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1. INTRODUCTION

We focus on some aspects of developments in Chern-Simon gauge field the-
ory since there are good resources to explore for the interested reader (see [3],
[22], [23], [29], [43], [49] and [50]). Indeed, this is a good example to illustrate
how the ideas from quantum field theory can be used to study topology. This
theory provides a field theoretic framework for the study of knots and links in
a given three manifold (see [5], [40], [41], [57]). It was A. S. Schwarz who
first conjectured in [57] that Jones polynomials (see [37] and [38]) may be re-
lated to Chern-Simon theory. Edward Witten in [63] demonstrated this 20 years
ago. Moreover, he came up with a general field theoretic framework to study
knots and links. Since then, enormous effort has gone into developing an ex-
act explicit non-perturbative solution of this field theory. The interplay between
quantum field theory and knot theory has given some rich results in both di-
rections. Many of the open problems in knot theory have found answers in the
process of investigation.

Topological quantum field theories are independent of the background met-
ric and the involved operators are also metric independent. Degrees of freedom
are also topological. Wilson loops operators are the topological operators of
the Chern-Simons gauge field theory. Their vacuum expectation values are the
topological invariants for knots and links which do not depend on the exact
shape, location or form of the knots and links but reflect only their topological
properties. The power of this framework is so deep that it allows us to study
these invariants not only on simple manifolds such as 3-sphere but also on any
arbitrary 3-manifold. The knots and links invariants obtained from these field
theories are also intimately related to the integrable vertex models in two di-
mensions (see [60]).

Indeed a quantum group approach to these invariants has been developed by
A. N. Kirillow and N. Reshetikhin. Also there have been some developments in
these directions in algebraic topology. Chern-Simons theory has also played a
fundamental role in quantum gravity. For example 3-dimensional gravity with
a negative cosmological constant, itself a topological field theory, can be de-
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scribed by two copies of SU(2) Chern-Simons theory.
In 4-dimensional gravity, Chern-Simons theories also find applications. For

example, the boundary degree of freedom of a black hole in 4-dimensions can
be described by an SU(2) Chern-Simons field theory. This made it possible
to calculate exactly. The quantum entropy of a non-rotating black hole. This
agrees with the Bekenstein-Hawking formula for large areas and goes indeed
beyond the semi-classical results.

2. BASIC ELEMENTS OF CHERN-SIMON THEORY

In this section we give a summery of how the Chern-Simons forms are
constructed. Then we explain these forms in the four dimensional version since
it has something to do with knot theory and quantum gravity. This section is
heavily based on [7], [20], [48] and [51].

Action principles are very important in physics and the motivation initiated
by Fermat’s discovery which says that the taken path of the ray of light between
two given points is the path that can be traversed in the least time. In Newtonian
Mechanics, the general solution to the Newton’s differential equations of sec-
ond order has two constants which implies that if we want to know where the
particle is going on we need to know about the initial position and momentum.
Therefore in this case it is profitable to focus on initial and final positions to
define the action by taking integral over the path of a quantity called the La-
grangian, denoted by L, which is the difference between kinetic energy (dented
by T ) and potential energy (denoted by V ), that’s L = T − V . This type of
integral is called the action, denoted by S which is a functional since it takes
a function and spit out a number, i.e., it gives a number to each path. By min-
imizing the variance of this action we find the path of least time taken by the
particle. By applying the quantity of the Lagrangian, we can better observe the
symmetries and some other properties of the equations. Indeed the Lagrangian
read off all the dynamic behaviour of the equations. Moreover, if L is given
then we can obtain the equations of motions from the so-called Euler-Lagrange
equations. In effect the principle of least action generates the Euler-Lagrange
equations.

Atiyah [[5], p. 2] pointed out”the prototype of all gauge theories is electro-
magnetism”. For example one can obtain the Yang-Mills equation by a com-
parison of Maxwell’s equations or specifically as a special case of Maxwell’s
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equations (see for more details in [[7], chapters 3 and 4]). It is well-known that
Yang-Mills Lagrangian which is a n-form is given as follows:

LYM= 1
2 tr(F ∧ ?F )

where F is the curvature ofD andD is a connection on the vector bundle E
over a n-dimensional semi-Riemanian oriented manifold M . The star in front
of F is the Hodge star operator. Indeed F is a Lie-algebra valued 2-form and in
three dimensions the dual of F , that is, ?F is a 1-form (see [5]). By taking the
integral of the Yang-Mills Lagrangian overM , we obtain the Yang-Mills action,
that is

