On the links between some Ramanujan formulas, the golden ratio and various equations of several sectors of Black Hole Physics

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

The purpose of this paper is to show the links between some Ramanujan formulas, the golden ratio and the mathematical connections with various equations of several sectors of Black Hole Physics

[^0]

Monster black hole 100,000 times more massive than the sun is found in the heart of our galaxy (SMBH Sagittarius A=1,9891*10 ${ }^{35}$)
https://www.dailymail.co.uk/sciencetech/article-4850546/Mini-black-hole-25-000-light-years-Earth.html

https://wssrmnn.net/index.php/2017/01/23/man-saw-number-pi-dreams/

From

Page 86 - Manuscript Book 2 of Srinivasa Ramanujan

$1 / 1^{\wedge} 3+1 / 5^{\wedge} 3+1 / 9^{\wedge} 3+\ldots$

Input interpretation:

$\frac{1}{1^{3}}+\frac{1}{5^{3}}+\frac{1}{9^{3}}+\cdots$

Infinite sum:

$\sum_{n=1}^{\infty} \frac{1}{(4 n-3)^{3}}=\frac{1}{64}\left(28 \zeta(3)+\pi^{3}\right)$

Decimal approximation:

1.010372968262007190104202868584718670994451636740923068505...
1.010372968262.....

Convergence tests:

The ratio test is inconclusive.
The root test is inconclusive.
By the comparison test, the series converges.

Partial sum formula:

$\sum_{n=1}^{m} \frac{1}{(-3+4 n)^{3}}=\frac{1}{128}\left(\psi^{(2)}\left(m+\frac{1}{4}\right)-\psi^{(2)}\left(\frac{1}{4}\right)\right)$

Alternate form:

$\frac{7 \zeta(3)}{16}+\frac{\pi^{3}}{64}$

Series representations:

$\frac{1}{64}\left(\pi^{3}+28 \zeta(3)\right)=\frac{\pi^{3}}{64}+\frac{7}{16} \sum_{k=1}^{\infty} \frac{1}{k^{3}}$
$\frac{1}{64}\left(\pi^{3}+28 \zeta(3)\right)=\frac{\pi^{3}}{64}+\frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}$
$\frac{1}{64}\left(\pi^{3}+28 \zeta(3)\right)=\frac{7}{16} e^{\sum_{k=1}^{\infty} P(3 k) / k}+\frac{\pi^{3}}{64}$
$\frac{1}{64}\left(\pi^{3}+28 \zeta(3)\right)=\frac{1}{64}\left(\pi^{3}+14 \sum_{n=0}^{\infty} \frac{\sum_{k=0}^{n} \frac{(-1)^{k}\binom{n}{k}}{(1+k)^{2}}}{1+n}\right)$
$\left(\mathrm{Pi}^{\wedge} 3\right) / 64+7 / 16 \operatorname{zeta}(3) \quad\left(\right.$ Note that S_{3} is $\left.\zeta(3)\right)$
Input:
$\frac{\pi^{3}}{64}+\frac{7}{16} \zeta(3)$

Decimal approximation:
1.010372968262007190104202868584718670994451636740923068505...
1.010372968262....

Alternate form:

$\frac{1}{64}\left(28 \zeta(3)+\pi^{3}\right)$

Alternative representations:

$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=\frac{\pi^{3}}{64}+\frac{7 \zeta(3,1)}{16}$
$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=\frac{7 S_{2,1}(1)}{16}+\frac{\pi^{3}}{64}$
$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=-\frac{7 \operatorname{Li}_{3}(-1)}{\frac{3 \times 16}{4}}+\frac{\pi^{3}}{64}$

Series representations:

$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=\frac{\pi^{3}}{64}+\frac{7}{16} \sum_{k=1}^{\infty} \frac{1}{k^{3}}$
$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=\frac{\pi^{3}}{64}+\frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}$
$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=\frac{7}{16} e^{\sum_{k=1}^{\infty} P(3 k) / k}+\frac{\pi^{3}}{64}$

Integral representations:

$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=\frac{\pi^{3}}{64}-\frac{7}{48} \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t$
$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=\frac{\pi^{3}}{64}+\frac{1}{8} \int_{0}^{\infty} t^{2} \operatorname{csch}(t) d t$
$\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}=\frac{\pi^{3}}{64}+\frac{7}{32} \int_{0}^{\infty} \frac{t^{2}}{-1+e^{t}} d t$

Thence:
$1 / 1^{\wedge} 3+1 / 5^{\wedge} 3+1 / 9^{\wedge} 3+\ldots=\left(\mathrm{Pi}^{\wedge} 3\right) / 64+7 / 16 \operatorname{zeta}(3)$
Input interpretation:
$\frac{1}{1^{3}}+\frac{1}{5^{3}}+\frac{1}{9^{3}}+\cdots=\frac{\pi^{3}}{64}+\frac{7}{16} \zeta(3)$

Result:
$\frac{1}{64}\left(28 \zeta(3)+\pi^{3}\right)=\frac{7 \zeta(3)}{16}+\frac{\pi^{3}}{64}$

Alternate form:

True

From the right-hand side of the expression, we obtain:
$\left(\left(\left(1 /\left(\left(\left((\operatorname{Pi} \text { ^3)/64 + 7/16 zeta(3))))))))})^{\wedge} 1 / 12\right.\right.\right.\right.\right.\right.$

Input:

$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{7}{16} \zeta(3)}}$

Exact result:

$\frac{1}{\sqrt[12]{\frac{7(13)}{16}+\frac{\pi^{3}}{64}}}$

Decimal approximation:

$0.999140408144708492742501571872941269617856182995634489415 \ldots$
$0.999140408144 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

Alternate form:

$\frac{\sqrt{2}}{\sqrt[12]{28 \zeta(3)+\pi^{3}}}$

All 12th roots of $1 /\left((7 \zeta(3)) / 16+\pi^{\wedge} 3 / 64\right)$:

$\frac{e^{(2 i \pi) / 3}}{\sqrt[12]{\frac{7 \zeta(3)}{16}+\frac{\pi^{3}}{64}}} \approx-0.49957+0.8653 i$

Alternative representations:
$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{7 \zeta(3,1)}{16}}}$
$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\sqrt[12]{\frac{1}{\frac{7 S_{2,1}(1)}{16}+\frac{\pi^{3}}{64}}}$
$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\sqrt[12]{\frac{1}{-\frac{7 \operatorname{Li}_{3}(-1)}{\frac{3 \times 16}{4}}+\frac{\pi^{3}}{64}}}$

Series representations:
$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\frac{\sqrt{2}}{\sqrt[12]{\pi^{3}+28 \sum_{k=1}^{\infty} \frac{1}{k^{3}}}}$
$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\frac{\sqrt{2}}{\sqrt[12]{\pi^{3}+32 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}}}$
$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\frac{\sqrt{2}}{\sqrt[12]{28 e^{\sum_{k=1}^{\infty} P(3 k) / k}+\pi^{3}}}$

Integral representations:
$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\frac{\sqrt{2}}{\sqrt[12]{\pi^{3}+8 \int_{0}^{\infty} t^{2} \operatorname{csch}(t) d t}}$
$\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\frac{\sqrt{2}}{\sqrt[12]{\pi^{3}+14 \int_{0}^{\infty} \frac{t^{2}}{-1+t^{d}} d t}}$

$$
\sqrt[12]{\frac{1}{\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}}}=\frac{1}{\sqrt[12]{\frac{\pi^{3}}{64}-\frac{7}{48} \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t}}
$$

Now, we have that:

$1 /\left(1^{\wedge} 3\right)+1 /\left(4^{\wedge} 3\right)+1 /\left(7^{\wedge} 3\right)+\ldots=\left(2 \mathrm{Pi}^{\wedge} 3\right) / 81 \operatorname{sqrt} 2+13 / 27 \operatorname{zeta}(3)$
$1 /\left(1^{\wedge} 3\right)+1 /\left(4^{\wedge} 3\right)+1 /\left(7^{\wedge} 3\right)+\ldots$
Input interpretation:
$\frac{1}{1^{3}}+\frac{1}{4^{3}}+\frac{1}{7^{3}}+\cdots$

Infinite sum:

$$
\sum_{n=1}^{\infty} \frac{1}{(3 n-2)^{3}}=\frac{1}{243}\left(117 \zeta(3)+2 \sqrt{3} \pi^{3}\right)
$$

Decimal approximation:

1.020780044433363102823254739903981825353410937519069669735...
1.020780044433363...

Convergence tests:

The ratio test is inconclusive.
The root test is inconclusive.
By the comparison test, the series converges.

Partial sum formula:

$$
\sum_{n=1}^{m} \frac{1}{(-2+3 n)^{3}}=\frac{1}{54}\left(\psi^{(2)}\left(m+\frac{1}{3}\right)-\psi^{(2)}\left(\frac{1}{3}\right)\right)
$$

$\psi^{(n)}(x)$ is the $n^{\text {th }}$ derivative of the digamma function

Alternate form:

$$
\frac{13 \zeta(3)}{27}+\frac{2 \pi^{3}}{81 \sqrt{3}}
$$

Series representations:

$\frac{1}{243}\left(2 \sqrt{3} \pi^{3}+117 \zeta(3)\right)=\frac{2 \pi^{3}}{81 \sqrt{3}}+\frac{13}{27} \sum_{k=1}^{\infty} \frac{1}{k^{3}}$
$\frac{1}{243}\left(2 \sqrt{3} \pi^{3}+117 \zeta(3)\right)=\frac{2 \pi^{3}}{81 \sqrt{3}}+\frac{104}{189} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}$
$\frac{1}{243}\left(2 \sqrt{3} \pi^{3}+117 \zeta(3)\right)=\frac{13}{27} e^{\sum_{k=1}^{\infty} P(3 k) / k}+\frac{2 \pi^{3}}{81 \sqrt{3}}$
$\frac{1}{243}\left(2 \sqrt{3} \pi^{3}+117 \zeta(3)\right)=\frac{2}{243}\left(\sqrt{3} \pi^{3}+78 \times \sum_{n=0}^{\infty} 2^{-1-n} \sum_{k=0}^{n} \frac{(-1)^{k}\binom{n}{k}}{(1+k)^{3}}\right)$
$\left(2 \mathrm{Pi}^{\wedge} 3\right) /(81 \mathrm{sqrt} 2)+13 / 27 \operatorname{zeta}(3)$

Input:

$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{13}{27} \zeta(3)$

Exact result:

$\frac{13 \zeta(3)}{27}+\frac{\sqrt{2} \pi^{3}}{81}$

Decimal approximation:

1.120119953372800115556848609058141510791754061631991953629...
1.1201199533728....

Alternate form:

$\frac{1}{81}\left(39 \zeta(3)+\sqrt{2} \pi^{3}\right)$

Alternative representations:

$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{13 \zeta(3,1)}{27}$
$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=\frac{13 S_{2,1}(1)}{27}+\frac{2 \pi^{3}}{81 \sqrt{2}}$
$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=-\frac{13 \operatorname{Li}_{3}(-1)}{\frac{327}{4}}+\frac{2 \pi^{3}}{81 \sqrt{2}}$

Series representations:

$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=\frac{\sqrt{2} \pi^{3}}{81}+\frac{13}{27} \sum_{k=1}^{\infty} \frac{1}{k^{3}}$
$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=\frac{\sqrt{2} \pi^{3}}{81}+\frac{104}{189} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}$
$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=\frac{13}{27} e^{\sum_{k=1}^{\infty} P(3 k) / k}+\frac{\sqrt{2} \pi^{3}}{81}$

Integral representations:

$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=\frac{\sqrt{2} \pi^{3}}{81}-\frac{13}{81} \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t$
$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=\frac{\sqrt{2} \pi^{3}}{81}+\frac{13}{54} \int_{0}^{\infty} \frac{t^{2}}{-1+e^{t}} d t$
$\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}=\frac{\sqrt{2} \pi^{3}}{81}+\frac{26}{81} \int_{0}^{\infty} \frac{t^{2}}{1+e^{t}} d t$

From which:
$\left.\left(\left(\left(1 /\left(\left(\left(\left(2 \mathrm{Pi}^{\wedge} 3\right) /(81 \operatorname{sqrt} 2)+13 / 27 \operatorname{zeta}(3)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 128$

Input:

$\sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{13}{27} \zeta(3)}}$
$\sqrt[128]{\frac{13 \zeta(3)}{27}+\frac{\sqrt{2} \pi^{3}}{81}}$

Decimal approximation:

$0.999114175536858768080401697435111237630999529642565743801 \ldots$
$0.999114175536 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

Alternate form:

$\frac{\sqrt[32]{3}}{\sqrt[128]{39 \zeta(3)+\sqrt{2} \pi^{3}}}$

All 128th roots of $1 /\left((13 \zeta(3)) / 27+\left(\operatorname{sqrt}(2) \pi^{\wedge} 3\right) / 81\right):$

Alternative representations:

$$
\begin{aligned}
& \sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}}=\sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{13 \zeta(3,1)}{27}}} \\
& \sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}}=\sqrt[128]{\frac{1}{\frac{13 S_{2,1}(1)}{27}+\frac{2 \pi^{3}}{81 \sqrt{2}}}} \\
& \sqrt[128]{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}
\end{aligned} \sqrt[128]{\frac{1}{-\frac{13 \mathrm{Li}_{3}(-1)}{\frac{3}{27}}+\frac{2 \pi^{3}}{81 \sqrt{2}}}} .
$$

Series representations:

$\sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}}=\frac{\sqrt[32]{3}}{\sqrt[128]{\sqrt{2} \pi^{3}+39 \sum_{k=1}^{\infty} \frac{1}{k^{3}}}}$
$\sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}}=\frac{1}{128 \sqrt{\frac{\sqrt{2} \pi^{3}}{81}+\frac{104}{189} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}}}$
$\sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}}=\frac{\sqrt[32]{3}}{\sqrt[128]{39 e^{\sum_{k=1}^{\infty} P(3 k) / k}+\sqrt{2} \pi^{3}}}$

Integral representations:

$\sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}}=\frac{\sqrt[32]{3}}{\sqrt[128]{\sqrt{2} \pi^{3}-13 \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t}}$
$\sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}}=\frac{\sqrt[32]{3}}{\sqrt[128]{\sqrt{2} \pi^{3}+26 \int_{0}^{\infty} \frac{t^{2}}{1+e^{t}} d t}}$
$\sqrt[128]{\frac{1}{\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}}}=\frac{\sqrt[32]{3}}{\sqrt[128]{\sqrt{2} \pi^{3}+26 \int_{0}^{\infty} t^{3} \operatorname{csch}^{2}(t) d t}}$

Now, we have that:

$\left(\mathrm{Pi}^{\wedge} 3\right) / 36 \mathrm{sqrt} 3+91 / 216 \operatorname{zeta}(3)$
$1 /\left(1^{\wedge} 3\right)+1 / 7^{\wedge} 3+1 / 13^{\wedge} 3+\ldots$
Input interpretation:
$\frac{1}{1^{3}}+\frac{1}{7^{3}}+\frac{1}{13^{3}}+\cdots$

Infinite sum:

$\sum_{n=1}^{\infty} \frac{1}{(6 n-5)^{3}}=\frac{1}{216}\left(91 \zeta(3)+2 \sqrt{3} \pi^{3}\right)$

Decimal approximation:

1.003685515347952697063230137024860573152727843593893327866...
1.00368551534....

Convergence tests:

The ratio test is inconclusive.
The root test is inconclusive.
By the comparison test, the series converges.

Partial sum formula:

$\sum_{n=1}^{m} \frac{1}{(-5+6 n)^{3}}=\frac{1}{432}\left(\psi^{(2)}\left(m+\frac{1}{6}\right)-\psi^{(2)}\left(\frac{1}{6}\right)\right)$
$\psi^{(n)}(x)$ is the $n^{\text {th }}$ derivative of the digamma function

Alternate form:
$\frac{91 \zeta(3)}{216}+\frac{\pi^{3}}{36 \sqrt{3}}$

Series representations:
$\frac{1}{216}\left(2 \sqrt{3} \pi^{3}+91 \zeta(3)\right)=\frac{\pi^{3}}{36 \sqrt{3}}+\frac{91}{216} \sum_{k=1}^{\infty} \frac{1}{k^{3}}$
$\frac{1}{216}\left(2 \sqrt{3} \pi^{3}+91 \zeta(3)\right)=\frac{\pi^{3}}{36 \sqrt{3}}+\frac{13}{27} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}$
$\frac{1}{216}\left(2 \sqrt{3} \pi^{3}+91 \zeta(3)\right)=\frac{91}{216} e^{\sum_{k=1}^{\infty} P(3 k) / k}+\frac{\pi^{3}}{36 \sqrt{3}}$
$\frac{1}{216}\left(2 \sqrt{3} \pi^{3}+91 \zeta(3)\right)=\frac{1}{432}\left(4 \sqrt{3} \pi^{3}+91 \sum_{n=0}^{\infty} \frac{\sum_{k=0}^{n} \frac{(-1)^{k}\binom{n}{k}}{(1+k)^{2}}}{1+n}\right)$
$\left(\mathrm{Pi}^{\wedge} 3\right) /(36 \mathrm{sqrt} 3)+91 / 216 \operatorname{zeta}(3)$

Input:

$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{91}{216} \zeta(3)$

Exact result:

$\frac{91 \zeta(3)}{216}+\frac{\pi^{3}}{36 \sqrt{3}}$

Decimal approximation:

1.003685515347952697063230137024860573152727843593893327866...
1.003685515347933333

Alternate forms:

$\frac{1}{216}\left(91 \zeta(3)+2 \sqrt{3} \pi^{3}\right)$
$\frac{91 \sqrt{3} \zeta(3)+6 \pi^{3}}{216 \sqrt{3}}$

Alternative representations:

$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=\frac{\pi^{3}}{36 \sqrt{3}}+\frac{91 \zeta(3,1)}{216}$
$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=\frac{91 S_{2,1}(1)}{216}+\frac{\pi^{3}}{36 \sqrt{3}}$
$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=-\frac{91 \mathrm{Li}_{3}(-1)}{\frac{3 \times 216}{4}}+\frac{\pi^{3}}{36 \sqrt{3}}$

Series representations:

$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=\frac{\pi^{3}}{36 \sqrt{3}}+\frac{91}{216} \sum_{k=1}^{\infty} \frac{1}{k^{3}}$
$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=\frac{\pi^{3}}{36 \sqrt{3}}+\frac{13}{27} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}$
$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=\frac{91}{216} e^{\sum_{k=1}^{\infty} P(3 k) / k}+\frac{\pi^{3}}{36 \sqrt{3}}$

Integral representations:
$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=\frac{\pi^{3}}{36 \sqrt{3}}-\frac{91}{648} \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t$
$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=\frac{\pi^{3}}{36 \sqrt{3}}+\frac{91}{432} \int_{0}^{\infty} \frac{t^{2}}{-1+e^{t}} d t$
$\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=\frac{\pi^{3}}{36 \sqrt{3}}+\frac{91}{324} \int_{0}^{\infty} \frac{t^{2}}{1+e^{t}} d t$

$1 /\left(1^{\wedge} 3\right)+1 /\left(3^{\wedge} 3\right)+1 /\left(5^{\wedge} 3\right)+\ldots$
Input interpretation:
$\frac{1}{1^{3}}+\frac{1}{3^{3}}+\frac{1}{5^{3}}+\cdots$

Infinite sum:

$\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}}=\frac{7 \zeta(3)}{8}$

Decimal approximation:

1.051799790264644999724770891322518741919363005797936521568...
1.05179979026...

