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Abstract

The present paper is a review, a thesis of some very important contributes of E. Witten, C. Beasley,
R. Ricci, B. Basso et al. regarding various applications concerning the Jones polynomials, the
Wilson loops and the cusp anomaly and integrability from string theory. In this work, in the Section
1, we have described some equations concerning the knot polynomials, the Chern-Simons from four
dimensions, the D3-NS5 system with a theta-angle, the Wick rotation, the comparison to
topological field theory, the Wilson loops, the localization and the boundary formula. We have
described also some equations concerning electric-magnetic duality to N = 4 super Yang-Mills
theory, the gravitational coupling and the framing anomaly for knots. Furthermore, we have
described some equations concerning the gauge theory description, relation to Morse theory and the
action.

In the Section 2, we have described some equations concerning the applications of non-abelian
localization to analyze the Chern-Simons path integral including Wilson loop insertions.

In the Section 3, we have described some equations concerning the cusp anomaly and integrability
from String theory and some equations concerning the cusp anomalous dimension in the transition
regime from strong to weak coupling. In the Section 4, we have described also some equations
concerning the “fractal” behaviour of the partition function.

Also here, we have described some mathematical connections between various equation described
in the paper and (i) the Ramanujan’s modular equations regarding the physical vibrations of the
bosonic strings and the superstrings, thence the relationship with the Palumbo-Nardelli model, (ii)
the mathematical connections with the Ramanujan’s equations concerning n and, in conclusion, (iii)
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the mathematical connections with the aurea ratio (® = =1,618033988) and with 1,375 that

is the mean real value for the number of partitions p(n).

1. On some equations concerning fivebranes and knots: an approach to Khovanov
homology of knots via gauge theory. [1]



The Chern-Simons action for a gauge theory with gauge group G (here G is always a compact Lie
group, and all representations considered are finite-dimensional and unitary) and gauge field 4 on
a three-manifold W can be written

J:ij Tr(AAdA+£A/\AAAj. (1.1)
A oW 3

Here £ is an integer for topological reasons; up to a choice of orientation, one may take £ to be
positive. In this theory, to an oriented embedded loop K — I and a representation R of G, one can
associate an observable, the trace of the holonomy or Wilson loop operator:

W(K.R)=Tr,Pexpl-f4). (12)

Reversing the orientation of K has the same effect as replacing R by its complex conjugate. The
Jones polynomial and its generalizations can be computed as expectation values of Wilson loop
operators, if we express the argument ¢ of the knot polynomials in terms of the Chern-Simons level

k by
q =exp(27/(k + 1)), (1.3)

where / is the dual Coxeter number of G . For example, if we take G =SU(2), R to be the two-
dimensional irreducible representation of SU (2), and W =85>, then the expectation value of
‘u)(K ,R) is equal to the Jones polynomial:

Ha:K)=(W(K.R)). (1.4)
Now we adopt a ten-dimensional notation in which &/ =4 super Yang-Mills theory comes by

dimensional reduction from ten dimensions and the supersymmetries of the D3-brane transform
under S0(1,9) as a spinor 16 of definite chirality; thus a generator &£ of supersymmetry obeys

Lonoe=¢&, (1.5)

where I,, [=0,...9, are the SO(1,9) gamma matrices. The supersymmetries transform as 16 =
V,®V,, where V, is a two-dimensional real vector space. The natural operators that act on V, are
the even elements of the SO(1,9) Clifford algebra that commute with U, where
U =50(1,2)x SO(3),, x SO(3), . They are generated by

By =Tjsem05  Bi=Tuuses By =T, (1.6)

and in view of the algebraic relations they obey, we can choose a basis for V, in which

(0 1} (0 1} (1 oj
B, = ; B = ; B, = . (1.7
-1 0 1 0 0 -1

We take also



goz(_aj, £=0 a). (1.8

The fermion fields A of N/ =4 super Yang-Mills are adjoint-valued fields that transform as the 16
of SO(1,9) , like the supersymmetry generators. The boundary conditions they obey turn out to be