SYM (A) = 1
2

∫
M tr(F ∧ ?F ))

where A is the vector potential. The involved Hodge star operator indicates
that the Yang-Mills equation depends on the metric, i.e. the fixed background
structure, defined on spacetime. If we take A to be self-dual, then ?F = F . By
utilizing the Bianchi identity, dAF = 0 and therefore the Yang-Mills equation
is dA ? F = 0. Indeed, the action can be defined to be the integral of the
Lagrangian, nth Chern form, i.e., tr(F ∧ ...∧ F ) = tr(Fn) which is a 2n-form
, denoted by Ω2n(F ), over a 2n-dimensional manifold M :

S(A) =
∫
M tr(Fn))

In this situation, the Lagrangian produce only trivial equations. It means
that δS = 0 for all A, where δ is an infinitesimal variation:

δS(A) = δ

∫
M
tr(Fn)) (1)

= n

∫
M
tr(δF ∧ Fn−1) (2)

= n

∫
M
tr(dDδA ∧ Fn−1) (3)

= n

∫
M
tr(δA ∧ dDFn−1) (4)

= n

∫
M
tr(δA ∧ 0) (5)

= 0 (6)
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But δS = 0 also can be considered as the independency of S(A) from
A, only by being dependent on the vector bundle π : E → M , where M is
an oriented manifold and F is the curvature of any connection on E. Chern
forms are all invariant under gauge transformation and also closed, according to
Chern-Weil theorem. This means that dΩ2n(F ) = tr(dDF ∧ ... ∧ F + ...F ∧
... ∧ dDF ) = 0 by utilizing the fact that tr(dDF ) = dtr(F ), the graded cyclic
property of the trace and the Bianchi identity such that dDF = dF+[A,F ] = 0.
It follows that the nth Chern form defines a cohomology class in H2n(M).
Let A and A′ be two vector potentials with curvatures F and F ′ respectively.
Consider the variation δA = A′ − A and As = A+ sδA, where for s = 0 and
s = 1 we have A and A′, respectively. In the following, it is shown that the
difference of Chern forms is exact:

Ω2n(F ′)− Ω2n(F ) = tr(F ′n)− tr(Fn) (7)

=

∫ 1

0

d

ds
tr(Fns )ds (8)

= n

∫ 1

0
dtr(δA ∧ Fn−1s )ds (9)

= nd

∫ 1

0
tr(δA ∧ Fn−1s )ds (10)

Chern-Weil theorem says that if F and F ′ are curvature two-forms corre-
sponding to different connections D and D′, then Ω2n(F ′)− Ω2n(F ) is exact.

The nth Chern class cn(E) can be defined as a Chern class of the vector
bundle E over M considering it as a cohomology class of Ω2n(F ), where F is
the curvature of any connection on E. Observe that the Chern form depends
on the connection A but its cohomology class does not. It should be noted
that from a topological viewpoint what concerns the definition of the Chern
classes the result of their integrals over any compact orientable 2n-dimensional
manifold is an integer by proper normalizing. For example if E is a complex
vector bundle and M is compact and orientable, then the integral of the nth
Chern form over M is an integer called the nth Chern number.

Now we want to obtain Chern-Simons 3-form. We showed above that when
one changes the vector potential then the Chern form changes by an exact and
if we continue in the same line then its proof offers an explicit 3-form whose
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exteriror derivative is tr(F ∧F ). Assume that As = sA and let Fs = ds∧A+
sdA+ s2A ∧A, where Fs is the curvature of As. Thus

tr(F ∧ F ) =

∫ 1

0

d

ds
tr(Fs ∧ Fs)ds (11)

= 2d

∫ 1

0
tr(A ∧ (sdA+ s2A ∧A))ds (12)

= d tr(A ∧ dA+
2

3
A ∧A ∧A)ds. (13)

Hence tr(A ∧ dA + 2
3A ∧ A ∧ A) is the well-known Chern-Simons 3-

form. The action of Chern-Simons theory, denoted by SCS , is proportional to
the integral of the Chern-Simons 3-form, that is SCS = k

∫
tr(A∧ dA+ 2

3A∧
A ∧ A). Utilizing path integral quantization approach, we get Chern-Simon
action which is

SSC(A) = k
4π

∫
M tr(A ∧ dA+ (23)A ∧A ∧A),

where the positive integer k is called the Chern-Simon level ([for more
details see [48]]). Fundamental data are:

1. A compact and smooth 3-manifold M ;

2. A semi-simple and compact gauge group G;

3. An integer parameter k , called the coupling constant.

The action of the theory is the integral of the Chern-Simons form associated
to a gauge connection A corresponding to a gauge group G. As it can be seen,
the action is metric independent, which means that it is a topological quantum
field theory. Therefore the Chern-Simon theory is a 2+1 dimensional gauge
theory which is independent of a metric or a background structure. This theory
is invariant under small gauge transformations and diffeomorphisms but it is
not invariant under large gauge transformation (see [7], [35] and [48]). In the
case of non-Abelian Chern-Simon theory, the Chern-Simon form is not invariant
under large gauge transformations and the Wilson loop is not invariant under
large gauge transformation. This implies, as Gambini and Pullin pointed out
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(see[[24], p. 259]), that we do not have a function but a loop. It should be noted
that this is not the case in the Abelian situation which we have small gauge
transformation. But in both cases, it is not known how this problem is related to
framing ambiguity.

3. SOME ASPECTS OF DEVELOPMENTS

Observables in the theory lead to vacuum expectations values (briefly vevs)
which correspond to topological invariant. This means that observables should
satisfy two properties:

1. They must be metric independent;

2. They must be gauge invariant.

Wilson loops satisfy both. They correspond to the holonomy of the gauge
connection A along a loop. Indeed the products of these operators are the natu-
ral candidates to obtain topological invariants after computing their vevs. In his
paper [63], Witten showed that the vevs of the products of wilson loops corre-
spond to the Jones polynomials when one considers SU(2) as gauge group. He
also showed that if one uses SU(N) and that if Wilson loops carries the fun-
damental representations then we get the Homfly polynomials as the resulting
invariant. Witten in his paper [64] describes how Chern-Simon gauge theory in
three dimensions can arise as a string theory with a world-sheet model involv-
ing a topological sigma model related to Floer/Gromov theory. The perturbation
theory of this string theory coincides with chern-Simon perturbation theory.

It should be noticed that if one considers other groups and representations,
then one gets different set of knot and link invariants. For example if we take
SO(N) as gauge group then we get Kauffman polynomial; or if we take SU(2)
as gauge group then we get the Akutsu-Wadati polynomials. All these means
that Chern-Simons gauge theory can be investigated for arbitrary groups and
arbitrary representations. All these also made it possible to approach to the
polynomial invariants via quantum groups and also has been established a cat-
egorical view point to study knots, links and graphs (see [39]). A particular
invariant of 3-manifolds is the partition function of Chern-Simons gauge the-
ory. It is hard to obtain this from a field theory point of view. But it has been
defined by using triangulation of 3-manifold (A mathematical viewpoint). This
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invariant is now called Witten-Reshetekhin-Turaev invariant. Moreover, on a tri-
angulated 3-manifold. One can obtain this invariant from Chern-Simons gauge
theory by using lattice gauge theory methods (this has been done by R. Gam-
bini). It has been done several studies of Chern-Simons gauge theory from the
non-perturbative aspects for the last 25 years. The quantization of the theory
has been investigated from the operator theory aspect. Also a powerful method
for general computation of knot and graph invariants was constructed by Kaul
and others(see [41]).

The connection between Chern-Simon gauge theory and rational confor-
mal field theory has been used to construct knot and link invariants from any
conformal field theory. Chern-Simons gauge theory showed to be important
with connection to canonical quantum gravity (C. Rovelli, L. Smolin, B. Brueg-
mann, R. Gambini, J. Griego and J. Pullin)). Chern-Simons gauge theory has
also connection to the Gromov-Witten theory of non-compact Calabi-Yau three-
folds (see [[1], [17], [18], [25], [26]]). Chern-Simons gauge field theory has
also been studied from the perturbative aspect by pioneer works of Gaudagnini,
Martellini and Mintchev (see [27] ) and Bar-Natan (see [8]). Subsequent works
in this direction led to the theory of Vassiliev invariants which are group fac-
tors associated to chord diagrams or weight systems from the point of view of
Chern-Simon theory (see [13]).

Witten E. in [65] investigated the analytic continuation of three-dimensional
Chern-Simons gauge theory by not considering integer values of the usual cou-
pling parameter k in order to examine questions concerning the volume conjec-
ture, or analytic continuation of three-dimensional quantum gravity (to the ex-
tent that it can be described by gauge theory) from Lorentzian to Euclidean sig-
nature. As he pointed out, such analytic continuation can be carried out by gen-
eralizing the usual integration cycle of the Feynman path integral. Among oth-
ers, he exhibits that the space of possible integration cycles for Chern-Simons
theory can be interpreted as the “physical Hilbert space” of a twisted version of
N = 4 super Yang-Mills theory in four dimensions.