Convergence tests:

The ratio test is inconclusive.
The root test is inconclusive.
By the comparison test, the series converges.

Partial sum formula:

$\sum_{n=1}^{m} \frac{1}{(-1+2 n)^{3}}=\frac{1}{16}\left(\psi^{(2)}\left(m+\frac{1}{2}\right)-\psi^{(2)}\left(\frac{1}{2}\right)\right)$
$\psi^{(n)}(x)$ is the $n^{\text {th }}$ derivative of the digamma function

Series representations:

$$
\begin{aligned}
& \frac{7 \zeta(3)}{8}=\frac{7}{8} \sum_{k=1}^{\infty} \frac{1}{k^{3}} \\
& \frac{7 \zeta(3)}{8}=\sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}} \\
& \frac{7 \zeta(3)}{8}=\frac{7}{8} e^{\sum_{k=1}^{\infty} P(3 k) / k} \\
& \frac{7 \zeta(3)}{8}=\frac{7}{6} \times \sum_{n=0}^{\infty} 2^{-1-n} \sum_{k=0}^{n} \frac{(-1)^{k}\binom{n}{k}}{(1+k)^{3}}
\end{aligned}
$$

7/8 zeta(3)
Input:
$\frac{7}{8} \zeta(3)$
$\zeta(s)$ is the Riemann zeta function
Exact result:
$\frac{7 \zeta(3)}{8}$

Decimal approximation:

1.051799790264644999724770891322518741919363005797936521568...
1.0517997902646...

Alternative representations:
$\frac{\zeta(3) 7}{8}=\frac{7 \zeta(3,1)}{8}$
$\frac{\zeta(3) 7}{8}=\frac{7 S_{2,1}(1)}{8}$
$\frac{\zeta(3) 7}{8}=-\frac{7 \mathrm{Li}_{3}(-1)}{\frac{3 \times 8}{4}}$

Series representations:

$\frac{\zeta(3) 7}{8}=\frac{7}{8} \sum_{k=1}^{\infty} \frac{1}{k^{3}}$
$\frac{\zeta(3) 7}{8}=\sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}$
$\frac{\zeta(3) 7}{8}=\frac{7}{8} e^{\sum_{k=1}^{\infty} P(3 k) / k}$

Integral representations:

$\frac{\zeta(3) 7}{8}=-\frac{7}{24} \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t$
$\frac{\zeta(3) 7}{8}=\frac{1}{4} \int_{0}^{\infty} t^{2} \operatorname{csch}(t) d t$
$\frac{\zeta(3) 7}{8}=\frac{7}{16} \int_{0}^{\infty} \frac{t^{2}}{-1+e^{t}} d t$

Now, we perform the sum of the four expressions:

7/8 zeta(3)
(Note that S_{3} is $\zeta(3)$)
$\left(2 \mathrm{Pi}^{\wedge} 3\right) /(81 \mathrm{sqrt} 2)+13 / 27 \operatorname{zeta}(3)$
$\left(\mathrm{Pi}^{\wedge} 3\right) / 64+7 / 16 \operatorname{zeta}(3)$
$\left(\mathrm{Pi}^{\wedge} 3\right) /(36 \mathrm{sqrt} 3)+91 / 216 \operatorname{zeta}(3)$

We obtain:
$7 / 8 \operatorname{zeta}(3)+\left(2 \mathrm{Pi}^{\wedge} 3\right) /(81 \operatorname{sqrt} 2)+13 / 27 \operatorname{zeta}(3)+\left(\mathrm{Pi}^{\wedge} 3\right) / 64+7 / 16 \operatorname{zeta}(3)+$ $\left(\mathrm{Pi}^{\wedge} 3\right) /(36 \mathrm{sqrt} 3)+91 / 216 \operatorname{zeta}(3)$

Input:

$$
\frac{7}{8} \zeta(3)+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{13}{27} \zeta(3)+\frac{\pi^{3}}{64}+\frac{7}{16} \zeta(3)+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{91}{216} \zeta(3)
$$

Exact result:

$$
\frac{319 \zeta(3)}{144}+\frac{\pi^{3}}{64}+\frac{\sqrt{2} \pi^{3}}{81}+\frac{\pi^{3}}{36 \sqrt{3}}
$$

Decimal approximation:

$4.185978227247405002449052505990239496858296547764744871569 \ldots$
4.185978227247...

Alternate forms:

$$
\begin{aligned}
& \frac{319 \zeta(3)}{144}+\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184} \\
& \frac{11484 \zeta(3)+81 \pi^{3}+64 \sqrt{2} \pi^{3}+48 \sqrt{3} \pi^{3}}{5184} \\
& \frac{11484 \sqrt{3} \zeta(3)+(144+81 \sqrt{3}+64 \sqrt{6}) \pi^{3}}{5184 \sqrt{3}}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}= \\
& \frac{\pi^{3}}{64}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{7 \zeta(3,1)}{8}+\frac{7 \zeta(3,1)}{16}+\frac{13 \zeta(3,1)}{27}+\frac{91 \zeta(3,1)}{216}
\end{aligned}
$$

$$
\frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=
$$

$$
\frac{7 S_{2,1}(1)}{8}+\frac{7 S_{2,1}(1)}{16}+\frac{13 S_{2,1}(1)}{27}+\frac{91 S_{2,1}(1)}{216}+\frac{\pi^{3}}{64}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\pi^{3}}{36 \sqrt{3}}
$$

$$
\begin{aligned}
& \frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}= \\
& -\frac{7 \mathrm{Li}_{3}(-1)}{\frac{3 \times 8}{4}}-\frac{7 \mathrm{Li}_{3}(-1)}{\frac{3 \times 16}{4}}-\frac{13 \mathrm{Li}_{3}(-1)}{\frac{3 \times 27}{4}}-\frac{91 \mathrm{Li}_{3}(-1)}{\frac{3 \times 216}{4}}+\frac{\pi^{3}}{64}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\pi^{3}}{36 \sqrt{3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}= \\
& \frac{\pi^{3}}{64}+\frac{\sqrt{2} \pi^{3}}{81}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{319}{144} \sum_{k=1}^{\infty} \frac{1}{k^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}= \\
& \frac{\pi^{3}}{64}+\frac{\sqrt{2} \pi^{3}}{81}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{319}{126} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}} \\
& \frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}= \\
& \frac{81 \pi^{3}+64 \sqrt{2} \pi^{3}+48 \sqrt{3} \pi^{3}+5742 \sum_{n=0}^{\infty} \frac{\sum_{k=0}^{n} \frac{(-1)^{k}\binom{n}{k}}{(1+k)^{2}}}{1+n}}{}=
\end{aligned}
$$

$$
5184
$$

Integral representations:

$$
\begin{aligned}
& \frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}= \\
& \frac{\pi^{3}}{64}+\frac{\sqrt{2} \pi^{3}}{81}+\frac{\pi^{3}}{36 \sqrt{3}}-\frac{319}{432} \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t \\
& \frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}= \\
& \frac{\pi^{3}}{64}+\frac{\sqrt{2} \pi^{3}}{81}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{319}{288} \int_{0}^{\infty} \frac{t^{2}}{-1+e^{t}} d t
\end{aligned}
$$

$\frac{\zeta(3) 7}{8}+\frac{2 \pi^{3}}{81 \sqrt{2}}+\frac{\zeta(3) 13}{27}+\frac{\pi^{3}}{64}+\frac{\zeta(3) 7}{16}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{\zeta(3) 91}{216}=$ $\frac{\pi^{3}}{64}+\frac{\sqrt{2} \pi^{3}}{81}+\frac{\pi^{3}}{36 \sqrt{3}}+\frac{319}{216} \int_{0}^{\infty} \frac{t^{2}}{1+e^{t}} d t$

From which:
$\left((81+64 \operatorname{sqrt}(2)+48 \operatorname{sqrt}(3)) x^{\wedge} 3\right) / 5184+(319 \zeta(3)) / 144=4.1859782272474$
Input interpretation:

$$
\frac{(81+64 \sqrt{2}+48 \sqrt{3}) x^{3}}{5184}+\frac{319 \zeta(3)}{144}=4.1859782272474
$$

Result:
$\frac{(81+64 \sqrt{2}+48 \sqrt{3}) x^{3}}{5184}+\frac{319 \zeta(3)}{144}=4.1859782272474$

Alternate forms:

$$
\begin{aligned}
& \frac{(81+64 \sqrt{2}+48 \sqrt{3}) x^{3}}{5184}-1.5230882820536=0 \\
& \frac{x^{3}}{36 \sqrt{3}}+\frac{\sqrt{2} x^{3}}{81}+\frac{x^{3}}{64}-1.5230882820536=0 \\
& \frac{(81+16 \sqrt{59+24 \sqrt{6}}) x^{3}}{5184}+\frac{319 \zeta(3)}{144}=4.1859782272474
\end{aligned}
$$

Expanded form:

$$
\frac{x^{3}}{36 \sqrt{3}}+\frac{\sqrt{2} x^{3}}{81}+\frac{x^{3}}{64}+\frac{319 \zeta(3)}{144}=4.1859782272474
$$

Real solution:

$x \approx 3.14159265359$
$3.14159265359 \approx \pi$

Complex solutions:

$x \approx-1.57079632679-2.72069904635 i$
$x \approx-1.57079632679+2.72069904635 i$
$\left((81+64 \operatorname{sqrt}(2)+48 \operatorname{sqrt}(3)) \pi^{\wedge} 3\right) / 5184+(319 \zeta(3)) /((\mathrm{x}-1) / 12)=4.1859782272474$

Input interpretation:

$$
\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{\frac{x-1}{12}}=4.1859782272474
$$

Result:

$$
\frac{3828 \zeta(3)}{x-1}+\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}=4.1859782272474
$$

Plot:

$$
\begin{aligned}
& -\frac{3828 \zeta(3)}{x-1}+\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184} \\
& -4.1859782272474
\end{aligned}
$$

Alternate form assuming x is real:

$-\frac{1728.0000000}{1.000000000000-1.00000000000 x}=1.0000000000$

Alternate form:

$\frac{48 \sqrt{3} \pi^{3} x+64 \sqrt{2} \pi^{3} x+81 \pi^{3} x+19844352 \zeta(3)-48 \sqrt{3} \pi^{3}-64 \sqrt{2} \pi^{3}-81 \pi^{3}}{5184(x-1)}=$
4.1859782272474

Solution:

$x \approx 1729.000000000$
1729
We note that, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)
$\left(\left(\left(\left((81+64 \operatorname{sqrt}(2)+48 \operatorname{sqrt}(3)) \pi^{\wedge} 3\right) / 5184+(319 \zeta(3)) / 144\right)\right)\right)^{\wedge} 1 / 3$

Input:

$\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}$

Decimal approximation:

1.611631157728558233010611244286714690400108716561115072185
$1.6116311577 \ldots$ result that is near to the value of the golden ratio $1,618033988749 \ldots$

Alternate forms:

$\sqrt[3]{\frac{319 \zeta(3)}{144}+\frac{(81+16 \sqrt{59+24 \sqrt{6}}) \pi^{3}}{5184}}$
$\frac{1}{12} \sqrt[3]{\frac{1}{3}\left(11484 \zeta(3)+(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}\right)}$
1
$12 \sqrt[3]{\frac{3}{11484 \zeta(3)+81 \pi^{3}+64 \sqrt{2} \pi^{3}+48 \sqrt{3} \pi^{3}}}$

All 3rd roots of $(319 \zeta(3)) / 144+\left((81+64 \operatorname{sqrt}(2)+48 \operatorname{sqrt}(3)) \pi^{\wedge} 3\right) / 5184:$
$e^{0} \sqrt[3]{\frac{319 \zeta(3)}{144}+\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}} \approx 1.6116$ (real, principal root)
$e^{(2 i \pi) / 3} \sqrt[3]{\frac{319 \zeta(3)}{144}+\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}} \approx-0.8058+1.3957 i$
$e^{-(2 i \pi) / 3} \sqrt[3]{\frac{319 \zeta(3)}{144}+\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}} \approx-0.8058-1.3957 i$

Alternative representations:
$\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}=\sqrt[3]{\frac{\pi^{3}(81+64 \sqrt{2}+48 \sqrt{3})}{5184}+\frac{319 \zeta(3,1)}{144}}$
$\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}=\sqrt[3]{\frac{319 S_{2,1}(1)}{144}+\frac{\pi^{3}(81+64 \sqrt{2}+48 \sqrt{3})}{5184}}$
$\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}=\sqrt[3]{-\frac{319 \mathrm{Li}_{3}(-1)}{\frac{3 \times 144}{4}}+\frac{\pi^{3}(81+64 \sqrt{2}+48 \sqrt{3})}{5184}}$

Series representations:

$$
\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}=\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319}{144} \sum_{k=1}^{\infty} \frac{1}{k^{3}}}
$$

$$
\begin{aligned}
& \sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}= \\
& \sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319}{126} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{3}}} \\
& \sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}= \\
& \sqrt[3]{\frac{319}{144} e^{\varepsilon_{k=1}^{\infty} P(3 k) / k}+\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}= \\
& \frac{1}{12} \sqrt[3]{\frac{1}{3}(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}+1914 \int_{0}^{\infty} \frac{t^{2}}{-1+e^{t}} d t}
\end{aligned}
$$

$$
\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}=
$$

$$
\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319}{504} \int_{0}^{\infty} t^{2} \operatorname{csch}(t) d t}
$$

$$
\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}+\frac{319 \zeta(3)}{144}}=
$$

$$
\sqrt[3]{\frac{(81+64 \sqrt{2}+48 \sqrt{3}) \pi^{3}}{5184}-\frac{319}{432} \int_{0}^{1} \frac{\log ^{3}\left(1-t^{2}\right)}{t^{3}} d t}
$$

Now, we have that:

$1 / 16^{*}(2+\operatorname{sqrt2})^{\wedge}(1 / 2)\left[\ln \left(\left(\left(\left(\left(1+2(2+\mathrm{sqrt2})^{\wedge}(1 / 2)+4\right)\right)\right) /\left(\left(\left(1-2(2+\operatorname{sqrt2})^{\wedge}(1 / 2)+4\right)\right)\right)\right)\right)+2\right.$ $\left.\tan ^{\wedge}-1\left(\left(2(2+\mathrm{sqrt} 2)^{\wedge}(1 / 2) /(1-4)\right)\right)\right]$

Input:

$\frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(2 \times \frac{\sqrt{2+\sqrt{2}}}{1-4}\right)\right)$

Exact Result:

$\frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right)-2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{3}\right)\right)$
(result in radians)

Decimal approximation:

$0.013764838311382013868966278430595886004523852083036857721 \ldots$
(result in radians)
$0.013764838311 \ldots$

Alternate forms:

$$
\begin{aligned}
& \frac{1}{8} \sqrt{2+\sqrt{2}}\left(\tanh ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{5}\right)-\tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{3}\right)\right) \\
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1}{514}\left(1186+400 \sqrt{2}+257 \sqrt{\frac{1462400}{66049}+\frac{948800 \sqrt{2}}{66049}}\right)\right)-\right. \\
& \left.2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{3}\right)\right) \\
& -\frac{(\sqrt{1-i}+\sqrt{1+i})\left(2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{3}\right)-\log \left(\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right)\right)}{16 \sqrt[4]{2}}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)= \\
& \frac{1}{16}\left(2 \tan ^{-1}\left(1,-\frac{2}{3} \sqrt{2+\sqrt{2}}\right)+\log \left(\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right)\right) \sqrt{2+\sqrt{2}} \\
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)= \\
& \frac{1}{16}\left(2 \tan ^{-1}\left(-\frac{2}{3} \sqrt{2+\sqrt{2}}\right)+\log _{e}\left(\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right)\right) \sqrt{2+\sqrt{2}} \\
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)= \\
& \frac{1}{16}\left(2 \tan ^{-1}\left(-\frac{2}{3} \sqrt{2+\sqrt{2}}\right)+\log (a) \log \left(\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right)\right) \sqrt{2+\sqrt{2}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)= \\
& -\frac{1}{8} \sqrt{2+\sqrt{2}} \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{3}\right)+ \\
& \frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(-1+\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right)-\frac{1}{16} \sqrt{2+\sqrt{2}} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}-\frac{5}{4 \sqrt{2+\sqrt{2}}}\right)^{k}}{k}
\end{aligned}
$$

$$
\frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)=
$$

$$
-\frac{1}{8} \sqrt{2+\sqrt{2}} \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{3}\right)+
$$

$$
\frac{1}{32} \sqrt{2+\sqrt{2}} \log (2+\sqrt{2})+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{4}{5-2 \sqrt{2+\sqrt{2}}}\right)-
$$

$$
\frac{1}{16} \sqrt{2+\sqrt{2}} \sum_{k=1}^{\infty} \frac{4^{-k}(2+\sqrt{2})^{-k / 2}(-5+2 \sqrt{2+\sqrt{2}})^{k}}{k}
$$

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)= \\
& -\frac{1}{8} \sqrt{2+\sqrt{2}} \tan ^{-1}\left(z_{0}\right)+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(-1+\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right)+ \\
& \sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k} \sqrt{2+\sqrt{2}}\left(-1+\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right)^{-k}}{16 k}-\right. \\
& \left.\frac{\left.i \sqrt{2+\sqrt{2}}\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2 \sqrt{2+\sqrt{2}}}{3}-z_{0}\right)^{k}\right)}{16 k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)= \\
& \int_{0}^{1}-\frac{3(2+\sqrt{2})}{4\left(9+4(2+\sqrt{2}) t^{2}\right)} d t+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right) \\
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma} i(2+\sqrt{2})\left(1+\frac{4}{9}(2+\sqrt{2})\right)^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} \\
& \frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right) \text { for } 0<\gamma<\frac{1}{2} \\
& \frac{1}{16} \sqrt{2+\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2+\sqrt{2}}+4}{1-2 \sqrt{2+\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2+\sqrt{2}}}{1-4}\right)\right)= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma} i 2^{-7 / 2-2 s} \times 3^{-1+2 s}(1+\sqrt{2})(2+\sqrt{2})^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) \\
& \pi \Gamma\left(\frac{3}{2}-s\right) \\
& \frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{5+2 \sqrt{2+\sqrt{2}}}{5-2 \sqrt{2+\sqrt{2}}}\right) \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$1 / 16^{*}(2-\mathrm{sqrt} 2)^{\wedge}(1 / 2)\left[\ln \left(\left(\left(\left(\left(1+2(2-\mathrm{sqrt} 2)^{\wedge}(1 / 2)+4\right)\right)\right) /\left(\left(\left(1-2(2-\mathrm{sqrt} 2)^{\wedge}(1 / 2)+4\right)\right)\right)\right)\right)+2\right.$ $\left.\tan ^{\wedge}-1\left(\left(2(2-\mathrm{sqrt} 2)^{\wedge}(1 / 2) /(1-4)\right)\right)\right]$

Input:

$\frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(2 \times \frac{\sqrt{2-\sqrt{2}}}{1-4}\right)\right)$
$\log (x)$ is the natural logarithm
$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$\frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right)-2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{3}\right)\right)$
(result in radians)

Decimal approximation:

-0.01487888040278285650039035025666952617526559293627054867...
(result in radians)
-0.014878880402782...