AeV,® 8, (1.9)

9=|“1. .10
-|1]- a1

The boundary conditions on X at x* =0 are

where eV, is

a
D,X —Wgcde[Xd,Xe]:O, (1.11)

and the boundary conditions on the gauge fields at x’ =0 are

F,

3u

+1Lg F*=0. (1.12)

2 “uvi
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At a=0 and a=x, egs. (1.11) and (1.12) reduce to the more obvious Neumann boundary
conditions D, X, =F;, =0. The additional terms in the boundary conditions for generic a reflect

boundary corrections to the familiar &/ =4 super Yang-Mills action in bulk. Let us first consider
X . The usual bulk action for X is in Lorentz signature

1

L3>0d4x23:iTrDﬂXcDﬂXc . (1-13)

2
Eym u=0 c=1

[. =

X
If we place no restriction on the value of 8X, at x’ =0, we will learn that to make the boundary

term in the variation of /_ vanish, the boundary condition must be D,X_ =0. Suppose, however,
that there is an additional boundary coupling

I. = 2a 3. .cde
T =g iy oo X TR XL (1)

If we now vary [, =1+, with respect to X, placing again no restriction on 0X |, we find that

setting the boundary variation of I ; to zero gives the boundary condition (1.11). So the boundary

coupling (1.14) underlies the boundary condition (1.11). The boundary coupling 7 o 1s unfamiliar,

but it has a more familiar analog for gauge fields. The analog of (1.13) for the gauge field A4, whose

field strength we denote as £, is



A

[ d4x2Tr R (1.15)

2gYM 14,v=0

Thence, we obtain also that:

N

xZZTrD X.D"X, = x ZTrF F* . (1.15b)

gYM u=0 c=1 u,v=0

If we work just with this action, then setting its boundary variation to zero, we learn that the
boundary condition on the gauge field must be F, H‘ =0

To arrive at (1.12), we need an additional term in the action. This extra term is the usual topological
term of four-dimensional gauge theory

~

4= 3072 Jez0 Xg/lVaﬂTrFﬂvFaﬂ, (1.16)
with
0 2a 4Arn
S-=—=a3 5 (l16b)
2r 1-a” gy,

Viewed as an equation for a with 4, g,,, fixed, (1.16b) has two roots. The two roots correspond to
half-BPS boundary conditions of the D3-NS5 and D3 — NS5 systems, respectively.
Although written as a bulk integral, 7 , has only a boundary variation, simply because on a

manifold V' without boundary, J.VT rF' A F is a topological invariant. In fact, we can almost write I} P

as a boundary integral, the integral over the surface x° =0 of the Chern-Simons form:

MTr(AﬂaVA +§AHAVAJ. (1.17)

Now we want to show an interesting equation concerning the gauge fields as described in the
Jormakka’s paper “Solutions to Yang-Mills equations” and connected with an Ramanujan’s
identity concerning m in the my recent paper: “On some equations concerning quantum
electrodynamics coupled to quantum gravity, the gravitational contributions to the gauge couplings
and quantum effects in the theory of gravitation: mathematical connections with some sector of
String Theory and Number Theory”.
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= j x3cos7zx dx + 3sm7zx dx :L LA VI ; (1.18)
0 sinhmx 0 sinhmx 16\ 4
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This equation can be connected with the eq. (1.17) that we have multiplied for 71z_6 as follows:

i_ 2a 4rx ixﬁz 2a 4r 7r 2¢ 1’

= == , (119
2r l-a*g,, 27 16 1-a’g,, 6 1-a 4g2 (1.19)
thence,
=21 a xg‘MTr(A 0,4, +=A,4,4 j
2w 4 =0 3
2 2
LAy S AN N xg”MTr[AﬁVA 2444, j
16 27 4r 16900 ‘ 374
o~ 1 2a ( 2 j
=, = d’xe*"Tr| A,0,4, +=A4,44, |. (1.20
16 * 4;r1a4gI wOry 3 A A ). (1.20)
We obtain the following mathematical connections:
2 3
LAY S 2"2 i AT 4,0,4,+% A,AVA
16 4r l-a 4gY x’ !

