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Abstract

Particle physics is traditionally the study of path integrals for a four
dimensional spacetime, where the subtlety is in the existence of smooth
structures in dimension 4. From a motivic perspective, however, geometry
is interpreted as categorical axioms for quantum computation, and here
we bridge the divide between gauge theories and quantum computation
by studying the common factor: knot and ribbon diagrams.
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1 The tower of theories

In motivic gravity we study the specialness of four dimensions from a categor-
ical perspective, which is radically different from classical geometry. From this
viewpoint [1][2][3], physical axioms for categories become increasingly complex,
beyond the knot and ribbon categories [4][5][6] in dimension 3, which underlie
topological quantum computation for anyon and gapped boundary systems [7].
We permit additional time directions, since every string in a quantum circuit is
permitted to twist about in its time domain, prior to the consideration of a global
spacetime. However, in this paper we focus on the usual four dimensions, which
follow from the localisation principle of the neutrino CMB correspondence.

In the gauge theory setting, the Jones polynomial for links appears [8] with
the Wilson loops for the Chern-Simons action. Inspired by holographic princi-
ples, we ask how natural structures in any given low dimension are associated
to structures in nearby dimensions. From the motivic perspective, both gauge
groups and spacetimes emerge from the laws of quantum computation. In this
context, we study Witten’s tower of dimensions [9][10] in terms of categorical
algebra and number theory. Figure 1 indicates heuristically how vertices in
dimension 2 and braids in 2 + 1 dimensions are extended to higher dimensions.

241D (2+1)+1D 5D with
4D boundary

Figure 1: A knotty connection between theories

The Jones invariant [11] is interpreted [9] in 4D using electric magnetic
duality, and this is extended to 5D with categorification of the knot polynomials
to Khovanov homology [12][13], in a theory on X4 x R for X4 a 4-manifold.

For us, electric magnetic duality is associated to the dyonic structure of
ribbon particle states, thought of as a double copy of a theory in 3D. In the
simplest scheme, diagrams in S® acquire a U(1) fibre to give an SU(2) x U(1)
compactified Minkowski space, but only as an emergent feature of the discrete
SU(2) braid group representations with integral ribbon twists. Alternatively, a
complexification of the Chern-Simons action takes us to a subtle theory in 6 di-
mensions [10] (associated perhaps to the 10D type IIB theory on R?x Q2 (X,) xR
for a 4-manifold X,). Our intuition might start with the Donaldson theory [14]
for instanton moduli spaces, but six dimensions appears fundamentally in the
computational categories. Moreover, when the gauge group determines space-
time, the complexification of the Chern-Simons action immediately suggests a



six dimensional setting. Motivic gravity starts [3] with two copies of CSFT: one
for QCD and one for the IR scale of neutrino mass.

Topology change is morally a topos theoretic concept [15]. For exotic struc-
tures on 4-manifolds we restrict our attention to integral forms and associated
knot and link diagrams [16]. In motivic topos theory, real manifolds and real
analysis are not a good starting point for the discussion of emergence. On the
contrary, one expects the axioms to merge geometric diagrams with number
theory and combinatorics, just as Feynman amplitudes are typically evaluated
in a ring of periods rather than C.

Our algebras are generically noncommutative and nonassociative. The ap-
pendix shows how algebraic number theory is linked to basic observables in
quantum mechanics. We insist that observables dictate algebra, in order to
minimise the analytical baggage that must be carried around, and beyond that,
analysis itself should be re-axiomatised in an co-category that governs quantum
logic.

In the computation of scattering amplitudes, it is now well known that the
compactification of moduli spaces is combinatorial, starting with the associahe-
dra polytopes [17] for the real points of the Riemann sphere moduli on n + 1
marked points [18], where the associahedron is an axiom for an n-category. In
this paper we explain how algebras associated to the associahedra polytopes are
closely related to knots. The Catalan numbers may be deformed by two pa-
rameters ¢ and ¢, associated to the double grading in Khovanov homology [19].
A three parameter generalised Jones polynomial has a cyclotomic structure,
coming from a natural choice of number field.

The connection between instanton moduli and knots is studied using fermion
condensates [20], both for (supersymmetric) QCD and an IR counterpart, which
we always attribute to neutrino gravity [3]. The theory utilises extra time
dimensions, but localisation to dimension 4 is clearly physically important, and
results from the natural selection of one right handed neutrino state in the
cosmological CMB correspondence, discovered in 2010 [21][22].

Knots are extended to ribbons, which are the building blocks of template
diagrams. All diagrams are interpreted category theoretically, giving us the
freedom to start with algebraic integers rather than C. Invariants for templates
require Hopf algebras and generalisations, starting with 3-manifold invariants
from framed links, and the Kirby calculus.

This paper’s expository sections are designed to be read in the order given,
as we must cover a range of subjects that will not be familiar to all readers.
I hope to convince you that the categorical perspective is the correct way to
approach axioms for motivic gravity.

2 Towards 4-manifold invariants

Experimental precision does not actually require R or C, except perhaps in
axiomatic questions of computability. Like with the adele numbers, where R
appears at the infinite prime, we imagine manifolds emerging in ideal, infinite



computations, for which the natural number field is governed by the quantum
mechanical questions. Moreover, in moving from the holographic 2 4+ 1 dimen-
sions into 4D, with ribbons for electric magnetic duality, we naturally work
with an emergent Lorentzian metric, because our braid group Bs will represent
SU(2) in a compactified Minkowski space SU(2) x U(1).

What nice integral ring should we start with? Consider the various triangles
in the pentagram of figure 15 (in the appendix). The little blue triangle below
the bisected top spike of the pentagram is equivalent to the top blue right
angled triangle with an angle of 18° = tan™'(¢p)~!, where ¢ = (1 + v/5)/2
is the golden ratio and p = /¢ + 2 is the diagonal of the golden rectangle.
The little 18° bisects the 36° at the red chord, which is a piece of a smaller
red pentagon, initiating a zoom-in quasilattice of pentagon coordinates, such
that each zoom scales lengths by ¢?. In [23] it is shown that the 8 dimensional
rational integers Z® may be embedded in C using the so called golden ring Z[p].
One basis in R C C is given by (36),

T =T + T10 + T2p + T3Pp. (1)

Eight dimensions, in the form z + 7y, is special because of the eg lattice and
its intersection form. Another useful number is 0 = /3 — ¢, satisfying p = o¢.
Given any ring, we either work with modules or we have a field of fractions as
a base for a category of vector spaces.

Starting with vertex operators, there are four types [24] of Fibonacci ribbon
categories, all using golden geometry: two based on minimal models and two
for the affine chiral algebras G2 1 and Fy ;. Note that Ga1 x Fu1 C Eg 1. The
affine VOAs correspond to a central charge

_ kdim(g)
o = dimlg) 2

at level k, and in general the deformation parameter u is given by
u—l — 67ric/2. (3)

For ¢(u? + 1) = —u, we have the usual Fibonacci objects I and X with the
quantum dimension of X equal to ¢. The Yang-Lee model at the tenth root
u = €™/5 is the representations of the model M (2,5) with ¢ = —22/5. In
the modular categories, for a unitary VOA, the ribbon twist is given by the
conformal weight. The modular matrices here take the form

s=o () 4) = (yon). @

For Go1 at u = e™/5 the phase u!/® in T is still golden, and similarly for

Fy ;. In other words, the modular matrices contain nice integers. If we wanted
a basic deformation of w = (—1+ 1/=3)/2 for the Eisenstein integers, we would
require ¢ = 6, which appears in a (4,4) superconformal theory for Mathieu
moonshine.