Alternate forms:

$$
\begin{aligned}
& \frac{1}{8} \sqrt{2-\sqrt{2}}\left(\tanh ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{5}\right)-\tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{3}\right)\right) \\
& -\frac{(\sqrt{-1-i}+\sqrt{-1+i})\left(2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{3}\right)-\log \left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right)\right)}{16 \sqrt[4]{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{16} i \sqrt{2-\sqrt{2}} \log \left(1-\frac{2}{3} i \sqrt{2-\sqrt{2}}\right)+ \\
& \frac{1}{16} i \sqrt{2-\sqrt{2}} \log \left(1+\frac{2}{3} i \sqrt{2-\sqrt{2}}\right)+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& \frac{1}{16}\left(2 \tan ^{-1}\left(1,-\frac{2}{3} \sqrt{2-\sqrt{2}}\right)+\log \left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right)\right) \sqrt{2-\sqrt{2}} \\
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& \frac{1}{16}\left(2 \tan ^{-1}\left(-\frac{2}{3} \sqrt{2-\sqrt{2}}\right)+\log _{e}\left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right)\right) \sqrt{2-\sqrt{2}} \\
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& \frac{1}{16}\left(2 \tan ^{-1}\left(-\frac{2}{3} \sqrt{2-\sqrt{2}}\right)+\log (a) \log \left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right)\right) \sqrt{2-\sqrt{2}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& -\frac{1}{8} \sqrt{2-\sqrt{2}} \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{3}\right)- \\
& \frac{1}{16} \sqrt{2-\sqrt{2}} \sum_{k=1}^{\infty} \frac{4^{k}(2-\sqrt{2})^{k / 2}\left(\frac{1}{-5+2 \sqrt{2-\sqrt{2}}}\right)^{k}}{k}
\end{aligned}
$$

$$
\frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)=-\frac{1}{16} \sqrt{2-\sqrt{2}}
$$

$$
\left(\sum_{k=1}^{\infty} \frac{4^{k}(2-\sqrt{2})^{k / 2}\left(\frac{1}{-5+2 \sqrt{2-\sqrt{2}}}\right)^{k}}{k}+2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{1+2 k} \times 3^{-1-2 k}(2-\sqrt{2})^{1 / 2+k}}{1+2 k}\right)
$$

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& -\frac{1}{8} \sqrt{2-\sqrt{2}} \tan ^{-1}\left(z_{0}\right)+\sum_{k=1}^{\infty}\left(\frac{(-1)^{1+k} 4^{-2+k}(2-\sqrt{2})^{1 / 2+k / 2}(5-2 \sqrt{2-\sqrt{2}})^{-k}}{k}-\right. \\
& \left.\quad \frac{\left.i \sqrt{2-\sqrt{2}}\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2 \sqrt{2-\sqrt{2}}}{3}-z_{0}\right)^{k}\right)}{16 k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& -\frac{1}{8} \sqrt{2-\sqrt{2}} \tan ^{-1}\left(z_{0}\right)+\sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k} \sqrt{2-\sqrt{2}}\left(-1+\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right)^{k}}{16 k}-\right. \\
& \left.\frac{i \sqrt{2-\sqrt{2}}\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2 \sqrt{2-\sqrt{2}}}{3}-z_{0}\right)^{k}}{16 k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& \int_{0}^{1} \frac{6-3 \sqrt{2}}{4\left(-9+4(-2+\sqrt{2}) t^{2}\right)} d t+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right) \\
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i\left(\frac{17}{9}-\frac{4 \sqrt{2}}{9}\right)^{-s}(-2+\sqrt{2}) \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{48 \pi^{3 / 2}} d s+ \\
& \frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right) \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{16} \sqrt{2-\sqrt{2}}\left(\log \left(\frac{1+2 \sqrt{2-\sqrt{2}}+4}{1-2 \sqrt{2-\sqrt{2}}+4}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2-\sqrt{2}}}{1-4}\right)\right)= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma} i 2^{-7 / 2-3 s} \times 3^{-1+2 s}(-1+\sqrt{2})(2+\sqrt{2})^{s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) \\
& \pi \Gamma\left(\frac{3}{2}-s\right) \\
& \frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{5+2 \sqrt{2-\sqrt{2}}}{5-2 \sqrt{2-\sqrt{2}}}\right) \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

(0.0137648383113820138-0.0148788804027828565)

Input interpretation:

$0.0137648383113820138-0.0148788804027828565$

Result:

-0.0011140420914008427
-0.0011140420914008427

Thence, we obtain:
$(-(0.0137648383113820138-0.0148788804027828565))^{\wedge} 1 / 1024$

Input interpretation:

$\sqrt[1024]{-(0.0137648383113820138-0.0148788804027828565)}$

Result:

$0.99338160770505236256 \ldots$
$0.9933816077 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

Input interpretation:

$\frac{1}{10^{52}}(1-(0.0137648383-0.0148788804)+0.08+0.02+0.0047-0.0002)$

Result:

$1.1056140421 \times 10^{-52}$
$1.1056140421 * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Now, we have that:
(page 97)

$\left(\left(1 / 4 \tan ^{\wedge}-1(2)\right)\right)-\left(\left(1 / 20 \tan ^{\wedge}-1(2)^{\wedge} 5\right)\right)+1 /(4 \operatorname{sqrt} 5) \tan ^{\wedge}-1\left(\left(\left(\left(\left(2-2^{\wedge} 3\right) s q r t 5\right)\right) /((1-\right.\right.$ $\left.\left.\left.\left.3^{*} 2^{\wedge} 2+2^{\wedge} 4\right)\right)\right)\right)+1 / 40(10-2 \mathrm{sqrt5})^{\wedge}(1 / 2)^{*} \ln \left(\left(\left(1+1(10-2 \mathrm{sqrt5})^{\wedge}(1 / 2)+4\right)\right) /(((1-1(10-\right.$ 2 sqrt5)^(1/2)+4))))

Input:

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{1}{4 \sqrt{5}} \tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)+ \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)
\end{aligned}
$$

Exact Result:

$\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}-\frac{\tan ^{-1}\left(\frac{6}{\sqrt{5}}\right)}{4 \sqrt{5}}$
(result in radians)

Decimal approximation:

0.117871277524338220859857341320591906495581624687993036863...
(result in radians)
0.1178712775243382208598...

Alternate forms:

$$
\begin{aligned}
& \frac{1}{20} \sqrt{\frac{1}{2}(5-\sqrt{5})} \log \left(\frac{1}{41}(109-20 \sqrt{5}+2 \sqrt{10(305-109 \sqrt{5})})\right)+ \\
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}-\frac{\tan ^{-1}\left(\frac{6}{\sqrt{5}}\right)}{4 \sqrt{5}} \\
& \frac{1}{8} i(\log (1-2 i)-\log (1+2 i))-\frac{1}{640} i(\log (1-2 i)-\log (1+2 i))^{5}- \\
& \frac{i\left(\log \left(1-\frac{6 i}{\sqrt{5}}\right)-\log \left(1+\frac{6 i}{\sqrt{5}}\right)\right)}{8 \sqrt{5}}+\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right)
\end{aligned}
$$

$$
\frac{1}{40}(\sqrt{10-2 \sqrt{5}}(\log (5+\sqrt{10-2 \sqrt{5}})-\log (5-\sqrt{10-2 \sqrt{5}}))+
$$

$$
\left.10 \tan ^{-1}(2)-2 \tan ^{-1}(2)^{5}-2 \sqrt{5} \tan ^{-1}\left(\frac{6}{\sqrt{5}}\right)\right)
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)=\frac{1}{4} \tan ^{-1}(2)- \\
& \frac{1}{20} \tan ^{-1}(2)^{5}+\frac{1}{40} \log _{e}\left(\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}+\frac{\tan ^{-1}\left(-\frac{6 \sqrt{5}}{-11+2^{4}}\right)}{4 \sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)=\frac{1}{4} \tan ^{-1}(1,2)- \\
& \frac{1}{20} \tan ^{-1}(1,2)^{5}+\frac{1}{40} \log \left(\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}+\frac{\tan ^{-1}\left(1,-\frac{6 \sqrt{5}}{-11+2^{4}}\right)}{4 \sqrt{5}} \\
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-32^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)=\frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+ \\
& \frac{1}{40} \log (a) \log \left(\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}+\frac{\tan ^{-1}\left(-\frac{6 \sqrt{5}}{-11+2^{4}}\right)}{4 \sqrt{5}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \quad \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)=\frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}- \\
& \quad \frac{\tan ^{-1}\left(\frac{6}{\sqrt{5}}\right)}{4 \sqrt{5}}+\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right)- \\
& \quad \frac{1}{40} \sqrt{10-2 \sqrt{5}} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}-\frac{5}{2 \sqrt{10-2 \sqrt{5}}}\right)^{k}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)= \\
& \frac{1}{640} \int 160 \tan ^{-1}\left(z_{0}\right)-32 \sqrt{5} \tan ^{-1}\left(z_{0}\right)-32 \tan ^{-1}\left(z_{0}\right)^{5}+ \\
& 16 \sqrt{2(5-\sqrt{5})} \log \left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right)-16 \sqrt{2(5-\sqrt{5})} \\
& \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}}\right)^{k}}{k}+80 i \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(2-z_{0}\right)^{k}}{k}- \\
& 80 i \tan ^{-1}\left(z_{0}\right)^{4} \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(2-z_{0}\right)^{k}}{k}+ \\
& 80 \tan ^{-1}\left(z_{0}\right)^{3}\left(\sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(2-z_{0}\right)^{k}}{k}\right)^{2}+ \\
& 40 i \tan ^{-1}\left(z_{0}\right)^{2}\left(\sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(2-z_{0}\right)^{k}}{k}\right)^{3}- \\
& 10 \tan ^{-1}\left(z_{0}\right)\left(\sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(2-z_{0}\right)^{k}}{k}\right)^{4}- \\
& i\left(\sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(2-z_{0}\right)^{k}}{k}\right)^{5}- \\
& 16 i \sqrt{5} \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{6}{\sqrt{5}}-z_{0}\right)^{k}}{k}
\end{aligned}
$$

$1 / 40(10+2 \mathrm{sqrt5})^{\wedge}(1 / 2)^{*} \ln \left(\left(\left(1+1(10+2 \mathrm{sqrt5})^{\wedge}(1 / 2)+4\right)\right) /(((1-\right.$ $\left.\left.\left.\left.1(10+2 \operatorname{sqrt5})^{\wedge}(1 / 2)+4\right)\right)\right)\right)$

Input:

$\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)$
$\log (x)$ is the natural logarithm

Exact result:

$\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}\right)$

Decimal approximation:

0.189872557940113444479006186860777045433398567588140907800...
0.18987255794...

Property:

$\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}\right)$ is a transcendental number

Alternate forms:

$\frac{1}{20} \sqrt{\frac{1}{2}(5+\sqrt{5})} \log \left(\frac{1}{82}\left(218+40 \sqrt{5}+41 \sqrt{\frac{48800}{1681}+\frac{17440 \sqrt{5}}{1681}}\right)\right)$
$\frac{(\sqrt{1-2 i}+\sqrt{1+2 i}) \log \left(\frac{5+\sqrt{2(5+\sqrt{5})}}{5-\sqrt{2(5+\sqrt{5})}}\right)}{8-\sqrt{54}}$

$$
8 \times 5^{3 / 4}
$$

$\frac{1}{20} \sqrt{\frac{1}{2}(5+\sqrt{5})}(\log (5+\sqrt{2(5+\sqrt{5})})-\log (5-\sqrt{2(5+\sqrt{5})}))$

Alternative representations:

$$
\begin{gathered}
\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)= \\
\frac{1}{40} \log _{e}\left(\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}\right) \sqrt{10+2 \sqrt{5}}
\end{gathered}
$$

$$
\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)=
$$

$$
\frac{1}{40} \log (a) \log _{a}\left(\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}\right) \sqrt{10+2 \sqrt{5}}
$$

$$
\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)=
$$

$$
-\frac{1}{40} \mathrm{Li}_{1}\left(1-\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}\right) \sqrt{10+2 \sqrt{5}}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)= \\
& \frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(-1+\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}\right)- \\
& \frac{1}{40} \sqrt{10+2 \sqrt{5}} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}-\frac{5}{2 \sqrt{2(5+\sqrt{5})}}\right)^{k}}{k} \\
& \frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)= \\
& \frac{1}{20} \sqrt{\frac{1}{2}(5+\sqrt{5})} \log \left(-\frac{2 \sqrt{2(5+\sqrt{5})}}{-5+\sqrt{2(5+\sqrt{5})}}\right)- \\
& \frac{1}{20} \sqrt{\frac{1}{2}(5+\sqrt{5})} \sum_{k=1}^{\infty} \frac{2^{-(3 k) / 2(5+\sqrt{5})^{-k / 2}}(-5+\sqrt{2(5+\sqrt{5})})^{k}}{k}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)= \\
\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(-1+\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}\right)- \\
\left.\frac{1}{40} \sqrt{10+2 \sqrt{5}} \sum_{k=1}^{\infty} \frac{1}{-\frac{1+\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}}{k}}\right)
\end{gathered}
$$

Integral representations:

$$
\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)=\frac{1}{20} \sqrt{\frac{1}{2}(5+\sqrt{5})} \int_{1}^{\frac{5+\sqrt{2(5+\sqrt{5})}}{5(5+\sqrt{5})}} \frac{1}{t} d t
$$

$$
\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10+2 \sqrt{5}}+4}{1-1 \sqrt{10+2 \sqrt{5}}+4}\right)=
$$

$$
-\frac{i \sqrt{10+2 \sqrt{5}}}{80 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(-1+\frac{5+\sqrt{10+2 \sqrt{5}}}{5-\sqrt{10+2 \sqrt{5}}}\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
$$

$\left(\left(1 / 4 \tan ^{\wedge}-1(2)\right)\right)-\left(\left(1 / 20 \tan ^{\wedge}-1(2)^{\wedge} 5\right)\right)+1 /(4 \operatorname{sqrt5}) \tan ^{\wedge}-1\left[\left(\left(\left(2-2^{\wedge} 3\right)\right.\right.\right.$ sqrt5 $\left.)\right) /((1-$ $\left.\left.\left.3^{*} 2^{\wedge} 2+2^{\wedge} 4\right)\right)\right]+1 / 40(10-2 \mathrm{sqrt5})^{\wedge}(1 / 2)^{*} \ln \left[\left(\left(1+1(10-2 \mathrm{sqrt5})^{\wedge}(1 / 2)+4\right)\right) /((1-1(10-\right.$ 2 sqrt5) $\wedge(1 / 2)+4))]+0.18987255794$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{1}{4 \sqrt{5}} \tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)+ \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)+0.18987255794
\end{aligned}
$$

Result:

0.30774383546...
(result in radians)
0.30774383546...

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \quad \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)+0.189872557940000= \\
& 0.189872557940000+\frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+ \\
& \frac{1}{40} \log _{e}\left(\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}+\frac{\tan ^{-1}\left(-\frac{6 \sqrt{5}}{-11+2^{4}}\right)}{4 \sqrt{5}}
\end{aligned}
$$

$$
\frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+
$$

$$
\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)+0.189872557940000=
$$

$$
0.189872557940000+\frac{1}{4} \tan ^{-1}(1,2)-\frac{1}{20} \tan ^{-1}(1,2)^{5}+
$$

$$
\frac{1}{40} \log \left(\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}+\frac{\tan ^{-1}\left(1,-\frac{6 \sqrt{5}}{-11+2^{4}}\right)}{4 \sqrt{5}}
$$

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \quad \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)+0.189872557940000= \\
& 0.189872557940000+\frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+ \\
& \frac{1}{40} \log (a) \log _{a}\left(\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}+\frac{\tan ^{-1}\left(-\frac{6 \sqrt{5}}{-11+2^{4}}\right)}{4 \sqrt{5}}
\end{aligned}
$$

Continued fraction representations:

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)+0.189872557940000= \\
& 0.189872557940000-\frac{8}{5\left(1+\stackrel{\infty}{K}_{k=1}^{4} \frac{4 k^{2}}{1+2 k}\right)^{5}}+\frac{1}{2\left(1+\stackrel{@}{K}_{k=1}^{\infty} \frac{4 k^{2}}{1+2 k}\right)} \\
& \left.\left.\frac{3}{10\left(1+\mathrm{K}_{k=1}^{\infty} \frac{36}{25} k^{2} \sqrt{5}^{2}\right.} \frac{1+2 k}{1+2}\right)+\left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}\right)\left(1+{\left.\underset{k=1}{\infty} \frac{\left[\frac{1+k}{2}\right]^{2}\left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right)}{1+k}\right)}_{40}\right) \\
& 0.189872557940000 \\
& 8 \\
& 5\left(1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}{9+\ldots}}}}\right)^{5}+\frac{1}{2\left(1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}{9+\ldots}}}}\right)}- \\
& 3
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} \tan ^{-1}(2)-\frac{1}{20} \tan ^{-1}(2)^{5}+\frac{\tan ^{-1}\left(\frac{\left(2-2^{3}\right) \sqrt{5}}{1-3 \times 2^{2}+2^{4}}\right)}{4 \sqrt{5}}+ \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{1+1 \sqrt{10-2 \sqrt{5}}+4}{1-1 \sqrt{10-2 \sqrt{5}}+4}\right)+0.189872557940000= \\
& 0.189872557940000-\frac{8}{5\left(1+\widehat{K}_{k=1}^{\infty} \frac{4 k^{2}}{1+2 k}\right)^{5}}+\frac{1}{2\left(1+\mathrm{K}_{k=1}^{\infty} \frac{4 k^{2}}{1+2 k}\right)}- \\
& \left.\frac{3}{10\left(1+\mathrm{K}_{k=1}^{\infty} \frac{36}{25} k^{2} \sqrt{5}^{2}\right.} \frac{1+2 k}{1+2}\right) \frac{\left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}}{40\left(1+{\underset{k=1}{\infty} \frac{\left\lfloor\frac{1+k}{2}\right]\left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right)}{\frac{1}{2}\left(3+(-1)^{k}(-1+k)+k\right)}}^{1}\right)}= \\
& 0.189872557940000-\frac{8}{5\left(1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}{9+\ldots}}}}\right)^{5}}+\frac{1}{2\left(1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}{9+\ldots}}}}\right)}- \\
& 3 \\
& \sqrt{10-2 \sqrt{5}}\left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right) \\
& 4\binom{+\left(1+\frac{-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}}{2+\frac{-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}}{2\left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right)}} 2\right.}{2+\frac{2\left(-1+\frac{5+\sqrt{10-2 \sqrt{5}}}{5-\sqrt{10-2 \sqrt{5}}}\right)}{5+\ldots}}
\end{aligned}
$$

From which, we obtain:
$1+1 /((5(0.3077438354643382208)))$

Input interpretation:

$1+\frac{1}{5 \times 0.3077438354643382208}$

Result:

1.649891165807531749109751987002000473628420124271935712962...
$1.649891165807 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

$1 / 2 \tan ^{\wedge}-1(2)+1 / 6 \tan ^{\wedge}-1(8)+1 /(4 \mathrm{sqrt} 3) \ln (((1+2 \mathrm{sqrt} 3+4) /(1-2 \mathrm{sqrt} 3+4)))$

Input:

$\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{1}{4 \sqrt{3}} \log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)$

Exact Result:

$\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}+\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)$
(result in radians)

Decimal approximation:

$1.040991496732833639573748611915498201204183344336196931089 \ldots$
(result in radians)
1.040991496...