3jd2xe—ﬁ2(y§+y§)LIdyle 2 ‘Idz 2(43 492 \/l—ﬂ(ﬁﬂr=
Tf(fﬂﬂdxeﬂysjdxzez” [\fffﬂﬂd% jdyez” i
o2 e = PGB e e [P o)
=Udzxe‘ﬂz(yg”32)%@(\/5@_1}2:8”_>< !
:>7z3“:x3 :ionsh”j‘;dx+j:x3%dxj=%(”£—3n+nzj. (121)

A Wick rotation x” — —ix’ reverse the sign of I +» and multiplies I , by —i. So in Euclidean

signature, combining the terms involving X and A, the boundary interactions of the D3-NS5
system are




. 1 N 2a abe . 2a 2
I = d’x| — eTrX | X,, X |+i e™Trl 40,4, +—A A A, ||. (1.22
g)%M jX3=0 ( 31+a2 a[ b c] 1—a2 ( u-vEra 3 U },j} ( )

In a convenient notation in which &/ =4 super Yang-Mills is obtained by dimensional reduction
from ten dimensions, with the ten dimensions labelled by x°,...,x°, the Euclidean signature version
of the chirality condition for supersymmetry generators and fermions is

LL,.Le=—ic, T,.T,A=—id. (1.23)

To define a topological field theory, one defines a group SO'(4) that acts by rotating x°,...,x” in the

usual way, while simultaneously rotating four normal coordinates x*,.x’. We pick a

2

supersymmetry generator ¢ that is SO'(4)-invariant, meaning that it obeys
(T, 4Ty Je=0, wv=0,.3. (1.24)

From the point of view of SO'(4) symmetry, four of the adjoint-valued scalar fields of N =4
super Yang-Mills theory are reinterpreted as an adjoint-valued one-form ¢ = z;oqﬁﬂdx" , while the

other two combine two an adjoint-valued complex scalar field o. SO'(4) commutes with a group

SO(2); U (l) of R-symmetries that rotates x* and x’. We normalize its generator F so that &
has charge 2.

We identify that tangential part of ¢, that is (Z = Zflzoqzﬁydx” , with X , and we identify the normal

part ¢, with a component of Y, say Y,. The boundary couplings (1.22) become in this notation

* 1 3 vl 4a . 261 2
I'= o [, d'xs Tr(—m@(ﬁv@ +ZW(A#8VAA +§A#AVAAD. (1.25)
The condition (1.24) for SO’(4)-invariance of the supersymmetry generator actually has a two-
dimensional space of solutions. It is possible to pick a basis of solutions ¢,,¢, that are chiral in the

four-dimensional sense,
Lomsér =—¢€,, Lyuné, =¢,.

r

(1.26)
It is possible to normalize ¢, and ¢, so that, for £ =0,1,2, or 3,

r

wainr =€, U, 6 =¢. (127)

ro HA4+ur

In constructing a topological field theory, we may take the supersymmetry generator & to be an
arbitrary linear combination of ¢, and ¢, . Up to an inessential scaling, we take

e=¢,+te.. (1.28)
Now we can make contact with the D3-NS5 system. From (1.23), (1.26), and (1.6), we have

By, =ig,, Bys, =-ig.. (1.29)

r



Using also (1.27) and (1.24), one can show, with some gamma matrix algebra, that
Be =-¢,. (1.30)

It follows that

2
(1+i1 tB0+litt2Blj(5/+tgr):O. (1.31)

On the other hand, with the help of (1.7), we see that the object &, defined in (1.8) obeys the same
equation

