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Abstract

The aim of this paper is to show the mathematical connections between the
Ramanujan’s Class Invariants, the Golden Ratio and some expression of various

topics of Cosmology
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(N.O.A — Figures from the web)

https://silvanodonofrio.wordpress.com/2014/04/29/1a-teoria-del-tutto-parte-seconda-stringhe-e-

modello-standard/

In fig. A particle with a vibrant internal structure. Not static, but a kind of elastic string. The elastic
not only stretches and retracts, but sways

In 1968 a young Italian physicist Gabriele Veneziano was looking for equations that could explain
the strong nuclear force, that is the powerful glue that holds the nucleus of each atom together by
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binding protons to neutrons. One day in an old book on the history of mathematics he found a
formula two hundred years earlier developed by Swiss mathematician Leonhard Euler. Veneziano
realized that Euler's equation could describe the strong nuclear force. This accidental discovery
made him immediately famous. But what does this formula have to do with strings, you will think?
Now let's see it. Thanks to word of mouth between colleagues, the equation reached up to a young
American physicist, Leonard Susskind who, in studying it, noticed that something new was hidden
behind the abstract symbols. It described a particular type of particle with a vibrant internal
structure. Not static, but a kind of elastic string. The elastic not only stretched and retracted but
swayed and magically corresponded to the formula.

The leaves grow in a spiral such that the number of turns formed by rotating in one direction and
the other are two consecutive Fibonacci numbers. The crossed leaves, joined to the starting one,
constitute a third Fibonacci number, consecutive to the first two. (B)

http://web.math.unifi.it/users/mathesis/sezione/natu/page08.html

B)
A) The string not only stretches and retracts, but sways

(see comparison with phyllotaxis)



0)

The pineapple is a magnificent example, each of the scales that cover it belongs to three different
spirals which, in most of these fruits, are 5, 8 and 13 in number (just Fibonacci numbers)

D)

D) The center of sunflowers where it is possible to notice two series of golden spirals that screw
each other clockwise the other counterclockwise.

Fibonacci's succession is found in an incredible variety of phenomena that are not connected to each
other, but perhaps it is in the natural world that it appears with great spectacularity. The most
documented case concerns PHYLLOTAXIS. It studies how leaves and branches are distributed
around the stem. That the arrangement is such that the leaves do not cover each other, but that each
one receives the maximum possible amount of light and rain is understandable, but one is appalled
when one discovers that these schemes are expressible in mathematical terms and have a link with
the Fibonacci series. In fact, the number of turns made to find the leaf aligned with the first one is
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generally a number of Fibonacci. The ratio of the number of turns and the number of leaves
between two symmetrical leaves, is called phyllotaxis quotient and is almost always the ratio
between two consecutive or alternating numbers of the Fibonacci sequence. For example, it takes 3
full turns and go through 8 leaves to return to the leaf aligned with the first: the phyllotaxis quotient
is 3/8. Other examples. In lime trees the leaves are arranged around the branch with a phyllotaxis
quotient equal to 1/2. In the hazel, beech and bramble it is 1/3. The apple tree, apricot and some
species of oak have leaves every 2/5 of a turn and in the pear tree and in the weeping willow every
3/8 turn. In addition to the leaves, in the plants also other elements are arranged according to
schemes based on numbers belonging to the Fibonacci series. The pineapple is a magnificent
example, each of the scales that cover it belongs to three different spirals which, in most of these
fruits, are 5, 8 and 13 in number (just Fibonacci numbers). No less spectacular is the center of
sunflowers where it is possible to notice two series of golden spirals that screw each other
clockwise the other counterclockwise.

https://www.astronomiamo.it/Strument Astronomici/Scheda-Dati-DeepSkyObject/Galassia/1232

E) Spiral-shaped objects are found from the "infinitely small" world to the "infinitely large"
universe, for example in the arms of spiral galaxies




https://www.eso.org/public/italy/news/eso1042/

From:

Modular equations and approximations to ©
S. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350 — 372
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(2+sqrtS) (((((((1+sqrt5)/2))(10+sqrt101))))) 172 * ((((((5sqrt5+sqrt(101))/4)) +
sqrt(((105+sqrt(505))/8))))))

Input:
[ f

[2+~.E]\f[é [1+1IE]][1D+*JE] [El, (5 «Ewﬁ]wlé[mswﬁ]]

Result: .
(235 )y 5 (1) (104 V201 3 (5V5 + 101 7 |5 105 V505) |

Decimal approximation:
224.3689593513276391839941363576172939146443280007364930381. ..

224.36895935...

Alternate forms:

l II - [ | — | — | — | —
5[2\(2[1G5+1}'5D5] +10y5 +2+/ 101 ++/505 +\(1G[1G5+~.}'5D5] +25]

| \fllz [1 + *.E] [m + qﬁ]

of 256x% - 13134080 x7 + 12406662 784 x& + 566 460 885 440 x° +
8970692 383216 x* + 50000758 979200 x° + 133454526 025 384 x° -
\ 21580568 998020 x + 63001502 001 near x =50341.4

[2+\E]4%[1+\E][1D+ 101] [5«}?+~jﬁ]+

1 — | —

A—r[zﬂ,fs]\,([lﬂ,f ][mﬂﬁ][mmﬁ%}

1
4

Minimal polynomial:

256 x'® ~ 13134080 x'* + 12406 662 784 x'? +
566469 885 440 x'° + 8970692 383 216 x* + 59 000 758 979 200 x° +
133454526 025384 x* - 21580568998 020 x° + 63001502 001

From which:

[(2+sqrt5) (((((((1+sqrt5)/2))(10+sqrtl0 1)) /2 * ((((5sqrt5+sqrt(101))/4)) +
sqrt(((105+sqrt(505))/8)))))] 1/11



Input:

e VG (B0 [ 57 o) i)

Exact result:

zgj%[hm[mm}
1%q(|[2+ﬂj?][‘_];{5£+M]+ % ,jé [ll:l5+"u'lﬁ]]

Decimal approximation:
1.635776213003291789374056840890028295596227184272763857453 ...

1.635776213...

And:

(2+sqrt5) ((((((x)(A0+sqrt1ODNN /2 * ((((((5sqrtS+sqrt(101))/4)) +
sqrt(((105+sqrt(505))/8)))))) = 224.36895935

Input interpretation:

(235 x(10+307) (3 (5«07 | 5 105 V05 ) |-
224.36895935

Result:

25 ) 10+ 201 (3(sV5 + 101 ) 1 3 ros Vsos) |V -

224.36895935
Plot:

1500

1000 |

500 |

e : = — 224.36895935



Alternate form:

Vx | roor of 256 x® —8125440 x7 + 4996878 336 x5 — 10944328 960 x°
1088503 336224 x* + 2048528 617920 x* + 55033901 841536 x° +
\1 13356686 893680 x + 63001502001 near x=31112.7

224.36895935

Alternate form assuming x is positive:
1.0000000000y x = 1.2720196495

Expanded form:

é \ﬁfé [m+ Jﬁ][mh-\jﬁ] Jx + ‘j%[mﬂjﬁ][m&ﬁ] Jx +

‘1505[m+4101] Jx +—“|I1Dl[lD+1,"lDl] Vx+

245[1D+m]¢x+—\jm+mm Vx =224.36895935

Alternate form assuming x>0:
f

:ll[zﬁ.f?] 5.\;'|I5[10+~./F] \;101[10+M}

.-
‘j 2100 +2024 5 +210+ 101 +20+/ 505 |4 x = 224.36855935

Solution:
x = 1.6180339887

1.6180339887 result that is equal to the value of the golden ratio

From:

ACTA ARITHMETICA LXXIII.1 (1995)

Ramanujan’s class invariants and cubic continued fraction

By Bruce C. Berndt (Urbana, 1ll.), Heng Huat Chan (Princeton, N.J.)
and Liang-Cheng Zhang (Springfield, Mo.)

we have:




(((729+297sqrt6)*1/2)) — (((727+297sqrt6)*1/2)) *
1/(((5+sqrt29)*(1 1sqrt6+5sqrt29)"1/2))

Input:

1

| i
\H?29+29?~J5 -\(?zhzg?ﬁ
|
5+VZ9)\ 11V 6 +5VT

Result:

| —
7274297V 6
11V 645920

.-
V729 +297y6 - oy
5+429

Decimal approximation:
37.66375478012757636101128839866973898374259238297109528655....