Alternate forms:
$\frac{1}{12}\left(\sqrt{3} \log \left(\frac{1}{13}(37+20 \sqrt{3})\right)+6 \tan ^{-1}(2)+2 \tan ^{-1}(8)\right)$
$\frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)$
$\frac{1}{12}\left(\sqrt{3} \log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)+6 \tan ^{-1}(2)+2 \tan ^{-1}(8)\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}=\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}} \\
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}=\frac{1}{2} \tan ^{-1}(1,2)+\frac{1}{6} \tan ^{-1}(1,8)+\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}} \\
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log (a) \log _{a}\left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{4}{13}(6+5 \sqrt{3})\right)}{4 \sqrt{3}}-\frac{\sum_{k=1}^{\infty} \frac{\left(\frac{1}{12}(6-5 \sqrt{3})\right)^{k}}{k}}{4 \sqrt{3}} \\
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(-1+\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}-\frac{\sum_{k=1}^{\infty} \frac{\left(\frac{1}{12}(6-5 \sqrt{3})\right)^{k}}{k}}{4 \sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
& \frac{2}{3} \tan ^{-1}\left(z_{0}\right)+\frac{\log \left(-1+\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}+\sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k}\left(-1+\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)^{-k}}{4 \sqrt{3} k}+\right. \\
& \left.\frac{i\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(2-z_{0}\right)^{k}}{4 k}+\frac{i\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(8-z_{0}\right)^{k}}{12 k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\left.\left.\begin{array}{l}
\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
\int_{0}^{1}\left(\frac{1}{1+4 t^{2}}+\frac{4}{3+192 t^{2}}\right) d t+\frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}} \\
\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
\int_{1}^{\frac{1}{13}(37+20 \sqrt{3})}\left(\frac{1+\frac{4}{\left(1+\frac{1}{13}(-37-20 \sqrt{3})\right)^{2}}}{-1+\frac{1}{13}(37+20 \sqrt{3})}+\frac{4}{3\left(1+\frac{1}{\left(1+(1-t)^{2}\right.}(-37-20 \sqrt{3})\right)^{2}}\right) \\
4 \sqrt{3} t
\end{array}\right) d t . \frac{1}{4 \sqrt{2(1)}}\right) .
$$

$$
\begin{aligned}
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
& \quad \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i 65^{-s}\left(4+3 \times 13^{5}\right) \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{12 \pi^{3 / 2}} d s+\frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}} \text { for } \\
& \quad 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction representations:

$$
\begin{aligned}
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
& \frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{1+\mathrm{K}_{k=1}^{\infty} \frac{4 k^{2}}{1+2 k}}+\frac{4}{3\left(1+\mathrm{K}_{k=1}^{\infty} \frac{64 k^{2}}{1+2 k}\right)}= \\
& \frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}{9+\ldots}}}}+\frac{4}{3\left(1+\frac{64}{3+\frac{256}{5+\frac{576}{7+\frac{1024}{9+\ldots}}}}\right)}}=
\end{aligned}
$$

$$
\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}=
$$

$$
\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}+\frac{1}{1+\mathrm{K}_{k=1}^{\infty} \frac{4 k^{2}}{1+2 k}}+\frac{4}{3\left(1+{\underset{K}{K}}_{\infty}^{\infty} \frac{64 k^{2}}{1+2 k}\right)}=
$$

$$
\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}+\frac{1}{1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}{9+\ldots}}}}+\frac{4}{3\left(1+\frac{64}{3+\frac{256}{5+\frac{576}{7+\frac{1024}{9+\ldots}}}}\right)}}
$$

$$
\begin{aligned}
& \frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}= \\
& \frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{1+\mathrm{K}_{k=1}^{\infty} \frac{4(1-2 k)^{2}}{5-6 k}}+\frac{4}{3\left(1+\mathrm{K}_{k=1}^{\infty} \frac{64(1-2 k)^{2}}{65-126 k}\right)}= \\
& \frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{1+\frac{4}{-1+\frac{36}{-7+\frac{100}{-13+\frac{196}{-19+\ldots}}}}}+ \\
& \frac{4}{\left(1+\frac{64}{\left.-61+\frac{576}{-187+\frac{1600}{-313+\frac{3136}{-439+\ldots}}}\right)}\right.}
\end{aligned}
$$

$\left(\left(\left(\left(1 / 2 \tan ^{\wedge}-1(2)+1 / 6 \tan ^{\wedge}-1(8)+1 /(4 \mathrm{sqrt} 3) \ln (((1+2 \mathrm{sqrt} 3+4) /(1-\right.\right.\right.\right.$ $2 \mathrm{sqrt} 3+4)))))))^{\wedge} 12$

Input:

$\left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{1}{4 \sqrt{3}} \log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)\right)^{12}$
$\tan ^{-1}(x)$ is the inverse tangent function
$\log (x)$ is the natural logarithm

Exact Result:

$\left(\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}+\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)\right)^{12}$
(result in radians)

Decimal approximation:

1.619444930152370038737329829009437718851016351898044916404...
(result in radians)
$1.619444930152 \ldots$ result that is a good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$$
\begin{aligned}
& \left(\frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)\right)^{12} \\
& \frac{\left(\sqrt{3} \log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)+6 \tan ^{-1}(2)+2 \tan ^{-1}(8)\right)^{12}}{8916100448256} \\
& \frac{\left(3 \log \left(-\frac{5+2 \sqrt{3}}{2 \sqrt{3}-5}\right)+2 \sqrt{3}\left(3 \tan ^{-1}(2)+\tan ^{-1}(8)\right)\right)^{12}}{6499837226778624}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}\right)^{12}= \\
& \left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log _{e}\left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}\right)^{12}
\end{aligned}
$$

$$
\left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}\right)^{12}=
$$

$$
\left(\frac{1}{2} \tan ^{-1}(1,2)+\frac{1}{6} \tan ^{-1}(1,8)+\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}\right)^{12}
$$

$$
\left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}\right)^{12}=
$$

$$
\left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log (a) \log _{a}\left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}\right)^{12}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}\right)^{12}= \\
& \left.\left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\left.\log \left(-1+\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{12}(6-5 \sqrt{3})\right)^{k}}{k}\right)^{12}}{4 \sqrt{3}}\right)^{12}\right) \\
& \left(\begin{array}{l}
\left.\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}\right)^{12}= \\
\frac{1}{8916100448256}\left(8 \tan ^{-1}\left(z_{0}\right)+\sqrt{3} \log \left(-1+\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)-\right. \\
\sqrt{3} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{12}(6-5 \sqrt{3})\right)^{k}}{k}+3 i \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(2-z_{0}\right)^{k}}{k}+ \\
i \sum_{k=1}^{\infty} \frac{\left.\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(8-z_{0}\right)^{k}\right)^{12}}{k}
\end{array}\right.
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Continued fraction representations:

$$
\begin{aligned}
& \left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}\right)^{12}= \\
& \left(\frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{1+\mathrm{K}_{k=1}^{\infty} \frac{4 k^{2}}{1+2 k}}+\frac{4}{3\left(1+\mathrm{K}_{k=1}^{\infty} \frac{64 k^{2}}{1+2 k}\right)}\right)^{12}= \\
& \left(\frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{\left.\left.\left.1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}{9+\ldots}}}}+\frac{4}{3\left(1+\frac{64}{\left.3+\frac{256}{5+\frac{576}{7+\frac{1024}{9+\ldots}}}\right)}\right)}\right)^{12}\right)^{12}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}\right)^{12}= \\
& \left(\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}+\frac{1}{1+\stackrel{@}{k}_{k=1}^{\infty} \frac{4 k^{2}}{1+2 k}}+\frac{4}{3\left(1+\stackrel{\infty}{K} \frac{64 k^{2}}{1+2 k}\right)}\right)^{12}= \\
& \left.\left(\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}+\frac{1}{1+\frac{4}{3+\frac{16}{5+\frac{36}{7+\frac{64}{9+\ldots}}}}+\frac{3}{\left.3+\frac{64}{3+\frac{256}{5+\frac{576}{7+\frac{1024}{9+\ldots}}}}\right)}}\right)^{(12}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{\log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)}{4 \sqrt{3}}\right)^{12}= \\
& \left(\frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{1+{\underset{k}{K}}_{\infty}^{\infty} \frac{4(1-2 k)^{2}}{5-6 k}}+\frac{4}{3\left(1+\mathrm{K}_{k=1}^{\infty} \frac{64(1-2 k)^{2}}{65-126 k}\right)}\right)^{12}= \\
& \frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{1+\frac{4}{-1+\frac{36}{-7+\frac{100}{-13+\frac{196}{-19+\ldots}}}}}+ \\
& \left.\frac{3\left(1+\frac{4}{-61+\frac{64}{-187+\frac{576}{-313+\frac{3136}{-439+\ldots}}}}\right)}{()^{12}}\right)
\end{aligned}
$$

$1 / 10^{\wedge} 27\left(\left(\left(()\left(\left(1 / 2 \tan ^{\wedge}-1(2)+1 / 6 \tan ^{\wedge}-1(8)+1 /(4 \mathrm{sqrt} 3) \ln (((1+2 \mathrm{sqrt} 3+4) /(1-\right.\right.\right.\right.\right.$ $2 \mathrm{sqrt} 3+4)))$)))) $\left.\left.\left.{ }^{\wedge} 12+(55-2)^{*} 1 / 10^{\wedge} 3\right)\right)\right)$

Input:

$\frac{1}{10^{27}}\left(\left(\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)+\frac{1}{4 \sqrt{3}} \log \left(\frac{1+2 \sqrt{3}+4}{1-2 \sqrt{3}+4}\right)\right)^{12}+(55-2) \times \frac{1}{10^{3}}\right)$
$\tan ^{-1}(x)$ is the inverse tangent function $\log (x)$ is the natural logarithm

Exact Result:

$\frac{53}{1000}+\left(\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}+\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)\right)^{12}$
1000000000000000000000000000
(result in radians)

Decimal approximation:

$1.6724449301523700387373298290094377188510163518980449 \ldots \times 10^{-27}$
(result in radians)
$1.6724449301523 \ldots * 10^{-27}$ result practically equal to the proton mass

Alternate forms:

$$
\frac{53}{1000}+\left(\frac{\log \left(\frac{1}{13}(37+20 \sqrt{3})\right)}{4 \sqrt{3}}+\frac{1}{2} \tan ^{-1}(2)+\frac{1}{6} \tan ^{-1}(8)\right)^{12}
$$

1000000000000000000000000000
$\frac{53}{1000}+\left(\frac{\pi}{3}+\frac{\log (5+2 \sqrt{3})-\log (5-2 \sqrt{3})}{4 \sqrt{3}}+\frac{1}{12}\left(\tan ^{-1}\left(\frac{36}{323}\right)-\pi\right)\right)^{12}$
1000000000000000000000000000
$\frac{53}{1000}+\left(\frac{1}{4} i(\log (1-2 i)-\log (1+2 i))+\frac{1}{12} i(\log (1-8 i)-\log (1+8 i))+\frac{\log \left(\frac{5+2 \sqrt{3}}{5-2 \sqrt{3}}\right)}{4 \sqrt{3}}\right)^{12}$
1000000000000000000000000000

We have that:

$1 / 20 \ln \left(\left(\left((1+2)^{\wedge} 5\right) /\left(1+2^{\wedge} 5\right)\right)\right)+1 /\left(4\right.$ sqrt5) $\ln \left(\left(\left(\left(\left(\left(1+2^{*}((\right.\right.\right.\right.\right.\right.$ sqrt5-1)/2)+4)))$/(((1-$ $\left.\left.\left.\left.\left.2^{*}((\operatorname{sqrt5-1)} / 2)+4)\right)\right)\right)\right)\right)+1 / 20(10-2 \mathrm{sqrt5})^{\wedge}(1 / 2) \tan ^{\wedge}-1\left(\left(\left(\left(\left(2 *(10-2 \mathrm{sqrt5})^{\wedge}(1 / 2)\right)\right) /((4-\right.\right.\right.$ $2($ (sqrt5+1))))))

Input:

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{1}{4 \sqrt{5}} \log \left(\frac{1+2\left(\frac{1}{2}(\sqrt{5}-1)\right)+4}{1-2\left(\frac{1}{2}(\sqrt{5}-1)\right)+4}\right)+ \\
& \frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)
\end{aligned}
$$

$\log (x)$ is the natural logarithm
$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$\frac{1}{20} \log \left(\frac{81}{11}\right)+\frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)$
(result in radians)

Decimal approximation:

$0.028517407231721521731978720428288813074858647677244607539 \ldots$
(result in radians)
0.0285174072...

Alternate forms:

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{81}{11}\right)+\frac{\log \left(\frac{1}{31}(29+10 \sqrt{5})\right)}{4 \sqrt{5}}-\frac{1}{10} \sqrt{\frac{1}{2}(5-\sqrt{5})} \tan ^{-1}\left(\sqrt{\frac{1}{2}(5+\sqrt{5})}\right) \\
& \frac{1}{20}\left(\log \left(\frac{81}{11}\right)+\sqrt{5} \log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)+\sqrt{2(5-\sqrt{5})} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)\right) \\
& \frac{1}{20} \log \left(\frac{81}{11}\right)+\frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}+\frac{1}{40} i \sqrt{10-2 \sqrt{5}} \\
& \log \left(1-\frac{2 i \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)- \\
& \frac{1}{40} i \sqrt{10-2 \sqrt{5}} \log \left(1+\frac{2 i \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)= \\
& \frac{1}{20} \log \left(\frac{3^{5}}{1+2^{5}}\right)+\frac{1}{20} \tan ^{-1}\left(1, \frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+\frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}
\end{aligned}
$$

$$
\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)=
$$

$$
\frac{1}{20} \log (a) \log _{a}\left(\frac{3^{5}}{1+2^{5}}\right)+
$$

$$
\frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+\frac{\log (a) \log _{a}\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}
$$

$$
\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)=
$$

$$
\frac{1}{20} \log _{e}\left(\frac{3^{5}}{1+2^{5}}\right)+\frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+\frac{\log _{e}\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}
$$

Integral representations:

$\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)=$

$$
\int_{0}^{1} \frac{-5+3 \sqrt{5}}{10\left(-3+\sqrt{5}+(-5+\sqrt{5}) t^{2}\right)} d t+\frac{1}{20} \log \left(\frac{81}{11}\right)+\frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}
$$

$$
\begin{gathered}
\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)= \\
\int_{1}^{\frac{81}{11}\left(\frac { 1 1 } { 7 0 } \left(\frac{1}{(4-2(1+\sqrt{5}))\left(1+\frac{121(10-2 \sqrt{5})(1-t)^{2}}{1225(4-2(1+\sqrt{5}))^{2}}\right)}-\right.\right.}= \\
\left.\frac{1}{\sqrt{5}(4-2(1+\sqrt{5}))\left(1+\frac{\left.121(10-2 \sqrt{5})(1-t)^{2}\right)}{1225(4-2(1+\sqrt{5}))^{2}}\right)}\right)+ \\
\left.\frac{1}{20 t}-\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4 \sqrt{5}\left(-\frac{81}{11}+\frac{4+\sqrt{5}}{6-\sqrt{5}}+t-\frac{(4+\sqrt{5}) t}{6-\sqrt{5}}\right)}\right) d t
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)= \\
& -\frac{i(10-2 \sqrt{5})}{40(4-2(1+\sqrt{5})) \pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(1+\frac{4(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}}\right)^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s+ \\
& \quad \frac{1}{20} \log \left(\frac{81}{11}\right)+\frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\left(\left((10+2 \operatorname{sqrt5})^{\wedge}(1 / 2)\right)\right) / 20 \tan ^{\wedge}-1\left(\left(\left(\left(2 *(10+2 \operatorname{sqrt} 5)^{\wedge}(1 / 2)\right) /((4+2(\operatorname{sqrt5-1})))\right)\right)\right)
$$

Input:
$\left(\frac{1}{20} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)$

Exact Result:

$\frac{1}{20} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)$

Decimal approximation:

0.164708638338231507885004448413669921250834714283698623665...
(result in radians)
0.164708638...

Alternate forms:

$\frac{1}{10} \sqrt{\frac{1}{2}(5+\sqrt{5})} \cot ^{-1}\left(\sqrt{\frac{1}{10}(5+\sqrt{5})}\right)$
$\frac{1}{10} \sqrt{\frac{1}{2}(5+\sqrt{5})} \tan ^{-1}\left(\sqrt{\frac{1}{2}(5-\sqrt{5})}\right)$
$(\sqrt{1-2 i}+\sqrt{1+2 i}) \tan ^{-1}\left(\frac{\sqrt{2(5+\sqrt{5})}}{1+\sqrt{5}}\right)$
$4 \times 5^{3 / 4}$
$\cot ^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$
\begin{aligned}
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=\frac{1}{20} \operatorname{sc}^{-1}\left(\left.\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})} \right\rvert\, 0\right) \sqrt{10+2 \sqrt{5}} \\
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}= \\
& \frac{1}{20} \tan ^{-1}\left(1, \frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}} \\
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}= \\
& \frac{1}{20} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=\frac{1}{40} \sqrt{10+2 \sqrt{5}} \pi- \\
& \quad \frac{1}{20} \sqrt{10+2 \sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{-1-2 k}(10+2 \sqrt{5})^{1 / 2(-1-2 k)}(4+2(-1+\sqrt{5}))^{1+2 k}}{1+2 k}
\end{aligned}
$$

$$
\frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=-\frac{1}{20} i \sqrt{\frac{1}{2}(5+\sqrt{5})}
$$

$$
\left(\log (2)+\log (1+\sqrt{5})-\log (1+\sqrt{5}-i \sqrt{2(5+\sqrt{5})})-\sum_{k=1}^{\infty} \frac{\left(\frac{1+\sqrt{5}-i \sqrt{2(5+\sqrt{5})}}{2+2 \sqrt{5}}\right)^{k}}{k}\right)
$$

$$
\frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=
$$

$$
-\frac{1}{40} i \sqrt{10+2 \sqrt{5}} \log (2)+\frac{1}{40} i \sqrt{10+2 \sqrt{5}} \log \left(-i\left(i+\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right)\right)+
$$

$$
\frac{1}{40} i \sqrt{10+2 \sqrt{5}} \sum_{k=1}^{\infty} \frac{\left(\frac{1+\sqrt{5}-i \sqrt{2(5+\sqrt{5})}}{2+2 \sqrt{5}}\right)^{k}}{k}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}= \\
& \frac{(3+\sqrt{5})(5+\sqrt{5})}{10(1+\sqrt{5})} \int_{0}^{1} \frac{1}{3+\sqrt{5}+(5+\sqrt{5}) t^{2}} d t \\
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=-\frac{i(10+2 \sqrt{5})}{40(4+2(-1+\sqrt{5})) \pi^{3 / 2}} \\
& \quad \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(1+\frac{4(10+2 \sqrt{5})}{(4+2(-1+\sqrt{5}))^{2}}\right)^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=-\frac{i(10+2 \sqrt{5})}{40(4+2(-1+\sqrt{5})) \pi} \\
& \quad \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(4(10+2 \sqrt{5}))^{-s}(4+2(-1+\sqrt{5}))^{2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0< \\
& \quad \gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction representations:

$$
\frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=\frac{5+\sqrt{5}}{10(1+\sqrt{5})\left(1+\sum_{k=1}^{\infty} \frac{\frac{(5+\sqrt{5}) k^{2}}{3+\sqrt{5}}}{1+2 k}\right)}=
$$

$$
5+\sqrt{5}
$$

$$
\begin{aligned}
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}= \\
& \frac{30+14 \sqrt{5}+4(5+2 \sqrt{5})\left(\sum_{k=1}^{\infty} \frac{\frac{(5+\sqrt{5})\left(1+(-1)^{1+k}+k\right)^{2}}{3+\sqrt{5}}}{3+2 k}\right)}{5(1+\sqrt{5})^{3}\left(3+\mathrm{K}_{k=1}^{\infty} \frac{\frac{(5+\sqrt{5})\left(1+(-1)^{1+k}+k\right)^{2}}{3+\sqrt{5}}}{3+2 k}\right)}= \\
& 30+14 \sqrt{5}+4(5+2 \sqrt{5}) \frac{9(5+\sqrt{5})}{(3+\sqrt{5})\left(5+\frac{4(5+\sqrt{5})}{(3+\sqrt{5})\left(7+\frac{25(5+\sqrt{5})}{(3+\sqrt{5})\left(9+\frac{16(5+\sqrt{5})}{(3+\sqrt{5})(11+\ldots)}\right)}\right)}\right)}
\end{aligned}
$$