1= 2t
(1+z B+ Bl}so =0 (132

if and only if the parameter a used in describing the D3-NS5 system is related to the parameter ¢ of

the topological field theory

A—it

a=i .
1+t

(1.33)

Substituting (1.33) in (1.16b) and solving for >, we get the surprisingly simple result

2

£==. (134)

N |

The operation ¢ — —¢ corresponds to @ — —1/a and to exchange of the D3-NS5 and D3- NS5
systems. With the aid of (1.33), the boundary couplings (1.25) can be rewritten

I Px MT( t+t b4, + t+t [A@A +§A;,AVA jj (1.35)

\4

gYM

Thence, we can obtain the following mathematical connection:

VA 4a . 2a 2
] gYM.[ d3x{;‘# T}"( m¢y¢v¢l +l_—az(AyavAﬂ +§A#AVA/1)):>
j dxg"“T( t+o7 b0, + L (A@A #3444, D (1.36)
gYM

N =4 super Yang-Mills theory in four dimensions admits 1/16-BPS Wilson loop operators. They
are constructed as follows. The supersymmetry transformation law for the bosonic fields of this
theory is

M, =igl,A=-iAT,e, 1=0,.9. (1.37)

Here we use a ten-dimensional notation: for / <3, A4, is a component of a gauge field, and for
I >4, it is a scalar field. By twisting, we have converted four of the scalar fields to a one-form ¢.



Usually, we use Greek letters p,v... for four-dimensional indices, so we write 4 = Z;O 4,dx",
o= ZZ:O @, dx" = ZZ:O 4,,,dx" . Suppose that & is such that

(r, +i0,, =0, u=0..3. (1.38)
Clearly, in this case, Wilson operators of the form

TrPexpl-§ (4+ig)) (139

are invariant, for an arbitrary embedded loop K in spacetime and any representation R of the
gauge group. Similarly, if
(r,—ir,, Je=0, u=0..3. (1.40)

then there are supersymmetric Wilson operators of the form
TrPexpl-§ (4-ig)). (141)

For a Wilson operator supported entirely at the boundary of V', we can use the boundary conditions
obeyed by 4, as well as the conditions obeyed by ¢, to establish supersymmetry. We will describe
the conditions that on the boundary of '

0=5(d, +wg,)=—iZ(T, +wly,, Je, u=012. (1.42)
In (1.42) w is a complex number, to be determined. If (1.42) holds, then upon setting
A, =A4A+wg, (1.43)
we can construct supersymmetric Wilson operators

TrPexpl-§ A, ). (1.44)

for any knot K in the boundary of V. The action / of N/ =4 super Yang-Mills theory on a four-
manifold V' is the sum of a term proportional to 1/g;,, , which contains the kinetic energy for all
fields, and a term proportional to &

1

2
Eyum

6
3272

I=

[ d'xJegl, +i——][ d*xs"TrF,F, . (145)

Also this equation can be related with the Jormakka’s equation (1.18) multiplying both the sides for
87’ and obtaining:

872'5 4 .972'3 4 uvap
I= iM'de x\/gfwﬂTJ-Vd xe"""TrF, F , =

wvs aff
g



:Idzxe—ﬁz(yzzwf)ij‘dyle 2 _Idz 2242 \/l—ﬂ(ﬁﬂr _
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2 : 2 3
:>7z3“ x3c,oﬂdx+_[ x’ s‘1n7zx dxj:i(ﬂ——&r-i-ﬂzj. (1.45b)
0 0 4

sinh zx sinh 7x 16

5~

Here, the part of £, that involves 4,¢ only is (in Euclidean signature)

i;1¢ Z—TI"(%FH‘,FW +D ¢D’”¢ +R#V¢ﬂ¢ 4+ ¢#,¢ ]zj (1.46)