37.66375478...

Alternate forms:

727 + 297+ 6

i 4\I|?29+29? J6 +[5-~J?9']

1146 +5v29

=% 4 e =
3481+33~Jﬁ +5r[-?2?-29?1f5 +5J8?{485+198\,"5]]

f 256 %% + 372224 x7 + 134650240 x® — 475330816 »° —
196583295 632 x* + 99282661376 x° + 626330 118 856 x° -
1590893138 680 x — 353967028 175 near x = 37.6638

Minimal polynomial:

256 x° + 372224 x7 + 134650240 x® - 475330816 x° - 196583295632 x* +
99282661 376 x° + 626330118 856 x° - 159893 138 680 x — 353967028 175

From which:

A(((((((729+297sqrt6)*1/2)) — (((727+297sqrt6)*1/2)) *
1/(((5+sqrt29)*(1 1sqrt6+5sqrt29)~1/2)))))-13

where 4 is a Lucas number and 13 is a Fibonacci number
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Input:

.-
4\ 729+297V6 -\/?zhzg?sﬁj .
|

[5+‘|'I'2_9]'VJ].1 6 +5v 29

-13

Result:
\l 72?+2':'7 ') 6
11 ".l' B 45 ‘-.n' 29
\i?29+29?\/_ 8 ' 13
5440

Decimal approximation:
137.6550191205103054440451535946789559349703695318843811462...

137.65501912... result practically equal to the golden angle value 137.5

Alternate forms:

4\/?2%29?\,/_ +(5-v29) | ?2?;29?‘5 275

N 1146 +5v20

of x® +5020x7 + 8949628 x® + 558351232 x° -
182524553 402 x* - 9650410105 952 x° - 172 785960 398 276 x° -
1273933 480098 368 x — 3275304 790749119 near x = 137.655

| =
7274207V 6
11V 645420

-13+12\/3[2?+11~J5]- -
5+ 29
Minimal polynomial:
x® +5920 x” +8949628 x® + 558351232 x° -
182524553402 x* — 9650410 105 952 x° - 172 785969 398276 x° -

1273933480098368x-3275304790749119
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A(((((((729+297sqrt6)*1/2)) — (((727+297sqrt6)*1/2)) *
1/(((5+sqrt29)*(11sqrt6+5sqrt29) 1/2)))))-11

where 11 is a Lucas number

Input:
.-
— 1
4|\ 729+297V6 —\/?2?+29?1,"6 . _11
|
(5+V9)y 11y 6 +5VT0

Result:

\( 7274297 V6
\H?29+29?'J_- HEaY® | 5

5:+v20

Decimal approximation:
139.6550191205103054440451535946789559349703695318843811462...

139.6550191205... result practically equal to the rest mass of Pion meson 139.57
MeV

Alternate forms:

4\/'?2%29?\/_ +(5-v29) | ?ETLEQT‘E 255

N 1146 +5v20

of x® 45004 x7 + 8B66860 x° + 451452528 x° -
187572744522 x* - 8169308256528 x° — 119306622 208500 x° -
692710785 646704 x — 1344316115 373039 near x = 139.655

| —
4 ?2?:29? \-'i
11W G454 29

-11+12\/3[2?+11~£]- -
5+429

Minimal polynomial:

x° +5904 x” + 8866860 x° + 451452528 x° —
187572744522 x* — 8169308256528 x° - 119306622 208500 x~ -
692710 785 646 704 x — 1344316 115 373039
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A(((((((729+297sqrt6)*1/2)) — (((727+297sqrt6)*1/2)) *
1/(((5+sqrt29)*(11sqrt6+5sqrt29)°1/2))))))-18-7

Where 18 and 7 are Lucas numbers

Input:

.-

— 1
4|y 729 +297V'6 —\/?2?+29?1}'5 . _18-7
|
(5+V9)\ 11V 6 +5v0
Result:
\I 7274297 V6
\(?29+29?\/E A BNRIRTR |
54+v29

Decimal approximation:
125.6550191205103054440451535946789559349703695318843811462...

125.6550191205... result very near to the Higgs boson mass 125.18 GeV

Alternate forms:

4‘/ ?29+29?1j_ +[5_E] ?2T+29?\/_ o

N 1146 +5v29

f x® +6016x7 +9450940 x% + 1220723 296 x° —
120332789 882 x* - 17293953317 696 x° — 665438927 368004 x° -
10780008 019970720 x - 63738552 293650175 near x = 125.655

| —_
4 '?2'?:'29'? \-"i
11% G454 22

-25+12\/3[2?+11~J?]- il
S ++ 29

Minimal polynomial:

x® + 6016 x” +9450940 x® + 1220723296 x° -
129332789 882 x* - 17293953317 696 x° - 665438927 368 004 x° -
10780008 019970720 x — 63 738 552293 650 175
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27 12(((A(((((729+297sqrt6)1/2)) — ((727+297sqrt6)1/2)) *
1/(((5+sqrt29)*(1 1sqrt6+5sqrt29)"1/2))))))-18-7+3)))-8

where 18, 7 and 3 are Lucas numbers, while 8 is a Fibonacci number

Input:
[
1 1
27 |4 V72942076 -\/?znzg?ﬁ . L
|
(5+v29)y 116 +5VZ9
18-7+3|-8
Result:
\f' T2T+207Y 6
11\!'6+5‘u'2g'
2714l 729+ 2076 - _22|-8
\I 5+v29

Decimal approximation:
1728.842758126880123494600573528165905122099988680430145473. ..

1728.842758126... = 1729

This result is very near to the mass of candidate glueball fy(1710) scalar meson.
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross—
Zagier theorem. The number 1728 is one less than the Hardy—Ramanujan number
1729 (taxicab number)

With regard 27 (From Wikipedia):

“The fundamental group of the complex form, compact real form, or any algebraic
version of Eg is the cyclic group Z/3Z, and its outer automorphism group is the cyclic
group Z/2Z. Its fundamental representation is 27-dimensional (complex), and a basis
is given by the 27 lines on a cubic surface. The dual representation, which is
inequivalent, is also 27-dimensional. In particle physics, Egsplays a role in
some grand unified theories”.
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Alternate forms:

727 + 207+ 6

1 | — —
: 2?44?2%29?@5 +[5—1.,"29] _22|-16
B +5\."ﬁ

f x® +80956 x” + 1703986750 x® + 2669 362 035496 x° -
4756662915533957 x* - 7165668 508414854536 x° -
3300344 930225049 151 994 x* — 643092 006 826555582 136 660 x —
45681272 897342628112742375 near x = 1728.84

72'? 207\!6
54 =
11v 645+ 20

~305 + 152\/ [2?+ 1176 5
54+4320

Minimal polynomial:

x® + 80056 x” + 1703986750 x° + 2669362035496 x° — 4756662915533 957 x* —
7165668 508414854536 x° — 3300344 930225049 151 994 x* -
643092 006 826555582 136 660 x — 45681 272 897342628 112 742 375

THL(((((729+297sqrt6)1/2)) — (((727+297sqrt6)1/2)) *
1/(((5+sqrt29)*(11sqrt6+5sqrt29)*1/2))))* 1/8-(13+4)*1/10°3

where 13 is a Fibonacci number and 4 is a Lucas number

Input:
1 1
1+ -(13+4 r
[ | 10
4y 729+297 6 - 727+297\6 !
\ (54v28 )N 11V 645v20

Exact result:
983 1

1000 —
| 7974007 B
N 1146 45429

| .
xii\l?zngwﬁ _

54y 20

Decimal approximation:
1.618344900250198265630292929347389104090910808577003947772. ..