$\frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=$
$\left.\frac{5+\sqrt{5}}{10(1+\sqrt{5})\left(1+\stackrel{\aleph}{k=1}_{\infty}^{\frac{(5+\sqrt{5})(1-2 k)^{2}}{3+\sqrt{5}}}\right.} \frac{\frac{4(4+\sqrt{5}-2 k)}{(1+\sqrt{5})^{2}}}{}\right) \quad(5+\sqrt{5}) / 10(1+\sqrt{5})(1+(5+\sqrt{5}) /$
$(3+\sqrt{5})\left(\frac{4(2+\sqrt{5})}{(1+\sqrt{5})^{2}}+(9(5+\sqrt{5})) /(3+\sqrt{5})\left(\frac{4 \sqrt{5}}{(1+\sqrt{5})^{2}}+\right.\right.$
$25(5+\sqrt{5})$
$\left.\left.\left.(3+\sqrt{5})\left(\frac{4(-2+\sqrt{5})}{(1+\sqrt{5})^{2}}+\frac{49(5+\sqrt{5})}{(3+\sqrt{5})\left(\frac{4(-4+\sqrt{5})}{(1+\sqrt{5})^{2}}+\ldots\right)}\right)\right)\right)\right)$
(1)
thence, we obtain:
$1 / 20 \ln \left(\left(\left((1+2)^{\wedge} 5\right) /\left(1+2^{\wedge} 5\right)\right)\right)+1 /(4 \mathrm{sqrt5}) \ln ((((((1+2 *((\operatorname{sqrt5}-1) / 2)+4))) /(((1-$
$2 *((\operatorname{sqrt5-1}) / 2)+4))))))+1 / 20(10-2 \mathrm{sqrt5})^{\wedge}(1 / 2) \tan ^{\wedge}-1\left(\left(\left(\left(\left(2 *(10-2 \mathrm{sqrt5})^{\wedge}(1 / 2)\right)\right) /((4-\right.\right.\right.$ $2($ sqrt5 +1$))))))+0.164708638338$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{1}{4 \sqrt{5}} \log \left(\frac{1+2\left(\frac{1}{2}(\sqrt{5}-1)\right)+4}{1-2\left(\frac{1}{2}(\sqrt{5}-1)\right)+4}\right)+ \\
& \frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+0.164708638338
\end{aligned}
$$

Result:

0.193226045570...
(result in radians)
0.19322604557...

Alternative representations:

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+ \\
& 0.1647086383380000=0.1647086383380000+\frac{1}{20} \log \left(\frac{3^{5}}{1+2^{5}}\right)+ \\
& \frac{1}{20} \tan ^{-1}\left(1, \frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+\frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+ \\
& 0.1647086383380000=0.1647086383380000+\frac{1}{20} \log (a) \log _{a}\left(\frac{3^{5}}{1+2^{5}}\right)+ \\
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+\frac{\log (a) \log _{a}\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}} \\
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+ \\
& 0.1647086383380000=0.1647086383380000+\frac{1}{20} \log _{e}\left(\frac{3^{5}}{1+2^{5}}\right)+ \\
& \frac{1}{20} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+\frac{\log _{e}\left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+ \\
& 0.1647086383380000=0.1647086383380000+ \\
& \quad \int_{0}^{1}-\frac{(-5+\sqrt{5})(-1+\sqrt{5})}{20 t^{2}(-5+\sqrt{5})-10(-1+\sqrt{5})^{2}} d t+\frac{1}{20} \log \left(\frac{81}{11}\right)+\frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+ \\
& \frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+0.1647086383380000= \\
& 0.1647086383380000+\int_{1}^{\frac{81}{11}\left(\frac{1}{20 t}-\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4 \sqrt{5}\left(-\frac{81}{11}+t+\frac{4+\sqrt{5}}{6-\sqrt{5}}-\frac{t(4+\sqrt{5})}{6-\sqrt{5}}\right)}+\right.}+ \\
& \frac{11}{70}\left(\frac{1}{(4-2(1+\sqrt{5}))\left(1+\frac{121(1-t)^{2}(10-2 \sqrt{5})}{1225(4-2(1+\sqrt{5}))^{2}}\right)}-\right.
\end{aligned}
$$

$$
\left.\left.\frac{\sqrt{5}}{5(4-2(1+\sqrt{5}))\left(1+\frac{121(1-t)^{2}(10-2 \sqrt{5})}{1225(4-2(1+\sqrt{5}))^{2}}\right)}\right)\right) d t
$$

$$
\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+
$$

$$
\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+0.1647086383380000=
$$

$$
0.1647086383380000+\frac{1}{20} \log \left(\frac{81}{11}\right)+\frac{\log \left(\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4 \sqrt{5}}-\frac{i(10-2 \sqrt{5})}{40 \pi^{3 / 2}(4-2(1+\sqrt{5}))}
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}\left(1+\frac{4(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}}\right)^{-s} d s \text { for } 0<\gamma<\frac{1}{2}
$$

Continued fraction representations:

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+ \\
& 0.1647086383380000=0.1647086383380000+\frac{7}{22\left(1+\mathbb{K}_{k=1}^{\infty} \frac{\frac{70}{11}\left\lfloor\frac{1+k}{2}\right\rfloor^{2}}{1+k}\right)}+ \\
& \frac{10-2 \sqrt{5}}{10\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{4 k^{2}(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}}}{1+2 k}\right)(4-2(1+\sqrt{5}))}+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\left\lfloor\frac{1+k}{2}\right\rfloor^{2}\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{1+k}\right) \sqrt{5}}= \\
& 0.1647086383380000+(10-2 \sqrt{5}) /(10(4-2(1+\sqrt{5})))(1+(4(10-2 \sqrt{5})) / \\
& \left((4 - 2 (1 + \sqrt { 5 })) ^ { 2 } \left(3+(16(10-2 \sqrt{5})) / /(4-2(1+\sqrt{5}))^{2}(5+\right.\right. \\
& \frac{36(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}\left(7+\frac{64(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}(9+\ldots)}\right)} \\
& -1+\frac{4+\sqrt{5}}{6-\sqrt{5}} \\
& 4 \sqrt{5}\left(1+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{2+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4+\frac{4\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}}} 1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+ \\
& \left.0.1647086383380000=0.1647086383380000+\frac{7}{22\left(1+\stackrel{N}{k=1}_{\infty}^{\frac{1}{2}\left(3+(-1)^{k}(-1+k)+k\right)} \frac{71}{2}\right]}\right)+ \\
& \frac{10-2 \sqrt{5}}{10\left(1+{\underset{K}{k=1}}_{\infty}^{\frac{4 k^{2}(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}}} \frac{1+2 k}{1+2(1+\sqrt{5}))}\right.}+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\left.\frac{1+k}{2}\right]\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{2\left(3+(-1)^{k}(-1+k)+k\right)}\right) \sqrt{5}}= \\
& 0.1647086383380000+(10-2 \sqrt{5}) / / 10(4-2(1+\sqrt{5}))(1+(4(10-2 \sqrt{5})) / \\
& \left((4 - 2 (1 + \sqrt { 5 })) ^ { 2 } \left(3+(16(10-2 \sqrt{5})) /\left((4-2(1+\sqrt{5}))^{2}(5+\right.\right.\right. \\
& \left.\left.\left.\left.\frac{36(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}\left(7+\frac{64(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}(9+\ldots)}\right)}\right)\right) \mid\right) \mid\right) \mid \\
& +\frac{7}{22\left(1+\frac{70}{11\left(2+\frac{70}{11\left(3+\frac{140}{11\left(2+\frac{140}{11(5+\ldots)}\right)}\right)}\right)}\right.}+ \\
& -1+\frac{4+\sqrt{5}}{6-\sqrt{5}} \\
& 4 \sqrt{5}\left(1+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{2+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{3+\frac{2\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{2\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}} 5}\right)
\end{aligned}
$$

$0.1647086383380000+\frac{1}{20} \sqrt{10-2 \sqrt{5}}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}-\right.$

$$
\begin{aligned}
& \left(8(10-2 \sqrt{5})^{3 / 2}\right) /\left((4-2(1+\sqrt{5}))^{3}(3+(36(10-2 \sqrt{5})) /\right. \\
& \left((4 - 2 (1 + \sqrt { 5 })) ^ { 2 } \left(5+(16(10-2 \sqrt{5})) /\left((4-2(1+\sqrt{5}))^{2}\right.\right.\right.
\end{aligned}
$$

$$
\left(7+(100(10-2 \sqrt{5})) /\left((4-2(1+\sqrt{5}))^{2}\right.\right.
$$

$$
\left.\left.\left.\left.\left.\left.\left.\left.\left.\left(9+\frac{64(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}(11+\ldots)}\right)\right)\right)\right) \int\right)\right)\right)\right)\right)\right)+
$$

$$
-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}
$$

$$
22\left(1+\frac{70}{11\left(2+\frac{70}{11\left(3+\frac{280}{11\left(4+\frac{280}{11(5+\ldots)}\right)}\right)}\right)}\right)^{+}
$$

$$
4 \sqrt{+\left(\frac{6-\sqrt{5}}{}\left(1+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{2+\frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{3+\frac{4\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{4\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}} 4}\right)\right.}
$$

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{2}(\sqrt{5}-1)+4}{1-\frac{2}{2}(\sqrt{5}-1)+4}\right)}{4 \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+ \\
& \left.0.1647086383380000=0.1647086383380000+\frac{7}{22\left(1+\underset{k=1}{\infty} \frac{70}{11}\left\lfloor\frac{1+k}{2}\right\rfloor^{2}\right.} \frac{1+k}{}\right)+ \\
& \frac{-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}}{4\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\left[\frac{1+k}{2}\right]^{2}\left(-1+\frac{4+\sqrt{5}}{6-\sqrt{5}}\right)}{1+k}\right) \sqrt{5}}+\frac{1}{20} \sqrt{10-2 \sqrt{5}} \\
& \left(-\frac{8(10-2 \sqrt{5})^{3 / 2}}{\left(3+\mathrm{K}_{k=1}^{\infty} \frac{\frac{4\left(1+(-1)^{1+k}+k\right)^{2}(10-2 \sqrt{5})}{(4-2(1+\sqrt{5}))^{2}}}{3+2 k}\right)}+\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)=
\end{aligned}
$$

From which:
$1+1 /(((1 /(0.1932260455697215217319))))^{\wedge} 1 / 4-(47-2)^{*} 1 / 10^{\wedge} 3$

Input interpretation:

$1+\frac{1}{\sqrt[4]{\frac{1}{0.1932260455697215217319}}}-(47-2) \times \frac{1}{10^{3}}$

Result:

1.6180044090197911797693...
$1.618004409 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Now, we have that:

$1 /(4 \mathrm{sqrt} 2) \ln (((1+2 \mathrm{sqrt} 2+4) /(1-2 \mathrm{sqrt} 2+4)))+1 /(2 \mathrm{sqrt} 2) \tan ^{\wedge}-1(((2 \mathrm{sqrt} 2) /(1-4)))$

Input:
$\frac{1}{4 \sqrt{2}} \log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)+\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)$

Exact Result:

$\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}$
(result in radians)

Decimal approximation:

-0.04059304540290341402684888493340270092590079222787614185...
(result in radians)
$-0.0405930454029034 \ldots$.

Alternate forms:

$\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)-2 \tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{4 \sqrt{2}}$
$\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}$

$$
\frac{\log \left(-\frac{1}{2 \sqrt{2}-5}\right)+\log (5+2 \sqrt{2})-2 \tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{4 \sqrt{2}}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=\frac{\tan ^{-1}\left(1,-\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}} \\
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=\frac{\tan ^{-1}\left(-\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log _{e}\left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}} \\
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=\frac{\tan ^{-1}\left(-\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log (a) \log _{a}\left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}= \\
& -\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log \left(\frac{4}{17}(4+5 \sqrt{2})\right)}{4 \sqrt{2}}-\frac{\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}}{4 \sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}= \\
& \frac{\log \left(\frac{4}{17}(4+5 \sqrt{2})\right)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}-2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{3 / 2} / 3 k \times 3^{-1-2 k}}{1+2 k}}{4 \sqrt{2}} \\
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}= \\
& \frac{\log \left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}-2 \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{3 / 2}+3 k \times 3^{-1-2 k}}{1+2 k}}{4 \sqrt{2}} \\
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=-\frac{\tan ^{-1}\left(z_{0}\right)}{2 \sqrt{2}}+\frac{\log \left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}+ \\
& \sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k}\left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)^{-k}}{4 \sqrt{2} k}-\frac{i\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2 \sqrt{2}}{3}-z_{0}\right)^{k}}{4 \sqrt{2} k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=-3 \int_{0}^{1} \frac{1}{9+8 t^{2}} d t+\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}} \\
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}= \\
& \int_{1}^{\frac{1}{17}(33+20 \sqrt{2})}\left(-\frac{3}{\left(-1+\frac{1}{17}(33+20 \sqrt{2})\right)\left(9+\frac{8(1-t)^{2}}{\left(1+\frac{1}{17}(-33-20 \sqrt{2})\right)^{2}}\right)}+\frac{1}{4 \sqrt{2} t}\right) d t \\
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=\frac{i}{12 \pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{9}{17}\right)^{s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s+ \\
& \frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction representations:

$$
\begin{aligned}
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}}-\frac{1}{3\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{8 k^{2}}{9}}{1+2 k}\right)}= \\
& \frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}} \\
& 1 \\
& \frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{1}{3\left(1+K_{k=1}^{\infty} \frac{\frac{8 k^{2}}{0}}{1+2 k}\right)}= \\
& \frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{1}{9\left(1+\frac{8}{9\left(5+\frac{32}{9\left(5+\frac{8}{7+\frac{128}{9(9+\ldots)}}\right)}\right)}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}=\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}}-\frac{1}{3\left(1+\mathrm{K}_{k=1}^{\infty} \frac{8}{9}(1-2 k)^{2}\right.} \frac{{ }_{9}(17+2 k)}{}\right)= \\
& \log \left(\frac{1}{17}(33+20 \sqrt{2})\right) \\
& 4 \sqrt{2} \\
& 1
\end{aligned}
$$

a_{k} / b_{k} is a continued fraction
$(64+8)^{*}-1 /\left(\left(\left(\left(1 /(4 \mathrm{sqrt} 2) \ln (((1+2 \mathrm{sqrt2}+4) /(1-2 \mathrm{sqrt} 2+4)))+1 /(2 \mathrm{sqrt} 2) \tan ^{\wedge}-\right.\right.\right.\right.$ $1(((2 \mathrm{sqrt} 2) /(1-4)))))))-47+\mathrm{Pi}-(2-\mathrm{sqrt} 3+1 / 2)$

Input:

$\frac{(64+8) \times(-1)}{\frac{1}{4 \sqrt{2}} \log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)+\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)$
$\log (x)$ is the natural logarithm
$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}}$
(result in radians)

Decimal approximation:

$1729.076485545783498627045199243170759302009962238176748102 \ldots$
(result in radians)
1729.076485545...