We do not use gauge theory to evaluate knot invariants. The Jones or
HOMFLYPT polynomials are evaluated using skein relations, and the Khovanov
complex is defined as usual using smoothings. Since our link strands are not
geometric in the classical sense, what matters is the information content, or
complexity, of a diagram.

2.1 The role of eg

A 4-manifold is characterised by its integral form [16], and a key component of
the classification of integral forms is the eg form

_H O R NFHEOOO
ORNHEHOOOO
O R OO O OO
N OO R OO OO
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SO O OO N
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But an eg manifold cannot be smooth, because the form does not diagonalise
over the rational integers. It does however diagonalise [25] over the golden
integers Z[¢], where ¢ = (1+1/5)/2 is the golden ratio. As is well known, Ey is
positive definite, even and unimodular. Let o(Q) be the signature of the form
Q@ and r(Q) its rank. All such quadratic forms take the form [16]

U(Q)ES@W<O 1>7

@=—3 9 10

(6)
where the 2 x 2 factors are forms for either the torus 72 (for Hy(T?,Z3)) or
S? x S? in dimension 4. This ambiguity will matter later on.

One important smooth space, which contains a topological component that
cannot be smoothed, is the Kummer (or K3) surface, with its 22 dimensional

form
0 1 0 1 0 1
QKBZES@E8@<1 0>@<1 0>@<1 0>. (7)

The construction uses a connected sum of three copies of the 4-manifold S? x 52,
corresponding to the triple of flip matrices. A quotient of this sum by a certain
embedding, related to the Kummer surface, yields a fake version of R*, and
a theorem of Freedman [26] characterises so-called good copies of R* by the
conditions: simply connected, non-compact, without boundary, Ho(M,Z) = 0,
an end homeomorphic to S2 x [0, 00). It turns out that there are an uncountable
number of inequivalent smooth structures on R*, and this complexity is unique
to dimension 4 due to surface knotting. One class of exotic R* are called ribbon,
and these are diffeomorphic to open subsets of ordinary R* [16].



The elliptic genus for the K3 surface [27] is

92(7—7 Z) 2 93(772) 2 94(772) 2
92(7’,0)) (93(7,0) 94(7’,0)) ]’ (8)

ZK3(T, Z) = 8[(

for 6;(7, z) the Jacobi theta functions. Nowadays it is written in terms of dimen-
sions of irreducible representations [28] for the Mathieu group May, in Mathieu
moonshine [29] and its umbral generalisation [30]. Moonshine for the Monster
group uses the j-invariant, which is analogously defined by

(92<0’ q)8 + 93<0’ q)8 + 94<0’ Q)8)3
(62(0,9)05(0,9)04(0, ¢))®

The associated Eisenstein series E4 counts vectors in the shells of the eg root
lattice. These discrete lattices underlying modular forms are fundamental, just
as combinatorial polytopes capture computations in scattering theory. In fact,
the associahedra polytopes sit naturally inside certain cubic lattices.

Rather than plain Z2, it will be natural to use integral octonions to define
the eg lattice. That is, we introduce noncommutative and nonassociative rings
for the study of 4-manifolds.

Whenever we see a triplet of terms, as in (9), we think of some form of
triality. In the Jordan algebra J5(Q), triality acts on the three off diagonal
copies of O, and this extends to generalised 3 x 3 algebras for ribbon categories,
which have higher dimensional matrix entries.

What about the physics? The exact gauge symmetries U(1)g and color
SU(3)c are directly associated, respectively, to ribbon twists and a triplet of
ribbon strands, so that the 8 negative electric charges for {v,e,d, @} lie on
the vertices of a 3-cube [31][32], whose directions label ribbon strands. Such a
3-cube, in figure 2, determines a basis for the octonions . Complexification
brings in antiparticles, for a total 4-cube of charges, and complex conjugation
is charge conjugation in the C ® O ideal algebra, which extends to crossing flips
in the ribbon picture. A 7-cube introduces magnetic data with seven stranded
ribbon diagrams, and in general, the extended M theory dimension equals twice
the number of ribbon strands.

The electroweak symmetries are broken back-to-front: the Higgs mass emerges
from the inverse see-saw rule [3], which pairs the Planck scale and IR neutrino
mass scale at 0.01 eV, and chirality also appears explicitly in the ribbon di-
agrams. There is no need to introduce further local states beyond the SM,
because the new RH neutrino is associated to a cosmological scale, and we are
already sure that the theory is not Lagrangian.

Now as a higher gauge symmetry, we will see that eg itself emerges from
the axioms for quantum computation, through the Hopf algebras that define
ribbon invariants. The same holds for lattices in higher dimensions, which are
associated to more general ribbon algebras.

j(q) =32 (9)



2.2 The Kirby calculus and electric charge

An axiomatic approach to invariants constructs state sums from categorical
data. Barrett et al [33] consider a functor from a spherical fusion category into
a ribbon fusion category for the 2-handlebody of the 4-manifold, in order to
define smooth invariants by weakening the sliding law in a ribbon category. A 4-
manifold is determined up to diffeomorphism by its 2-handlebody attachments,
where a 2-handle piece is essentially a framed knot in the S boundary of the
0-handle.

For a 2-handle in 4 dimensions, the framing classes are characterised by
71(0(2)) = Z [16], whereas in 3 dimensions the only framings are 1 or /2,
where 6 represents a full ribbon twist. This distinction is crucial to us, because
quantised electric charge is given by ribbon twists. Three dimensions only per-
mits two charges, whereas physics requires three values 0, £1. Often we denote
these charges [1] by the cubed roots of unity 1, w and @, when 6 behaves like a
phase. To obtain Z3 we have to go to four dimensions, and quotient out by the
natural 3Z that appears: a triple of half twists #3/2 equals —1 under the cubed
root representation, while By = Z represents —1 by a single half twist. In other
words, charge appears only with the holographic extension of 2 4+ 1 dimensions
to four.

A Kirby diagram [34] of knots and balls accounts for all the attachments
in R? for a 4-manifold (there are really no real numbers, just diagrams). A
single knot in the Kirby diagram will cancel a 1-handle (two balls in R3) if it
has ends attached to each ball. In an Akbulut diagram, the balls of a 1-handle
are replaced by marked circles, so that the entire 4-manifold is specified by a
diagram for a ribbon fusion category [6].

We are interested in modular ribbon categories (see appendix B), which have
a finite number of isomorphism classes of simple objects and an invertible matrix
s;; defined by Hopf links on the objects 7 and j. In section 4.3, Kirby framed
link diagrams are associated to ribbon vertices, and we see how simple ribbon
pictures may give rise to complicated links.

3 Knots and gravity

Sections 4 and 5 discuss further the categorical interpretation of link diagrams.
In this section we discuss the physical justification for this approach. Categorical
axioms lie nowadays at the foundation of both condensed matter physics and
computer science. It turns out that topological insulators, for instance, are a
good intuition for the dyonic mirror [35] that defines holography in the ribbon
particle scheme.

At its simplest, quantum mechanics is about finite fields and complex num-
bers. Beyond C we strike the noncommutative quaternions H in four dimensions
and then the nonassociative octonions O in eight dimensions. In any dimension,
we start with an integer lattice. For H, the three Pauli generators are called
I, J and K = IJ. In the octonions O, we do not assume that K belongs to



Table 1: Arrow dimensions for ribbon pair
dim 0 1 2 3 4

C . e ob ar axiom
CV | axiom ar ob e o

a quaternion triplet. Then the 8 basis units of @ are conveniently given by
figure 2, which considers various subsets and intersections of the three point set
{I,J,K}.

