$$\begin{split} \frac{15}{\sqrt{\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right)} &= \\ \left(-\frac{99}{2} + \sqrt{3} + \pi - 72 \right) \left(\frac{\log\left(-1 + \frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right) - \sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}\left(4-5\sqrt{2}\right)\right)^{k}}{k}}{4\sqrt{2}} - \frac{\tan^{-1}(z_{0}) + \frac{1}{2}i\sum_{k=1}^{\infty} \frac{\left(-(-i-z_{0})^{-k} + (i-z_{0})^{-k}\right)\left(\frac{2\sqrt{2}}{3} - z_{0}\right)^{k}}{k}}{2\sqrt{2}}\right) \right) \uparrow (1/15) \end{split}$$

for
$$(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \le i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \le -1)))$$

$$\begin{split} \frac{15}{15} \boxed{\frac{\frac{16g\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}}{4\sqrt{2}}} - \frac{47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right)}{2} = \\ \left(-\frac{99}{2} + \sqrt{3} + \pi - 72 \right) \left(\frac{\log\left(-1 + \frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{-1 + \frac{5+2\sqrt{2}}{5-2\sqrt{2}}}\right)^{k}}{k}}{4\sqrt{2}} - \frac{\tan^{-1}(z_{0}) + \frac{1}{2}i\sum_{k=1}^{\infty} \frac{\left(-(-i-z_{0})^{-k} + (i-z_{0})^{-k}\right)\left(\frac{2\sqrt{2}}{3} - z_{0}\right)^{k}}{k}}{2\sqrt{2}} \right) \right) \land (1/15)$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \leq i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \leq -1)))$

Integral representations:

$$\begin{split} \sqrt{\frac{(64+8)(-1)}{\frac{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}} - 47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right)} = \\ \sqrt{\frac{99}{2} + \sqrt{3} + \pi - \frac{72}{-\frac{1}{3}\int_{0}^{1}\frac{1}{1+\frac{8t^{2}}{9}} dt + \frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}}} \end{split}}$$

$$\begin{split} \frac{i}{15} \frac{\frac{(64+8)(-1)}{\log\left(\frac{1+2\sqrt{2}+4}{1-2\sqrt{2}+4}\right)}}{4\sqrt{2}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}} & -47 + \pi - \left(2 - \sqrt{3} + \frac{1}{2}\right) = \\ \frac{1}{15} \sqrt{\frac{-\frac{99}{2} + \sqrt{3}}{4\sqrt{2}}} + \frac{\tan^{-1}\left(\frac{2\sqrt{2}}{1-4}\right)}{2\sqrt{2}}} & \frac{72}{\frac{i}{12\pi^{3/2}} \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \left(\frac{9}{17}\right)^{s} \Gamma\left(\frac{1}{2} - s\right) \Gamma(1-s) \Gamma(s)^{2} ds + \frac{\log\left(\frac{5+2\sqrt{2}}{5-2\sqrt{2}}\right)}{4\sqrt{2}}} & \frac{1}{\sqrt{2}} \\ 0 < \gamma < \frac{1}{2} \end{split}$$

Now, we have that:

For x = -2 and multiplying all the expression by -1, we obtain:

$$-((1/6 \ln (((1-2)^3)/(1-8)) + 1/sqrt3 \tan^{-1} (-2sqrt3/(2+2))))$$

Input:

$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^3}{1-8}\right) + \frac{1}{\sqrt{3}}\tan^{-1}\left(-2 \times \frac{\sqrt{3}}{2+2}\right)\right)$$

log(x) is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\frac{\log(7)}{6} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}$$

(result in radians)

Decimal approximation:

 $0.736387320486844454951909129191439952702295682177676137042\ldots$

(result in radians)

0.7363873204...

Alternate forms:

$$\frac{\log(7)}{6} + \frac{\cot^{-1}\left(\frac{2}{\sqrt{3}}\right)}{\sqrt{3}}$$
$$\frac{1}{6} \left(\log(7) + 2\sqrt{3} \cot^{-1}\left(\frac{2}{\sqrt{3}}\right)\right)$$
$$\frac{1}{6} \left(\log(7) + 2\sqrt{3} \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) = -\frac{1}{6}\log\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(1, -\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}}$$
$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) = -\frac{1}{6}\log_e\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}}$$
$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) = -\frac{1}{6}\log(a)\log_a\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}}$$

Series representations:

$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) = \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}} + \frac{\log(6)}{6} - \frac{1}{6}\sum_{k=1}^{\infty}\frac{\left(-\frac{1}{6}\right)^k}{k}$$

$$\begin{aligned} -\left(\frac{1}{6}\log\left(\frac{(1-2)^{3}}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) &= \\ \frac{1}{6}\left(\log(6) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^{k}}{k} + 2\sqrt{3} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{-1-2k} \times 3^{1/2+k}}{1+2k}\right) \\ -\left(\frac{1}{6}\log\left(\frac{(1-2)^{3}}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) &= \\ \frac{\tan^{-1}(z_{0})}{\sqrt{3}} + \frac{\log(6)}{6} + \sum_{k=1}^{\infty} \left(\frac{(-1)^{-1+k} 6^{-1-k}}{k} + \frac{i\left(-(-i-z_{0})^{-k} + (i-z_{0})^{-k}\right)\left(\frac{\sqrt{3}}{2} - z_{0}\right)^{k}}{2\sqrt{3} k}\right) \\ \text{for } (iz_{0} \notin \mathbb{R} \text{ or } (\text{ not } (1 \le i z_{0} < \infty) \text{ and } \text{ not } (-\infty < i z_{0} \le -1))) \end{aligned}$$

$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) = \frac{\tan^{-1}(z_0)}{\sqrt{3}} + \frac{\log(6)}{6} + \sum_{k=1}^{\infty} \left(\frac{\left(-\frac{1}{6}\right)^{1+k}}{k} + \frac{i\left(-(-i-z_0)^{-k} + (i-z_0)^{-k}\right)\left(\frac{\sqrt{3}}{2} - z_0\right)^k}{2\sqrt{3}k}\right)$$

for $(i z_0 \notin \mathbb{R} \text{ or } (\text{ not } (1 \leq i z_0 < \infty) \text{ and } \text{ not } (-\infty < i z_0 \leq -1)))$

Integral representations: $-1(-2\sqrt{3})$

$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) = \int_1^7 \left(\frac{1}{6t} + \frac{4}{49-2t+t^2}\right) dt$$

$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) = 2\int_0^1 \frac{1}{4+3t^2} dt + \frac{\log(7)}{6}$$

$$-\left(\frac{1}{6}\log\left(\frac{(1-2)^{3}}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}\right) = -\frac{i}{8\pi^{3/2}}\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \left(\frac{4}{7}\right)^{s}\Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\,\Gamma(s)^{2}\,d\,s + \frac{\log(7)}{6}\,\text{ for } 0 < \gamma < \frac{1}{2}$$