1.61834490025... result that is a very good approximation to the value of the golden
ratio 1,618033988749...
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MODULAR EQUATIONS IN THE SPIRIT OF RAMANUJAN

M. S. Mahadeva Naika - Department of Mathematics, Central College Campus,
Bangalore University, Bengaluru-560 001, INDIA - “IIIT - BANGALORE”
June 25, 201

h \/1279.—_355\/13—1— 12 /aq 5 \/1281 + 355v 13 + 12, /a;
4,13 = — )
2 2

1279 + 355v/13 + 12 /a; 1281 + 355v/13 + 12, /a;
haj/13 = 5 + 5 ;

where a; = 22733 + 630513,

E((((I/Z(((1279+3555qrt1 3+12sqrt(22733+6305sqrt13)))))))))*0.5+(((((1/2(((1281+35
5sqrt13+12sqrt(22733+6305sqrt13)))))))))"0.5

Input:

l — |I —
g [12?9+355413 +12\'|'22?33+|53D5~.,"13 ]+

‘\2

1 S |I | g
\ 5[1281+3551.,"13 +12\‘|'22?33+6305«.,"13 ]

Decimal approximation:
0.009883370936766335497016430294461115920248564878851856440...

0.009883370936766...

Alternate forms:

f x®+100x" -120x%-60x" +94x* +60x° -120x% - 100x + 1
ar x = 0.00988337

| .

1 " —
-y 1279+ 355 13 +12/22733 4630513 -
V2

|
| . .

\ 12814355 13 +12 ,\.l' 22733 + 63054/ 13
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.'
e 412?%355@4«;’45455-12: +64/45466+12; -
V2

f
\Ilzsnsssq 13 +6/ 45466 — 12 + 6y 45466 + 12

Minimal polynomial:
P +100x" -120x® 60 %" +94x* +60x° - 120 - 100x +1

((((1/2(((1279+355sqrt1 3+12sqrt(22733+6305sqrt 1 3))))))0.5+(((((1/2(((1281+35
5sqrt]3+12sqrt(22733+6305sqrt13))))))))0.5

Input:

.-
1279 + 355 4/ 13 +12J22?33+63G51."13 ] +

1
\ 2

1 | oo I { gy
\ 5[1281+355~J 13 +12 \/22?33+5305'J 13 ]

Decimal approximation:
101.1800534855957098546733135864456977523922232456688420658...
101.1800534855...

Alternate forms:

oot of x®=100x" -120x% +60x° +94x* —60x% -120x% +100x + 1
lear x = 101.18

| .
1| | —

— |\ 1279+355 13 +12\/22?33+5305 V13 o+
V2

I ;
|
\4’ 1281 + 3554/ 13 +12 \J 22733 + 63054/ 13

17



1 II ' Do : T T T I T RPN T | o I T TR
— \112?9+355\.f13 +64/ 4546612 + 6y 45466+ 125 +
v 2

.-
‘11281+355~¢' 13 +6+ 45466 - 12 + 6+ 45466 + 12

Minimal polynomial:
¥ —100x" -120x® +60x° +94x* —60x° —120%% +100x + 1

(((((172(((1279+355sqrt13+12sqrt(22733+6305sqrt13)))))))0.5+(((((1/2(((1281+35
5sqrt]3+12sqrt(22733+6305sqrt13)))))))))0.5+0.0098833709

Input interpretation:

1 — |Il —
1279 +355 4/ 13 +12 \.' 22733 +63054 13 ] +

\ 2

1 e |II | g
- [1281 +3554/13 +12 “.' 22733 +6305v 13 ] +0.0098833709

‘1|'2

Result:
101.189936856...

101.189936856...

((((172(((1279+355sqrt]1 3+125qrt(22733+6305sqrt 13))))))))0.5+(((((1/2(((128 1435
5sqrt]3+12sqrt(22733+6305sqrt13))))))))0.5+0.0098833709+34+2+2/5

where 34, 2 and 5 are Fibonacci numbers

Input interpretation:

1 — |II —
1279 + 3554 13 +12 \.' 22733 + 6305y 13 ] +

\ 2

1 — [ — 2
= [1281 +355V13 +12 22733+ 6305y 13 ] +0.0098833709 + 34+ 2 +

‘\'2

Result:
137.589936856...

137.58993685... result practically equal to the golden angle value 137.5
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(((((1/2(((1279+355sqrt1 3+12sqrt(22733+6305sqrt 1 3))))))0.5+(((((1/2(((128 1435
5sqrt13+12sqrt(22733+6305sqrt13)))))))))0.5+0.0098833709+21+3

Input interpretation:

1 — |II —
1279 + 3554 13 +12 .\.' 22733 + 6305 v 13 ] +

\ 2

‘\_ 2 [1281 +355vy 13 +12 \‘|' 22733 + 6305y 13 ] +0.0098833709 +21 +3

Result:
125.189936856...

125.189936856... result very near to the Higgs boson mass 125.18 GeV

27* 1/2(((((((((1/2(((1279+355sqrt1 3+12sqrt(22733+6305sqrt 1 3))))))))0.5+(((((1/2(
((1281+355sqrt] 3+12sqrt(22733+6305sqrt13))))))))"0.5+0.0098833709+2 1 +Pi+e)))

)+1/3
where 21 and 3 are Fibonacci numbers

Input interpretation:

1 1 — | —
27 5 ‘\5 12?9+355~113+12-\.'22?33+6305413 +

-

1 | p— Il = =
\ 5 [1281 +3554 13 +12 \'( 22733 +6305 v 13

1
0.0098833709 +2]1 +x + I“] - 5

Result:
1729.00578640 ..

1729.0057864...

This result is very near to the mass of candidate glueball fy(1710) scalar meson.
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross—
Zagier theorem. The number 1728 is one less than the Hardy—Ramanujan number
1729 (taxicab number)
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Series representations:

27 ‘1 | f
= ¥5[12?9+3551..' 13 +12\/22?33+5305 13 ]+

1
*‘l‘ 5[1281+3551.' 13 +12 \/22?33+53051,' 13 ] -

L | =

0.00988337 +21 +m+¢ |+

0.5459420.7474 + 1.41421 ¢ + 1.41421  + ( [12?9 + Z[ - ][355 i y 12

12(22732 + 6305 \/ﬁ]* \/22 732+ 6305 13 ]]+
| "
f [1281 % [ 2 ] [355 127 {12 +12(22732 + 6305 m]*
\ k=o \ K
\/22 732 + 6305+ 13 m

[12?9 +3554 13 +12 \/22 733 +6305+ 13 ]

1
\J 5[1281+355 13 +12 \/22?33+53D51,' 13 ] +

1
0.00988337 +21 +m+e |+ e 0.54594

[e]

k=0

12(-1 (22732 + 6305 m]* \/22 732 + 6305 4/ 13 ]] 5

uf[lzsul [ - [355 ]k\/_2+12[ Ty
[22 732 + 6305 M]k \/22 732 + 63054 13 ]]]

20

e

=1
207474 + 1.41421 ¢ + 1.41421 7 + _J [12?9 + 2‘ o (— = [355 ]k 4 12 +



27| | 1 — [ —
S\ 5 [1279+355 13 +12,[ 22733 + 6305 y/ 13 | +

2\\2

1 | p—— Il | —
\ 5 [1231+355 v 13 +12 “fl 22733 + 63054/ 13 ] +
1

0.009B8337 + 21 +m+e|+ 5 -

|
= ] 1y —
6.75|42.0691 + 2 ¢ + 27+ 1.41421 | 1279+ 3 — (-1 [-—J Jzo
k! 20k
k=0
k . VY &
[355[13-3.31 +12[22?33+'5305u 13 - %) ]z.;, ]+
|
| © 1 i1y —
141421 ([1281+ 5 = (-1) [-—] 7
'ul[ +Z‘k! 2 ku d
k=0
 E— k
[355[13—zmk+ 12 [22?33+5305 13 —z.;.] ]zg“
From:

University of Arkansas, Fayetteville - ScholarWorks@UARK

Theses and Dissertations / 5-2015

Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies: Measurement and
Relationship to Galactic Structure and Nuclear Supermassive Black Hole Mass
Benjamin Lee Davis
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3.11.1 The Golden Spiral

The pitch angle for the Golden Spiral (P,) is determined by starting with the definition of

a logarithmic spiral in polar coordinates

. (3.16)

126
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whera r is the radius, 4 is the central angla, ryy is the initial radins when # =(°, and b is a erowth
factor such that

b= tan{P). (3.17)