1

1J/’ /L

T

— K

K1
TTK JK
Figure 2: Octonion units on a cube

Every diagram is interpreted categorically, so that a cube exists in the same
sense as an associahedron, which appears as an axiom for an n-category. On the
one hand we have these discrete spaces, and dually we have generalised string
diagrams. Three dimensions occurs in nature precisely because of the utility
of 3 dimensional structures. Thus four geometric dimensions correspond to a 4
dimensional category, where braid diagrams usually define arrows in dimensions
2 and 3, just as the structure of a 4-manifold comes down to diagrams in dimen-
sion 3. The emphasis is different from 4-categories for geometric quantisation
based on symmetry [36], but we still have to consider arrows in dimensions 0
and 1 (which are trivial for a braided monoidal category) and the idea is to
associate geometric duality to cohomological duality, where the second ribbon
category occupies the dual dimensions, as shown in Table 1. Dimension 4 is the
only time that objects coincide.

3.1 Electric magnetic duality and the j-invariant

A half unknot, with trivial framing in the Kirby calculus, is a wormhole pair cre-
ation diagram for entanglement [37]. The basic electric charges of the (massless)
Standard Model are listed in Table 2, as ribbon diagrams on three strands, built
from Dirac strings. The mirror set of diagrams introduces the extra magnetic
degrees of freedom, so that particles on either side of the mirror carry dyonic
charge (see section 4.2). Observe that all neutrino helicities occur, but there are



no additional local particle states beyond the SM.

The Chern-Simons action is applied to gravity in 2 + 1 dimensions, via the
Monster CFT [38] of central charge 24. In motivic gravity, this theory builds
the mass gap for neutrinos, which underpin the Higgs mechanism, and there is
a second CSFT for QCD and the strong CP problem. The partition function of
[38] is the modular j-invariant for elliptic curves. Recall that this invariant is
defined in terms of the Eisenstein forms F4 and Fg, where E4 counts roots on
the eg lattice. The j-invariant itself counts irreps for the Monster moonshine
module, associated to the symmetries of the Leech lattice.

The relation between the j-invariant and the golden ratio ¢ = (1++/5)/2 is
explained in [39]. Compare the factor of 32 in (9) with the common normalisa-
tion of 1728 = 64 x27. The 2048 = 64 x 32 equals j(+¢), and the set {4-¢, ¢~}
is included in a critical set of real values of j. Note that the conjugates of ¢
solve the quadratic in z which results from insisting on (i) the geometric se-
quence F, 1 = «F, and (ii) the Fibonacci recursion F, o2 = F,+1 + Fy,. Thus
¢ = 2cos7/5 is a placeholder for all the rationals F,1/F,.

The bosonic braid states are defined using the discrete Fourier transform of
Table 2, resulting in 6 neutral mixed states on top of the diagonal W= and
diagrams, from which to build a Z boson. Combined with spinor information,
this gives our 24 dimensional internal space, starting with the Leech lattice
[40][41]. Each point of the eg lattice is surrounded by 2160 orthoplexes and
17280 = 8 x 2160 simplices.

To understand duality, we need to look at combinatorial degrees of freedom
[1]. Two copies of the group eg have a total of 480 root directions, in

496 = 2(28 + 28) + 2(8 x 8+ 8 x 8 + 8 X 8) (10)

dimensions, giving 8 copies of 14 in the adjoint part. These are our basis as-
sociahedra. The octonion factors of 8 will be associated to 3-cubes, so that
everything is encoded in dimension 4. More conventionally, the 14 trees denote
a 14 dimensional theory associated to the 3-time grading [42]

eg(_24) = 14+ 64+ (SO(11,3) + 1) + 64 + 14. (11)

Here the 64 = 35+ 21 + 7+ 1 counts the ordered subsets of up to three distinct
units in ey, -, e7, and another 64 counts the subsets of size > 4. That is, we
have a 3-brane and magnetic 7-brane and the usual SO(9,1) ~ SL2(Q) embeds
in SO(11, 3). As noted, for us 7 dimensions means 7 ribbon strands, for a total
of 14 braid strings, all in dimension 3. One may extend [42] the above to a
(7,11) pair of branes in a (19, 3) theory, in the tower of exceptional periodicity.
Eventually we find SO(28,4), breaking to SO(3,3) x SO(25,1), where the 32
dimensions is high enough to obtain four copies of the integers Z® to define
SLsy(C).

In dimension 4, there is a 1680 = 14 x 120 vertex analog of the 120 vertex
polytope in figure 12, which itself is a three dimensional representation of Sj.
Two copies of this 120 vertex polytope catalog the roots of eg, so we have 7
copies of eg in the 1680 vertices. This is not excessive, because we actually



want three copies of the Leech lattice in 72 dimensions, based on 9 copies of eg,
providing enough integral octonions for three copies of a dense set in SLo(C).
This 1680 vertex polytope is an axiom [43] for a categorified modular category.
Note that all higher dimensional associahedra are products of the polytopes
in dimension 2 and 3. The 3 dimensional associahedron is a model for the
sheaf cohomology of RP?. As is well known, the associahedra also describe the
compactification of the genus zero moduli spaces My ,, of Riemann spheres. At
the other extreme, the high genus moduli M1 has a completion MZ, ; [44]
such that
m3(ME 1) = Zoa + G, (12)

for some G, which we assume is related to the stable group m,43(S™) = Zog
when n > 5. Baez [44] describes Z as the decategorification of a category of
tangles, where the objects are strings of n + signs. Recall that 24 signs is the
setting of the Golay code, underlying the Leech lattice. Signs for tangles exist
whenever duals are present, which is the case for all our categories.

Below we will connect braid group generators directly to the vertices of an
associahedron. But there is another deep connection between links and the
associahedra, as follows. Given any pair of rooted, binary trees ¢; and t5 on
d leaves, there is a pairing h(t1,ts) which defines an element of Thompson’s F'
group [45][46]. A traced pairing diagram built from ¢; and ¢5 is a trivalent planar
graph, whose edges may be colored with 3 colors such that each vertex carries
one edge of each color. A + sign is then attached to each vertex, depending on
whether the permutation of (123) is odd or even. The sign determines a link
crossing when a trivalent vertex is extended to a crossing piece [46], as in figure
3. It turns out that all links may be obtained this way.

4
Figure 3: Trivalent vertex maps to link crossing

The four color theorem for planar maps is closely related to these questions,
and the connection between this theorem and pentagons has a very long history.
We show a 3-coloring of an associahedron in figure 13. One could be forgiven
for thinking that the associahedra will solve many outstanding conjectures!



3.2 Qutrit rest mass eigenvalues

A loop is a quasigroup with an identity, in analogy to a category with a nonas-
sociative product and noncommutative braiding. For example, the integral oc-
tonions form a finite nonassociative loop. Product tables for finite loops are
Latin squares. Two simple examples of order 3 are the left unit loop and the
idempotent loop,

1 a b 1 b
Llu = b 1 a s L] = b a (13)
a b 1 a 1

S = Q

which are 1-circulant and 2-circulant symmetric, respectively. In general, an
order 3 table is selected [47] from 9 points in the Hamming graph H(3,3),
which is the 27 points on the qutrit 3-cube (see section 4.1). For example, the
pure state 221 puts a 1 in the second row and second column of L,.