Continued fraction representations:

 $\mathop{\mathrm{K}}\limits_{k=k_1}^{k_2} a_k \, / \, b_k$ is a continued fraction

 $27*1/2*((((((48/(((-((1/6 ln (((1-2)^3)/(1-8)) + 1/sqrt3 tan^-1 (-2sqrt3/(2+2)))))))*2-5)))+2)))+13-Pi-1/(2*golden ratio)$

Input:

$$27 \times \frac{1}{2} \left(\left(-\frac{48}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{1}{\sqrt{3}} \tan^{-1}\left(-2 \times \frac{\sqrt{3}}{2+2}\right)} \times 2 - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi}$$

 $\log(x)$ is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

 ϕ is the golden ratio

Exact Result:

$$-\frac{1}{2\phi} + 13 - \pi + \frac{27}{2} \left(\frac{96}{\frac{\log(7)}{6} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}} - 3 \right)$$

(result in radians)

Decimal approximation:

1728.992784194261273873736870175107646602163369377715813100...

(result in radians)

 $1728.99278419... \approx 1729$

We know that 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

Alternate forms:

1	55	7776
- <u></u> 2φ	$\frac{1}{2}^{-\pi + 1}$	$\overline{\log(7) + 2\sqrt{3} \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}$
$-\frac{1}{2\phi}$	$-\frac{55}{2}-\pi+$	$\frac{7776 \sqrt{3}}{\sqrt{3} \log(7) + 6 \tan^{-1} \left(\frac{\sqrt{3}}{2}\right)}$
- <u>55</u> - 2	$\frac{1}{1+\sqrt{5}}$	$-\pi + \frac{1296}{\frac{\log(7)}{6} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}$

_

Alternative representations:

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = 13 - \pi - \frac{1}{2\phi} + \frac{27}{2} \left(-3 + \frac{96}{-\frac{1}{6} \log\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(1, -\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}}} \right)$$

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = 13 - \pi - \frac{1}{2\phi} + \frac{27}{2} \left(-3 + \frac{96}{-\frac{1}{6} \log_e\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}}} \right)$$

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = 13 - \pi - \frac{1}{2\phi} + \frac{27}{2} \left(-3 + \frac{96}{-\frac{1}{6} \log_e\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(1, -\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}}} \right)$$

Series representations:

Series representations:

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = -\frac{55}{2} - \frac{1}{1+\sqrt{5}} - \pi + \frac{1296}{\frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}} + \frac{1}{6} \left(\log(6) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^k}{k}\right)}$$

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = -\frac{55}{2} - \frac{1}{1+\sqrt{5}} - \pi + \frac{1296}{\frac{1}{6} \left(\log(6) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^k}{k}\right) + \frac{\sum_{k=0}^{\infty} \frac{(-1)^k 2^{-1-2k} \times 3^{1/2+k}}{\sqrt{3}}}{\sqrt{3}}}$$

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = -\frac{55}{2} - \frac{1}{1+\sqrt{5}} - \pi + \frac{1}{1+\sqrt{5}} - \pi + \frac{1}{296} - \frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{$$

Integral representations:

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = -\frac{55}{2} - \frac{1}{2\phi} - \pi + \frac{7776}{12\int_0^1 \frac{1}{4+3t^2} dt + \log(7)} \right)$$

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = -\frac{55}{2} - \frac{1}{2\phi} - \pi + \frac{1296}{\int_1^7 \left(\frac{1}{6t} + \frac{4}{49-2t+t^2}\right) dt} \right)$$

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}} - 5}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = -\frac{55}{2} - \frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} - \frac{1}{2\phi} + \frac{1296}{\sqrt{3}} - \frac{1}{1+\sqrt{5}} - \frac{1}{1+$$

Continued fraction representations:

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = \frac{55}{2} - \frac{1}{2\phi} - \pi + \frac{7776}{\log(7) + \frac{3}{1+\frac{6}{K}} \frac{3k^2}{1+2k}} = -\frac{55}{2} - \frac{1}{2\phi} - \pi + \frac{7776}{\log(7) + \frac{3}{1+\frac{3}{K+\frac{27}{4(7+\frac{12}{9+\dots})}}} - \frac{55}{2} - \frac{1}{2\phi} - \pi + \frac{7776}{\log(7) + \frac{3}{1+\frac{3}{K+\frac{27}{4(7+\frac{12}{9+\dots})}}} = -\frac{55}{2} - \frac{1}{2\phi} - \pi + \frac{7776}{\log(7) + \frac{3}{1+\frac{3}{K+\frac{27}{4(7+\frac{12}{9+\dots})}}} - \frac{55}{4\phi} - \frac{1}{2\phi} - \frac{1}{2\phi}$$

$$\begin{aligned} \frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5\right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = \\ 13 - \frac{1}{2\phi} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{\log(7)}{6} + \frac{1}{2\left(1 + \frac{\infty}{K} - \frac{3k^2}{1+2k}\right)}} \right) = \\ 13 - \frac{1}{2\phi} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{\log(7)}{6} + \frac{1}{2\left(1 + \frac{\infty}{K} - \frac{3k^2}{1+2k}\right)}} \right) = \\ 2 - \frac{13}{2} \left(-3 + \frac{96}{\frac{\log(7)}{6} + \frac{1}{2\left(1 + \frac{3}{4\left(3 + \frac{3}{27} + \frac{27}{4\left(7 + \frac{12}{9} + \ldots\right)}\right)} \right)} \right) = \\ 13 - \frac{1}{2\phi} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{\log(7)}{6} + \frac{1}{2\left(1 + \frac{3}{4\left(3 + \frac{3}{27} + \frac{27}{4\left(7 + \frac{12}{9} + \ldots\right)}\right)} \right)} \right) = \\ 13 - \frac{1}{2\phi} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{\log(7)}{6} + \frac{1}{2\left(1 + \frac{3}{4\left(3 + \frac{3}{27} + \frac{27}{4\left(7 + \frac{12}{9} + \ldots\right)}\right)} \right)} \right) = \\ 13 - \frac{1}{2\phi} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{\log(7)}{6} + \frac{1}{2\left(1 + \frac{3}{4\left(3 + \frac{3}{27} + \frac{12}{9} + \ldots\right)}\right)} \right) = \\ 13 - \frac{1}{2\phi} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{\log(7)}{6} + \frac{1}{2\left(1 + \frac{3}{4\left(7 + \frac{3}{9} + \ldots\right)}\right)} \right) = \\ 13 - \frac{1}{2\phi} - \frac{1}{$$

From which:

 $((27*1/2*((((((48/(((-((1/6 ln (((1-2)^3)/(1-8)) + 1/sqrt3 tan^-1 (-2sqrt3/(2+2)))))))*2-5)))+2)))+13-Pi-1/(2*golden ratio)))^{1/15}$

Input:

$$\frac{15}{\sqrt{27 \times \frac{1}{2} \left(\left(-\frac{48}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{1}{\sqrt{3}} \tan^{-1}\left(-2 \times \frac{\sqrt{3}}{2+2}\right) \times 2 - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi}}$$

log(x) is the natural logarithm

 $\tan^{-1}(x)$ is the inverse tangent function

 ϕ is the golden ratio

Exact Result:

$$\int_{15}^{15} -\frac{1}{2\phi} + 13 - \pi + \frac{27}{2} \left(\frac{96}{\frac{\log(7)}{6} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}} - 3 \right)$$

(result in radians)

Decimal approximation:

 $1.643814771394787036770119180752410280641371729502784324347\ldots$

(result in radians)

$$1.6438147713\ldots \approx \zeta(2) = \frac{\pi^2}{6} = 1.644934\ldots$$

Alternate forms:

$$\int_{15}^{15} -\frac{1}{2\phi} - \frac{55}{2} - \pi + \frac{7776}{\log(7) + 2\sqrt{3} \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}$$

$$\int_{15}^{15} \sqrt{\frac{-\frac{55}{2} - \frac{1}{1 + \sqrt{5}} - \pi + \frac{1296}{\frac{\log(7)}{6} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}}$$

$$13 - \frac{1}{1 + \sqrt{5}} - \pi + \frac{27}{2} \left(\frac{96}{\frac{\log(7)}{6} + \frac{\cot^{-1}\left(\frac{2}{\sqrt{3}}\right)}{\sqrt{3}}} - 3 \right)$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Expanded form:

$$13 - \frac{1}{1 + \sqrt{5}} - \pi + \frac{27}{2} \left(\frac{96}{\frac{\log(7)}{6} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}} - 3 \right)$$

All 15th roots of $-1/(2 \phi) + 13 - \pi + 27/2 (96/(\log(7)/6 + (\tan^{(-1)})/6)))$ 1)(sqrt(3)/2))/sqrt(3)) - 3): $e^{0} \begin{bmatrix} -\frac{1}{2\phi} + 13 - \pi + \frac{27}{2} \\ \frac{\log(7)}{15} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{15} \end{bmatrix} \approx 1.64381 \text{ (real, principal root)}$ $e^{(2\,i\,\pi)/15} \left| \begin{array}{c} -\frac{1}{2\,\phi} + 13 - \pi + \frac{27}{2} \left| \begin{array}{c} 96 \\ \frac{\log(7)}{2} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{2}} - 3 \end{array} \right| \approx 1.50170 + 0.6686\,i$ $e^{(4\,i\,\pi)/15} \left| \begin{array}{c} -\frac{1}{2\,\phi} + 13 - \pi + \frac{27}{2} \left[\begin{array}{c} 96 \\ \frac{\log(7)}{2} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{2} - 3 \end{array} \right| \approx 1.0999 + 1.2216\,i$ $e^{(2i\pi)/5} \int_{15}^{15} \left| -\frac{1}{2\phi} + 13 - \pi + \frac{27}{2} \right| \frac{96}{\frac{\log(7)}{10} + \frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}} - 3 \right| \approx 0.5080 + 1.5634 i$ $e^{(8\,i\,\pi)/15} \left| \begin{array}{c} -\frac{1}{2\,\phi} + 13 - \pi + \frac{27}{2} \\ \frac{15}{10\,(7)} + \frac{1}{2} \left(\frac{96}{\frac{\log(7)}{2}} - 3 \right) \right| \approx -0.17183 + 1.63481\,i$

Alternative representations:

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = \frac{1}{2\phi}$$

$$\frac{15}{\sqrt{13 - \pi - \frac{1}{2\phi} + \frac{27}{2}} \left(-3 + \frac{96}{-\frac{1}{6} \log\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(1, -\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}}} \right)}{\frac{16}{\sqrt{16}} \left(-\frac{1}{2\phi} + \frac{96}{2\phi} \right) + \frac{16}{2\phi} \left(-\frac{1}{2\phi} + \frac{16}{2\phi} \right) + \frac{16}{2\phi} \left(-\frac{1}{2\phi} + \frac{16}{2\phi} \right) + \frac{16}{2\phi} \left(-\frac{16}{2\phi} + \frac{16}{2\phi} \right) + \frac{16}{2\phi} \right) + \frac{16}{2\phi}$$

$$\begin{split} \sqrt{\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}} - 5 \right) + 2} \right) + 13 - \pi - \frac{1}{2\phi} &= \\ \sqrt{\frac{15}{15} \left(13 - \pi - \frac{1}{2\phi} + \frac{27}{2} \left(-3 + \frac{96}{-\frac{1}{6} \log_e\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}} \right)} \right)} \end{split}$$

$$\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = \frac{1}{2\phi}$$

$$\frac{13}{15} \sqrt{13 - \pi - \frac{1}{2\phi} + \frac{27}{2}} \left(-3 + \frac{96}{-\frac{1}{6} \log_e\left(\frac{-1}{-7}\right) - \frac{\tan^{-1}\left(1, -\frac{2\sqrt{3}}{4}\right)}{\sqrt{3}}} \right)$$

Series representations:

$$\begin{split} & \frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}}} - 5 \right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} = \\ & 13 - \frac{1}{1+\sqrt{5}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}} + \frac{1}{6} \left(\log(6) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^k}{k}\right)}{\frac{1}{6} \left(\log(6) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^k}{k}\right)} \right) \end{split}$$

$$\begin{split} \sqrt{\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}} - 5\right) + 2} \right) + 13 - \pi - \frac{1}{2\phi} &= \\ \sqrt{\frac{15}{15} \left(13 - \frac{1}{1+\sqrt{5}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{6} \left(\log(6) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1-k}{6}\right)^k}{k}\right) + \frac{\sum_{k=0}^{\infty} \frac{(-1)^k 2^{-1-2k} - 3^{1/2+k}}{\sqrt{3}}}{\sqrt{3}} \right)} \right) \\ \sqrt{\frac{27}{2} \left(\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{2+2}\right)}{\sqrt{3}} - 5\right) + 2 \right) + 13 - \pi - \frac{1}{2\phi} &= \\ \left(13 - \frac{1}{1+\sqrt{5}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{6} \left(\log(6) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1-k}{6}\right)^k}{k}\right) + \frac{\tan^{-1}(z_0) + \frac{1}{2}i \sum_{k=1}^{\infty} \frac{\left(-(-i-z_0)^{-k} + (i-z_0)^{-k}\right) \left(\frac{\sqrt{3}}{2} - z_0\right)^k}{\sqrt{3}} \right) \right) \end{split}$$