The golden ratic () of two quantities applies when the ratio of the sum of the quantities to the
larger quantity (A ) is equal to the ratio of the larger quantity to the smaller one (B), that is

A+B_
5

e R

B 3>
Il
5
—
(s d
ot
=]
_—

Salving algebraically, the golden ratio can be found via the only positive root of the quadratic

equation with

1++/5
= +_|v/_= 1.61B0D339887... (3.19)

i

e Golden Spiral is a unique logarithmic spiral, defined such that iis radius grows every quarier

=]

turn in either direction (£7/2) by 4 factor of . A simple solution ol (he pitch angle of the Gulden

Spiral can he yielded first hy application of Fquation (3.16)

=D (3.20)
rearranging and raking the natural logarithm
g MR i
|p| = = (1.3063489625 (3.21)
+m/2
and finally application of Equation (3.17) yields
|P.| =arctan |[b| = |7.03239113"__. (3.22)

Within the errors associated with the M—P relation (Equation (3.6)). the associated mass

of a SMBH residing in a spiral galaxy with pitch angle equal to that of the Golden Spiral and the
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most prabable pitch angle from the PDF in Figure 3.6 are aquivalent with log(M /M ;)=7.15+0.22
and log(M /M) =7.06 £0.23_ respectively. Parhaps the most famous spiral galaxy, M5!1a or the

“Whirlpool" galaxy, also exhibits spiral arms close to the Golden Spiral with a pitch angle of

P=1526712.26% (Davis et al., 2012} and an implied SMEII

X 2 7.20L0.26.

-
=3

mass of log(M /M ) =

The Golden Spiral plays a significant role in both (he history and lore of mathematics and
art. 1t 18 closely approximated by the Fibonacei Spiral, which is not a true logarithmic spiral.
Rather, it consists of a series of quarter-circle arcs whose radii are the consecutively increasing
numbers of the Fibonacci Sequence. Both the Golden Ratio and Fibonacci Sequence arc mani-
fested in the geometry and growth rates of many structures in nature; both physical and biological.
It is not surprising, therefore, that spiral galaxies should also have morphologies clustering about
this aesthetically appealing case. Another situation similar in superficial appearance occurs in cy-
clogenesis in planctary atmospheres (¢.g., hurricanes). This rate of radial growth is most familiar
in the anatomical geometry of orzanisms. Well-known examples of roughly Golden Spirals are
found in the horns of some animals (e.g.. rams) and belonging o the shells of mollusks such as the
nautilus, snail, and a rare squid which retains its shell, Spirula spirula. Of course, spiral density
waves are not required to have pitch angles closa to the Golden Spiral. Their pitch angle depends
on the ration of mass density in the disk (where the waves propagaie) to the central mass. In the
case of Saiurn’s rings, wherz this raiion is far smalier than il is in disk galaxies, piich angies are
measured in tenths of degrees. ‘The tact that spiral arms in galaxies happen to cluster about the

aesthetically appealing example of the Golden Spiral may help explain the enduring fascination

that images of spiral zalaxies have had on the public for decades.
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3.11.2 The Milky Way

Our own Milky Way has m =4 and |P| = 22.5° £2.5°, as measured from neutral hydrogen

observations (Levine et al., 2006). This implies a SMBH mass of log(M /M) = 6.82 +£0.30 from

the M—P relation, compared to a direct measurement mass estimate from stellar orbits around Sgr

A* (Gillessen et al., 2009) of log(M /M) = 6.63 £0.04. Although our Milky Way does not have

a pitch angle close to the most probable pitch angle from our distribution, it is very similar to the

mean pitch angle from Figure 3.6 (i = 21.44°), with an associated SMBH mass of log(M /M) =

6.88 4-0.25. However, the mean of the black hole mass distribution from Figure 3.7 is even closer

with log(M /M )= 6.72. Our Milky Way is somewhat atypical in that it has four spiral arms, which

is only the third most probable harmonic mode for a galaxy (see Figure 3.5).

From:

rearraneing and taking the natural logarithm

'il'I:.l.’.‘
Ax/2

5] =

and finally application of Equation {3.17) yields

|P,| = arctan |b| ~ 17.03239113"...

Inyg

b=
12 +ar /2

= 0.3063489625....

|P,| = arctan|b| ~ 17.03239113"...
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we obtain:

atan 0.3063489625
Input interpretation:
tan ' (0.3063489625)

tan

Result:
0.2072713047...
(resultin radians)

0.2972713047...

Conversion from radians to degrees:
17.03°

17.03°

Reference triangle for angle 0.2973 radians:
1

L=,

width cos(0.297271) = 0.956139

height = sin(0.297271) = 0.292912

Alternative representations:
tan~'(0.306349) = sc”(0.306349 | 0)

1
tan 1(0.306349) = cnt'l[—J
0.306349

tan 1(0.306349) = tan (1, 0.306349)

Series representations:

@ k 142 k
-1 . (=1)° 0.306349
tan (0.306349) = 2

1+2k

k=0

26
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1k 142k 1
o (-1) 0.61269812F Fy 5 [———
tan'l[D.306349}:Z . [1+u' 107508

k=0

]1+2k

1+2k

tall'l[D.3D6349} =
@ 0,55 (—i(~0.306349 + i)t

k

1 1 1
—ilog(2) - - ilog(—i(-0.306349 + i) — — &
2 2 2" &

Integral representations:

"1 1
tan 1(0.306349) = 0.306349
o 1+0.0938497 t*

tan 1(0.306349) = -

—i sa+y

0.0765872 i 1
T, j:wﬂf_g,ugp?c@zs r[i i s]r[]_ . nr[s}z ds
=

|'..5 i

tan~1(0.306349) =

0.0765872 Jmﬂ ? 28885 (1 —s)r(L - 5)I(s)
B ds for(

L =i ooty r[§ _5}

Continued fraction representations:

tan~'(0.306349) 0.306349 0.306349
an . = =
1 i:% ocozseo7k? 14 0.0938497
HE et 3, 0.375399
i o, 0.844647
7, 150159
O+..
0.306349
tan”'(0.306349) = = =
1 E 00028407 (1-2 k)
o] 109385418123k
0.306349
Vi 0.0938497
2.90615+ OB s
4.71845+ =2 0863
6.53075+ 5555 —
8.34305+...
1 0.0287508
tan (0.306349) = 0.306349 - — =
ﬁ 00038497 | 1411 Kk |°
3+k=1 342k
0.0287508
0.306349 -
3. 0.844647
A 0.375399
7. _2.34624
g4 1.50159
11+...
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2 0.306349
tan " (0.306349) = =
o 0.18?6.09u:1-2|1%|'||]—q¢|
1.09385 + K T -
k=1 (104602 400460248 (-1f) (142 k)

0.306349

. 0.187699
1.09385 + - e

~ 1.1262
5.46925 11962

T 0.84465+. .

ey
K ag /by is a continued fraction

v| 15 the floor functior

From:

STRUCTURE AND DYNAMICS OF GALAXIES

1. Distribution of stars in the Milky Way Galaxy

Piet van der Kruit - Kapteyn Astronomical Institute, University of Groningen, the
Netherlands - www.astro.rug.nl/_vdkruit

Beijing, September 2011

We have that (page 912):

'—I.
o
o
ok
=)
—_
S
—
S
I~
W
J==t
L]
I
=
I?l
I
(58]

M =

For other galaxies we find ' = 0.04 - 0.11 and p. = 10~* M.
3
pe =,
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We note that h =5 (page 220)

We have R =10
Thence,

Page 214

From

we obtain:
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0.615 (7.91%10%1/5)*1/2 * exp(10/10)

Input:

' 1 10
0.515\{?.91 10 Eexplﬁ]
Result:

6.64925...
6.64925...