Hermitian 3 x 3 matrices in a generalised Jordan algebra are the natural
place for rest mass triplets in a low energy regime. They are necessarily 1-
circulants, belonging to a group algebra F\S3 on the three object permutations,
and diagonalised over C by the quantum Fourier transform (15).

A vector (t,z,y,z) in Minkowski spacetime is written as a 2 x 2 complex

quaternion matrix
t+z x+1y
(:L’iy tz)’ (1)

with the determinant ¢t2 — 22 — y? — 22 giving the metric. The corresponding
twistor space is the projective space CP*, but we can use a golden ring R in place
of C. Because coordinates should be projective, RP? is defined using 4-vectors,
interpreted as a double spinor. If R is eight dimensional over Z, as above, then
our projective space is secretly a 24 dimensional space. We therefore expect
to encounter fundamental phases like /4 and 7/6 [3]. These phases appear
automatically in mutually unbiased bases [48][49][50] for qubits and qutrits. In
a prime power dimension d = p” there are d + 1 MUBs and d — 1 mutually
orthogonal Latin squares, like the pair above for d = 3. More general Gauss
sums for modular categories appear in [51].
Let w = (=1 + 1/=3)/2. The qutrit Fourier transform is given, up to per-
mutations, by
1
1
F3=—1|1
3 73 .
Its columns form one basis in a set of four MUBs for qutrits. The other 3
bases form a cyclic group C3 C S3, and a cyclic group Cy appears in any prime
power dimension d = p" [50]. The density matrices of these columns are the
idempotents

1
w]. (15)

(IR

L[l w @ (1T ow L1 11
B:§ w 1 w], =3 (% 1 w aAzg L1 1y, (16)
w w 1 0 ow 1 1 11

11



and a Hermitian mass operator is a combination of these idempotents. Let
VM =aA+bB+cC (17)

for a,b,c real. Our masses are the squares of the three eigenvalues of v/ M,
accounting for the chiral components of our mass states. Without loss of gen-
erality, fix a mass scale by the rule (a + b+ ¢)?> = 1. The Koide rule [52][53]
follows from the eigenvalues of the charged lepton matrix

vV2 0 9
ng 7 V2 \af , (18)
0 4 V2

where the scale yu = 4/3 follows from (a + b + ¢) = 1. For charged leptons, the
4 in p rescales to the mass of the proton, and the observed value of 6 is close
to 2/9. The quarks have mass matrices whose phases are 1/3 and 2/3 of this
value. The neutrino scale is around 0.01 eV, and its phases are 2/9 +7/12 [54].
Putting all leptons and quarks (of negative charge) onto a three dimensional
cube, we have an effectively 24 dimensional state space, with one qutrit for rest
mass.

We embed our Hermitian elements of J3(C) in a higher dimensional excep-
tional Jordan algebra [3]. The 2/9 Koide parameter is associated to the charge
U(1) in the C ® O algebras, so that we can start with the fundamental +7/12
neutrino phases in J3(C) C J5(0). Recall that triality acts on the three off-
diagonal copies of O in a 3 x 3 element of this algebra, and all circulants belong
to a group algebra for the permutations S3, which is our basic Hopf algebra
[65]. Mass matrices use the cyclic group C5 C S3, and diagonal mass triplets
are functions on Cj, so that under the Fourier transform the quantum double
D(S3) of S3 looks like an algebra FC3 ® FC3, in which electric magnetic duality
will become completely transparent.

The Bj braid states for the massless SM are given in Table 2. The unlisted
mirror braids give the additional magnetic degrees of freedom. Observe how the
braiding characterises left and right handed neutrinos, which both contribute
to the gravity see-saw [3]. Left and right modes at defects in CFT categories
are separated by a braiding [56]. With the given crossings, the product (231) =
(312)(312) is the figure 8 braid, while the mirror (312)(312)™ is an unknot.

The Fibonacci Bj representation is 2x 2, fitting in three ways into our generic
3 x 3 matrices. A circulant mixing factor is automatically in SU(2) x U(1), and
the product of F3 and the real form of the tribimaximal matrix gives a 3 x 3
representation [54] of the arithmetic phase 7/12, which we imagine coming from
dimension 72.

4 The categorical view

Axiomatically, quantum gravity is about categorical logic for propositions in-
volving the quantum vacuum, whose structure begins with the cosmological

12



Ta_ble 2: Standard Model electric braid states

vy, er, HL(l) ﬂL(Q) ﬂL(3) dL(l) dL(Q) dL(3)
ooy |[-—— 0-— —0- —--0 00 0-0 00—
UR ¢ ur(l) wr(2) ur(3) dr(1) dr(2) dr(3)
o207 | +4++ 0++ 40+ ++40 +00 0+0 00+
vy ez uL(l) UL(Q) UL(3) dL(l) dL(Q) dL(3)
oi'os |+++ 0++4+ +0+ ++0 +00 0+0 00+
VR er  ur(l) ur(2) wr(@) dr(l) dr(2) dr(3)
oytoy | ——— 0-— —0- ——=0 —00 0-0 00—

neutrino ansatz [1][3]. Recall that classical logic in physics employs sets and
distributive lattices, where Stone’s theorem [57] states that the space associated
to a lattice is Hausdorff if and only if the lattice is Boolean, defining a category
of Stone spaces, which is a special limit of the category of finite sets. Ordered
Stone spaces are essentially coherent spaces, and coherent locales are essentially
locales of ideals in a distributive lattice. Distributive lattices are Boolean only
if all prime ideals are maximal. In other words, classical spaces are derived from
lattice algebras with a number theoretic flavour.

Quantum mechanics immediately requires nondistributive lattices, and ax-
ioms for higher dimensional categories [58]. The combinatorics of quantum field
theory [58] associates particle number with dimension, naturally introducing
infinite dimensional categories, starting with the 1-operad of the associahedra.
The category of Hilbert spaces for quantum mechanics is a symmetric monoidal
category, but for gravity we permit a non trivial braiding. All our diagrams are
interpreted in this context, where the only proper classical spaces are sets of
points.

Replacing the Boolean truth values {0, 1} with R takes us from Stone duality
to either Gelfand duality (for commutative rings) or R/Z = S* in Pontryagin
duality. But we need not give S' a real structure immediately, when algebraic
number fields are in play, so long as we note that S' should contain a copy
of every cyclic group. Quantum mechanical propositions localise to definite
rational prime powers, like p = 22 for two qubits. Only a maximal category of
all possible state spaces, in infinite dimensions, would require a notion of real
number. Thus our braid loops, and other strings, are not at all 5! spaces in the
usual sense.

Such obtuseness is entirely justified by the successful application of operads
to scattering amplitudes. For nonperturbative structures, we need a monadic
connection between algebra and geometry, defining endofunctors on true cate-
gories of motives. If a ring R is commutative, its set of idempotents forms a
Boolean algebra, and any commutative R is a ring of global sections for a sheaf
on a Stone space [57]. The canonical such sheaf is the Pierce sheaf, based on
the Stone space spec I(R), where I(R) are the idempotents of R.

Pierce decompositions extend to noncommutative and nonassociative alge-
bras based on H and @. In particular, the integral part of the exceptional
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Jordan algebra J5(0) plays a key role in motivic gravity [3][59][60][42]. This
setting is categorically deeper than initial forms of noncommutative geometry,
which traditionally take fields such as R or C for granted.