Integral representations:

$$\begin{split} & \sqrt{\frac{27}{2}} \left[\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(\frac{2\sqrt{3}}{242}\right)}{\sqrt{3}}} - 5 \right) + 2 \right] + 13 - \pi - \frac{1}{2\phi} = \\ & \sqrt{\frac{15}{2}} \left[13 - \frac{1}{1+\sqrt{5}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\int_{1}^{7} \left(\frac{1}{6t} + \frac{4}{49-2t+t^2}\right) dt} \right) \right] \right] \\ & \sqrt{\frac{27}{2}} \left[\left(-\frac{48 \times 2}{\frac{1}{6} \log\left(\frac{(1-2)^3}{1-8}\right) + \frac{\tan^{-1}\left(-\frac{2\sqrt{3}}{242}\right)}{\sqrt{3}}} - 5 \right) + 2 \right] + 13 - \pi - \frac{1}{2\phi} = \\ & \sqrt{\frac{15}{2}} \left[\sqrt{\frac{13}{1-\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2}} \left(-3 + \frac{96}{\frac{1}{2}\int_{0}^{1} \frac{4}{4+3t^2} dt + \frac{\log(7)}{6}} \right) \right] \right] \\ & \sqrt{\frac{27}{2}} \left[\left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{2}\int_{0}^{1} \frac{4}{4+3t^2} dt + \frac{\log(7)}{6}} \right) \right] \right] \\ & \sqrt{\frac{27}{2}} \left[\left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{2}\int_{0}^{1} \frac{4}{4+3t^2} dt + \frac{\log(7)}{6}} \right) \right] \right] \\ & \sqrt{\frac{27}{2}} \left[\left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{2}\int_{0}^{1} \frac{4}{(1+3t^2)} dt + \frac{10}{2}\int_{0}^{1} \frac{2}{(1+3t^2)} dt + \frac{10}{2} \right) \right] \\ & \sqrt{\frac{27}{2}} \left[\left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{242}} \right) \right) \right] \\ & \sqrt{\frac{27}{2}} \left[\left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{242}} \right) \right) \right] \\ & \sqrt{\frac{27}{2}} \left[\left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{242}} \right) \right] \\ & \sqrt{\frac{27}{1}} \left[\left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{242}} \right) \right] \right] \\ & \sqrt{\frac{27}{1}} \left[\sqrt{\frac{27}{1}} \left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{242}} \right) \right) \right] \\ & \sqrt{\frac{27}{1}} \left[\sqrt{\frac{27}{1}} \left(-\frac{48 \times 2}{\frac{1}{1+\sqrt{5}}} - \pi + \frac{27}{2} \left(-3 + \frac{96}{\frac{1}{242}} \right) \right] \\ & \sqrt{\frac{27}{1}} \left[\sqrt{\frac{27}{1+\sqrt{5}}} - \frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} \right) \right] \\ & \sqrt{\frac{27}{1}} \left[\sqrt{\frac{27}{1+\sqrt{5}}} - \frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} \right] \\ & \sqrt{\frac{27}{1+\sqrt{5}}} \left(-\frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} \right) \\ & \sqrt{\frac{27}{1+\sqrt{5}}} \left(-\frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} \right) \right] \\ & \sqrt{\frac{27}{1+\sqrt{5}}} \left(-\frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} \right) \\ & \sqrt{\frac{27}{1+\sqrt{5}}} \left(-\frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} \right) \\ & \sqrt{\frac{27}{1+\sqrt{5}}} \left(-\frac{1}{1+\sqrt{5}} - \frac{1}{1+\sqrt{5}} \right) \right) \\ & \sqrt{\frac{27}{1+\sqrt{5}}} \left(-\frac{1}{1+\sqrt$$

 $\frac{\log(7)}{6}$

Continued fraction representations:

EXAMPLE OF RAMANUJAN MATHEMATICS APPLIED TO THE COSMOLOGY

From:

A Reissner-Nordstrom+Λ black hole in the Friedman-Robertson-Walker universe- arXiv:1703.05119v1 [physics.gen-ph] 5 Mar 2017 Safiqul Islam and Priti Mishra[†] Harish-Chandra Research Institute, Allahabad 211019, Uttar Pradesh, India Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India Farook Rahaman[‡] - Department of Mathematics,Jadavpur University,Kolkata-700 032,West Bengal,India - (Dated: March 16, 2017) From:

$$r_{\pm} = M \pm \sqrt{M^2 - Q^2},$$

For MBH87 data: mass = 13.12806e+39; radius = 1.94973e+13, we obtain:

 $(1.94973e+13-13.12806e+39)^2 = ((13.12806e+39)^2-x^2)$

Input interpretation: $(1.94973 \times 10^{13} - 13.12806 \times 10^{39})^2 = (13.12806 \times 10^{39})^2 - x^2$

Result:

 $1.72346 \times 10^{80} = 1.72346 \times 10^{80} - x^2$

Alternate forms:

 $x^2 + 0 = 0$

 $1.72346 \times 10^{80} = -(x - 1.31281 \times 10^{40})(x + 1.31281 \times 10^{40})$

Solution:

x = 0

Indeed:

 $(1.94973e+13-13.12806e+39)^2 = ((13.12806e+39)^2)$

Input interpretation: $(1.94973 \times 10^{13} - 13.12806 \times 10^{39})^2 = (13.12806 \times 10^{39})^2$

Result:

True

Thence Q = 0

Now, for

 $a(v) > \frac{\sqrt{k}}{4}$. For the present universe, assuming a(v) = 1 and thus k < 16. Though constant k has an upper limit, it increases with the expansion of the universe and decreases with the contraction of the universe. We should observe a peculiar change when the constant k reaches this numerical value which is the limiting value for the expansion of the universe.