Both terms on the right hand side of (1.45) are Q-invariant. The 6 term is Q-invariant because,
more generally, it is a topological invariant, unchanged in any continuous deformations. It
represents a nonzero class in the cohomology of 0. One might suspect that the integral of £,
would vanish in the cohomology of Q, as happens in many twisted topological field theories, but
this is actually not the case. Instead, the first term on the right of (1.45) is equivalent mod{Q,...} toa
multiple of the second term. The precise relation is

=10, i;ﬂ’ X" PTrF, F,,, (147)
/4
where
. -1
wo O AT g
2r gp t+t
is the canonical parameter.
Thence, the eq. (1.45) can be rewritten also as follows:
. 0 4 uvap /tvaﬁ
x\JgLl, +i o [ d'xs"'TF, F,, ={0...} v TrF, F, . (1.48b)
Under a general S -duality transformation
wt 0w
¢t transforms by
ct+d

9



and that W transforms just as 7 does:

‘~P—)aLP+b

¥V +d’

(1.51)

The formula (1.48) for ¥ holds for all z,7. Imposing the relations (1.16b), (1.33) that are natural in

studying the D3-NS5 system, we can derive several interesting alternative formulas. Eliminating ¢
in favour of g,,, and @, we find

2

d

Y="—-"— (152

Rer ( )

showing that ¥ 1is always real for the D3-NS5 system with physical values of the parameters (real
gn, and @). Alternatively, eliminating € in favour of g,,, and ¢, we get

A (t—t_l t+t!

- . (153
gp \t+17 t—tlJ (1.53)

The integral J. d*xe"T, rF,,F,, is no longer Q-invariant, but varies by a boundary term. It is

convenient to replace this integral by a multiple of the Chern-Simons function. We define the
Chern-Simons function CS(A), for any connection A, possibly complex-valued, by

CS(A)=4L d3x5"”Tr(A 0,A, +
i

iA AA j (1.54)

In terms of this function, we can make the following substitution on the right hand side of eq.
(1.47):
2m¥Y
327°

xe"’TrF, F,, —i¥CS(d4). (1.55)

Writing /4 for the dual Coxeter number of G, we can write a formula equivalent to (1.54) in terms
of a trace Tr,, in the adjoint representation of G :

CS(A) L dxe””ﬂTrad(AﬂavAl+§AHAVAA) (1.56)

" 8z
Thence, we have the following connection:

2

cs(A)=— d ngTr(A 04 +] 2

AAA j:ij d3xaMTrd[A 0,A, +=
87th v S U

=, AHAVAJ .

(1.56b)

Also this expression, can be related with the Jormakka’s equation (1.18), multiplying both the sides
for 7* and obtaining:

10



3 3
cs(a)="- d%g*’“Tr(Aﬁ A+ 2A A A j:”— j d3xg””Trd(A 0,A, +2
17V 3 ov a u-v 3

2 AHAVAAJ =
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2

T
:T
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2 : 2 3
=7 I x3c?s7vc dx+_[ x3de =i T 3x+at. (1.56¢)
0 sinhmx 0 sinhmx 4

The boundary couplings must be a function of A only (modulo Q -exact terms), since this is the
only non-trivial Q -invariant combination of boundary fields.
The coefficient of CS(AW) is precisely iV . The generalization of (1.47) in the presence of a

boundary is
1={0,..}+i¥CS(A,). (1.57)

Where CS(AW) is written explicitly as a function of 4 and ¢, the ¢-dependent terms are given by
local, gauge-invariant integrals, since

1 o 2w’
CS(AW):CS(A)+E LVd3xg‘ ‘Tr(w ) M+w2¢ﬂDV¢l+T¢ﬂ¢v¢lj. (1.58)

The coefficient of CS (A) in the boundary interaction is /¥, and in view of (1.58), the coefficient of
CS(A ) must be the same.