Nondistributive lattices in ordinary quantum mechanics are usually commu-
tative, because for vector spaces the unions VA W are commutative. Tensor
products are also weakly commutative in the symmetric monoidal structure,
just as Cartesian products are for sets. Our braidings break this symmetry, and
this braiding will characterise the particle spectrum of the Standard Model.

From this categorical perspective, functorial structures, such as adjunctions
for mirror symmetry, are completely natural, and appear prior to the usual
setting of path integrals on classical spaces. Thus the physical intuition of the
bounding of free states is analogous to the creation of algebras with relations
from free algebras, where quotients are determined by abstract ideals.

4.1 The pentagon of trees

A finite dimensional module over a ring R typically has a basis set. For example,
figure 2 is the lattice of subsets for a three element set {I,J, K}, which form
a basis for three dimensional space. Alternatively, any state space for n qubits
defines such a cube, with the vertices the 2" pure states. Here we have reduced
the 8 dimensions of O to a 3 dimensional object, whose seven non trivial units
give the Fano plane. Similarly, 27 points on a cube with three points along each
edge list the pure states for 3 qutrits. Given a three element set {I,J, K}, its
subsets are generated by the polynomial

(x+I)(x+ J)(z + K), (19)

and similarly for any n point set. Setting I = J = K = 1 recovers the bi-
nomial coefficents, which generalise to the Gaussian polynomials when I = 1,
J = t2, K = t=2. For four variables, the Gaussian polynomials come from
{t=3,t71,¢,t3}, and so on. Thus polynomials in more variables may be obtained
when I, J and K are not fixed in the usual fashion.

For quantum logic, elements are initially lines, rather than points. In figure
4, we replace words by line configurations. Each letter represents an intersection
point, so if we look at the intersection points on the lines, the double letters (I.J
etc.) disappear from the cube, leaving a 5-cell of five points.

A planar projection of a 5-cell is a pentagon. The pentagon of figure 5 carries
a variety of labellings. As the first polytope in the sequence of associahedra,
it’s vertices are the binary rooted trees with five leaves (including the root).
The noncommutative forests are easily derived from the trees by looking at the
areas between the tree edges. These labels exist for the associahedron in any
dimension.

Another natural labelling of the pentagon uses elements of the braid group
Bs, which has generators o; and o satisfying the group law

oj0j 01 = 0j010]j. (20)
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intersection
5-cell

Figure 4: 5-cell from three lines
yIE Ky

1 JI
M \

INIRY

Figure 5: The pentagon vertices as (i) binary rooted trees (purple) (ii) noncom-
mutative forests (brown) (iii) non-crossing partitions (orange)

Observe how the blue words on the pentagon match the non-crossing partitions
of the triangle, if the vertices on the triangle are labelled I, J, K. Now we use
the letters I, J and K to represent elements of B3 and include other elements
to cover all vertices of the pentagon. A non-crossing partition indexes a braid
[62][63] when the partition is assigned a permutation in Sz, such that the iden-
tity 1 is the source of the pentagon, as shown. Given 3 points in a disc, the
permutation looks at the triangle defined by the 3 points and says where the
braid will send each point around the triangle.

In this way, the braid group B,, in any dimension is mapped to the vertices
of the associahedron in dimension n — 1, and the generators of B,, are mapped
to initial directions on the polytope.

4.2 Fibonacci braids and condensation

An example of a cyclic Bz representation in H is [61]

0122%(14‘@'), 023:%(1+j)’ 013:%(1+k)' (21)
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The pentagon also includes the identity 1 and the product o12023013. Under
the Pauli matrix representation for H we have

i /1 1
012023013 = \7@ (1 _1> ) (22)

which is the Fourier transform. A rotation of this representation in SU(2) takes
us to the Fibonacci anyon representation, which is 2 x 2 for Bj.

Consider now the closely related 3 x 3 cyclotomic representation of the four
strand braid group By in [64], namely

637ri/5 +¢e—37r/5 0 0
o1 = 0 e3mi/o 0 , (23)
0 0 637ri/5
e37i/5 4 §=13mi/5 0 b= 1/2¢=3mi/5
o9 = 0 e37ri/5 0 ,
¢—1/26—3ﬂ'i/5 0 637ri/5 +€—37ri/5
e371'2'/5 0 0
o5 = 0 37i/5 4 ploBmi/s  y—1/2,-8mi/5
0 b= 1/2¢=5mi/5 e3mi/5 4 o=3mi/5

A similar representation exists for all B, with n > 3 in a dimension given by
the corresponding Fibonacci number, and is universal for quantum computation.
The qutrit components for the Fibonacci anyon are labeled by the words IX,
XTI and 11, where I and X are the two objects and X ® X ~ [ + X is the non
trivial fusion rule. Fibonacci fusion is an example of near-group fusion [65] on
a not necessarily invertible object X, namely

X®X ~G + kX, (24)

for a group G and ordinal k. For |G| = k + 1, the category exists only when
G is the multiplicative part of a finite field, the cyclic group C,r_;. Examples
of interest include (G,k) = (Cs,1), which has three ® structures [65], and
(Cp—1,p—1) for a prime p, which defines a sequence Fib, of Fibonacci categories,
starting at p = 2. At p = 3 we obtain the rule

X®X~TI + I +2X, (25)

where we write I; and I for the objects in G. This is known as the eg/2 rule.
These primes correspond to the qutrit dimension implicit in the discrete cubes,
where parity cubes give qubit states. Thus the trit at p = 3 gives a cube whose
dimension is fixed by the number of X letters in a word. For example, the 9
point square holds all words with only one X, such as [y X1I; at 11 or I, X at
20.

Hopf algebras graded by G generalise supersymmetry [66], which we see here
at p = 3. Here the object Iy + (I + I3) in the category of vector spaces has a
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unique Cy-graded Hopf structure which is a quotient of Clz,y] with antipodes
S(x) = x and S(y) = —y. The category of Cy graded vector spaces is thought
of as a condensation of the modules for the Hopf structure, which happen to
give the category of representations of the permutation group S3. Recall that
the double D(S3) governs electric magnetic duality, as noted below.

The ordinary Fibonacci category Fibs is a condensation of its double cate-
gory, with special object 21 + X [66]. In this case the antipode satisfies S1° = 1,
where
¢+ pi

§=1p+1, — ——

1y, (26)
with p =+ + 2.

By definition, an algebra object A in a braided fusion category is condensable
if () moyy = m is commutative (ii) Hom(1, A) ~ F and (iii) the multiplication
m has a splitting map A — A® A. A condensation functor C — C4 has a right
adjoint, and the composition of adjoints is a Hopf comonad. Thus condensation
is the correct setting for the quantisation of classical monads, such as the power
set monad for classical logic.

A monad T, with a structure map 72 — T, is the ultimate generalisation
of an idempotent for measurement. Abstract condensation in some sense con-
cretely encodes the collapse of the wave function. Observe how the Fibonacci
fusion rule X ® X ~ X & I may be interpreted: if tensor is an exponential and
@ a product, it behaves as a projective idempotent X2 = I.X.

For the Fibonacci anyons, ¢ is the quantum dimension of X. Scaling by the
orthogonal p, we obtain both electric and magnetic diagrams, forming dyonic
matter at the cosmological mirror. Alternatively, we start with a duality be-
tween the 3 point set and the 7 pieces in the intersecting Venn diagram for the
subsets of the 3 point set, which are the 7 units of @ above. Adding antimatter,
we get the 4 + 7 = 11 dimensions of M theory, within a much larger geometric
framework extending to infinite dimensions.