For Q = 0 in eqn.(64),

$$2(2 - \frac{\sqrt{1 + \frac{kx^2}{4}}}{ax})\left[\frac{M^2}{(\frac{ax}{\sqrt{1 + \frac{kx^2}{4}}})^3} - \frac{Q^2}{(\frac{ax}{\sqrt{1 + \frac{kx^2}{4}}})^3} + \Lambda e^{-\frac{2ax}{\sqrt{1 + \frac{kx^2}{4}}}}\right] + \frac{\sqrt{1 + \frac{kx^2}{4}}}{ax} = 0. \quad (64)$$

Hence at x = R we get,

$$2(2 - \frac{\sqrt{1 + \frac{kR^2}{4}}}{aR})\left[\frac{M^2}{\left(\frac{aR}{\sqrt{1 + \frac{kR^2}{4}}}\right)^3} - \frac{Q^2}{\left(\frac{aR}{\sqrt{1 + \frac{kR^2}{4}}}\right)^3} + \Lambda e^{-\frac{2aR}{\sqrt{1 + \frac{kR^2}{4}}}}\right] + \frac{\sqrt{1 + \frac{kR^2}{4}}}{aR} = 0.$$
(65)

$$\Lambda = -e^{\frac{2aR}{\sqrt{1+\frac{kR^2}{4}}}} \cdot \left[\frac{M^2}{\left(\frac{aR}{\sqrt{1+\frac{kR^2}{4}}}\right)^3} + \frac{1}{2\left(\frac{2aR}{\sqrt{1+\frac{kR^2}{4}}} - 1\right)}\right],$$
(67)

For k = 12, and a = 1, M = 13.12806e+39; R = 1.94973e+13, we obtain:

and:

 $\frac{(1+((12*(1.94973e+13)^2)/4))^{1/2}}{\text{Input interpretation:}} \sqrt{1+\frac{1}{4}(12(1.94973\times10^{13})^2)}$

Result: 3.37703... × 10¹³ 3.37703e+13 Substituting in the eqs. (67), we obtain:

 $-\exp(((2*1.94973e+13)/(3.37703e+13))) * [(((13.12806e+39)^{2})) / (((1.94973e+13)/(3.37703e+13)))^{3} + 1/((2((((2*1.94973e+13)/(3.37703e+13)-1)))))]$

Input interpretation:

 $-exp \Biggl(\frac{2 \times 1.94973 \times 10^{13}}{3.37703 \times 10^{13}} \Biggr) \Biggl(\frac{(13.12806 \times 10^{39})^2}{\left(\frac{1.94973 \times 10^{13}}{3.37703 \times 10^{13}}\right)^3} + \frac{1}{2 \left(\frac{2 \times 1.94973 \times 10^{13}}{3.37703 \times 10^{13}} - 1\right)} \Biggr)$

Result: -2.84160...×10⁸¹ -2.84160...*10⁸¹

which represents the Cosmological Constant inside the Schwarzschild black hole and also has a negative value.

Performing the following equation with the usual value of the Cosmological Constant 1.1056e-52, we obtain:

(1.1056e-52)x = -2.84160e+81

Input interpretation:

 $1.1056 \times 10^{-52} x = -2.84160 \times 10^{81}$

Result:

 $1.1056 \times 10^{-52} x = -2.8416 \times 10^{81}$

Alternate form:

 $1.1056 \times 10^{-52} x + 2.8416 \times 10^{81} = 0$

Alternate form assuming x is real:

 $1.1056 \times 10^{-52} x + 0 = -2.8416 \times 10^{81}$

Solution:

x =

-25 701 881 331 403 766 886 664 569 715 710 133 147 602 520 011 173 198 993 507 · 564 120 861 732 475 370 738 202 865 312 319 616 245 712 374 922 255 343 303 · 805 210 672 526 000 128

Integer solution:

x =

```
-25 701 881 331 403 766 886 664 569 715 710 133 147 602 520 011 173 198 993 507 %
564 120 861 732 475 370 738 202 865 312 319 616 245 712 374 922 255 343 303 %
805 210 672 526 000 128
```

Result:

 $-2.5701881331403766886664569715710133147602520011173198993507564120 \\ 861732475370738202865312319616245712374922255343303805210672526 \\ 000128 \times 10^{133} \\ 000128 \times$

 $-2.57018813314...*10^{133}$

Value that multiplied by 1.1056e-52, give us $-2.84160 * 10^{81}$

Multiplying this result with the usual value of the Cosmological Constant, we obtain:

(1.1056e-52) * (-2.84160e+81)

Input interpretation:

 $1.1056 \times 10^{-52} \; (-2.84160 \times 10^{81})$

Result:

 $-314\,167\,296\,000\,000\,000\,000\,000\,000\,000\,000$

Result:

 $-3.14167296 \times 10^{29}$ -3.14167296*10²⁹ result that is nearly to a multiple of π with minus sign We have also that, from the formula of coefficients of the '5th order' mock theta function $\psi_1(q)$: (A053261 OEIS Sequence)

 $sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n))$

for n = 230 and subtracting 47, that is a Lucas number, and π , we obtain:

sqrt(golden ratio) * exp(Pi*sqrt(230/15)) / (2*5^(1/4)*sqrt(230)) -47 - Pi

Input:

$$\sqrt{\phi} \times \frac{\exp\left(\pi \sqrt{\frac{230}{15}}\right)}{2\sqrt[4]{5} \sqrt{230}} - 47 - \pi$$

 ϕ is the golden ratio

Exact result:

$$\frac{e^{\sqrt{46/3} \pi} \sqrt{\frac{\phi}{46}}}{2 \times 5^{3/4}} - 47 - \pi$$

Decimal approximation:

6122.273163239088047930830535468077939193046207568421910068...

6122.273163239.....

Alternate forms:

$$-47 + \frac{1}{20} \sqrt{\frac{1}{23} \left(5 + \sqrt{5}\right)} e^{\sqrt{46/3} \pi} - \pi$$

$$-47 + \frac{\sqrt{\frac{1}{23} \left(1 + \sqrt{5}\right)}}{4 \times 5^{3/4}} e^{\sqrt{46/3} \pi} - \pi$$

$$\frac{1}{460} \left(-21620 + \sqrt[4]{5} \sqrt{23 \left(1 + \sqrt{5}\right)} e^{\sqrt{46/3} \pi} - 460 \pi$$

Series representations:

$$\frac{\sqrt{\phi} \exp\left(\pi \sqrt{\frac{230}{15}}\right)}{2\sqrt[4]{5} \sqrt{230}} - 47 - \pi = -\left(\left(470\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (230 - z_0)^k z_0^{-k}}{k!} + 10\pi \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (230 - z_0)^k z_0^{-k}}{k!} - 5^{3/4} \exp\left(\pi \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(\frac{46}{3} - z_0\right)^k z_0^{-k}}{k!}\right)\right)$$
$$\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (\phi - z_0)^k z_0^{-k}}{k!}\right) / \left(10\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (230 - z_0)^k z_0^{-k}}{k!}\right)$$
for not ((z_0 \in \mathbb{R} and $-\infty \le z_0 \le 0$))