In the paper [42] from 1993, M. Kontsevich answered to the following open
question affirmatively:

Could weight systems on chord diagrams be integrated to obtain invariants
for non-singular knots?

He proved that a weight system on chord diagrams determines a unique Vas-
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siliev invariant on non-singular knots. This provides an explicit expression for
the Vassiliev invariant for non-singular knots. This is known as the Kontsevich
integral. The origin of the Kontsevich factor in non-covariant gauges is still an
open question. This factor is introduced in both the light-cone and the temporal
gauges but it is not understood.

A. Iqbal and Amir-Kian Kashani-Poor [33] have offered an application of
Chern-Simon theory and showed that a generalization of the topological closed
string partition function whose field theory limit is the generalization of the
instanton partition function, proposed by Nekrasov, can be determined easily
from the Chern-Simons theory. Lawrence and Rozansky [44] have shown that
the partition function via the exact solution of Chern-Simons theory has a very
simple structure and it can be expressed as a sum of local contributions from the
flat connections on a Seifert manifold M . In 2005, Beasely and Witten [9] have
considered Chern-Simon Gauge theory on a Seifert manifold M and based on
the observation exhibited by Lawrence and Rozansky, showed that how this ob-
servation is a natural consequence of the technique of non-abelian localization
applied to the Chern-Simons path integral. They also explained how the parti-
tion function of Chern-Simons theory on M admits a topological interpretation
in terms of the equivariant cohomology of the moduli space of flat connections
on M . Beasely in [10] extended this result by utilizing it to the expectation
values of Wilson loop operators which wrap the circle fibers of M over a Rie-
mannian surface Σ. In [11], Beasely showed that how certain Wilson loop ob-
servables in Chern-Simons gauge theory on a Seifert three-manifold M can be
given an analogous symplectic description. Indeed he discusses the symplec-
tic geometry of Chern-Simon theory and in order to make it possible to hsave
a symplectic interpretation for the Chern-Simons path integral, he introduces a
contact structure on M .

In 2007, Gukov and Murakami verified some aspects of the conjecture
that the asymptotic behaviour of the colored Jones polynomial is equal to
the perturbative expansion of the Chern-Simons gauge theory with complex
gauge group SL(2, C) on the hyperbolic knot complement (see [31]). Oda has
shown ”why” the Chern-Simon state exists in Yang-Mills theory and general
relativity in 4-dimensions. Indeed he showed that Chern-Simons state provides
us a window of catching a glimpse of a relationship between general relativity
(Yang-Mills theory) and topological quantum field theory. Cheren-Simon
states exists only when the cosmological constant is non-vanishing. This of
course gives some indications to how Chern-Simons state can be useful in
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understanding the real world.

Open question: Is the Lorentzian Chern-Simon state normalizable under an
appropriate inner product? (see [52])

Gopakumar and Vafa proposed a new duality, that is, the large N limit of
SU(N) Chern-Simons theory on 3-sphere is exactly the same as an N = 2
topological closed string on the 2-sphere blow up of the conifold geometry
(see [26]). The detailed understanding of Wilson loop in their correspondence
remains a fruitful area of research mathematically. Nothing has been don in
this respect. The correspondence can be generalized to Chern-Simons theory
on lens spaces. This is not completely studied. H. Ooguri and C. Vafa indicated
new evidence for the above conjecture (see [53]). They extended this conjecture
to the observables of Wilson loop which are Wilson loop operators. They
considered the computation of the expectation value of the Wilson loop for
simple knot. They proposed the following open question:

Question: Can this be generalized to arbitrary knots?

Recently Gukov and Witten considered analysis of Chern-Simons gauge
theory from a new viewpoint of quantization and not those views from con-
formal field theory, algebraic geometry and deformation quantization. They
constructed the space of physical states of Chern-Simons theory with compact
gauge group G on an oriented 2-manifold without boundary C. Then they de-
fined M to be the moduli space of homomorphisms from fundamental group
of C into G of a given topological type. M is the classical phase space of
the Chern-Simons theory and has a natural symplectic form. They showed that
quantization of this symplectic manifold finds applications in Chern-Simon the-
ory. They pointed out that Chern-Simons gauge theory of a non-compact gauge
group is not well-understood. So to generalize this view to this type of gauge
group is an open area of research! A difficult one! (see [30]).
S. Gukov, M. Marino and P. Putrov [32] investigated resurgence properties of
partition function of SU(2) Chern-Simons theory (WRT invariant) on closed
three-manifolds. They exhibited that in various examples Borel transforms of
asymptotic expansions posses expected analytic properties.