We know that 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternate forms:

$$
\begin{aligned}
& -\frac{99}{2}+\sqrt{3}+\pi+\frac{144 \sqrt{2}}{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)-\tanh ^{-1}\left(\frac{2 \sqrt{2}}{5}\right)} \\
& -\frac{99}{2}+\sqrt{3}+\pi+\frac{288 \sqrt{2}}{\log \left(\frac{17}{33+20 \sqrt{2}}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)} \\
& -\frac{99}{2}+\sqrt{3}+\pi-\frac{288 \sqrt{2}}{\log \left(-\frac{5+2 \sqrt{2}}{2 \sqrt{2}-5}\right)-2 \tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}
\end{aligned}
$$

$\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function

Alternative representations:

$\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=$

$$
-\frac{99}{2}+\pi-\frac{72}{\frac{\tan ^{-1}\left(1,-\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}}+\sqrt{3}
$$

$\frac{(64+8)(-1)}{\left.\frac{\log \left(\frac{1+2 \sqrt{2}}{1-2}+4\right.}{1-2 \sqrt{2}+4}\right)}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=$

$$
-\frac{99}{2}+\pi-\frac{72}{\frac{\tan ^{-1}\left(-\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log _{e}\left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}}+\sqrt{3}
$$

$$
\begin{gathered}
\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=} \\
-\frac{99}{2}+\pi-\frac{72}{\frac{\tan ^{-1}\left(1,-\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log _{e}\left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}}+\sqrt{3}
\end{gathered}
$$

Series representations:

$$
\begin{aligned}
& \frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=} \\
& -\frac{99}{2}+\sqrt{3}+\pi+\frac{288 \sqrt{2}}{2 \tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)+\log \left(\frac{1}{8}(-4+5 \sqrt{2})\right)+\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}}
\end{aligned}
$$

$$
\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=
$$

$$
-\frac{99}{2}+\sqrt{3}+\pi-
$$

$$
-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log \left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}}{4 \sqrt{2}}
$$

$$
\begin{aligned}
& \frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=} \\
& -\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}}{4 \sqrt{2}}-\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{3 / 2+3 k} 3^{-1-2 k}}{1+2 k}}{2 \sqrt{2}}}
\end{aligned}
$$

$$
\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=-\frac{99}{2}+\sqrt{3}+\pi-
$$

$$
\frac{\log \left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2 \sqrt{2}}{3}-z_{0}\right)^{k}}{k}}{2 \sqrt{2}}
$$

[^1]
Integral representations:

$$
\begin{aligned}
& \frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)= \\
& -\frac{99}{2}+\sqrt{3}+\pi+\frac{1728}{72 \int_{0}^{1} \frac{1}{9+8 t^{2}} d t-3 \sqrt{2} \log \left(\frac{1}{17}(33+20 \sqrt{2})\right)} \\
& \frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=-\frac{99}{2}+\sqrt{3}+\pi- \\
& \frac{i}{12 \pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{9}{17}\right)^{s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s+\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}} \\
& \frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)= \\
& -\frac{99}{2}+\sqrt{3}+\pi-
\end{aligned}
$$

Continued fraction representations:

$$
\begin{aligned}
& \frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)= \\
& -\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}}-\frac{1}{3\left(1+\sum_{k=1}^{\infty} \frac{\frac{8 k^{2}}{9}}{1+2 k}\right)}}= \\
& -\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\left.\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}}-\frac{1}{3\left(1+\frac{8}{\left(3+\frac{82}{9\left(5+\frac{8}{\left.7+\frac{128}{9(9+\ldots)}\right)}\right)}\right.}\right.}\right)}
\end{aligned}
$$

$\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=$ $-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{1}{3\left(1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{8 k^{2}}{9}}{1+2 k}\right)}}=$

$$
-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{1}{\left(3\left(1+\frac{8}{9\left(5+\frac{82}{7+\frac{128}{9(9+\ldots)}}\right)}\right)\right.}}
$$

$$
\begin{aligned}
& \frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)= \\
& \left.-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}}-\frac{1}{3\left(1+\mathbb{K}_{k=1}^{\infty} \frac{8}{9}(1-2 k)^{2}\right.} \frac{9}{1}(17+2 k)}\right)= \\
& -\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}}}-\frac{1}{3\left(1+\frac{1}{9\left(\frac{19}{9}+\frac{7}{3}+\frac{8}{9\left(\frac{23}{9}+\frac{392}{9\left(\frac{25}{9}+\ldots\right)}\right)}\right)}\right)}
\end{aligned}
$$

From which:

$\left(\left(\left((64+8)^{*}-1 /\left(\left(\left(\left(1 /(4 \mathrm{sqrt} 2) \ln (((1+2 \mathrm{sqrt} 2+4) /(1-2 \mathrm{sqrt} 2+4)))+1 /(2 \mathrm{sqrt} 2) \tan ^{\wedge}-\right.\right.\right.\right.\right.\right.\right.$ $1(((2$ sqrt 2$) /(1-4)))))))-47+\mathrm{Pi}-(2-\mathrm{sqrt} 3+1 / 2))))^{\wedge} 1 / 15$

Input:

$\sqrt[15]{\frac{(64+8) \times(-1)}{\frac{1}{4 \sqrt{2}} \log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)+\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}$
$\log (x)$ is the natural logarithm

Exact Result:

$\sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}}}$
(result in radians)

Decimal approximation:

1.643820076464536773658593726009304251173902735647061794707...
(result in radians)
$1.6438200764645 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms:

$\sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi+\frac{144 \sqrt{2}}{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)-\tanh ^{-1}\left(\frac{2 \sqrt{2}}{5}\right)}}$
$\sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi+\frac{288 \sqrt{2}}{\log \left(\frac{17}{33+20 \sqrt{2}}\right)+2 \tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}}$
$\sqrt[15]{\frac{1}{2}(2 \sqrt{3}-99)+\pi-\frac{72}{\frac{\log \left(\frac{1}{17}(33+20 \sqrt{2})\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}}}$
$\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function

All 15th roots of $-99 / 2+\operatorname{sqrt}(3)+\pi-72 /(\log ((5+2 \operatorname{sqrt}(2)) /(5-2 \operatorname{sqrt}(2))) /(4$ $\left.\operatorname{sqrt}(2))-\left(\tan ^{\wedge}(-1)((2 \operatorname{sqrt}(2)) / \mathbf{3})\right) /(\mathbf{2} \operatorname{sqrt}(2))\right):$

$$
\begin{aligned}
& e^{0} \sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}} \approx 1.6438 \text { (real, principal root) }} \\
& e^{(2 i \pi) / 15} \sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}}} \approx 1.5017+0.6686 i
\end{aligned}
$$

$$
\begin{aligned}
& e^{(4 i \pi) / 15} \sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}}} \approx 1.0999+1.2216 i \\
& e^{(2 i \pi) / 5} \sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}}} \approx 0.5080+1.5634 i \\
& e^{(8 i \pi) / 15} \sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}}} \approx-0.1718+1.6348 i
\end{aligned}
$$

Alternative representations:

$$
\sqrt{\sqrt[15]{\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}}=}=
$$

$$
\sqrt[15]{\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}=
$$

$$
\sqrt[15]{-\frac{99}{2}+\pi-\frac{72}{\frac{\tan ^{-1}\left(-\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log _{e}\left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}}+\sqrt{3}}
$$

$$
\left.\begin{array}{l}
\sqrt[15]{\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}}= \\
\sqrt[15]{-\frac{99}{2}+\pi-\frac{72}{\tan ^{-1}\left(1,-\frac{2 \sqrt{2}}{3}\right)} \log _{e}\left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)} \\
4 \sqrt{2} \\
\frac{\operatorname{lo}^{2}}{3}
\end{array}\right) .
$$

Series representations:

$$
\begin{aligned}
& \sqrt[15]{\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}=} \\
& \sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{-\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)}{2 \sqrt{2}}+\frac{\log \left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right) \sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}}{4 \sqrt{2}}}}
\end{aligned}
$$

$$
\sqrt[15]{\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}=
$$

$$
\sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\frac{\log \left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}}{4 \sqrt{2}}-\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k^{2} 2^{3 / 2+3 k} \times 3^{-1-2 k}}}{1+2 k}}{2 \sqrt{2}}}}
$$

$$
\begin{aligned}
& \sqrt{\frac{(64+8)(-1)}{\frac{150\left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}=} \\
& \left(\begin{array}{l}
-\frac{99}{2}+\sqrt{3}+\pi-72 /\left(\frac{\log \left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{8}(4-5 \sqrt{2})\right)^{k}}{k}}{4 \sqrt{2}}\right.
\end{array}\right) \\
& \left.\frac{\left.\tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2 \sqrt{2}}{3}-z_{0}\right)^{k}}{k}\right)}{2 \sqrt{2}}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{gathered}
\sqrt[15]{\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}}= \\
\sqrt[15]{-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{-\frac{1}{3} \int_{0}^{1} \frac{1}{1+\frac{8 t^{2}}{9}} d t+\frac{\log \left(\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)}{4 \sqrt{2}}}}
\end{gathered}
$$

$$
\sqrt[15]{\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}+4}{1-2 \sqrt{2}+4}\right)}{4 \sqrt{2}}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)}=
$$

$0<\gamma<\frac{1}{2}$
$\sqrt[15]{\frac{(64+8)(-1)}{\frac{\log \left(\frac{1+2 \sqrt{2}}{1-2}+4\right.}{4 \sqrt{2}}+4}+\frac{\tan ^{-1}\left(\frac{2 \sqrt{2}}{1-4}\right)}{2 \sqrt{2}}}-47+\pi-\left(2-\sqrt{3}+\frac{1}{2}\right)=$

$$
\sqrt{\left.-\frac{99}{2}+\sqrt{3}+\pi-\frac{72}{\int_{1}^{\frac{5+2 \sqrt{2}}{2}}\left(-\frac{1}{3\left(-1+\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)\left(1+\frac{8(1-t)^{2}}{9\left(1-\frac{5+2 \sqrt{2}}{5-2 \sqrt{2}}\right)^{2}}\right)}+\frac{1}{4 \sqrt{2} t}\right) d t}\right)}
$$

Now, we have that:

For $x=-2$ and multiplying all the expression by -1 , we obtain:
$-\left(\left(1 / 6 \ln \left(\left((1-2)^{\wedge} 3\right) /(1-8)\right)+1 / \mathrm{sqrt} 3 \tan ^{\wedge}-1(-2 \mathrm{sqrt} 3 /(2+2))\right)\right)$

Input:

$-\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{1}{\sqrt{3}} \tan ^{-1}\left(-2 \times \frac{\sqrt{3}}{2+2}\right)\right)$

Exact Result:

$\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}$
(result in radians)

Decimal approximation:

$0.736387320486844454951909129191439952702295682177676137042 \ldots$
(result in radians)
$0.7363873204 \ldots$

Alternate forms:

$\frac{\log (7)}{6}+\frac{\cot ^{-1}\left(\frac{2}{\sqrt{3}}\right)}{\sqrt{3}}$
$\frac{1}{6}\left(\log (7)+2 \sqrt{3} \cot ^{-1}\left(\frac{2}{\sqrt{3}}\right)\right)$
$\frac{1}{6}\left(\log (7)+2 \sqrt{3} \tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$

Alternative representations:
$-\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)=-\frac{1}{6} \log \left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(1,-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}$
$-\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)=-\frac{1}{6} \log _{e}\left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}$
$-\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)=-\frac{1}{6} \log (a) \log _{a}\left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}$

Series representations:

$-\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)=\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}+\frac{\log (6)}{6}-\frac{1}{6} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^{k}}{k}$

$$
\begin{aligned}
& -\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)= \\
& \frac{1}{6}\left(\log (6)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^{k}}{k}+2 \sqrt{3} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{-1-2 k} \times 3^{1 / 2+k}}{1+2 k}\right) \\
& -\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)= \\
& \quad \frac{\tan ^{-1}\left(z_{0}\right)}{\sqrt{3}}+\frac{\log (6)}{6}+\sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k} 6^{-1-k}}{k}+\frac{i\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{\sqrt{3}}{2}-z_{0}\right)^{k}}{2 \sqrt{3} k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

$$
\begin{aligned}
& -\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)= \\
& \quad \frac{\tan ^{-1}\left(z_{0}\right)}{\sqrt{3}}+\frac{\log (6)}{6}+\sum_{k=1}^{\infty}\left(\frac{\left(-\frac{1}{6}\right)^{1+k}}{k}+\frac{i\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{\sqrt{3}}{2}-z_{0}\right)^{k}}{2 \sqrt{3} k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& -\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)=\int_{1}^{7}\left(\frac{1}{6 t}+\frac{4}{49-2 t+t^{2}}\right) d t \\
& -\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)=2 \int_{0}^{1} \frac{1}{4+3 t^{2}} d t+\frac{\log (7)}{6} \\
& -\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)= \\
& -\frac{i}{8 \pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{4}{7}\right)^{s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s+\frac{\log (7)}{6} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction representations:

$$
\begin{aligned}
& -\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)= \\
& \\
& -\frac{1}{6}\left(\log (7)+\frac{3}{1+\mathrm{K}_{k=1}^{\infty} \frac{3 k^{2}}{\frac{4}{1+2 k}}}\right)=\frac{1}{6}\left(\log (7)+\frac{3}{\left.1+\frac{3}{4\left(3+\frac{3}{5+\frac{27}{4\left(7+\frac{12}{9+\ldots}\right)}}\right)}\right)}\right.
\end{aligned}
$$

$$
-\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)=\frac{1}{6}\left(\log (7)+\frac{3}{1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{3}{4}(1-2 k)^{2}}{\frac{1}{4}(7+2 k)}}\right)=
$$

$$
\frac{1}{6}\left(\log (7)+\frac{3}{\left.1+\frac{3}{\left(\frac{9}{4}+\frac{37}{\left(\frac{11}{4}+\frac{13}{4\left(\frac{13}{4}+\frac{147}{4\left(\frac{15}{4}+\ldots\right)}\right)}\right)}\right.}\right)}\right. \text { (}
$$

$$
\begin{aligned}
& \left.-\left(\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}\right)=\frac{1}{2}+\frac{\log (7)}{6}-\frac{3}{8\left(3+{\underset{k}{K}}_{\infty}^{\infty} \frac{3}{4}\left(1+(-1)^{1+k}+k\right)^{2}\right.} \frac{3+2 k}{3}\right) \\
& \frac{1}{2}+\frac{\log (7)}{6}-\frac{3}{8\left(3+\frac{27}{4\left(5+\frac{3}{7+\frac{75}{4\left(9+\frac{12}{11+\ldots}\right)}}\right)}\right)}=
\end{aligned}
$$

$\underset{k=k_{1}}{\mathrm{~K}_{2}} a_{k} / b_{k}$ is a continued fraction
$27 * 1 / 2 *\left(\left(\left(\left(\left(\left(48 /\left(\left(\left(-\left((1 / 6 \ln)\left(\left((1-2)^{\wedge} 3\right) /(1-8)\right)+1 / s q r t 3 \tan ^{\wedge}-1(-2 \operatorname{sqrt} 3 /(2+2))\right)\right)\right)\right)\right)\right)^{2} 2-\right.\right.\right.\right.$ $5)))+2)))+13-\mathrm{Pi}-1 /(2 *$ golden ratio $)$

Input:

$27 \times \frac{1}{2}\left(\left(-\frac{48}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{1}{\sqrt{3}} \tan ^{-1}\left(-2 \times \frac{\sqrt{3}}{2+2}\right)} \times 2-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}$
$\log (x)$ is the natural logarithm
$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$-\frac{1}{2 \phi}+13-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}-3\right)$
(result in radians)

Decimal approximation:

1728.992784194261273873736870175107646602163369377715813100...
(result in radians)
$1728.99278419 \ldots \approx 1729$
We know that 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternate forms:

$-\frac{1}{2 \phi}-\frac{55}{2}-\pi+\frac{7776}{\log (7)+2 \sqrt{3} \tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}$
$-\frac{1}{2 \phi}-\frac{55}{2}-\pi+\frac{7776 \sqrt{3}}{\sqrt{3} \log (7)+6 \tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}$
$-\frac{55}{2}-\frac{1}{1+\sqrt{5}}-\pi+\frac{1296}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}$

Alternative representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}= \\
& 13-\pi-\frac{1}{2 \phi}+\frac{27}{2}\left(-3+\frac{96}{\left.-\frac{1}{6} \log \left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(1,-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}= \\
& 13-\pi-\frac{1}{2 \phi}+\frac{27}{2}\left(-3+\frac{96}{\left.-\frac{1}{6} \log _{e}\left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}\right)}\right. \\
& \frac{27}{2}\left(\left(-\frac{48 \times 2}{\left.\left.\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}=}\right.\right. \\
& 13-\pi-\frac{1}{2 \phi}+\frac{27}{2}\left(-3+\frac{\left.-\frac{1}{6} \log _{e}\left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(1,-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}\right)}{96}\right)
\end{aligned}
$$

Series representations:

$$
\left.\begin{array}{l}
\frac{27}{2}\left(\left(-\frac{48 \times 2}{\left.\left.\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}=}\right.\right. \\
-\frac{55}{2}-\frac{1}{1+\sqrt{5}}-\pi+\frac{1296}{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)} \\
\frac{\sqrt{3}}{2}
\end{array}\right) \frac{1}{6}\left(\log (6)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^{k}}{k}\right) .
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}-5}\right)+2\right)+13-\pi-\frac{1}{2 \phi}=-\frac{55}{2}-\frac{1}{1+\sqrt{5}}-\pi+ \\
& \frac{1296}{\sqrt{3}} \\
& \frac{1}{6}\left(\log (6)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^{k}}{k}\right)+\frac{\tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{\sqrt{3}}{2}-z_{0}\right)^{k}}{k}}{\sqrt{3}}
\end{aligned}
$$ for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}= \\
& -\frac{55}{2}-\frac{1}{2 \phi}-\pi+\frac{7776}{12 \int_{0}^{1} \frac{1}{4+3 t^{2}} d t+\log (7)}
\end{aligned}
$$

$$
\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}=
$$

$$
-\frac{55}{2}-\frac{1}{2 \phi}-\pi+\frac{1296}{\int_{1}^{7}\left(\frac{1}{6 t}+\frac{4}{49-2 t+t^{2}}\right) d t}
$$

$$
\left.\left.\begin{array}{rl}
\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right.\right.
\end{array}\right)+2\right)+13-\pi-\frac{1}{2 \phi}=-\frac{55}{2}-\frac{1}{1+\sqrt{5}}-
$$

Continued fraction representations:

$$
\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}=
$$

$$
13-\frac{1}{2 \phi}-\pi+\frac{27}{2}\left(-3+\frac{96}{\left.\frac{\log (7)}{6}+\frac{1}{2\left(1+\underset{k=1}{\infty} \frac{3 k^{2}}{1+2 k}\right.}\right)}\right)=
$$

$$
13-\frac{1}{2 \phi}-\pi+\frac{27}{2}\left(-3+\frac{96}{\left.\frac{\log (7)}{6}+\frac{1}{2\left(1+\frac{1}{\left(3+\frac{3}{5+\frac{27}{4\left(7+\frac{12}{9+\ldots}\right)}}\right.}\right)}\right)}\right)
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}= \\
& -\frac{55}{2}-\frac{1}{2 \phi}-\pi+\frac{7776}{\log (7)+\frac{3}{1+\mathrm{K}_{k=1}^{\infty} \frac{\frac{3 k^{2}}{4}}{1+2 k}}}=-\frac{55}{2}-\frac{1}{2 \phi}-\pi+\frac{7776}{\left.\log (7)+\frac{3}{1+\frac{3}{\left(3+\frac{3}{\left.5+\frac{27}{4\left(7+\frac{12}{9+\ldots}\right)}\right)}\right.}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}= \\
& -\frac{55}{2}-\frac{1}{2 \phi}-\pi+\frac{7776}{\log (7)+\frac{3}{1+\mathrm{K}_{k=1}^{\infty} \frac{3}{4}(1-2 k)^{2}} \frac{1}{4}(7+2 k)}= \\
& -\frac{55}{2}-\frac{1}{2 \phi}-\pi+\frac{7776}{\log (7)+\frac{3}{\left.1+\frac{1}{(}\right)}} \\
& 4\left(\frac{9}{4}+\frac{27}{4\left(\frac{11}{4}+\frac{75}{4\left(\frac{13}{4}+\frac{147}{4\left(\frac{15}{4}+\ldots\right)}\right)}\right)}\right)
\end{aligned}
$$

From which:

$\left(\left(27^{*} 1 / 2^{*}\left(\left(\left(\left(\left(\left(48 /\left(\left(\left(-\left((1 / 6 \ln)\left(((1-2))^{\wedge}\right) /(1-8)\right)+1 / \mathrm{sqrt} 3 \tan ^{\wedge}-1(-2 \mathrm{sqr} 3 /(2+2))\right)\right)\right)\right)\right)\right)^{*} 2-\right.\right.\right.\right.\right.$ $5)))+2)))^{+13-P i-1 /(2 * \text { golden ratio })))^{\wedge} 1 / 15}$

Input:

$\sqrt[15]{27 \times \frac{1}{2}\left(\left(-\frac{48}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{1}{\sqrt{3}} \tan ^{-1}\left(-2 \times \frac{\sqrt{3}}{2+2}\right)} \times 2-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}$
$\log (x)$ is the natural logarithm
$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$\sqrt[15]{-\frac{1}{2 \phi}+13-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}-3\right)}$
(result in radians)

Decimal approximation:

1.643814771394787036770119180752410280641371729502784324347...
(result in radians)
$1.6438147713 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms:

$\sqrt[15]{-\frac{1}{2 \phi}-\frac{55}{2}-\pi+\frac{7776}{\log (7)+2 \sqrt{3} \tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}}$
$\sqrt[15]{-\frac{55}{2}-\frac{1}{1+\sqrt{5}}-\pi+\frac{1296}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}}$
$\sqrt[15]{13-\frac{1}{1+\sqrt{5}}-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\cot ^{-1}\left(\frac{2}{\sqrt{3}}\right)}{\sqrt{3}}}-3\right)}$
$\cot ^{-1}(x)$ is the inverse cotangent function