101 not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

$$\begin{split} \frac{\sqrt{\phi} \, \exp\left(\pi \sqrt{\frac{230}{15}}\right)}{2 \sqrt[4]{5} \sqrt{230}} &-47 - \pi = \\ -\left(\!\left[470 \, \exp\left(i\pi \left\lfloor \frac{\arg(230 - x)}{2\pi} \right\rfloor\right)\! \sum_{k=0}^{\infty} \frac{(-1)^k \, (230 - x)^k \, x^{-k} \left(-\frac{1}{2}\right)_k}{k!} + \right. \\ & 10 \, \pi \, \exp\left(i\pi \left\lfloor \frac{\arg(230 - x)}{2\pi} \right\rfloor\right)\! \sum_{k=0}^{\infty} \frac{(-1)^k \, (230 - x)^k \, x^{-k} \left(-\frac{1}{2}\right)_k}{k!} - \\ & 5^{3/4} \, \exp\left(i\pi \left\lfloor \frac{\arg(\phi - x)}{2\pi} \right\rfloor\right) \exp\left[\pi \, \exp\left(i\pi \left\lfloor \frac{\arg\left(\frac{46}{3} - x\right)}{2\pi} \right\rfloor\right)\! \sqrt{x} - \\ & \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{46}{3} - x\right)^k \, x^{-k} \left(-\frac{1}{2}\right)_k}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^k \, (\phi - x)^k \, x^{-k} \left(-\frac{1}{2}\right)_k}{k!}\right)}{\left(10 \, \exp\left(i\pi \left\lfloor \frac{\arg(230 - x)}{2\pi} \right\rfloor\right)\! \sum_{k=0}^{\infty} \frac{(-1)^k \, (230 - x)^k \, x^{-k} \left(-\frac{1}{2}\right)_k}{k!}\right)\right) \text{ for } (x \in \mathbb{R} \text{ and } x < 0) \end{split}$$

From which:

(-(-2.84160e+81))^(5Pi/(((sqrt(golden ratio) * exp(Pi*sqrt(230/15)) / (2*5^(1/4)*sqrt(230)) -47 - Pi))))

Input interpretation:

$$5 \times \pi \left(\sqrt{\frac{\phi}{\phi}} \times \frac{\exp\left(\pi \sqrt{\frac{230}{15}}\right)}{2 \sqrt[4]{5} \sqrt{230}} - 47 - \pi \right) - (-(-2.84160 \times 10^{81}))$$

 ϕ is the golden ratio

Result:

1.618027996701560438286389221876566317933407173693842150642...

1.6180279967..... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Input interpretation:

1.6180279967015604382863892218765663179334071736938421

Possible closed forms: $-\frac{8 (45 F_{FR} - 1127)}{2047 F_{FR} - 800} \approx 1.618027996701560429601$ $\frac{1}{3} \sqrt{\frac{1}{55} (-200 + 333 e + 162 \pi + 118 \log(2))} \approx 1.61802799670156043867372$ $-\frac{4 (73 - 325 \pi + 39 \pi^2)}{49 - 72 \pi + 159 \pi^2} \approx 1.61802799670156043858425$ $\pi \frac{1000 \text{ f } 522 x^4 + 580 x^3 - 1362 x^2 + 919 x - 228 \text{ near } x = 0.515034}{1.61802799670156043816535} \approx 1.618027996701560438265766$ $\frac{3}{2} \frac{2}{51} (984 - 89 e + 1000 \pi - 1707 \log(2))}{5^{2/3}} \approx 1.618027996701560438265766$ $\frac{3709 980 781 \pi}{7203366314} \approx 1.618027996701560438296510$ $\frac{1000 \pi - 1707 \log(2)}{1.618027996701560438296510} \approx 1.618027996701560438296510$

$$\frac{\sqrt[4]{\frac{31028\,619}{4409\,789}}\pi}{\sqrt{10}} \approx 1.618027996701560456743}$$

root of
$$1179 x^4 + 4220 x^3 - 4186 x^2 - 350 x + 647$$
 near $x = 0.618036$

1

1.618027996701560438290441

root of 5888
$$x^3 - 39087 x^2 + 37056 x + 17431$$
 near $x = 1.61803$

1.6180279967015604382844533

π root of 29646 x^3 - 33474 x^2 - 52404 x + 31819 near x = 0.515034 ≈ 1.6180279967015604382844495

root of $17431 x^3 + 37056 x^2 - 39087 x + 5888$ near x = 0.618036

1.6180279967015604382844533

root of
$$439 x^5 - 1047 x^4 + 217 x^3 + 924 x^2 - x - 1029$$
 near $x = 1.61803$ \approx 1.61802799670156043831097

$$π$$
 root of 657 x^5 + 621 x^4 + 647 x^3 − 1476 x^2 + 75 x + 197 near $x = 0.515034$ ≈ 1.618027996701560438263743

$$\frac{e^{\frac{3}{5} - \frac{9}{10e} - \frac{3e}{10} + \frac{2}{5\pi} - \frac{3\pi}{5}}{\sqrt[2]{10e}/20 - 3/10}}{\sqrt[20]{\sin(e\pi)} (-\cos(e\pi))^{7/20}} \approx 1.61802799670156043862208$$

Now, we have that:

$$a = 3.2^{\frac{1}{3}} . (1 - 4Q^2 \Lambda), \tag{9}$$

$$b = [-54 + 972M^2\Lambda - 648Q^2\Lambda + [(-54 + 972M^2\Lambda - 648Q^2\Lambda)^2 - 4(9 - 36Q^2\Lambda)^3]^{\frac{1}{2}}]^{\frac{1}{3}}, \qquad (10)$$

$$c = 3.2^{\frac{1}{3}}\Lambda,\tag{11}$$

For **Q** = 0.00089, $\Lambda = 1.1056e-52 \text{ m}^{-2}$:

convert $1.1056 \times 10^{-52} \text{ m}^{-2}$ (reciprocal square meters) to per kilometers squared 1.106×10^{-46} /km² (per kilometers squared) $\Lambda = -1.1056 * 10^{-46}$

Mass = 3.8 solar masses: $3.8 \times 1.9891 \times 10^{30} = 7558580000000000000000000000000 = 7.55858 \times 10^{30}$

M = 7.55858e + 30

We obtain:

 $a = 3.2^{\frac{1}{3}} \cdot (1 - 4Q^2 \Lambda)$

(3.2)^{1/3} (1-((4*0.00089²*(-1.1056e-46))))

Input interpretation:

 $\sqrt[3]{3.2} (1 - 4 \times 0.00089^2 (-1.1056 \times 10^{-46}))$

Result:

1.473612599456154642311929133431922888766903246975273583906... 1.4736125994561546.... = a

Now, we have that:

$$\begin{split} b &= [-54 + 972 M^2 \Lambda - 648 Q^2 \Lambda \\ &+ [(-54 + 972 M^2 \Lambda - 648 Q^2 \Lambda)^2 \\ &- 4(9 - 36 Q^2 \Lambda)^3]^{\frac{1}{2}}]^{\frac{1}{3}}, \end{split}$$

 $sqrt[(((((-54+972*((7.55858e+30)^2*(-1.1056e-46))-648*0.00089^2*(-1.1056e-46))+(((-54+972*((7.55858e+30)^2*(-1.1056e-46))-648*0.00089^2(-1.1056e-46)))^2-4(((9-36*0.00089^2*(-1.1056e-46)^3))))))))]^{1/3}$