Under favourable conditions, computations in topological field theory can be localized on
configurations that obey {Q,g” }: 0, for all fermion fields ¢ . Among the fermions of F=—1 in the

present model are a selfdual two-form y*, and anti-selfdual two-form y~, and a scalar 77. They
have the property that V" = {Q, ;f}, V= {Q, V4 } and V° = {Q 77} depend on 4,4 only:

V' =(F-gng+tdg), V =(F-pnrg-t'dg), V' =Dg". (159

Here for any two-form «, we write a@® and « for its selfdual and anti-selfdual projections.
Localization of 4 and ¢ can be achieved for real ¢ by adding a suitable term to the action 7 :

I %1—§{Q,Ln(ﬁv+ U +;(°Q)°)}:I—§IVT;’((‘U+)Z +(v )+ (@02 +) (1.60)

11



where & is a small parameter and the omitted terms are fermion bilinears. For ¢ real, V", V", and
V° are real, and the modified action diverges as 1/& unless the localization equations

(F-gnp+id g) =(F-pnd-1'd$) =D#" =0 (L61)

are satisfied. So the path integral is supported, for € — 0, on the space of solutions of those
equations.

To understand explicitly the origin of the ¢-dependent boundary terms in (1.58), we have to make
more explicit the relation of the localization procedure of eq. (1.60) to the physical action of N =4
Yang-Mills theory. The identity we need is the following:

71

- IVd4xTr(t+ SUL N (Q)O)ij de“x\/E L4 +ZE%)IVd4x8”V“ﬁTrEIVFaﬂ+

2 g p, - ﬁ,ma 1¢¢@J (1.62)

+1

+ J. d%e“”Tr(—
oV
After multiplying by 1/g;,, and making the substitution (1.55) in one term, we can rewrite (1.62) as
follows:

!
y 2
u AT;{ (Aﬂ&VA += AﬂAVA j = ¢ﬂFM +

x\/g‘e%m = {Qa}+

¢/, D¢, - 1¢¢¢1] (1.63)

t+t

t+t

When we add the boundary terms that have appeared in (1.63) to the boundary terms (1.35) that are
already present in the physical theory, before twisting, we find that the action has the expected form

{0,..}+iPCS(A,), (1.64)

with the expected value w= (t ¢! )/ 2.

The transformation law (1.51) for the canonical parameter ¥ tells us that the parameter ¥ of the
dual theory is related to ¥ by

1
Pr=——o. (165
g (169

1,

On the other hand, since ¢” =1, the formula (1.48) for W" reduces to

HV

Y'=—1. (1.66
. (1.66)
Combining these formulas,
0" =229 =— 2% (167)
n ¥

12



For G" =SU (N ), we define the instanton number of the G” gauge theory by

_ 1 uvafp
P= [ &"’TrF,,F,. (1.68)

where Tr is the trace in the N-dimensional representation. For any G, we can take

11 »
= T [ & TryF, F,y . (169)

where 4" is the dual Coxeter number of G”, and 77, is the trace in the adjoint representation of
G’.

The instanton number of a G”-bundle £ — V' is a topological invariant if V' is a four-manifold
without boundary. It remains a topological invariant if ' has a non-empty boundary and we are

given a trivialization of £ on W =0V . We have just discovered that instead of being trivialized on
W, E is identified on W with the tangent bundle 7W to W ; the gauge field A4 restricted to W is

similarly identified with the Riemannian connection @ on TW , or more precisely with its G-
valued image rf(a)), where &: ou(2)—) g’ is a principal embedding. This means that the instanton

number P is not invariant under a change of metric of V. In general, under any change in the gauge
field A4, the change in P is given by the change in the Chern-Simons invariant of the restriction of
A to the boundary W :

SP= La‘cs(A). (1.70)
2
Since when restricted to W we have 4 = §(a)), we can equivalently write
SP= i&cs(g(w)). (1.71)
2

In turn, CS (£(@)) is the same as & CS (@) where CS(w) is the Chern-Simons invariant of @ as an
SU (2) connection, and & is an integer, analyzed presently, that results from the embedding. So we
can slightly simplify (1.71) to