Now we need to consider ribbon representations, starting with the repre-
sentations of a quantum double. These categories arise with the condensation
of anyons to a surface boundary. The Dijkgraaf-Witten model in [7] uses an
inner and outer rectangle of plaquettes in a discrete gauge theory for G = S3,
and an initial Kitaev quantum double Hamiltonian. Here a ribbon is a chain of
simplices in the lattice, and each simplex carries a qudit.

The ribbon operators on the lattice form a Hopf algebra dual to D(G).
Gapped boundary types correspond to subgroups of G, such as our C3 C Sj.
Recall that D(C3) uses the Fourier transform Fj to make electric magnetic
duality manifest [55]. Elementary excitations, by definition [7], are dyonic pairs
(m, e), where the magnetic charge m is a conjugacy class for G and the electric
charge e is an irrep for its centraliser. In other words, a dyon is an irrep for the
quantum double. For example, m = {(231), (312)} and e = C3. This explains
the choice of particle braids in Table 2.

Anyon fusion occurs when two excitations are brought to the same simplex
on the lattice. Compare this to figure 7, where two types of overlap triangle are
possible. In defects on the boundary, these two options define two distinct tensor
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products, and hence a braiding. A gapped boundary in [7] is a condensable
algebra object A, in a unitary modular tensor category, which is also Lagrangian,
meaning that the quantum dimension of A is the square root of the full category
dimension.

A collection of n gapped boundaries (internal rectangles) models n marked
points on a Riemann sphere, and hence n anyons for the fusion trees on the
associahedron with n leaves. A sequence of splittings from the vacuum object,
followed by condensation of n objects to the vacuum, is exactly a choice of two
trees on the associahedron, which defines an element of Thompson’s F' group,
as described in section 3.1. This describes ground state degeneracies in this
model. Thus two boundaries A; and A, along with the vacuum, define a pair
of pants diagram, and in this case a bulk anyon particle/antiparticle pair (which
condenses) may be represented by a line connecting the two holes on the surface.
A ribbon operator for this line is a Wilson line.

Condensation introduces 37 symbols into the structure of the category, for
the diagram that first fuses two bulk anyons and then condenses them. The
symbols have six indices: three for the 2 + 1 bulk anyons and three for the
condensation vertices on both this diagram, and the diagram where the two
anyons condense straight away. The required axiom is a pentagon with four 3j
arrows and one fusion arrow [7], and the commutativity of condensation relates
the 3j to the braiding operator. Finally, a 65 symbol is defined across the
boundary by a mirror pair of 35 equations, summing over both the input bulk
fusion and the mirror fusion index. That is, there are six anyon indices and
three condensation indices in total.

Now the Lie algebraic triality automorphism 7 for Dy is given by the modular
S and T matrices for the toric code fusion category, where G = S, as in

0 0 0 1 1 1 1 1 1 0 0 O

0 0 1 0 1 1 -1 -1 01 0 O

—27 = ((41)(32))oSoT = 010 0 1 -1 1 -1 001 0
1000 1 -1 -1 1 0 00 -1
(27)

The 4-basis is {1, e, m,em} [7], and the Lagrangian algebras are A; = 1+ e and
Ay =14 m. Condensation sends 1 and e to 1, and m and em to m. Braiding
moves one hole around another.

Consider again the pants diagrams with A; holes, with bulk anyons as lines
connecting the circles on the sphere. A pair of S! circles is a toric analog of
the pair of S? which form a 1-handle in a Kirby diagram, which has a link
attachment giving a 2-handle [33]. Thus our bulk anyon ribbon is naturally a
surface analog of the cancelling 2-handle, and in both cases the 2 x 2 intersection
form for the attaching handle is given in (6).

For D(C'3) we have two condensates: 14+e+¢€ and 1+m+m. This category is
the same as SU(3); x SU(3),, which we can represent with two surface layers,
so that the bulk line between two holes is categorified to a cylinder handle
connecting the holes on different sheets. Sliding tubes around each other in
this 3-space reminds us of the spherical category functors used in [33] to define
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smooth 4-manifold invariants.

Let us return to the Fibonacci category, which is a condensation of its
double. The representation of B, in (23) comes with a ribbon twist map
Ox = —eT™/51x. The /¢ appears as a Lagrangian dimension, and the an-
tipode (26) requires rings with p, as expected.

4.3 Templates and ribbons

Categorification is inevitable in quantum computation, where lines are thickened
to ribbon strips. These ribbons are used to build surfaces with boundaries. A
template is a branched surface which includes ribbon vertices, as shown in figures
6 and 7. In 1995, Ghrist [67] showed that there exists a template with four holes
containing all knots and links, as one would expect for a DNA code.

Figure 6: A two-holed Lorenz attractor with blue path

Ribbons may be twisted, and the category has a braiding. Everything hap-
pens in either three or six dimensions, because the higher dimensions of M
theory just correspond to extra strands in our braid diagrams. This has been
discussed elsewhere. Figure 7 illustrates the standard product and coproduct
diagrams for a bialgebra, reading the processes down the page. Templates [68]
also include up and down tangle ribbon caps, as in the Lorenz template of figure
6. As usual, these exist in categories with duals (see appendix).

%/

product coproduct

product and
coproduct

Figure 7: Template vertices

For Bs diagrams, there exists a universal representation of SU(2) using the
Fibonacci anyons [64][69]. Our Standard Model particle braids [70][58][31][32]
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assign SU(3) color to a choice of one in three twisted ribbon strands. The twist
is a U(1) charge.
A template diagram has a framed link equivalent, as shown in figure 8. The

Kirby moves act on framed links as usual.
. Da'j”/
W |
Figure 8: Framed links for template vertices

4.4 Simplices and polytopes

A discrete cube is a cubic piece of the integral lattice with d points along each
edge segment. Its vertex coordinates are noncommutative words in the integer
letters. For commutative coordinates, we take diagonal slices. For example, the
two words (10) and (01) sit at either end of a diagonal line across the square in
the plane. We replace letters with the variables X and Y, so that the integers
count the number of appearances of X and Y in a word. Then X and Y are
directions in space. For a three letter qutrit alphabet, we get a 2-simplex, as in
the examples of figure 9.

AN

Figure 9: Discrete simplices on three letters

A pentagon has natural integer coordinates [71], as in figure 10, so that
three pentagons sit inside the tetractys simplex on the right of figure 9. The
corresponding three cubes represent the three mass generations of the Standard
Model. Observe the correspondence between these coordinates and words on the
pentagon of figure 5. We can do this for the associahedron in every dimension,
using discrete simplices with d + 1 points on each edge.
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Figure 10: Coordinates for a pentagon

The three dimensional associahedron of figure 13, with 14 vertices, has 24
triangular faces when each of its six pentagons is divided into three triangles.
When all faces are triangulated, the associahedron is dual to the 24 vertex per-
mutohedron for Sy. Coordinates for the associahedron are extended [1] to the
120 vertex polytope of figure 12, which is a pentagon blow up of the permu-
tohedron. Two copies of this polytope catalog the 240 roots of eg, which are
associated to the integral points of the Jordan algebra J3(Q) [60]. The two
copies are scaled by the factors (1,¢) in the icosian integers. The scaling p
introduces another two copies for the second factor of eg, putting 16 dimensions
into 6 dimensions for gravity. The eg roots in the magic plane attach Jordan
algebra elements to the six points of the star, lying inside the six points of
the as plane. These are the 12 points of go coming from the vertices of the
cuboctahedron on the three qutrit cube.