Input interpretation:

$$\begin{array}{l} \left(\sqrt{\left(-54+972\left(\!\left(7.55858\times10^{30}\right)^2\left(-1.1056\times10^{-46}\right)\!\right)-648\times0.00089^2\left(-1.1056\times10^{-46}\right)\!+\left(\!\left(\!\left(-54+972\left(\!\left(7.55858\times10^{30}\right)^2\left(-1.1056\times10^{-46}\right)\!\right)\!\right)\!-648\times0.00089^2\left(-1.1056\times10^{-46}\right)\!\right)\!\right)\!-648\times0.00089^2\left(-1.1056\times10^{-46}\right)\!\right)^2 -4\left(9-36\times0.00089^2\left(-1.1056\times10^{-46}\right)^3\right)\!\right)\!\right) \uparrow (1/3) \end{array}$$

Result:

 $1.83111199541752990708040277172533632222868007678838540...\times 10^{6} \\ 1.8311119954175299\ldots* 10^{6} = b$

And:

$$c = 3.2^{\frac{1}{3}}\Lambda,$$

(3.2)^(1/3) * (-1.1056e-46)

Input interpretation:

 $\sqrt[3]{3.2} (-1.1056 \times 10^{-46})$

Result:

 $-1.62923... \times 10^{-46}$ $-1.62923...*10^{-46} = c$

From

$$r_4 = -\frac{1}{2} \cdot \left[\frac{2}{\Lambda} + \frac{a}{\Lambda b} + \frac{b}{c} \right]^{\frac{1}{2}} + \frac{1}{2} \cdot \left[\frac{4}{\Lambda} - \frac{a}{\Lambda b} - \frac{b}{c} + \frac{12M}{\Lambda(\frac{2}{\Lambda} + \frac{a}{\Lambda b} + \frac{b}{c})^{\frac{1}{2}}} \right]^{\frac{1}{2}}$$

We have that:

c = -1.62923e-46b = 1.8311119954175299e+6 a = 1.4736125994561546 $\Lambda = -1.1056e-46$

```
-1/2((((2/(-1.1056e-46)+(1.4736125994561546) / (-1.1056e-46 * 1.8311119954175299e+6) + (1.8311119954175299e+6) / (-1.62923e-46)))))^1/2
```

Input interpretation: $-\frac{1}{2}\sqrt{\left(-\frac{2}{1.1056\times10^{-46}}+-\frac{1.4736125994561546}{1.1056\times10^{-46}\times1.8311119954175299\times10^{6}}+\frac{1.8311119954175299\times10^{6}}{1.62923\times10^{-46}}\right)}$

Result:

 $-5.30074... \times 10^{25} i$

Polar coordinates:

 $r = 5.30074 \times 10^{25}$ (radius), $\theta = -90^{\circ}$ (angle) 5.30074*10²⁵

and:

$$+\frac{1}{2} \cdot \left[\frac{4}{\Lambda} - \frac{a}{\Lambda b} - \frac{b}{c} + \frac{12M}{\Lambda(\frac{2}{\Lambda} + \frac{a}{\Lambda b} + \frac{b}{c})^{\frac{1}{2}}}\right]^{\frac{1}{2}},$$

```
\begin{array}{l} 1/2[(4/(-1.1056e-46)-(1.4736125994561546)/(-1.1056e-46 * \\ 1.8311119954175299e+6)-(1.8311119954175299e+6)/(-1.62923e-46)+((((12*7.55858e+30))))/((((-1.1056e-46)(2/(-1.1056e-46)+(1.4736125994561546)/(-1.1056e-46 * 1.8311119954175299e+6)+(1.8311119954175299e+6)/(-1.62923e-46))))]^{(1/2)} \end{array}
```

Input interpretation:

4	1.4736125994561546	$1.8311119 imes 10^{6}$
$-\frac{1.1056 \times 10^{-46}}{1.1056 \times 10^{-46}}$	$-\frac{1.1056 \times 10^{-46} \times 1.8311119 \times 10^{6}}{1.1056 \times 10^{-46} \times 1.8311119 \times 10^{6}}$	1.62923×10^{-46}

Result:

 $1.1239088437707639645816085733719240172831998373821284...\times 10^{52}$ $1.1239088437707639645816085733719240172831998373821284 \times 10^{52}$

Input interpretation:

Result:

 $7.73850... \times 10^{51} i$

Polar coordinates:

 $r = 7.7385 \times 10^{51} \text{ (radius)}, \quad \theta = 90^{\circ} \text{ (angle)}$ 7.7385e+51

1/2 (1.1239088437707639645816e+52 + 7.7385e+51)^1/2

Input interpretation: $\frac{1}{2}\sqrt{1.1239088437707639645816 \times 10^{52} + 7.7385 \times 10^{51}}$

Result:

 $6.8879584126407949091816745048871565053312217470796374\ldots \times 10^{25}$

 $6.88795841264...*10^{25}$

 $5.30074*10^{25} + 6.88795841264*10^{25}$

 $(5.30074*10^{25} + 6.88795841264*10^{25})$

Input interpretation:

 $5.30074 \times 10^{25} + 6.88795841264 \times 10^{25}$
Result:

121 886 984 126 400 000 000 000 000

Scientific notation:

 $\begin{array}{l} 1.218869841264 \times 10^{26} \\ r_4 = 1.218869841264 \, * \, 10^{26} \end{array}$

 $(5.30074*10^{25} - 6.88795841264*10^{25})$ Result: -1.58721841264×10²⁵ $r_3 = -1.58721841264 * 10^{25}$

Input interpretation:

 $\frac{1}{2}\sqrt{1.1239088437707639645816\times 10^{52}-7.7385\times 10^{51}}$

Result:

 $2.95829... \times 10^{25}$ $2.95829... * 10^{25}$

(5.30074*10^25 + 2.9582885414153*10^25)

Input interpretation:

 $5.30074 \times 10^{25} + 2.9582885414153 \times 10^{25}$

Result:

82590285414153000000000000

Scientific notation:

$$\begin{split} 8.2590285414153 \times 10^{25} \\ r_2 &= 8.2590285414153 * 10^{25} \end{split}$$

(5.30074*10^25 - 2.9582885414153*10^25)

Input interpretation:

 $5.30074 \times 10^{25} - 2.9582885414153 \times 10^{25}$

Result:

23424514585847000000000000

Scientific notation: 2.3424514585847 $\times 10^{25}$ r₁ = 2.3424514585847*10²⁵

From the four results (event horizons), we obtain:

 $\begin{aligned} r_1 &= 2.3424514585847*10^{25} \\ r_2 &= 8.2590285414153*10^{25} \\ r_3 &= -1.58721841264*10^{25} \\ r_4 &= 1.218869841264*10^{26} \end{aligned}$