[

SP=—0o5CS(w). (1.72)
2z

If V' is a compact manifold with boundary, there is a simple cure for this. We simply modify the
definition (1.69) of P by subtracting the integral over V of a suitable curvature integral. The

curvature integral is a multiple of .[VT rR A R, with R the Riemann tensor of V. This integral is a

topological invariant if 0V = @, and in general its variation is a multiple of 6 CS (a)) We pick the

coefficient to cancel the boundary term in the variation of P. Thus, we replace the definition (1.69)
with
~ 1 1 6 1
P= e TryF, F, ——
2hY 3277 IV Wl 4327

[ & TR, Ry, (1.73)

uv:taf 0

where we view the Riemann tensor as a two-form with values in endomorphisms of the tangent
bundle 7V of V and take the trace accordingly. P isan integer-valued topological invariant.

13



We note that 327° =315,8273408 =315,83 that is possible to connect at the following value:

315,7587390 =315,76 (see 1/1,375, i.e. o= partition numbers) and also to the wvalue
315,6949704 = 315,69 (see * 2,71828 = “¢”), i.e. the Table concerning the “universal music

system based on Phi”.

We use eq. (1.56), in which CS (A) is defined for any connection A4 using a trace in the adjoint
representation (and we set £ =2). It is convenient to evaluate the right hand side of (1.56) as the
sum of an integral over , with the connection @, an integral over W, with the connection @, and

a correction term on the common boundary Z of W, and W, that involves the gauge transformation

between @ and @:

1 2 1 R R 1 R
CSloy\)=—1 Tr|orndo+—ororo|+—| Tr ordo———-\ Tr dsrw. (1.74
( (J)) 1672' w, ad( 3 j 1672"[W0 ad 167Z'J-E ad ( )

We note that the following equation can be related with the Ramanujan’ modular equation

concerning the superstrings, multiplying both the sides for % Indeed , we obtain:

iCS(a)(.)):L Trad(a)/\da)+%a)/\a)/\a)j+ 1 J- Tradc?)/\dc?)—L'[ Tr ds A& =
31 N 2487 I 3 2487 W, 2487 %=
© COS /txW' o
4| antilog ™ coshmx : '142
LA r'w
e N ¢w'(itw')

— . (1.74b)
3 [\/{10“1\5] \/[10+7\/5ﬂ
og Il || 4

Furthermore, we note that %=0.064516129E0.064550.0638, value that is inserted in the

columns (7 ) and (* 1,375) concerning the universal music system based on Phi.

[1
>

The terms in (1.74) that depend on the framing of K are the integrals over W, and =
straightforward evaluation gives

CSla))=-g( +1)+... (1.75)

where the ellipses come from the integral over W, and do not depend on the framing of K. Using

the following equation
q_acs(w)/z,z _ q—&Cng,, /87 : (1 76)

(with v=1 for G = SO(3)), the dependence of the partition function on CS (a)( j)) is a factor of

_CS(”’(”)/Z”. So finally, under a unit change in framing, 7 — 7+ 27z, the partition function is

multiplied by ¢’V just as in Chern-Simons theory.
According to the following equations:

14



L1 1
F'— BxB-_DB=0; (177) W+ZDB =0, u=0,.3; (1.78)

the equations for a supersymmetric field configuration in this theory (i.e. the gauge theory
description) read

L1 1 , .
F'—BxB-_DB=0; F,+D'B,=0. (179

On a manifold Z , with local coordinates u', a metric tensor 7, » and a Morse function T, the flow
equations of Morse theory read
du’ oy or
dt ou’

— i

(1.80)

We endow W, x R, with a metric g,dx'dx’ +dy”. On the space of fields on W, x R, , we define the
metric
=], . & xdy [ gTr(g" 54,54, + 54,54, + g 0B, 0B,,). (1.81)