Chern-Simons theory is also related to the open string field theory of topo-
logical A-model (see [64]). A. Klemm considered Chern-Simon theory and
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topological theory on non-compact Calabi-Yau manifolds. SU(N) Chern-
Simon theory on 3-sphere is equivalent to open topological string theory on
the cotangent bundle of 3-sphere. Large duality relates this open topological
string theory to closed topological string . He proposed that generalization of
this topological realization of the gauge theory string theory duality of ’t Hooft
and Maldacena leads to a solution of topological string theory on non-compact
Calabi-Yau toric manifolds. T. Dimofte, S. Gukov, J. Lenells and D. Zagier
(see [19]) developed several methods that allow us to compute all-loop partition
functions in perturbative Chern-Simons theory with complex gauge group G,
sometimes in multiple ways. In the background of a non-abelian irreducible flat
connection, perturbative G invariants turn out to be interesting topological in-
variants, which are very different from finite type Vassiliev invariants obtained
in a theory with compact gauge group G. They investigated several aspects of
these invariants and offered an example where they computed them explicitly to
high loop order. They introduced a new theory arithmetic topological quantum
field theory and conjectured that SL(2, C) Chern-Simons theory is an example
of such a theory!

Konstantin Wernli [61] in his lecture notes not only gives an excellent pre-
sentation of the classical Chern-Simon theory and perturbative quantization but
also tries to show that the perturbative quantization of Chern-Simons theory is
a better mathematical understanding of the Feynman path integral [21] in the
domain of quantum field theory.

Schwarz in his lecture in Max-Planck (august 2009) [58] (see also [59])
talked about BV -formulation of Chern-Simons theory by considering the ac-
tion functional S = 1

2 < A, dA > +1
3 < A,[A, A ]> and showed that

every Z-graded L∞ algebra is quasi-isomorphic to differential graded Lie al-
gebra which implies that the Chern-Simon is universal. He also showed that
multi-dimensional Chern-Simons implies algebra of differential forms on an
odd-dimensional manifold M . Qiu and Zabzine studied a toy model which was
an odd analogue of Chern-Simons theory. It is worth-noticing that their toy
model reproduces the same weight function as in Chern-Simons and Rozansky-
Witten theory. They offered some explicit computation of two point functions
and exhibited that its purterbation theory is identical to Chern-Simons theory.
(see [55]).

Recently, B. Lian, C. Vafa, F. Vafa and Shou-Cheng Zhang [47] showed that
for 3-dimensional time-reversal invariant superconductors, a generalized Berry
gauge field behaves as a fluctuating field of a Chern-Simons gauge theory.
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Lehum et al. in their paper [45] investigated some properties of the effec-
tive superpotential in the three-dimensional superspace. Among others, they
describe the classical action of the N = 2 Chern-Simons-matter theory writ-
ten in the N = 1 superspace. They also calculate the complete leading log
effective superpotential of the N = 2 Chern-Simons-matter theory in terms of
a N = 1 background superfield. Lehum et al. in [46] presented the calculation
of the two-point functions and the eective potential for the mass-deformed N =
3 Chern-Simons-matter theory in the context of the supereld formalism. Indeed
the supersymmetric Chern-Simons theory has been the focus of researchers in
the field after the advent of the paper [2] in which the N = 6 superconformal
Chern-Simons-matter theory was introduced and investigated within the context
of the AdS/CFT correspondence.

Santos et al. [56] analyzed the physical basis of the molecular biochirality,
which is responsible by a Parity Violation Energy Dierence (for short, PV ED)
in some organic molecules such as amino acids, which occur as levogyrous
enantiomers in Nature. They studied the role which is played by the 4 − D
Chern-Simons theory in the origin of PV ED. As the authors pointed out,
PV ED arises from Chern-Simons Theory, Loop Quantum Gravity (for short,
LQG) and modied Leitner-Okubo gravitational potentials.