(2.3424514585847*10^25 +8.2590285414153*10^25 -1.58721841264 * 10^25 +1.218869841264 * 10^26)

Input interpretation:

 $\begin{array}{c} 2.3424514585847 \times 10^{25} + 8.2590285414153 \times 10^{25} + \\ 10^{25} \times (-1.58721841264) + 1.218869841264 \times 10^{26} \end{array}$

Result:

 $212\,029\,600\,000\,000\,000\,000\,000\,000\,000$

Scientific notation: 2.120296×10²⁶

2.120296*10²⁶

(2.3424514585847*10^25 +8.2590285414153*10^25 -1.58721841264 * 10^25 +1.218869841264 * 10^26)^1/126

Input interpretation:

 $\begin{array}{l} \left(2.3424514585847 \times 10^{25} + 8.2590285414153 \times 10^{25} + \\ 10^{25} \times (-1.58721841264) + 1.218869841264 \times 10^{26}\right) ^{(1/126)} \end{array}$

Result:

1.61785522079119...

1.61785522079119... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Now, we have:

$$\left(\frac{dr}{ds}\right)^2 = 2\left[-\frac{M}{r} + \frac{Q^2}{2r^2} - \frac{\Lambda r^2}{6} + k_1^2 \left(-\frac{1}{2r^2} + \frac{M}{r^3} - \frac{Q^2}{2r^4}\right)\right],$$
(44)

For

r = 11225.7 $\Lambda = -1.1056e-46$ Q = 0.00089

M = 7.55858e + 30

 $2[((((-7.55858e+30) / (11225.7) + (0.00089^{2}) / (2*11225.7^{2}) - (-1.1056e-46*11225.7^{2})/(6+x^{2}((-1/(2*11225.7^{2})+(7.55858e+30)/(11225.7)^{3}-(0.00089)^{2}/(2*11225.7^{4})))))] = 11225.7$

Input interpretation:

$$2\left(-\frac{7.55858 \times 10^{30}}{11\,225.7} + \frac{0.00089^2}{2 \times 11\,225.7^2} - \frac{1}{6}\left(-1.1056 \times 10^{-46} \times 11\,225.7^2\right) + x^2\left(-\frac{1}{2 \times 11\,225.7^2} + \frac{7.55858 \times 10^{30}}{11\,225.7^3} - \frac{0.00089^2}{2 \times 11\,225.7^4}\right)\right) = 11\,225.7$$

Result:

 $2(5.34318 \times 10^{18} x^2 - 6.73328 \times 10^{26}) = 11225.7$

Alternate forms:

$$\begin{split} &1.06864 \times 10^{19} \; x^2 - 1.34666 \times 10^{27} = 0 \\ &1.06864 \times 10^{19} \; x^2 - 1.34666 \times 10^{27} = 11225.7 \\ &1.06864 \times 10^{19} \; (x - 11225.7) \; (x + 11225.7) = 11225.7 \end{split}$$

Solutions:

 $x \approx -11225.7$ $x \approx 11225.7$ 11225.7

Thence, we have:

 $2[((((-7.55858e+30) / (11225.7) + (0.00089^{2}) / (2*11225.7^{2}) - (-1.1056e-46*11225.7^{2})/(6+11225.7^{2}((-1/(2*11225.7^{2})+(7.55858e+30)/(11225.7)^{3}-(0.00089)^{2}/(2*11225.7^{4})))))]-11225.7$

Input interpretation:

$$2\left(-\frac{7.55858 \times 10^{30}}{11\,225.7} + \frac{0.00089^2}{2 \times 11\,225.7^2} - \frac{1}{6}\left(-1.1056 \times 10^{-46} \times 11\,225.7^2\right) + 11\,225.7^2\left(-\frac{1}{2 \times 11\,225.7^2} + \frac{7.55858 \times 10^{30}}{11\,225.7^3} - \frac{0.00089^2}{2 \times 11\,225.7^4}\right)\right) - 11\,225.7$$

Result:

-11226.6999....

We note that from the Ramanujan taxicab number:

$$11161^{3} + 11468^{3} = 14258^{3} + 1$$

 $11161 + 64 + \phi = 11226.61803398...$ result, with positive sign, practically equal to the above value

Furthermore:

 $\begin{array}{l} -(13+2)/10^{3}+(-(2[((((-7.55858e+30)/(11225.7)+(0.00089^{2})/(2*11225.7^{2})-(-1.1056e-46*11225.7^{2})/(6+11225.7^{2}((-1/(2*11225.7^{2})+(7.55858e+30)/(11225.7)^{3}-(0.00089)^{2}/(2*11225.7^{4}))))))]_{11225.7))^{1}/19}\end{array}$

Input interpretation:

$$-\frac{13+2}{10^{3}} + \left(-\left(2\left(-\frac{7.55858 \times 10^{30}}{11225.7} + \frac{0.00089^{2}}{2 \times 11225.7^{2}} - \frac{1}{6}\left(-1.1056 \times 10^{-46} \times 11225.7^{2}\right) + 11225.7^{2}\right) - \left(-\frac{1}{2 \times 11225.7^{2}} + \frac{7.55858 \times 10^{30}}{11225.7^{3}} - \frac{0.00089^{2}}{2 \times 11225.7^{4}}\right) - 11225.7\right)\right) \wedge (1/19)$$

Result:

1.618695692957578160081667556270903716821925808129357404234...

1.6186956929575... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Observations

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

In mathematics, the **Fibonacci numbers**, commonly denoted F_n , form a sequence, called the **Fibonacci sequence**, such that each number is the sum of the two preceding ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses the *n*th Fibonacci number in terms of *n* and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as *n* increases.

Fibonacci numbers are also closely related to Lucas numbers in that the Fibonacci and Lucas numbers form a complementary pair of Lucas sequences

The beginning of the sequence is thus:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...

The **Lucas numbers** or **Lucas series** are an integer sequence named after the

mathematician François Édouard Anatole Lucas (1842–91), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio.^[1] The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.

The sequence of Lucas numbers is:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803.....

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are:

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... (sequence A005479 in the OEIS).

In geometry, a **golden spiral** is a logarithmic spiral whose growth factor is φ , the golden ratio. That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms of spiral galaxies^[3] - golden spirals are one special case of these logarithmic spirals

References

A Reissner-Nordstrom+A black hole in the Friedman-Robertson-Walker

universe- arXiv:1703.05119v1 [physics.gen-ph] 5 Mar 2017 Safiqul Islam and Priti Mishra[†] Harish-Chandra Research Institute, Allahabad 211019, Uttar Pradesh, India Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India Farook Rahaman[‡] - Department of Mathematics, Jadavpur University, Kolkata-700 032, West Bengal, India - (Dated: March 16, 2017)

