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Abstract. In this paper, using the method of compression, we recover the

lower bound for the Erdós unit distance problem and provide an alternative
proof to the distinct distance conjecture. In particular, we show that for sets

of points E ⊂ Rk concentrated around the origin with #E ∩ Nk = n
2

, we have

#

{
|| ~xj − ~xt|| : ~xj ∈ E ⊂ Rk, || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n

}
�
√
k

2
n1+o(1).

We also show that

#

{
dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤ n

}
�
√
k

2
n1−o(1).

1. Introduction

The Erdós distinct distance conjecture is the assertion that

Conjecture 1.1. The number of distinct distances that can be formed from n
points in the plane should at least be n1−o(1).

Progress on this conjecture has developed overtime. Let us denote g(n) the
counting function for such construction. Then the first lower bound of the form

g(n)� n
2
3

was given in [3], which improves on an earlier version of Erdós. This was eventually
improved to

g(n)� n
4
5

log n

in [2] and

g(n)� n
6
7

in [4]. The best currently known lower bound can be found in [1], which essentially
solves the problem. In this paper by using the method of compression and its
accompanied estimates, we provide an alternative solution to the conjecture in the
following result:

Theorem 1.1.

#

{
dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤ n, ~x, ~y ∈ Rk

}
�
√
k

2
n1−o(1).
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Using this method, we provide a lower bound for the Erdós unit distance problem,
that takes into consideration the dimension of the space in which the points reside
in the form:

Theorem 1.2. Let E ⊂ Rk be a set of points concentrated around the origin with

#E ∩ Nk = n
2 and I =

{
|| ~xj − ~xt|| : ~xj ∈ E ⊂ Rk, || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n

}
,

then we have

#I �
√
k

2
n1+o(1).

2. Compression

In this section we launch the notion of compression of points in space. We study
the mass of compression and its accompanied estimates. These estimates turn out
to be useful for estimating the gap of compression, which we will launch in the
sequel.

Definition 2.1. By the compression of scale m ≥ 1 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin away from the origin by certain scale and similarly
draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale m ≥ 1 with Vm : Rn −→ Rn is a bijective
map. In particular the compression Vm : Rn −→ Rn is a bijective map of order 2.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition
of the map. Thus the map is bijective. The latter claim follows by noting that
V2

m[~x] = ~x. �

2.1. The mass of compression estimates. In this section we study the mass of
a compression in a given scale. We use the upper and lower estimates of the mass of
compression to establish corresponding estimates for the gap of compression. These
estimates will form an essential tool for establishing the main result of this paper.

Definition 2.3. By the mass of a compression of scale m ≥ 1 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.
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Lemma 2.4. The estimate remain valid∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m ≥ 1.

Proposition 2.2 (The mass of compression estimates). Let (x1, x2, . . . , xn) ∈ Nn,
then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1

�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum by appealing to Lemma
2.4. The lower estimate also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

2.2. Compression gap estimates. In this section we recall the notion of the gap
of compression and its various estimates. We prove upper and lower bounding the
gap of a point under compression of any scale.

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 −
m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
+m2M◦ V1[(x2

1, . . . , x
2
n)]− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
− 2mn+O

(
m2M◦ V1[(x2

1, . . . , x
2
n)]

)
.
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Proposition 2.3 offers us an extremely useful identity. It allows us to pass from
the gap of compression on points to the relative distance to the origin. It tells us
that points under compression with a large gap must be far away from the origin
than points with a relatively smaller gap under compression. That is to say, the
inequality

G ◦ Vm[~x] ≤ G ◦ Vm[~y]

if and only if ||~x|| ≤ ||~y|| for ~x, ~y ∈ Nn. This important transference principle will
be mostly put to use in obtaining our results.

Lemma 2.7 (Compression gap estimates). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2
j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2
j ) +m2 log

(
1− n− 1

sup(x2
j )

)−1

− 2mn.

Proof. The estimates follows by leveraging the estimates in Proposition 2.2 and
noting that

nInf(x2
j )�M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
� nsup(x2

j ).

�

3. Application to the Erdós unit distance and distinct distance
conjecture

In this section we leverage the estimate of the gap of compression to study the
problem of determining the number of unit distances that can be formed from n
points. We state our main theorem that takes into consideration the dimension of
the space in which the points reside.