Figure 11: The dodecadodecahedron

The genus 4 dodecadodecahedron of figure 11 has 24 pentagonal faces. As
vertices of a permutohedron, 24 points are each blown up into a pentagon on the
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120 vertex permutoassociahedron of figure 12. Let us divide the 24 pentagons
into two sets, green and red. The green lines connecting the 12 green pentagons
form the icosahedron, with 20 triangular faces.

Figure 12: Icosahedron inside the permutoassociahedron

The 12 vertices of the icosahedron have traditional coordinates of the form
(0,£1, £¢), with cyclic permutations. The 6 lines through a centred pentagon
on the icosahedron come from a 6 dimensional lattice. In figure 12, the 8 green
triangles inside a 12-gon form a square on 8 out of 20 vertices of the dodecahe-
dron. These are the vertices (+1,£1,41), where the other 12 coordinates are
cycles of (0, +¢, £(¢ —1)). The 12 vertices of the icosahedron are similar to the
12 vertices of the cuboctahedron, inscribed on the 12 edges of a cube.

The golden number p appears in the right angled triangle with an angle of
36° and side lengths (v/5,2p, ¢p). A pentagram component is the right angled
triangle (1,v/¢, ). To include 1/+4/¢, as in (23), we need integers of degree
8, or 16 with the complexification of (26). Over Z, the eg form then lives in
an algebra of 64 dimensions. The cube in dimension d introduces diagonals of
length V/d, starting with the /2 normalisation for qubit operators. We focus
on prime dimensions. The surface area of the icosahedron is 5v/3 and for the
dodecahedron it is 1542 /p, which introduces p~—1.

A discrete direction in our computational space is labelled by the toric paths
1, X, XX, and so on. Given the qudit interpretation, we want an auxilliary
space whose directions are given by prime powers, so that all qubit cubes are
given by a discrete edge, as in the sides of triangles in figure 9. The figure 9
simplices then belong to higher and higher dimensional qutrit cubes, where the
dimension is determined by the number of letters in the word labelling a point.
Thus as usual the commutative tetractys diagram gives the 27 points on the
3-cube. The central word XY Z holds 6 permutations for the six paths on the
little cube with target point XY Z. But in dimension 4, the 81 path 2-simplex
now labels points on a 4-cube. So we can either increase the number of points
along an edge in dimension p, and take the diagonal simplex, or we can fix p
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points on an edge and increase the dimension. In the former case, the dimension
is constrained by the qudits, and four dimensions carries 4-simplices for 5-dits,
while two dimensions carries the qutrits. That is, Langlands geometry is secretly
about the 3-dits and 5-dits (and the corresponding cyclotomic fields) that we
need to understand the emergence of SU(3).

—
A
\ |

Figure 13: 3-coloring of the associahedron

Introducing the prime 7 in dimension six, we get the cubicuboctahedron and
the Mathieu group Moy [72], starting with a permutoassociahedron model for
the genus 3 surface. The seven primes (including 1) p that divide the order of
Moy are precisely those such that p+1 is a divisor of 24. My, has 26 irreps, and
their dimensions satisfy nice properties. Only the largest irrep, at dimension
10395, has a new prime factor, namely the 24th prime 83.

5 Motivic pairings

Motivically, an integral is a pairing between universal homology and cohomol-
ogy. The isomorphism between these spaces is natural in a category whose
objects have both a geometric and algebraic interpretation. Our topological
field theories can become monadic endofunctors. Such a pairing is generically a
functor F' : C° x C — R, so that a map between two such functors F' and G is
a dinatural transformation « [73], which satisfies the hexagonal rule

F(D,C) — F(C,C) =°¢ G(C,C) — G(C, D) = (28)

F(D,C)— F(D,D) —,, G(D,D) — G(C, D)

for every f: C'— D in C. So it’s basically a natural transformation for a span
and cospan. Given such a functor F', a coend of F is a pair (C,«), with C an
object and « a dinatural transformation F' — C that maps F' to a constant.
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Let C be a coend in a ribbon category C. A Kirby element in a ribbon
category [74] is a morphism f : 1 — C such that any framed link L on n
strands defines a good invariant T(L, f) = ar, o f®", where ar, : C®™ — 1 is the
unique arrow that attaches the link to an object X7 ® - - - ® X,,. Now the coend
of the identity 1¢ is a Hopf algebra, say with antipode S and multiplication
m: C®C — C. Then another definition of Kirby element [74] isany f:1 — C
such that Sf = f and

(melo)(lec@A)(fef)=fef (29)

In a ribbon fusion category, with a finite set s of simple objects, a coend has
the form C = @;es X ® X;. In the double Fibonacci category Fibg, this gives
us the special object 21 + X.

Under the Thompson group construction of section 3.1, a fusion vertex can
become a braid crossing on a link. But we can never obtain a 3-coloring by
objects, at a vertex, in a Fibonacci category. In a category where we can have
three colors at a vertex, like an annihilation (e, €, 1) interaction vertex, the bulk
fusions in a ground state 1 — 1 diagram are removed, and there are no vertices
in the resulting link diagram. If the initial crossings lie inside a set of holes on
the link diagram, the hole boundaries are then connected by non crossing lines,
as for planar algebras. We see then that these holes add structure to the local
cutouts used in skein relations.

The moral of the story is that motivic geometry cares about numbers. We
do not start with messy real or complex analysis, or classical gauge groups, since
these methods rightly exist only as a limit of local (meaning at a prime) com-
putational diagrams. Elsewhere we will discuss the double grading of Khovanov
homology, which lives on the smoothing cubes, and also triple gradings for link
invariants.

\{/
|

Figure 14: Neutrino braid at mirror with RH line

Figure 14 shows a proper helicity neutrino at a Thompson mirror, with a
collapsed mirror braid representing the RH sterile state of the CMB.
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A Number Theory

A good introduction to Number Theory is the book by H. R. Rose (Oxford,
1994). We introduce a selection of interesting fields and rings with a mind to
applications in quantum computation and quantum gravity.

By definition, a number field extends the rationals by one special real number
«, containing all numbers of the form a + ba for a and b in Q. Multiplication
and addition in this field Q(«) work in the obvious way. Given «, there is a
ring of integers in Q(«), but this is not always the integer multiples of the form
a + ba. For example, when a = /5, the ring of integers consists of numbers
a + bg, where ¢ = (1 ++/5)/2 is the golden ratio.

An algebraic numberis a root of a finite polynomial with rational coefficients,
such that the leading coefficient is 1. The golden ratio is algebraic as a root
of X2 — X —1 = 0. Given an algebraic number, there exists a unique such
polynomial (of a given degree) with « as a root. It is useful to factorise the
polynomial. Consider the quadratic X2 —k = (X +v&)(X —vk) = 0 of degree
2. The set of roots {+vk, —Vk} are called conjugates for the field Q(+v/k), and
we use this term for polynomials of any degree d. In terms of the d conjugates,
where a = a1, the norm of a number « is defined by

N(a) = H Q;. (30)

Thus N(¢) = ¢ - (—=1/¢) = —1, while X2 4+ 3 = 0 gives N(y/-3) = 3.