From the previous expression

Ingp
|b| = M?,} =0.3063489625...,

AN =
/

|P,| = arctan|b| = 17.03239113°...

tan '(0.3063489625)
0.2972713047...
(resultin radians)

Conversion from radians to degrees:
17.03*

17.03°

We obtain:

17.03 + 0.615 (7.91%10%1/5)1/2 * exp(10/10)

Input:

| 1 10
17.03 + 0.615 \f 7.91410 ¢ Exp[ﬁ}
Result:
23.6793...
23.6793...
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From which:
(13*3)*1/(((17.03 + 0.615 (7.91*10*1/5)"1/2 * exp(10/10))))-(29)*1/10"3
where 13 and 3 are Fibonacci numbers, while 29 is a Lucas number

Input:

1 1
(13 3) o M ——

| 1
1?.03+0.515\(?.91 10+ 5 exp(1)

Result:
1.618011437421453858747053512410135570414848366728117225025. ..

1.61801143742... result that is a very good approximation to the value of the golden
ratio 1,618033988749...

From:

Page 564

It follows that the Galaxy is NOT maximum disk.

With # ~ 31 km sec™! kpc™! and ogg ~ 40 km sec™! the Toomre
parameter can be determined as

R~ 2.1.

For Q = 2.1, we obtain:

(7.91-2.1)(((17.03 + 0.615 (7.91*10%1/5)1/2 * exp(10/10))))

Input:
7.91 -2.1)[17.03 + 0.615 I?'91 105~ !
VAL 200 | LTOR OB 7 SEXp[lDJ
Result:
137.576...

137.576.... result practically equal to the golden angle value 137.5
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Definition:

The golden angle is the angle that divides a full angle in a golden ratio (but

measured in the opposite direction so that it measures less than 180 ), i.e.,
TA

2a(l-=-1/¢)
= 2a/(1+¢)
= 2x(2-4)

2
éE

= n(3-v5)
= 2.399963 ...
= 137.507..°

(OEIS A131988 and AD96627; Livio 2002, p. 112).

It is implemented in the Wolfram Language as GoldenZngle.

van Iterson showed in 1907 that points separated by 137.5° on a tightly bound
spiral tends to produce interlocked spirals winding in opposite directions, and that
the number of spirals in these two families tend to be consecutive Fibonacci
numbers.

Input:
T [3 - "\;"'E]

Decimal approximation:
2.399963229728653322231555506633613853124999011058115042935...

2.39996322972...

Property:

[3 -5 ]rris a transcendental number

Alternate forms:
a3+m(-11y 5

—[--J? -3}

Constant name:
golden angle

Series representations:

}T[E—'\;II'E.]ZEET—}T\'E 24*[
k=0

ol ]
—
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T4
k!

}T[S—\E]:BN—}T\ESﬂ

mE%Res_ 1,47 (-

i 1
=—§+_ 2

2y

- —s}r[s}
}7[3—\{'5]:3;r—

In degree, we have:
180(3-sqrt5)

Input:
180(3 - "\;'I'E]

Decimal approximation:
137.5077640500378546463487396283702776206886952699253696312...

137.50776405... = Golden angle

Alternate forms:
540 + 180 (-1)y/ 5

540 - 180 w.,f?
180 [*E - 3]

Minimal polynomial:
x* — 1080 x + 129600

Possible closed forms:

540 -18045 =~
137.507764050037854646348730628370277620688605260925360631238405

360 ¢° =
137.507764050037854646348739628370277620688605260925360631238405

Indeed:

Input:

360 [é [\E 5 1]]Z
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Result:

90[\/? _ 1]2

Decimal approximation:
137.5077640500378546463487396283702776206886952699253696312...

137.507764... = Golden angle
Alternate forms:

180 (3 -«E]
540-1804 5
180 [\E - 3]

Minimal polynomial:
x* — 1080 x + 129600

Possible closed forms:

540-18045 =
137.507764050037854646348739628370277620688695269925369631238405

360 0% =
137.507764050037854646348739628370277620688695269925369631238405

360 -3600 =
137.507764050037854646348739628370277620688695269925369631238405

360 @

b+ 1
137.507764050037854646348739628370277620688695269925369631238405

=

wf -19122-20125¢ + 27858 r + 7527 log(2) = 137.507764050037854651415
x| root of 921x% -39605x% -31851x+39168 near x =43.7701 | =

137.5077640500378546456001

25¢° 8741+
o aE ; = C.oxypal166® sn0urt =gl Taw w84 Lant

137.507764050037854646300588
-187 +388v 1 - 35757+ 1947 7*% + 1083 °

= 137.5077640500378546465 1468

257
104 274  1591log2) 707  440log(3)
3 " 15 log(2) 30  30log® 3

137.5077640500378546455256

& iz the golden ratio conjugate

logix is the natural logarithm
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We note that adding 2 (that is a prime number and a Fibonacci/Lucas number) we
obtain:

(7.91-2.1)(((17.03 + 0.615 (7.91*10%1/5)"1/2 * exp(10/10)))) + 2

Input:
7.01 -2.1y|17.03 +0.615 I'.?Ql 10 : 1 2
(/.91 - 2.1) e+ U \I SEXP[lDJ-r
Result:
139.576...

139.576... result practically equal to the rest mass of Pion meson 139.57 MeV

And from:

Page 719
» Most (at least 50%) ellipticals have a small ¢, ( = 107}, but
some (~ 10%) rotate along their major axis.

» (/) =~ 0.3 and | has a wide distribution with possibly as
much as 40% of the galaxies prolate.

» The ratio ¢/a has a peak at about 0.6-0.7.
For the ratioc/a = 0.604, we obtain:
(7.91-2.1)(((17.03 + 0.615 (7.91*10*1/5)*1/2 * exp(10/10))))-13+0.604
where 13 is a Fibonacci number

Input:

| 1 (10
(7.91 -2.1) [1?.03 +0.615,] 7.9110 - Exp[EJ] 13 +0.604

Result:
125.180...

125.18... result equal to the Higgs boson mass 125.18 GeV
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Performing the following calculations where 11 is a Lucas number, Q = 2.2 and
1.663, we obtain:

27*1/2(((((7.91-2.1)(((17.03 + 0.615 (7.91*10%1/5)*1/2 * exp(10/10))))-
11+1.663))))-2.2

Input:

1 ' 1 10
97 = (7.1 -2.1)[17.03 + 0.615 ./ 7.91 10~ = (—] 1141663 |-2:2
5 [[ 9 }[ + V{ g = EXp i ] + ]

Result:
1729.032684262841434452206182292308681212175951461417728921...

1729.032684.....

This result is very near to the mass of candidate glueball fy(1710) scalar meson.
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross—
Zagier theorem. The number 1728 is one less than the Hardy—Ramanujan number
1729 (taxicab number)

From:
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 349, RAMANUJAN'S CLASS INVARIANTS,

KRONECKER'S LIMIT FORMULA, AND MODULAR EQUATIONS Number 6, June 1997, Pages 2125{2173 S 0002-
9947(97)01738-8 - BRUCE C. BERNDT, HENG HUAT CHAN, AND LIANG - CHENG ZHANG

Let @ = (G's05/G1oy/5)°. Then, by Lemma 3.4 and (4.35),
=[P P (PP

s / —
14.36) = [130v5+ 20v101) + v/ 169440 + 7540505,
Therefcre, by (4.35) and (4.36),

Lf4
Cags = P~H4QY —(VE+2)1/? (—‘“ = 1) (/DT + 10)*/%

L/6

X (( 130V/F + 203/T01) + 1/ 160440 + ?ﬁ.uhfaﬂ.a) '

Thus, il remsins Lo show Lhal

T 3
—— T )
— [ /113 +5/505 (105 + 5//50¢
{£3E)\f§—.29\!‘E()1]—.\/169n14{'}—.7540\.4’5(35:(1,' +8"~’ * il °+8JV'J ) .
/
which is straightforward. O
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Or, from the following Ramanujan expression:

(((C((((sqrt(((113+5sqrt(505))/8)) + sqrt(((105+5sqrt(505))/8))))))"3))))"(1/14)

Input:

1 [113+5 qﬁ] +\{fé [ms +5 JE'] ]3

{3

Exact result:

1 [1 ,uu"_ 1 ,"l ﬂ"— 314
E‘\fﬁ[m5+5 5D5]+5.\|15[113+5 505]

Decimal approximation:
1.655784548804744724619349561761107639558068114480697960239. ..

1.6557845488...