Theorem 3.1. Let E ⊂ Rk be a set of points concentrated around the origin with

#E ∩ Nk = n
2 and I =

{
|| ~xj − ~xt|| : ~xj ∈ E ⊂ Rk, || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n

}
,

then we have

#I �
√
k

2
n1+o(1).
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Proof. We notice that

#I = #

{
|| ~xj − ~xt|| : ~xj ∈ E ⊂ Rk, || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n

}
≥ #

{
|| ~xj − ~xt|| : ~xj ∈ E ⊂ Rk, || ~xj − ~xt|| = 1, 1 ≤ t, j ≤ n,

min{Inf(xjs)}1≤j≤n
2

1≤s≤k
= no(1)

}
≥ #

{
|| ~xj − ~xt|| : ~xj ∈ Nk ∩ E, || ~xj − ~xt|| = 1, 1 ≤ j ≤ n

2
, V1[ ~xj ] = ~xt,

min{Inf(xjs)}1≤j≤n
2

1≤s≤k
= no(1)

}
.

The right-hand side is basically the sum

∑
G◦V1[ ~xj ]=1

1≤j≤n
2

min{Inf(xjs )}1≤j≤n
2

1≤s≤k
=no(1)

1 =
∑

1≤j≤n
2

min{Inf(xjs )}1≤j≤n
2

1≤s≤k
=no(1)

G ◦ V1[ ~xj ]

�
∑

1≤j≤n
2

min{Inf(xjs )}1≤j≤n
2

1≤s≤k
=no(1)

Inf(xjs)1≤s≤k
√
k

� n
√
k

2
min{Inf(xjs)}1≤j≤n

2
1≤s≤k

=

√
k

2
n1+o(1)

by an application of Lemma 2.7 and the proof of the theorem is complete. �

It is important to point out that the lower estimate provided in Theorem 3.1 is
only valid for sets E of points that are concentrated around the origin and more
crucially contains the required number of integer lattice points. This requirement
is underscored in the assumption #E ∩ Nk = n

2 . We state the second theorem as
an application.

Theorem 3.2.

#{dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤ n, ~x, ~y ∈ Rk} �
√
k

2
n1−o(1).
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Proof. First let {dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤ n, ~x, ~y ∈ Rk} = R, then
we notice that

#R ≥ #

{
dj : dj = || ~xs − ~yt||, dj 6= di, 1 ≤ s, t ≤ n, ~x, ~y ∈ Rk, sup(dj) = no(1)

}
≥ #

{
dj : dj = G ◦ V1[ ~xj ], dj 6= di, 1 ≤ j ≤ n

2
, sup(dj) = no(1), ~xj ∈ Nk, V[ ~xj ] = ~xt

}
=

∑
dj=G◦V1[ ~xj ]

1≤j≤n
2

sup(dj)=no(1)

~xj∈Nk

di 6=dj

i6=j

1

=
∑

1≤j≤n
2

sup(dj)=no(1)

~xj∈Nk

di 6=dj

i6=j

G ◦ V1[ ~xj ]

dj

�
√
k

∑
1≤j≤n

2

sup(dj)=no(1)

~xj∈Nk

di 6=dj

i 6=j

Inf(xjs)1≤s≤k

dj

≥
√
k

∑
1≤j≤n

2

sup(dj)=no(1)

di 6=dj

i6=j

1

dj

�
√
k

n
2

sup(dj) 1≤j≤n
2

�
√
k

2
n1−o(1)

and the claimed lower bound follows by Lemma 2.7. �

It needs to be said that the result in Theorem 3.2 can be viewed as providing an
alternate solution to the Erdós distinct distance problem, that takes into considera-
tion the dimension of the space in which the points reside. The lower bound of this
type, It has to be said, exists in the literature (See [1]). But the method employed
is completely different from the one we have used here. Theorem 3.1 and Theorem
3.2 can be considered as a generalization of the solution to both versions of the
Erdós distance problem to any euclidean space of dimension k ≥ 2. In particular
we have the following theorems as consequences of the main results of this paper.

Theorem 3.3. The number of distinct distances that can be formed from n points
in a euclidean space Rn for n ≥ 2 is at least

� n
3
2−o(1)

2
.
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Theorem 3.4. The number of distinct distances that can be formed from n points
in any euclidean space R2n for n ≥ 2 is at least

�
√

2

2
n

3
2−o(1).

Theorem 3.5. The number of distinct distances that can be formed from n points
in a euclidean space of dimension n2 for n ≥ 2 is at least

� n2−o(1)

2
.

1.
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