Given a set of conjugates for a, any other element 8 in Q(«) may be written

in the form

B=ag+aia+aad®+ -+ ag_1a% ", (31)
where the a; are rational or integer as required. The field conjugates of 3 are
the d — 1 numbers of the form ago; + - -+ + ad_laf_l.

Take a basis {f1, B2, -, B4} of Q(«). Typically, we will choose the basis
{1,a,02, -+ ,a?1}. Now for any Q(c), the basis defines a dx d matrix M,; with
columns indexed by the basis and rows by the conjugates of . Many examples
are given below. The discriminant of Q(«) is defined by the determinant square
A = Det(M)2.

A.1 Quadratic fields

The degree d is a quantum dimension, since 2 x 2 matrices ought to be about
qubits. When o = vk for an integer k with no square factors, the polynomial
X? — k = 0 defines the field matrix

M = G _\/\/EE) (32)

with discriminant A = 4k. But for /—3, the ring of integers has a basis
{1,(=1+ v/—=3)/2}, so that A = —3. Similarly, other negative values of k give
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Table 3: Discriminants for cube roots
k 2 3 5 7 11

[A] [108 =27 x 22 243 =27 x 32 675 1323 3267

negative integral discriminants, in contrast to the positive example of Q(v/5),
which has A =5 coming from
I ¢
(1 7 ¢) | (33)

There are no additional field conjugates in the quadratic case. The opposite
sign in N(¢) = —1, compared to an ordinary complex norm, is responsible for
time in a Lorentzian metric, and 3 + 5 = 8 dimensions are associated to the
adjoint representation of SU(3) and octonion algebras.

A.2 Fields on cube roots

Note that the signs in (33) give the 2 x 2 Hadamard matrix. In dimension 3, we
see the qutrit 3 x 3 Fourier transform in the field matrix. Let w = (—1++/=3)/2
be the cube root of unity above. For the polynomial X2 — k = 0 with k cube
free, we have
1 kl/3 |2/3
M= (1 wk'/? @k*3|. (34)
1 wk'/? wk?/3

Sample discriminants are given in Table 1. Hopefully it is clear that 27 is an
important number! This is the determinant square of the Fourier transform,
and we have in general A = —27k2.

An elliptic curve C of genus 1 takes the standard form Y2 = X3 +aX +b for
rational coefficients, and has a cubic discriminant Ao = 4a® 4+ 27b%, generalising
the example above. If a prime p divides A¢, then A¢ = 0 in the finite field Fp,.
The finite set of I, solutions to C' defines a Mordell-Weil group for C, whose
order N,(C') appears in the zeta function for C.

A.3 Fields on fourth roots
When « is a fourth root, we find that A = —k® for X* — k = 0. The matrix is

1 k‘l/4 k1/2 k3/4

1 ik1/4 —]{/’1/2 —ik3/4

1 _k,l/4 k‘l/2 _k,3/4 : (35)
1 —ik1/4 _k1/2 ik3/4

Now let p = /¢ + 2 be the diagonal of the golden rectangle. It is algebraic
because p* — 5p? +5 = 0. There are two nice bases for the integers in Q(p),
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namely
3

L p pj ” L p ¢ po

L —p p° —p L —p ¢ —po

1 v5 5 s | ™ 1 5 3 a5 |0 (9
1 —v/5 5 —=5V5 1 =5 3 =35

both with A = 1055.7281. The second basis forms the golden ring of integers
of the form

xo + 210 + T2p + 300 (37)
for z; € Z. Note that v/5 = 2¢ — 1. In the complex field Q(p,), the ring of

integers defines a dense map of Z® into C. Alternatively, use the half integer
lattice Z8/2 (used for eg roots).

Figure 15: Angle 36° bisection

Figure 14 indicates one of ten possible blue rectangles covering much of the
pentagram. The 10 external blue points define a decagon. The chord length on
a unit side decagon is p.

A.4 Fields on fifth and higher roots

Using the golden phase e2™"/®, the discriminant for X° — k = 0 is A = 5%k*.
For example, when k& = 4 we have A = 800000.

We are mostly interested in prime dimensions d for qudit computation spaces.
Let @ be the primitive d-th root of unity. For d prime, the phase coefficients 6%
for i,j € {0,1,--- ,d — 1} always define the discrete Fourier transform. Then
the A for XP — k = 0 looks like pPkP—1.

A.5 Primes and lattices

For quadratic fields, there is a quadratic form that characterises the norm.
As expected, the form f = aX? + bXY + cY? comes with the discriminant
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Ay = b? — 4ac. In particular, for Z[w] in Q(v/—3) we have Ay = —3 from
X2+ XY + Y2 For Z[§] the form is X? + XY —Y? and Ay = 5. The form
X2 4+ Y? matches the Gaussian integers Z[i]. Here Q(+/5) requires ¢ because
5 equals +1 mod 4. For positive primes p > 7 that equal 3 mod 4, such as 7
and 11, the integers have the simple basis {1,,/p}, while =7 = 1 mod 4 uses

(—14++v-=7)/2.
The Galois primes {2, 3,5, 7,11} give the angles for Lie algebra root systems,
which satisfy the lattice condition

2w
4cos?(—— 1,2, 3},
cos* (=) € {0,1,2,3} (33)

Beyond Lie algebras there are other important lattices, notably the Leech lattice
in dimension 24 [41].

B Modular tensor categories

A ribbon category is a braided monoidal category with rigidity, meaning that
all objects V have left and right duals, such that there exist isomorphisms
Oy : V — V** satistying [6]

1

= E7 (39)

01 =11, dvew =0y @dow, v~

where 6° is in Hom(V***, V*). Isomorphisms in the other direction are defined
using duals and the flip map, as in

ey =V > (VeVH)eV™* 2TV (V*eV*) - . (40)
In any rigid braided monoidal category,
evew = owvovw (ey @ ew), (41)

where o is the braiding. The ribbon twist maps 6y : V. — V are defined by
0y = eydy. This all implies the balancing axiom,

Ovew = owvoyw (0 @ Ow) (42)

and the compatibility condition 6y« = 67,. Our semisimple ribbon categories
have a finite set of equivalence classes of non trivial simple objects {V;} with
Vo = 1 such that V;* is simple and the monoidal structure defines fusion rules

VieV; = EBkNiijk~ (43)
Each V; has a quantum dimension d;, such that

did; = Nfsdy. (44)
k
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For example, the Fibonacci category has two simple objects I and X such that
X ® X =1+ X, and the dimension of X is ¢ because dxdx =1+ dx.

A modular tensor category is a semisimple ribbon category with an invertible
matrix s;; defined by the Hopf links for all objects V; and V.

Let 6; denote the twist on the simple object V;. Define p* =", 0F'd2. Then
the single unknot denotes p*p~, and various relations hold between diagrams
in the modular tensor category.

g 7\
A
WD-very

A modular tensor category carries a representation of the modular group,
generated by diagrams S and 7" and the morphism C' = 5ij*ojj(ﬁj_1 ® 1), with
(ST)% = /pt/p=S? and S? = C.

For any base field, the 6; are roots of unity. In a CFT we have 0; = >4
for the conformal dimension A;, and (p*/p~)/6 = e2™¢/24  where ¢ is the
central charge. The numbers s;;/d; are algebraic integers. For example, in the
representation category for the quantum group U, (sl(2)) this matrix is the 2 x 2
discrete Fourier transform.

Acknowledgments: The author thanks Vaughan Jones for speaking about the
Thompson group trees in Auckland, some time in 2016.
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