Alternate forms:
|

| | — [ | —
28 338881 + 15080 v 505 +4 ‘15 [2 871 007052 + 127758 137+ 505 ]

|

(5v5 +v¥101 +vV105-40: +v 105 +40: ¢
23_!"?

| , 3/14
[\f5[21+~.*5|35] +¥ 113 +5505 ]

2 Q28

Minimal polynomial:
x12 1355524 x®* + 400646 x°® 1355524 %% + 1
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We obtain, from the following previous formula

1 [ 1 10
27« = [(7.91 -2.1y|17.03 +0.615 .,/ 7.91 « 10« - [—J -11+1.663|-2.2
5 [[ 9 }[ - \I 9 = EXp P ] + ]

the following elegant expression:

27*1/2(((((7.91-2.1)(((17.03 + 0.615 (7.91*10*1/5)*1/2 * exp(10/10))))-

TTH((CCCCCCC((sqrt(((113+55qrt(505))/8)) +
sqrt(((105+5sqrt(505))/8))))))"3)))"(1/14)))))))-2.2

Input:

27 X701 -2.1)[17.03 + 0.615 .[ 7.01 - 10 - [lDJ
=5 L — di 4 3 . = BX = -
2 . \f 5 ®Plig

| P

11+14 [\{ é [113+54505} +,jé [1ﬂ5+5 J%]]B]-z.z

Result:
1728.94...

1728.94... = 1729

This result is very near to the mass of candidate glueball fy(1710) scalar meson.
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross—
Zagier theorem. The number 1728 is one less than the Hardy—Ramanujan number
1729 (taxicab number)
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Series representations:

27 791 10 10
22 |7.01 —2.13|17.03 + 0.615 exp(—] g
2 5 10

1;:{| [\/é[113+5 505] +\/é[105+5 5r;:|5']]3 ]_2.2=

|
= (] . % |97 54505

1185.05 + 191.862 exp(1) + 13.5| > | 2 ||8 [9?+5 505] =+ +
= \ 8 8

0 - 5o | o

27 7.91 10 10
— [(7.91 -2.13|17.03 + 0.615 Exp[—] -
2 5 10

rl[113+5 5D5]+\/%[1D5+5 SDS]T]—

ll*lii[\ig

2.2 = 1185.05 + 191.862 exp(1) +

?L%[[i][-hé[mhs EDE]J*J-ué[mhs 505 ) +

[ ][-1+ % (113+5 /505 ]]k

b |

| 1 g
\/-1+ = [113+5 SDS]]] ~(l 14

27 791 10 (10
= |7.91-2.1)[17.03 + 0.615 Exp[—] i
2 5 10

14! E113+5 505 + E1I:I5+5 505. 3 -2.2=1185.05 +
{3 (125 V5) - [ os-5 5

|
= 141 . % |97 5v505
191.862 exp(1) + 13.5 [%3 E[_ EL [[—8} [9?+5 505 ] .J S

[_gr[zhﬁ]* \/2 [21“‘%]“ ~(1/14)
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From the previous expression, we obtain also:

27%1/2(((((7.91-2.1)(((17.03 + 1/x (7.91*10%1/5)*1/2 * exp(10/10))))-

TTH(((CCCC((sqrt(((113+55qrt(505))/8)) +
sqrt(((105+5sqrt(505))/8)))))) 3 (1/14)))))))-2.2 = 1728.94

Input interpretation:

97 701211703+ L [7.91.10. 1 [lDJ 11
=5 2 — i 3 = . = BX = -
2 +x\l 5 “Plig +

1 = 1 ===
1;;_ [\{ = [113+5 \ 505 ] + “{ = [lDS+5w,"5CIS ] ] ]_2.2 ~ 1728.94
Result:
27 10.8118
ok 5.81[1?.!33 T ]+
2 h's

f BT ——\3/14
—[1D5+5 5D5]+5\15[113+5«f5t}5]] &

HE

11]— 2.2 =1728.94

Plot:
4000 |
| L]
3000 | \
: —_— 27 e a1 {17 q=z 4 10.5
2000 | e ~15.81(17.03 4
1 —— et |
1000 | AN
B | Y 2 P il |
S 2

Alternate form assuming x is real:
1.626 ]

X

Alternate forms:

848.023
1207.4 + = 1728.94
X

6.75(178.874 x + 125.633)
X

= 1728.94
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Alternate form assuming x is positive:

Solution:

1.626 result near to the golden ratio

Or, with the previous Ramanujan expression (a):

27%1/2[(7.91-2.1)(((17.03 + 0.615 (7.91*10%1/5)"1/2 * exp(10/10))))-11+([(2+sqrt5)

((((((1+sqrt5)/2))(10+sqrtl 0D /2 * (((((((5sqrtS+sqrt(101))/4)) +
sqrt(((105+sqrt(505))/8))))) ] 1/11)]-2.2

Input:

27 L 7.91-2.1)|17.03 +0.615 I'.?Ql 10 - =
2[.—.“r o+ L \f SEXP[lDJ_

11+ [[2 + 4?] \ﬁf[é [1 + \E]}[m ; \jﬁ]

[i 5 J5 + \jﬁ] s ‘l;'ré (105 ﬂ,fﬁ] ]]’“ 1/ 11}]— 2.2

Result:
1728.67...

1728.67...

This result is very near to the mass of candidate glueball fo(1710) scalar meson.
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross—
Zagier theorem. The number 1728 is one less than the Hardy—Ramanujan number
1729 (taxicab number)
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Series representations:

27 701 10 (10
5 |791-21(17.03 + 0,615 Exp[m]

11+[[2+1E]\/—[1+'JE][1G+4H]
[ (55 +/101)+ \f [10&@]]}"[1;11}]—

2.2=46.75 [1'?5.563 +28.424 exp(1) + 1.93797

[[2+ﬁ§4*[£]]|[1+\/_2‘4 [
Ze )
2*°% (97 +4/ 505 ]4; \{ré[ghﬁ]ﬂ"mu}]

H[lm\-ﬁémn* [E ]]

1
z
ke

534 +52%J100 +

ol X P

27 701 10 (10
5 |791-21(17.03 + 0,615 Exp[m]

11+[[2+1E]\/5[1+\E][I1G+1}ﬁ]
[31, [5E+Jﬁ]+\f%[1t35+ﬁ] ]]"*[1;11}]—

2.2 =6.75 [1?5.563 +28.424 exp(1) + 1.93797

o e

]]

ol % P

8]

-
g <1

\/-1+é[105+ﬁ]]

i 11}]
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27 7.91 10 10
22 |7.01 —2.13|17.03 + 0.615 Exp[ ]
2 5 10

11+[[2+f]\/ 1 \'{_][IEHM]
3635 ). ) o) 2

_1fke1
6.75[175.563 + 28.424 exp(1l) + 1.93797 [2+\Ei[ 4}:{E z}k]
k=0 5

[—:i}j 5 }[ v’F)_[ i [— L]

+

s-3f [—.%L”j—ﬁ.}k{-é}wﬁ]
k! k1

LF(-2) (-1 + (105 ++505 )™ \/—1 + £ (105 ++/505 )

k!

ALI1S
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From:

3.3.2 The M-P Relation

The pitch angle of a spiral galaxy has been shown to correlate well with the mass of the
central SMBH residing in that galaxy (Berrier et al., 2013). Thus, using the linear best-fit M—P

relation established by Berrier et al. (2013) for local spiral galaxies,

log(M /M) = (b~ 6b)— (k= 6k) P, (3.6)

with b=8.21, db= 0.16, k = 0.062, and ok = 0.009, we can estimate the SMBH masses for a
sample of local spiral galaxies merely by measuring their pitch angles using the method of Davis
et al. (2012). The linear fit of Berrier et al. (2013) has a reduced y? = 4.68 with a scatter of 0.38
dex. which is lower than the inftrinsic scatter (A = 0.53 =0.10 dex) of the M—c relation for late-
type galaxies (Giiltekin et al., 2009) and the rms residual (0.90 dex) for the SMBH mass—spheroid
stellar mass relation for Sérsic galaxies (Scott et al., 2013) in the logM direction. Ultimately, by
determining the product of the mass distribution and the pitch angle distribution of a sample with

a given volume, we may construct a BHMF for local late-type galaxies.