Expanded form:

$\sqrt[15]{13-\frac{1}{1+\sqrt{5}}-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}-3\right)}$

All 15th roots of $-1 /(2 \phi)+13-\pi+27 / 2\left(96 /\left(\log (7) / 6+\left(\tan ^{\wedge}(-\right.\right.\right.$ 1)(sqrt(3)/2))/sqrt(3)) - 3):
$e^{0} \sqrt[15]{-\frac{1}{2 \phi}+13-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}-3\right)} \approx 1.64381$ (real, principal root)
$e^{(2 i \pi) / 15} \sqrt[15]{-\frac{1}{2 \phi}+13-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}-3\right)} \approx 1.50170+0.6686 i$
$e^{(4 i \pi) / 15} \sqrt[15]{-\frac{1}{2 \phi}+13-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}-3\right)} \approx 1.0999+1.2216 i$
$e^{(2 i \pi) / 5} \sqrt[15]{-\frac{1}{2 \phi}+13-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}-3\right)} \approx 0.5080+1.5634 i$
$e^{(8 i \pi) / 15} \sqrt[15]{-\frac{1}{2 \phi}+13-\pi+\frac{27}{2}\left(\frac{96}{\frac{\log (7)}{6}+\frac{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}{\sqrt{3}}}-3\right)} \approx-0.17183+1.63481 i$

Alternative representations:

$\sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}=$
$\sqrt[15]{13-\pi-\frac{1}{2 \phi}+\frac{27}{2}\left(-3+\frac{96}{\left.-\frac{1}{6} \log \left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(1,-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}\right)}\right.}$
$\sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}=$
$\sqrt[15]{13-\pi-\frac{1}{2 \phi}+\frac{27}{2}\left(-3+\frac{96}{\left.-\frac{1}{6} \log _{e}\left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}\right)}\right.}$
$\sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}=$
$\sqrt[15]{13-\pi-\frac{1}{2 \phi}+\frac{27}{2}\left(-3+\frac{96}{\left.-\frac{1}{6} \log _{e}\left(\frac{-1}{-7}\right)-\frac{\tan ^{-1}\left(1,-\frac{2 \sqrt{3}}{4}\right)}{\sqrt{3}}\right)}\right.}$

Series representations:

$$
\sqrt{\left.\sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\left.\left.\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}=\right.\right.} \begin{array}{l}
13-\frac{1}{1+\sqrt{5}}-\pi+\frac{27}{2}\left(-3+\frac{15}{\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)}\right. \\
\sqrt{\sqrt{3}}+\frac{1}{6}\left(\log (6)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^{k}}{k}\right)
\end{array}\right)}
$$

$\left.\frac{1}{6}\left(\log (6)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{6}\right)^{k}}{k}\right)+\frac{\left.\tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{\sqrt{3}}{2}-z_{0}\right)^{k}}{k}\right)}{\sqrt{3}}\right)$

$\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$\sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}=$

$$
\sqrt[15]{13-\frac{1}{1+\sqrt{5}}-\pi+\frac{27}{2}\left(-3+\frac{96}{\int_{1}^{7}\left(\frac{1}{6 t}+\frac{4}{49-2 t+t^{2}}\right) d t}\right)}
$$

$\sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}=$

$$
\sqrt[15]{13-\frac{1}{1+\sqrt{5}}-\pi+\frac{27}{2}\left(-3+\frac{96}{\frac{1}{2} \int_{0}^{1} \frac{4}{4+3 t^{2}} d t+\frac{\log (7)}{6}}\right)}
$$

$\sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}=$
$\sqrt[15]{13-\frac{1}{1+\sqrt{5}}-\pi+\frac{27}{2}\left(-3+\frac{96}{-\frac{i}{8 \pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{4}{7}\right)^{s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s+\frac{\log (7)}{6}}\right)}$
for $0<\gamma<\frac{1}{2}$

Continued fraction representations:

$$
\begin{aligned}
& \sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}= \\
& \sqrt[15]{-\frac{55}{2}-\frac{1}{2 \phi}-\pi+\frac{7776}{\log (7)+\frac{3}{1+\infty} \frac{3 k^{2}}{4}}}= \\
& \sqrt[15]{-\frac{55}{2}-\frac{1}{2 \phi}-\pi+\frac{7776}{\log (7)+\frac{3}{1+\frac{3}{1+2 k}}}}= \\
& \sqrt{4\left(\frac{\left.3+\frac{3}{5+\frac{27}{4\left(7+\frac{12}{9+\ldots}\right)}}\right)}{2}\right.}
\end{aligned}
$$

$\sqrt[15]{\frac{27}{2}\left(\left(-\frac{48 \times 2}{\frac{1}{6} \log \left(\frac{(1-2)^{3}}{1-8}\right)+\frac{\tan ^{-1}\left(-\frac{2 \sqrt{3}}{2+2}\right)}{\sqrt{3}}}-5\right)+2\right)+13-\pi-\frac{1}{2 \phi}}=$

EXAMPLE OF RAMANUJAN MATHEMATICS APPLIED TO THE COSMOLOGY

From:

A Reissner-Nordstrom $+\boldsymbol{\Lambda}$ black hole in the Friedman-Robertson-Walker universe- arXiv:1703.05119v1 [physics.gen-ph] 5 Mar 2017
Safiqul Islam and Priti Mishra \dagger
Harish-Chandra Research Institute, Allahabad 211019, Uttar Pradesh, India Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India Farook Rahaman \ddagger - Department of Mathematics,Jadavpur University,Kolkata-700 032,West Bengal,India - (Dated: March 16, 2017)

From:

$$
r_{ \pm}=M \pm \sqrt{M^{2}-Q^{2}}
$$

For MBH 87 data: mass $=13.12806 \mathrm{e}+39 ;$ radius $=1.94973 \mathrm{e}+13$, we obtain:
$(1.94973 \mathrm{e}+13-13.12806 \mathrm{e}+39)^{\wedge} 2=\left((13.12806 \mathrm{e}+39)^{\wedge} 2-\mathrm{x}^{\wedge} 2\right)$

Input interpretation:

$\left(1.94973 \times 10^{13}-13.12806 \times 10^{39}\right)^{2}=\left(13.12806 \times 10^{39}\right)^{2}-x^{2}$

Result:

$1.72346 \times 10^{80}=1.72346 \times 10^{80}-x^{2}$

Plot:

Alternate forms:
$x^{2}+0=0$
$1.72346 \times 10^{80}=-\left(x-1.31281 \times 10^{40}\right)\left(x+1.31281 \times 10^{40}\right)$

Solution:

$x=0$

Indeed:
$(1.94973 \mathrm{e}+13-13.12806 \mathrm{e}+39)^{\wedge} 2=\left((13.12806 \mathrm{e}+39)^{\wedge} 2\right)$

Input interpretation:

$\left(1.94973 \times 10^{13}-13.12806 \times 10^{39}\right)^{2}=\left(13.12806 \times 10^{39}\right)^{2}$

Result:

True

Thence $\mathrm{Q}=0$

Now, for
$a(v)>\frac{\sqrt{k}}{4}$. For the present universe, assuming $a(v)-1$ and thus $k<16$. Though constant k has an upper limit, it increases with the expansion of the universe and decreases with the contraction of the universe. We should observe a peculiar change when the constant k reaches this numerical value which is the limiting value for the expansion of the universe.

For $Q=0$ in eqn.(64),

$$
\begin{array}{r}
2\left(2-\frac{\sqrt{1+\frac{k x^{2}}{4}}}{a x}\right)\left[\frac{M^{2}}{\left(\frac{a x}{\sqrt{1+\frac{x^{2}}{4}}}\right)^{3}}-\frac{Q^{2}}{\left(\frac{a x}{\sqrt{1+\frac{k x^{2}}{4}}}\right)^{3}}\right. \\
+\Lambda e^{\left.-\frac{2 u x}{\sqrt{1+\frac{k x^{2}}{4}}}\right]}+\frac{\sqrt{1+\frac{k x^{2}}{4}}}{a x}=0 . \tag{64}
\end{array}
$$

Hence at $x=R$ we get,

$$
\begin{array}{r}
2\left(2-\frac{\sqrt{1+\frac{k R^{2}}{4}}}{a R}\right)\left[\frac{M^{2}}{\left(\frac{a R}{\sqrt{1+\frac{k R^{2}}{4}}}\right)^{3}}-\frac{Q^{2}}{\left(\frac{a R}{\sqrt{1+\frac{k R^{2}}{4}}}\right)^{3}}\right. \\
+\Lambda e^{\left.-\frac{2 a R}{\sqrt{1+\frac{k \mu^{2}}{4}}}\right]+\frac{\sqrt{1+\frac{k R^{2}}{4}}}{a R}=0 .} . \tag{65}
\end{array}
$$

$$
\begin{array}{r}
\Lambda=-e^{\frac{2 a R}{\sqrt{1+\frac{k R^{2}}{4}}} \cdot\left[\frac{M^{2}}{\left(\frac{a R}{\sqrt{1+\frac{k R^{2}}{4}}}\right)^{3}}\right.} \begin{array}{l}
\quad+\frac{1}{2\left(\frac{2 a R}{\left.\sqrt{1+\frac{k R^{2}}{4}}-1\right)}\right]}
\end{array},
\end{array}
$$

For $\mathrm{k}=12$, and $\mathrm{a}=1, \mathrm{M}=13.12806 \mathrm{e}+39 ; \quad \mathrm{R}=1.94973 \mathrm{e}+13$, we obtain:
and:
$\left(1+\left(\left(12^{*}(1.94973 \mathrm{e}+13)^{\wedge} 2\right) / 4\right)\right)^{\wedge} 1 / 2$

Input interpretation:

$\sqrt{1+\frac{1}{4}\left(12\left(1.94973 \times 10^{13}\right)^{2}\right)}$

Result:

$3.37703 \ldots \times 10^{13}$
$3.37703 \mathrm{e}+13$

Substituting in the eqs. (67), we obtain:

$$
\begin{aligned}
& -\exp \left(\left(\left(2^{*} 1.94973 \mathrm{e}+13\right) /(3.37703 \mathrm{e}+13)\right)\right) *\left[\left(\left((13.12806 \mathrm{e}+39)^{\wedge}\right)\right) /\right. \\
& \left.\left.(((1.94973 \mathrm{e}+13) /(3.37703 \mathrm{e}+13)))^{\wedge} 3+1 /((2(((2 * 1.94973 \mathrm{e}+13) /(3.37703 \mathrm{e}+13)-1))))\right)\right]
\end{aligned}
$$

Input interpretation:

$-\exp \left(\frac{2 \times 1.94973 \times 10^{13}}{3.37703 \times 10^{13}}\right)\left(\frac{\left(13.12806 \times 10^{39}\right)^{2}}{\left(\frac{1.94973 \times 10^{13}}{3.37703 \times 10^{13}}\right)^{3}}+\frac{1}{2\left(\frac{2 \times 1.94973 \times 10^{13}}{3.37703 \times 10^{13}}-1\right)}\right)$

Result:

$-2.84160 \ldots \times 10^{81}$
$-2.84160 \ldots * 10^{81}$
which represents the Cosmological Constant inside the Schwarzschild black hole and also has a negative value.

Performing the following equation with the usual value of the Cosmological Constant 1.1056e-52, we obtain:
$(1.1056 e-52) x=-2.84160 e+81$

Input interpretation:

$$
1.1056 \times 10^{-52} x=-2.84160 \times 10^{81}
$$

Result:

$1.1056 \times 10^{-52} x=-2.8416 \times 10^{81}$

Plot:

Alternate form:

$1.1056 \times 10^{-52} x+2.8416 \times 10^{81}=0$

Alternate form assuming x is real:

$1.1056 \times 10^{-52} x+0=-2.8416 \times 10^{81}$

Solution:

```
x=
    -25701881331403766886664569715710133147602520011173198 993507:
        564120861732475 370738202865312319616245712374922255343 303:
        805210672526000 128
```


Integer solution:

```
\(x=\)
-25701881331403766886664569715710133147602520011173198993507 :
564120861732475370738202865312319616245712374922255343 303: 805210672526000128
```


Result:

> -2.5701881331403766886664569715710133147602520011173198993507564120 861732475370738202865312319616245712374922255343303805210672526 000128×10^{133}
$-2.57018813314 \ldots * 10^{133}$
Value that multiplied by $1.1056 \mathrm{e}-52$, give us $-2.84160 * 10^{81}$

Multiplying this result with the usual value of the Cosmological Constant, we obtain:
$(1.1056 \mathrm{e}-52) *(-2.84160 \mathrm{e}+81)$

Input interpretation:

$1.1056 \times 10^{-52}\left(-2.84160 \times 10^{81}\right)$

Result:

-314167296000000000000000000000

Result:

$-3.14167296 \times 10^{29}$
$-3.14167296 * 10^{29}$ result that is nearly to a multiple of π with minus sign

We have also that, from the formula of coefficients of the '5th order' mock theta function $\psi_{1}(\mathrm{q})$: (A053261 OEIS Sequence)
sqrt(golden ratio) $* \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(\mathrm{n} / 15)\right) /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt(n)}\right)$
for $\mathrm{n}=230$ and subtracting 47 , that is a Lucas number, and π, we obtain:
sqrt(golden ratio) * $\exp (\operatorname{Pi} * s q r t(230 / 15)) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt(230)}\right)-47-\mathrm{Pi}$

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{230}{15}}\right)}{2 \sqrt[4]{5} \sqrt{230}}-47-\pi$

Exact result:

$\frac{e^{\sqrt{46 / 3} \pi} \sqrt{\frac{\phi}{46}}}{2 \times 5^{3 / 4}}-47-\pi$

Decimal approximation:

$6122.273163239088047930830535468077939193046207568421910068 \ldots$
6122.273163239.....

Alternate forms:

$-47+\frac{1}{20} \sqrt{\frac{1}{23}(5+\sqrt{5})} e^{\sqrt{46 / 3} \pi}-\pi$
$-47+\frac{\sqrt{\frac{1}{23}(1+\sqrt{5})} e^{\sqrt{46 / 3} \pi}}{4 \times 5^{3 / 4}}-\pi$
$\frac{1}{460}\left(-21620+\sqrt[4]{5} \sqrt{23(1+\sqrt{5})} e^{\sqrt{46 / 3} \pi}-460 \pi\right)$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{230}{15}}\right)}{2 \sqrt[4]{5} \sqrt{230}}-47-\pi= \\
& -\left(\left(470 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(230-z_{0}\right)^{k} z_{0}^{-k}}{k!}+10 \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(230-z_{0}\right)^{k} z_{0}^{-k}}{k!}-\right.\right. \\
& 5^{3 / 4} \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{46}{3}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) /\left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(230-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{230}{15}}\right)}{2 \sqrt[4]{5} \sqrt{230}}-47-\pi= \\
& -\int\left(470 \exp \left(i \pi \left\lvert\, \frac{\arg (230-x)}{2 \pi}\right.\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(230-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 10 \pi \exp \left(i \pi\left[\frac{\arg (230-x)}{2 \pi}\right] \sum_{k=0}^{\infty} \frac{(-1)^{k}(230-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}-\right. \\
& 5^{3 / 4} \exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right) \exp \left(\pi \exp \left(i \pi \left\lvert\, \frac{\arg \left(\frac{46}{3}-x\right)}{2 \pi}\right.\right]\right) \sqrt{x} \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{46}{3}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left.\quad\left(10 \exp \left(i \pi\left[\frac{\arg (230-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(230-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in
\end{aligned}
$$

\mathbb{R} and $x<0$)

From which:

Input interpretation:

$$
\underset{\left(-\left(-2.84160 \times 10^{81}\right)\right)}{\left.5 \times \pi / \sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{230}{15}}\right)}{2 \sqrt[4]{5} \sqrt{230}}-47-\pi\right)}
$$

Result:

1.618027996701560438286389221876566317933407173693842150642...
$1.6180279967 \ldots$. result that is a very good approximation to the value of the golden ratio 1,618033988749...

Input interpretation:

1.6180279967015604382863892218765663179334071736938421

Possible closed forms:

$$
-\frac{8\left(45 F_{\mathrm{FR}}-1127\right)}{2047 F_{\mathrm{FR}}-800} \approx 1.618027996701560429601
$$

$\frac{1}{3} \sqrt{\frac{1}{55}(-200+333 e+162 \pi+118 \log (2))} \approx 1.61802799670156043867372$
$-\frac{4\left(73-325 \pi+39 \pi^{2}\right)}{49-72 \pi+159 \pi^{2}} \approx 1.61802799670156043858425$
π root of $522 x^{4}+580 x^{3}-1362 x^{2}+919 x-228$ near $x=0.515034$
1.61802799670156043816535

$\frac{3709980781 \pi}{7203366314} \approx 1.618027996701560438296510$

```
root of 647 \mp@subsup{x}{}{4}-350\mp@subsup{x}{}{3}-4186\mp@subsup{x}{}{2}+4220x+1179 near x=1.61803
```

1.618027996701560438290441

```
\(\sqrt[4]{\frac{31028619}{4409789}} \pi\)
\(\sqrt{10} \approx 1.618027996701560456743\)
```

$\frac{1}{\text { root of } 1179 x^{4}+4220 x^{3}-4186 x^{2}-350 x+647 \text { near } x=0.618036} \approx$
1.618027996701560438290441
root of $5888 x^{3}-39087 x^{2}+37056 x+17431$ near $x=1.61803$
1.6180279967015604382844533
root of $29646 x^{3}-33474 x^{2}-52404 x+31819$ near $x=0.515034$
1.6180279967015604382844495
root of $17431 x^{3}+37056 x^{2}-39087 x+5888$ near $x=0.618036$
1.6180279967015604382844533
root of $439 x^{5}-1047 x^{4}+217 x^{3}+924 x^{2}-x-1029$ near $x=1.61803 \approx$
1.61802799670156043831097
π root of $657 x^{5}+621 x^{4}+647 x^{3}-1476 x^{2}+75 x+197$ near $x=0.515034$
1.618027996701560438263743
$\frac{e^{\frac{3}{5}-\frac{9}{10 e}-\frac{3 e}{10}+\frac{2}{5 \pi}-\frac{3 \pi}{5}} \pi^{(19 e) / 20-3 / 10}}{\sqrt[20]{\sin (e \pi)}(-\cos (e \pi))^{7 / 20}} \approx 1.61802799670156043862208$

Now, we have that:

$$
\begin{equation*}
a=3.2^{\frac{1}{3}} \cdot\left(1-4 Q^{2} \Lambda\right), \tag{9}
\end{equation*}
$$

$$
\begin{align*}
b= & {\left[-54+972 M^{2} \Lambda-648 Q^{2} \Lambda\right.} \\
& +\left[\left(-54+972 M^{2} \Lambda-648 Q^{2} \Lambda\right)^{2}\right. \\
& \left.\left.-4\left(9-36 Q^{2} \Lambda\right)^{3}\right]^{\frac{1}{2}}\right]^{\frac{1}{3}}, \tag{10}
\end{align*}
$$

$$
\begin{equation*}
c=3.2^{\frac{1}{3}} \Lambda, \tag{11}
\end{equation*}
$$

For $\mathbf{Q}=\mathbf{0 . 0 0 0 8 9}, \Lambda=1.1056 \mathrm{e}-52 \mathrm{~m}^{-2}:$
convert $1.1056 \times 10^{-52} \mathrm{~m}^{-2}$ (reciprocal square meters) to per kilometers squared $1.106 \times 10^{-46} / \mathrm{km}^{2}$ (per kilometers squared) $\boldsymbol{\Lambda}=\mathbf{- 1 . 1 0 5 6} * \mathbf{1 0}^{\mathbf{- 4 6}}$