It is well-known that largeN quantum eld theories with matrix elds are with-
out solutions in general. But the case is different with the Chern-Simons matter
theories in an ’t Hooft limit. As Jensen and Patil [36] pointed out these theories
offer a theoretical lamppost, under which we can reliably compute many observ-
ables, like the S-matrix of massive phases, operator product expansion coeffi-
cients at fixed points, finite temperature response functions, and so on. In their
paper, they have studied U(N)k Chern-Simons theory coupled to fundamental
fermions and scalars in a large N ’t Hooft limit. Moreover, they computed not
only the thermal free energy at high temperature, but also the two- and three-
point functions of simple gauge-invariant operators. They also showed that the
outcome of their results support various dualities between Chern-Simons-matter
theories with N = 0, 1, and 2 supersymmetry.

Lee and Park [54] investigated Chern-Simons theory with real places. In
their paper, they generalized the arithmetic Chern-Simons theory over totally
imaginary number fields to arbitrary number fields (with real places) by utilizing
cohomology with compact support to deal with real places. They were also able
to offer some non-trivial examples confined to non-abelian gauge group with
coefficient Z/2Z and the abelian cyclic gauge group with coefficient Z/nZ.
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Costello and Yamazaki [15] also studied, among others, two-dimensional
integrable field theories in the context of the four-dimensional Chern-Simons-
type gauge theory. It is worth noticing that the integrable field theories are
realized as effective theories for the four-dimensional theory coupled with two-
dimensional surface defects as the author pointed out. They also computed their
Lagrangians and the Lax operators satisfying the zero-curvature condition.

Costello and Li in [16] exhibited the coupling of holomorphic Chern-
Simons theory at large N with Kodaira-Spencer gravity. Also they present a
new anomaly cancellation mechanism at all loops in perturbation theory for
open-closed topological B-model.

Halder and Minwalla [34] studied matter Chern-Simons theories in the large
N limit. More specifically, they studied the largeN 2+1 dimensional fermions
in the fundamental representation of a SU(N)k Chern-Simons gauge group in
the presence of a uniform background magnetic field for the U(1) global sym-
metry of this theory. They also investigated the simplest and best studied matter
Chern-Simons theories in their paper, that is, the regular fermion theory and
critical boson theory, i.e. the theory of a single multiplet of fundamental Wilson
Fisher bosons interacting with a U(NB) Chern-Simons gauge field.

In [12], M. Blau et al. checked out the path integral for the partition function
of Chern-Simons gauge theory with a compact gauge group on a general Seifert
3-manifold. As they pointed out, this approach extends previous results and
relies on abelianisation, a background field method and local application of the
Kawasaki Index theorem.

William and Williams [62] considered Chern-Simons theory as a deforma-
tion of a 3-dimensional BF theory that is partially holomorphic and partially
topological. Indeed, they constructed a one-loop exact, and finite, quantiza-
tion of the mixed topological-holomorphic theory on product 3-manifolds of
the form Σ×M , where Σ is a Riemann surface and M is a smooth 1-manifold.
Further, they set forth a novel gauge that led naturally to a one-loop exact quan-
tization of this BF theory and Chern-Simons theory. As they pointed out, this
approach reveals several important features of Chern-Simons theory, of which
the bulk-boundary correspondence of Chern-Simons theory with chiral WZW
theory.

Andrianopoli et al. in [4] focused on the AdS3 N -extended Chern-Simons
supergravity in the sense of Achucarro-Townsend and investigated its gauge
symmetries. Moreover, they developed these gauge symmetries to a BRST
symmetry. Then they achieved its quantization by choosing suitable gauge-
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fixings. The outcome led to quantum theories with different features. They
presented the reproduction of the Ansatz by Alvarez, Valenzuela and Zanelli for
the graphene fermion by a special choice of the gauge-fixing.

Bade and Beasely [6] discuss the situation in which gauge invariance in
Chern-Simons-matter theories in three dimensions may require the Chern-
Simons level k to be half-integral. This implies that the parity is violated. In this
relation they investigate as a result the analytic aspects of this factorization for
non-abelian gauge groups and general matter representations by utilizing the
known formulas for the partition function. They also discuss in an appendix,
the analytic continuation of torus knot observables in the SU(2) Chern-Simons-
matter theory.

Capozziello et al. in their paper [14], present a new model which simulates
the motion of free electrons in graphene by the evolution of strings on manifold.
In this relation, they present the construction of superconductors by graphene
utilizing their model. In this respect, by breaking the gravitational-analogue
symmetry of graphene sheets, they exhibit that the existence Chern-Simons
bridge of two separated child sheets give rise to a Chern-Simons Wormhole.

There are many other recent research papers on Chern-Simons gauge field
theories which we could not bring here because of the lack of space. We focused
only on some of them in order to some extent report on the development of these
theories in different aspects.
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