From (3.6), we obtain:

log(((0.89e+10*1.989¢+30)/(1.989¢+30)))

Input interpretation:
0.89 - 10'° ~1.989 . 10°°

1.589 . 10%°

login

(note that log represent the log base 10)

Result:
0.0403000066...

9.94939000066...
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((log(((0.89e+10%1.989¢+30)/(1.989¢+30))))))/6

Input interpretation:
1 0.89 - 10'° . 1.989 . 10*°
Elﬂgm[

1.089  10%

Result:
1.6582316678...

1.6582316678... result very near to the 14th root of the following Ramanujan’s class
invariant Q = (Gsos/G101 /5)3 =1164,2696 i.e. 1,65578...

Or, with the natural logarithm and for My, = 2e+10, we obtain:
log(((2e+10*1.9891¢+30)/(1.9891e+30)))

Input interpretation:
2.10%.1.9891 . 10*

1.9891 - 10%*

log

logix is the natural logarithm

Result:
23.7190...

23.7190...
From which:
(((log(((2e+10*1.9891e+30)/(1.9891e+30))))))*1/(2P1)

Input interpretation:

|I 2 1019 % 1.9891 » 10%°
21 log
\ 1.9891 - 10%*

log(x) is the natural logarithm
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Result:
1.65521...

1.65521... result very near to the 14th root of the following Ramanujan’s class
invariant Q = (6505/0101/5)3 =1164,2696 i.e. 1,65578...

And:
(13*3)*1/(((log(((2e+10*1.9891e+30)/(1.9891e+30))))))
where 13 and 3 are Fibonacci numbers

Input interpretation:

1
(13 x 3)
lng[‘? 101910801 11:13“3'}|
1.0801 - 1030
log(x) is the natural logarithm
Result:
1.64425...

2
1.64425... =~ {(2) = ’% = 1.644934 ...

((((13*3)*1/(((log(((2e+10*1.9891e+30)/(1.9891e+30)))))))))-(21+5)*1/10"3
where 13, 3, 21 and 5 are Fibonacci numbers

Input interpretation:

1 1
(13x3) -21 +5)« —
10g[2 1019 10801 1030} 10°
1.ose1 1030
logix is the natural logarithm
Result:

1.618251574974184817176682339560916791780304216194175350749...

1.618251574974... result that is a very good approximation to the value of the golden

ratio 1,618033988749...
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From:

Page 680

Page 681

From:

Sqrt((((7.242.5)/2.5 * (0.35/4))))

Input:
J 7.2+25 0.35
-
2.5 4
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Result:
0.5826662852782886047049688502256213808735160975743022834000

0.5826662852782886.... result very near to the value of the following 5" order
Ramanujan mock theta function:

Mock 3-functions (of 5th order).

1.9 ¢
rO=ltr g tarparst

P(@=1+q(1+9+¢* (1+9) (1 +g*)+¢*(1+9) A +¢*) (1 +¢¥)+...,
Vv (@)=7+P(1+g)+¢*(1+g) 1 +¢)+¢°(1+¢g) (1+¢d) 1 +¢)+...,

X@O= et oo a-m T O a-H =gt

14 4 ' ¢
M gto-aa-a T i-ga-ga=g"

Input interpretation:
0.449329 + 0.449329° (1 + 0.449329) + 0.449329° (1 + 0.449329) (1 + 04493297 +
0.449329'% (1 +0.449329) (1 + 0.4493297) (1 + 0.449329°)

Result:
0.595782322619120485824526179594205622329408540297077428912 ..

P(q) = 0.5957823226...

Or:
sqrt((((7.2-2.5)/2.5 * (0.35/4))))

Input:

[7.2_-25 0.35
\H 2.5 4

Result:

0.405585995813464940201244856917933185838172616981467425162...
0.40558599581346....
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From which, multiplying by 4, that is a Lucas number:

A*sqrt((((7.2-2.5)/2.5 * (0.35/4))))

Input:
f?E—EE 0.35
V 25 4
Result:

1.622343983253859760804979427671732743352690467925869700649...
1.62234398325....

4%sqrt((((7.2-2.5)/2.5 * (0.35/4)))) - 4%1/10"3

Input:
(7298 435 1
s D
Y 25 4 10°
Result:

1.618343983253850760804970427671732743352600467925869700649..

1.61834398325..... result that is a very good approximation to the value of the golden
ratio 1,618033988749...

We have also:
(89+5) / (1072 sqrt((((7.2+2.5)/2.5 * (0.35/4))))))
where 89 and 5 are Fibonacci numbers

Input:
BO+5

|
l':'z 72423 033
\f' 2.3 4
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Result:
1.613273367191726017207909107855017830414155085856070441531 ...

1.6132733671917.....

(89+5) / (1072 sqrt((((7.2+2.5)/2.5 * (0.35/4)))))) + 5*1/10°3

Input:
89+5 1
+5 S
102 | 72425 035 10
'J 2.3 4
Result:

1.618273367191726917297999197855917839414155985856970441531...

1.61827336719.... result that is a very good approximation to the value of the golden
ratio 1,618033988749...

From:
Page 130

GM 3M 3

) = I 088 —
R '~ 4zR3 "o 47 Gp

For M = 13.12806e+39, R =1.94973e+13, G=6.67408e-11,

(M _and R are the mass and the radius of SMBH 87) we obtain:

sqrt(((6.67408e-11 * 13.12806e+39)/(1.94973e+13)))

Input interpretation:

|
I| 6.67408 - 107!~ 13.12806 - 10°°
\ 1.94973 - 10%*
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Result:
2.11987... = 10®

2.11987...%10°=V

(3*13.12806e+39)/(4Pi*(1.94973e+13)"3)

Input interpretation:
3+13.12806 - 10%°

47(1.94973  10)

Result:
0.422852128743236200554361005727927805152243006293719417118...

0.42285212874... = p

Page 274
d [ .,dd rGo.R2 | PRV ort / b
—d (R d—) — A G,‘J |:e erf \/ .:V‘?“u

] A (1__ 2¢ )]
\ T (V2) 3(Vv2)

Where we have placed ® = 224.368 and the coordinate ¢ = 1.61803398

_4Pi*6.67e-11*0.4228%(1.94973e+13)"2
(((exp(((224.368%1.94973e+13)/(2.11987¢+8)"2))
erf(sqrt((224.368)/(2.11987¢+8)"2))-
sqrt(((4*1.61803398)/(Pi*(2.11987e+8)"2)))(1+(2%224.368)/(3*(2.11987¢+8)"2)))))

Input interpretation:
~47:6.67 1071 2 0.4228(1.94973 - 10"%)

[224.353 1.94973 1013] |' 224.368
exXp erfl | -
(2.11987 - 10%) \ (2.11987 - 10°%)°

| 4.1.61803308 [ 2.224.368 ]
-
\ 7211987 10°72 | 3(2.11987  10%f
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erfix)is the error function

Result:
-1.09271... x 10%°

-1.09271...*10"
From which:

8/2[4Pi*6.67e-11%0.4228*(1.9497e+13)"2
((exp(((224.368%1.9497e+13)/(2.1198e+8)2)) erf(sqrt((224.368)/(2.1198e+8)"2))-
sqrt(((4*1.618)/(Pi*(2.1198e+8)"2)))(1+(2*224.368)/(3*(2.1198e+8)"2))))]*1/7-10

where 8 is a Fibonacci number and 10 = 7+3 (Lucas numbers)

Input interpretation:

8% |4r-6.67 107" - 0.4228(1.9497 10"

224.368 » 1.9497 - 10" |' 224.368

BX erf e —l
(2.1198 - 10%)? \ (2.1198 - 10°%)

|' 4.1.618 2 x 224.368 e

| S 1+ e i1;7y-10

\ 7(2.1198 - 10°) 3(2.1198 - 10°)

eifix) is the error function

Result:
1728.81...