Mass $=3.8$ solar masses:
$3.8 \times 1.9891 \times 10^{30}=7558580000000000000000000000000=7.55858 \times 10^{30}$
$M=7.55858 \mathrm{e}+30$

We obtain:

$$
a=3.2^{\frac{1}{3}} \cdot\left(1-4 Q^{2} \Lambda\right)
$$

$(3.2)^{\wedge} 1 / 3\left(1-\left(\left(4^{*} 0.00089^{\wedge} 2^{*}(-1.1056 \mathrm{e}-46)\right)\right)\right)$

Input interpretation:

$\sqrt[3]{3.2}\left(1-4 \times 0.00089^{2}\left(-1.1056 \times 10^{-46}\right)\right)$

Result:

1.473612599456154642311929133431922888766903246975273583906...
$1.4736125994561546 \ldots=\mathrm{a}$

Now, we have that:

$$
\begin{aligned}
b= & {\left[-54+972 M^{2} \Lambda-648 Q^{2} \Lambda\right.} \\
& +\left[\left(-54+972 M^{2} \Lambda-648 Q^{2} \Lambda\right)^{2}\right. \\
& \left.\left.-4\left(9-36 Q^{2} \Lambda\right)^{3}\right]^{\frac{1}{2}}\right]^{\frac{1}{3}}
\end{aligned}
$$

$\operatorname{sqrt}\left[\left(\left(\left(\left(-54+972 *((7.55858 \mathrm{e}+30) \wedge 2 *(-1.1056 \mathrm{e}-46))-648^{*} 0.00089^{\wedge} 2^{*}(-1.1056 \mathrm{e}-\right.\right.\right.\right.\right.$ $46)+\left(\left(\left(-54+972 *\left((7.55858 \mathrm{e}+30)^{\wedge} 2^{*}(-1.1056 \mathrm{e}-46)\right)-648^{*} 0.00089^{\wedge} 2(-1.1056 \mathrm{e}-\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.46)))^{\wedge} 2-4\left(\left(\left(9-36^{*} 0.00089^{\wedge} 2^{*}(-1.1056 \mathrm{e}-46)^{\wedge} 3\right)\right)\right)\right)\right)\right)\right)\right)\right)\right]^{\wedge} 1 / 3$

Input interpretation:

$$
\begin{aligned}
& \left(\sqrt{\left(-54+972\left(\left(7.55858 \times 10^{30}\right)^{2}\left(-1.1056 \times 10^{-46}\right)\right)\right)-}\right. \\
& 648 \times 0.00089^{2}\left(-1.1056 \times 10^{-46}\right)+ \\
& \left(\left(-54+972\left(\left(7.55858 \times 10^{30}\right)^{2}\left(-1.1056 \times 10^{-46}\right)\right)-648 \times\right.\right. \\
& \left.0.00089^{2}\left(-1.1056 \times 10^{-46}\right)\right)^{2}- \\
& \left.\left.\left.4\left(9-36 \times 0.00089^{2}\left(-1.1056 \times 10^{-46}\right)^{3}\right)\right)\right)\right)^{\wedge}(1 / 3)
\end{aligned}
$$

Result:

$1.83111199541752990708040277172533632222868007678838540 \ldots \times 10^{6}$
$1.8311119954175299 \ldots * 10^{6}=\mathrm{b}$

And:

$$
c=3.2^{\frac{1}{3}} \Lambda
$$

$(3.2)^{\wedge}(1 / 3) *(-1.1056 \mathrm{e}-46)$

Input interpretation:

$\sqrt[3]{3.2}\left(-1.1056 \times 10^{-46}\right)$

Result:

$-1.62923 \ldots \times 10^{-46}$
$-1.62923 \ldots * 10^{-46}=\mathrm{c}$

From

$$
\begin{aligned}
r_{4}= & -\frac{1}{2} \cdot\left[\frac{2}{\Lambda}+\frac{a}{\Lambda b}+\frac{b}{c}\right]^{\frac{1}{2}} \\
& +\frac{1}{2} \cdot\left[\frac{4}{\Lambda}-\frac{a}{\Lambda b}-\frac{b}{c}+\frac{12 M}{\Lambda\left(\frac{2}{\Lambda}+\frac{a}{\Lambda b}+\frac{b}{c}\right)^{\frac{1}{2}}}\right]^{\frac{1}{2}}
\end{aligned}
$$

We have that:

```
c}=-1.62923\textrm{e}-4
b}=1.8311119954175299e+
a}=1.473612599456154
\Lambda= -1.1056e-46
```

$-1 / 2(()(2 /(-1.1056 \mathrm{e}-46)+(1.4736125994561546) /(-1.1056 \mathrm{e}-46$ *
$1.8311119954175299 \mathrm{e}+6)+(1.8311119954175299 \mathrm{e}+6) /(-1.62923 \mathrm{e}-46)))))^{\wedge} 1 / 2$

Input interpretation:

$$
\begin{aligned}
& -\frac{1}{2} \sqrt{\left(-\frac{2}{1.1056 \times 10^{-46}}+-\frac{1.4736125994561546}{1.1056 \times 10^{-46} \times 1.8311119954175299 \times 10^{6}}+\right.} \\
& \left.-\frac{1.8311119954175299 \times 10^{6}}{1.62923 \times 10^{-46}}\right)
\end{aligned}
$$

Result:

$-5.30074 \ldots \times 10^{25} i$

Polar coordinates:

$r=5.30074 \times 10^{25}$ (radius), $\theta=-90^{\circ}$ (angle)
$5.30074 * 10^{25}$
and:

$$
+\frac{1}{2} \cdot\left[\frac{4}{\Lambda}-\frac{a}{\Lambda b}-\frac{b}{c}+\frac{12 M}{\Lambda\left(\frac{2}{\Lambda}+\frac{a}{\Lambda b}+\frac{b}{c}\right)^{\frac{1}{2}}}\right]^{\frac{1}{2}}
$$

1/2[(4/(-1.1056e-46)-(1.4736125994561546)/(-1.1056e-46 * $1.8311119954175299 \mathrm{e}+6)-(1.8311119954175299 \mathrm{e}+6) /(-1.62923 \mathrm{e}-46)+((((12 *$ $7.55858 \mathrm{e}+30)))) /((((-1.1056 \mathrm{e}-46)(2 /(-1.1056 \mathrm{e}-46)+(1.4736125994561546) /(-$ $1.1056 \mathrm{e}-46 * 1.8311119954175299 \mathrm{e}+6)+(1.8311119954175299 \mathrm{e}+6) /(-1.62923 \mathrm{e}-$ 46)))) $]^{\wedge}(1 / 2)$

Input interpretation:

$-\frac{4}{1.1056 \times 10^{-46}}--\frac{1.4736125994561546}{1.1056 \times 10^{-46} \times 1.8311119 \times 10^{6}}--\frac{1.8311119 \times 10^{6}}{1.62923 \times 10^{-46}}$

Result:

$1.1239088437707639645816085733719240172831998373821284 \ldots \times 10^{52}$
$1.1239088437707639645816085733719240172831998373821284 \times 10^{\wedge} 52$

Input interpretation:

$$
12 \times 7.55858 \times 10^{30}
$$

$1.1056 \times 10^{-46} \sqrt{-\frac{2}{1.1056 \times 10^{-46}}+-\frac{1.4736125994561546}{1.1056 \times 10^{-46} \times 1.8311119 \times 10^{6}}+-\frac{1.8311119 \times 10^{6}}{1.62923 \times 10^{-46}}}$

Result:

$7.73850 \ldots \times 10^{51}{ }_{i}$

Polar coordinates:

$r=7.7385 \times 10^{51}$ (radius), $\theta=90^{\circ}$ (angle)
$7.7385 \mathrm{e}+51$
$1 / 2(1.1239088437707639645816 \mathrm{e}+52+7.7385 \mathrm{e}+51)^{\wedge} 1 / 2$

Input interpretation:
$\frac{1}{2} \sqrt{1.1239088437707639645816 \times 10^{52}+7.7385 \times 10^{51}}$

Result:

$6.8879584126407949091816745048871565053312217470796374 \ldots \times 10^{25}$
$6.88795841264 \ldots * 10^{25}$
$5.30074 * 10^{25}+6.88795841264 * 10^{25}$
$\left(5.30074 * 10^{\wedge} 25+6.88795841264 * 10^{\wedge} 25\right)$

Input interpretation:

$5.30074 \times 10^{25}+6.88795841264 \times 10^{25}$

Result:

121886984126400000000000000

Scientific notation:

$1.218869841264 \times 10^{26}$
$\mathrm{r}_{4}=1.218869841264 * 10^{26}$
(5.30074* $\left.10^{\wedge} 25-6.88795841264^{*} 10^{\wedge} 25\right)$

Result:
$-1.58721841264 \times 10^{25}$
$r_{3}=-1.58721841264 * 10^{25}$

Input interpretation:

$\frac{1}{2} \sqrt{1.1239088437707639645816 \times 10^{52}-7.7385 \times 10^{51}}$

Result:
$2.95829 \ldots \times 10^{25}$
2.95829...*10 0^{25}
$\left(5.30074 * 10^{\wedge} 25+2.9582885414153 * 10^{\wedge} 25\right)$

Input interpretation:

$5.30074 \times 10^{25}+2.9582885414153 \times 10^{25}$

Result:

82590285414153000000000000

Scientific notation:

$8.2590285414153 \times 10^{25}$
$\mathrm{r}_{2}=8.2590285414153 * 10^{25}$
(5.30074* $\left.10^{\wedge} 25-2.9582885414153^{*} 10^{\wedge} 25\right)$

Input interpretation:

```
5.30074 1 10 25 - 2.9582885414153 < 10 25
```


Result:

23424514585847000000000000

Scientific notation:

$2.3424514585847 \times 10^{25}$
$\mathrm{r}_{1}=2.3424514585847 * 10^{25}$

From the four results (event horizons), we obtain:

$$
\begin{aligned}
& \mathrm{r}_{1}=2.3424514585847 * 10^{25} \\
& \mathrm{r}_{2}=8.2590285414153 * 10^{25} \\
& \mathrm{r}_{3}=-1.58721841264 * 10^{25} \\
& \mathrm{r}_{4}=1.218869841264 * 10^{26}
\end{aligned}
$$

(2.3424514585847* $10^{\wedge} 25+8.2590285414153^{*} 10^{\wedge} 25-1.58721841264 * 10^{\wedge} 25$
+1.218869841264 * $10^{\wedge} 26$)

Input interpretation:

$2.3424514585847 \times 10^{25}+8.2590285414153 \times 10^{25}+$
$10^{25} \times(-1.58721841264)+1.218869841264 \times 10^{26}+$

Result:

212029600000000000000000000

Scientific notation:

2.120296×10^{26}
$2.120296^{*} 10^{26}$
(2.3424514585847* $10^{\wedge} 25+8.2590285414153 * 10^{\wedge} 25-1.58721841264 * 10^{\wedge} 25$
+1.218869841264 * $\left.10^{\wedge} 26\right)^{\wedge} 1 / 126$

Input interpretation:

$\left(2.3424514585847 \times 10^{25}+8.2590285414153 \times 10^{25}+\right.$
$\left.10^{25} \times(-1.58721841264)+1.218869841264 \times 10^{26}\right) \wedge(1 / 126)$

Result:

1.61785522079119...
$1.61785522079119 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Now, we have:

$$
\begin{equation*}
\left(\frac{d r}{d s}\right)^{2}=2\left[-\frac{M}{r}+\frac{Q^{2}}{2 r^{2}}-\frac{\Lambda r^{2}}{6}+k_{1}^{2}\left(-\frac{1}{2 r^{2}}+\frac{M}{r^{3}}-\frac{Q^{2}}{2 r^{4}}\right)\right] \tag{44}
\end{equation*}
$$

For
$\mathrm{r}=11225.7$
$\Lambda=-1.1056 e-46$
$\mathrm{Q}=0.00089$
$\mathrm{M}=7.55858 \mathrm{e}+30$
$2\left[\left(\left((-7.55858 \mathrm{e}+30) /(11225.7)+\left(0.00089^{\wedge} 2\right) /\left(2^{*} 11225.7^{\wedge} 2\right)-(-1.1056 \mathrm{e}-\right.\right.\right.$ $\left.46^{*} 11225.7 \wedge 2\right) / 6+x^{\wedge} 2\left(\left(-1 /(2 * 11225.7 \wedge 2)+(7.55858 \mathrm{e}+30) /(11225.7)^{\wedge} 3-\right.\right.$ $\left.\left.\left.\left.\left.\left.(0.00089)^{\wedge} 2 /\left(2^{*} 11225.7^{\wedge} 4\right)\right)\right)\right)\right)\right)\right]=11225.7$

Input interpretation:

$$
\begin{aligned}
& 2\left(-\frac{7.55858 \times 10^{30}}{11225.7}+\frac{0.00089^{2}}{2 \times 11225.7^{2}}-\frac{1}{6}\left(-1.1056 \times 10^{-46} \times 11225.7^{2}\right)+\right. \\
& \left.x^{2}\left(-\frac{1}{2 \times 11225.7^{2}}+\frac{7.55858 \times 10^{30}}{11225.7^{3}}-\frac{0.00089^{2}}{2 \times 11225.7^{4}}\right)\right)=11225.7
\end{aligned}
$$

Result:

$2\left(5.34318 \times 10^{18} x^{2}-6.73328 \times 10^{26}\right)=11225.7$

Plot:

Alternate forms:

$1.06864 \times 10^{19} x^{2}-1.34666 \times 10^{27}=0$
$1.06864 \times 10^{19} x^{2}-1.34666 \times 10^{27}=11225.7$
$1.06864 \times 10^{19}(x-11225.7)(x+11225.7)=11225.7$

Solutions:

```
x\approx-11225.7
x\approx11225.7
```

11225.7

Thence, we have:
$2\left[\left(\left((-7.55858 \mathrm{e}+30) /(11225.7)+\left(0.00089^{\wedge} 2\right) /\left(2^{*} 11225.7^{\wedge} 2\right)-(-1.1056 \mathrm{e}-\right.\right.\right.$ $\left.46^{*} 11225.7^{\wedge} 2\right) / 6+11225.7^{\wedge} 2\left(\left(-1 /\left(2 * 11225.7^{\wedge} 2\right)+(7.55858 \mathrm{e}+30) /(11225.7)^{\wedge} 3-\right.\right.$ $\left.\left.\left.\left.\left.\left.(0.00089)^{\wedge} 2 /\left(2 * 11225.7^{\wedge} 4\right)\right)\right)\right)\right)\right)\right]-11225.7$

Input interpretation:

$$
\begin{aligned}
& 2\left(-\frac{7.55858 \times 10^{30}}{11225.7}+\frac{0.00089^{2}}{2 \times 11225.7^{2}}-\frac{1}{6}\left(-1.1056 \times 10^{-46} \times 11225.7^{2}\right)+\right. \\
& \left.11225.7^{2}\left(-\frac{1}{2 \times 11225.7^{2}}+\frac{7.55858 \times 10^{30}}{11225.7^{3}}-\frac{0.00089^{2}}{2 \times 11225.7^{4}}\right)\right)-11225.7
\end{aligned}
$$

Result:

-11226.6999999999999999999999999999999999999953558777984752...
-11226.6999....

We note that from the Ramanujan taxicab number:

$$
11161^{3}+11468^{3}=14258^{3}+1
$$

$11161+64+\phi=11226.61803398 \ldots .$. result, with positive sign, practically equal to the above value

Furthermore:
$-(13+2) / 10^{\wedge} 3+\left(-\left(2\left[\left(\left((-7.55858 \mathrm{e}+30) /(11225.7)+\left(0.00089^{\wedge} 2\right) /\left(2^{*} 11225.7^{\wedge} 2\right)-(-\right.\right.\right.\right.\right.$ $\left.1.1056 \mathrm{e}-46^{*} 11225.7^{\wedge} 2\right) / 6+11225.7^{\wedge} 2((-$
$\left.\left.\left.\left.\left.\left.1 /\left(2^{*} 11225.7^{\wedge} 2\right)+\left(7.55858 \mathrm{e}^{+} 30\right) /(11225.7)^{\wedge} 3-(0.00089)^{\wedge} 2 /\left(2^{*} 11225.7^{\wedge} 4\right)\right)\right)\right)\right)\right)\right]$ 11225.7)) ${ }^{\wedge} 1 / 19$

Input interpretation:

$$
\begin{aligned}
& -\frac{13+2}{10^{3}}+ \\
& \left(-\left(2 \left(-\frac{7.55858 \times 10^{30}}{11225.7}+\frac{0.00089^{2}}{2 \times 11225.7^{2}}-\frac{1}{6}\left(-1.1056 \times 10^{-46} \times\right.\right.\right.\right. \\
& \left(-\frac{1}{2 \times 11225.7^{2}}+\frac{7.55858 \times 10^{30}}{11225.7^{3}}-\right. \\
& \left.\left.\left.\left.\quad \frac{0.00089^{2}}{2 \times 11225.7^{4}}\right)\right)-11225.7\right)\right) \wedge(1 / 19)
\end{aligned}
$$

$$
\left(-\left(2 \left(-\frac{7.55858 \times 10^{30}}{11225.7}+\frac{0.00089^{2}}{2 \times 11225.7^{2}}-\frac{1}{6}\left(-1.1056 \times 10^{-46} \times 11225.7^{2}\right)+11225.7^{2}\right.\right.\right.
$$

Result:

1.618695692957578160081667556270903716821925808129357404234...
$1.6186956929575 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Observations

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

In mathematics, the Fibonacci numbers, commonly denoted F_{n}, form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1 . Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.
Fibonacci numbers are also closely related to Lucas numbers, in that the Fibonacci and Lucas numbers form a complementary pair of Lucas sequences

The beginning of the sequence is thus:

```
\(0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946\), \(17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309\), 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...
```

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842-91), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio. ${ }^{[1]}$ The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.

The sequence of Lucas numbers is:
$2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,9349,15127$, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803.....

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are:
$2,3,7,11,29,47,199,521,2207,3571,9349,3010349,54018521,370248451,6643838879, \ldots$ (sequence A005479 in the OEIS).

In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms of spiral galaxies ${ }^{[3]}$ - golden spirals are one special case of these logarithmic spirals

References

A Reissner-Nordstrom $+\boldsymbol{\Lambda}$ black hole in the Friedman-Robertson-Walker universe- arXiv:1703.05119v1 [physics.gen-ph] 5 Mar 2017
 Safiqul Islam and Priti Mishra \dagger
 Harish-Chandra Research Institute, Allahabad 211019, Uttar Pradesh, India Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India Farook Rahaman \neq - Department of Mathematics,Jadavpur University,Kolkata-700 032,West Bengal,India - (Dated: March 16, 2017)

SRINIVASA RAMANUJAN

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

[^1]: for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