1728.81... = 1729

This result is very near to the mass of candidate glueball fy(1710) scalar meson.
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross—
Zagier theorem. The number 1728 is one less than the Hardy—Ramanujan number
1729 (taxicab number)
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For

Page 545

Wi = 1.663p~ /%2, for p > 1

Wi = 1.763p_1"f22.-; for p=1

5[4Pi*6.67e-11%0.4228%(1.9497e+13)"2
((exp(((224.368%1.9497e+13)/(2.1198e+8)2)) erf(sqrt((224.368)/(2.1198e+8)*2))-
sqrt(((4*1.618)/(Pi*(2.1198e+8)"2)))(1+(2*224.368)/(3*(2.1198e+8)"2)))]* 1/7+1.6
63

where 5 is a Fibonacci number

Input interpretation:

5|4r+6.67 107" 0.4228(1.9497 - 10}

224368 - 1.9497 - 1013 [ 224.368
BXp erf] s m—rel
(2.1198 - 108y y (2.1198 - 10°)

[ 41618 [1 2.224.368 ] S——
- {7+ L
\ 721198 10°F | 3({2.1198 - 10°f

etf(x) is the error function

Result:
137.508...

137.508.... result practically equal to the golden angle 137.507764..

And:

5[4Pi*6.67e-11%0.4228%(1.9497e+13)"2
(exp(((224.368*1.9497e+13)/(2.1198e+8)"2)) erf(sqrt((224.368)/(2.1198e+8)"2))-
sqrt(((4*1.618)/(Pi*(2.1198e+8)"2)))(1+(2*224.368)/(3*(2.1198e+8)"2)))]*1/7+1.65
6+2
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Where 1.656 is practically equal (excess approximation) to the 14th root of the

following Ramanujan’s class invariant Q = (6505/6101/5)3 =1164,2696 1i.e.
1,65578... and 2 is a Prime and Fibonacci/Lucas number

Input interpretation:

5[4x-6.67 107" ©0.4228(1.9497 10"

224.368  1.9497 - 107 |' 224.368
exXp erf e —l =
(2.1198 - 10%) y (2.1198 - 10°)

|I 4.1.618 [ 2224368

1+
\ 721198 10°F | 3(2.1198 - 10°f

]]]A (1;7y+1.656 +2

erfix)is the error function

Result:
139.501...

139.501... result practically equal to the rest mass of Pion meson 139.57 MeV

From

Page 545

_ (0 ) —1/2
Wit — 1.7¢ VZZ}HE [” S L)‘”f"] exp (R/2h)
L

M/L=3, zo=1, R=10, h=5 py=21.67+0.30B
V=2.11987e+8

1.7 * 211987000 *((([Pi*6.67408e-11%3*21.67](-1/2)))) * exp(10/(2*5))

Input interpretation:
10

1.7211987000 (7~ 6.67408 - 107! 3. 21.67) "2 Exp[ﬁJ

Result:
8.30058... = 102

8.39058...%10" = Wy
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From which, we obtain:

((((1.7 * 211987000 *((([Pi*6.67408e-11%3%21.67](-1/2)))) *
exp(10/(2*5))))))1/62+2%1/10"3

where 2 is a prime and Fibonacci/Lucas number, while 62 = 55 (Fibonacci number) +
7 (Lucas number)

Input interpretation:

|
; 10 1
62|| 1.7 211987 000 (r ~6.67408 - 107"+ 3.21.67) ? exp| —— | +2+ —
- 2 x5 3
\ 10

Result:
1.6180256755203104206727501716706072556010841890565070876A6. ..

1.61802567552031... result that is a very good approximation to the value of the
golden ratio 1,618033988749...

And:

((((1.7 * 211987000 *((([Pi*6.67408e-11%3*21.67](-1/2)))) * exp(10/(2*5))))))*1/6
-5

where 5 is a Fibonacci number

Input interpretation:

f
| 11 -1/2 10
"1:‘| 1.7 211987000 (= 6.67408 10 3 21.5?] EXD —2 = -5

Result:
137.549...

137.549....result practically equal to the golden angle 137.5
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Observations

From:
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn RpOSvJ1QxWsVLBcl6KVgd Af hrmDYBNyU8mpSjRs1BDeremA

Ramanujan's statement concerned the deceptively simple concept of partitions—the
different ways in which a whole number can be subdivided into smaller numbers.
Ramanujan's original statement, in fact, stemmed from the observation of patterns,
such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575
and so on are all divisible by 5. Note that here the n's come at intervals of five units.

Ramanujan posited that this pattern should go on forever, and that similar patterns
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11.

Then, in nearly oracular tone Ramanujan went on: "There appear to be
corresponding properties,” he wrote in his 1919 paper, "in which the moduli are
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other
than these three." (Primes are whole numbers that are only divisible by themselves or
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by
573 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125.

In the past methods developed to understand partitions have later been applied to

physics problems such as the theory of the strong nuclear force or the entropy of
black holes.

From Wikipedia

In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki
Yukawa, is an interaction between a scalar field ¢ and a Dirac field w. The Yukawa
interaction can be used to describe the nuclear force between nucleons (which
are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa
interaction is also used in the Standard Model to describe the coupling between
the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion
particles). Through spontaneous symmetry breaking, these fermions acquire a mass
proportional to the vacuum expectation value of the Higgs field.

Can be this the motivation that from the development of the Ramanujan’s equations
we obtain results very near to the dilaton mass calculated as a type of Higgs boson:
125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV and practically equal to
the rest mass of Pion meson 139.57 MeV
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Note that:

goa =\ (1 + V2).

Hence
649 = €™V2_ 244 276e V2
- -
6499934 = 40966V 4 ..
so that

64(go3 + got) = €™V — 24 + 4372 V2 4 o = 64{(1 + V)2 + (1 —v2)"2}.

Hence .
e™V2% = 2508051.9982. .. .
Thence:
64972t = 4096~V 4 ..
And
(g2 £ g t) =@™VB 20 i Lo o= B4 VDR 4 (1 =3P

That are connected with 64, 128, 256, 512, 1024 and 4096 = 64°

(Modular equations and approximations to & - S. Ramanujan - Quarterly Journal of
Mathematics, XLV, 1914, 350 —372)

All the results of the most important connections are signed in blue throughout the
drafting of the paper. We highlight as in the development of the various equations we
use always the constants ., ¢, 1/¢9, the Fibonacci and Lucas numbers, linked to the
golden ratio, that play a fundamental role in the development, and therefore, in the
final results of the analyzed expressions.

In mathematics, the Fibonacci numbers, commonly denoted F,, form a sequence, called
the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from
0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses
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the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two
consecutive Fibonacci numbers tends to the golden ratio as n increases.
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci and Lucas

numbers form a complementary pair of Lucas sequences

The beginning of the sequence is thus:

0,1, 1, 2 3,5 8 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309,
3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...

The Lucas numbers or Lucas series are an integer  sequence named  after the
mathematician Francois Edouard Anatole Lucas (1842—91), who studied both that sequence and
the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form
complementary instances of Lucas sequences.

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each
term is the sum of the two previous terms, but with different starting values. This produces a
sequence where the ratios of successive terms approach the golden ratio, and in fact the terms
themselves are roundings of integer powers of the golden ratio!" The sequence also has a variety
of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers
two terms apart in the Fibonacci sequence results in the Lucas number in between.

The sequence of Lucas numbers is:

2, 1,3, 4,7 11,18 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127,
24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349,
4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803... ...

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the
Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all
Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to
the golden ratio.

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are:

2,3, 7, 11,29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ...
(sequence A005479 in the OEIS).

In geometry, a golden spiral is a logarithmic spiral whose growth factor is @, the golden
ratio.”! That is, a golden spiral gets wider (or further from its origin) by a factor of ¢ for every
quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms
of spiral galaxies”® - golden spirals are one special case of these logarithmic spirals

58



We note how the following three values: 137.508 (golden angle), 139.57 (mass of the Pion - meson
Pi) and 125.18 (mass of the Higgs boson), are connected to each other. In fact, just add 2 to
137.508 to obtain a result very close to the mass of the Pion and subtract 12 to 137.508 to obtain a
result that is also very close to the mass of the Higgs boson. We can therefore hypothesize that it is
the golden angle (and the related golden ratio inherent in it) to be a fundamental ingredient both in
the structures of the microcosm and in those of the macrocosm.
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