And then we define the Morse function
i 1
r= _jWM dedyTr(fng B, + 2511«(,45 A += A7A A, —ByD,B,, j \/ij, (1.82)

with w a constant chosen so that the integral converges for y — . A straightforward computation
shows that the supersymmetric equations (1.79), in the gauge 4, =0, are indeed the flow equations

with T as a Morse function.
The first-order supersymmetric equations (1.79) imply the second order Euler-Lagrange equations
of supersymmetric Yang-Mills theory. Setting

uv

L1 1 .
Y, :(F —ZBxB—EDyBj , Z,=F,+D°B_, (1.83)
uv

so that the supersymmetric equations are Y = Z =0, we find the following identity

- .[M4xR+d4xdy\/§Tr(YwY””+Z#Z”)=— [, d'xdrg Tr( F, F" +F, F"+ ( DB, J+

1 R 14 1 v T
+4( 3 W)Z+— (BxB),,(BxB)" += g BB = R BB J . (1.84)
Here R, . and R are the Riemann tensor and Ricci scalar of M, ; these curvature couplings are

dictated by supersymmetry when M, becomes curved. In (1.84), the ellipses represent the omission
of certain terms whose local variations vanish — both surface terms and a multiple of the instanton
number evaluated on M, . In fact, with our boundary conditions, both the volume integral on the
right hand side of (1.84) and the omitted terms are divergent. The right hand side of (1.84) is

15



essentially the bosonic part of the action of maximally supersymmetric Yang-Mills theory in five
dimensions.
Indeed, we can to connect this equation with the Ramanujan’s modular equation concerning the
superstrings:

- IM4xR+d4xdy\/§Tr(YwY”V+Z z")= Lm d*xdy\[g Tr( F, F™ +F, F" + ( DB, J +

+%( o HV)2+—B><B) (BxB) +§B Bw_iRM”BmBMJ+ N
wwe*mzw'dx
4| antilog™ cosh 7zx _ V142
A PN
1 e * @,(im)

— . (1.85)
3 N[lmnﬁ) \/(10+7\/§j]
og Nl |l

2. On some equations concerning the applications of non-abelian localization to analyze
the Chern-Simons path integral including Wilson loop insertions [2]

We recall that a Wilson loop operator W, (C ) in any gauge theory on a manifold M is described by

the data of an oriented, closed curve C which is smoothly embedded in M and which is decorated
by an irreducible representation R of the gauge group G. As a classical functional of the
connection A, the Wilson loop operator is then given simply by the trace in R of the holonomy of
A around C,

Wo(C)=TrPexpl-§4). @.1)

To describe the expectation value of W, (C ) in the Lagrangian formulation of Chern-Simons theory,
we introduce the absolutely-normalized Wilson loop path integral

2(k;C,R) = [ DAW, (C)exp{iﬁJ‘M Tr(A AdA+ %A AAN Aﬂ . (22)

in terms of which the Wilson loop expectation value is given by the ratio

w,(C)) :%. (2.3)

With regard % in the eq. (2.2), we have that 4L: 0,07957 = 0,07893, value inserted in the
V4 /4

column (*Pigreco) concerning the Table of the universal music system based on Phi.

16



Let us consider the simplest Wilson loop — namely, the unknot Wilson loop — in Chern-Simons
theory on S° with gauge group SU (2) For the unknot, the absolutely-normalized Wilson loop path
integral in (2.2) is given exactly by

Z(k;0, /)= kizsm(k’fzj, J=lak+l. (2.4

We have that j runs without loss over the finite set of irreducible representations which are
integrable in the SU (2) current algebra at level k& . This simple result was first obtained by Witten
using the Hamiltonian formulation of Chern-Simons theory, and as a special case, when j=1 is
trivial, the general formula for Z (k;O, j) reduces to the standard expression for the SU (2) partition
function Z (k) of Chern-Simons theory on S°. From the semi-classical perspective, we can gain

greater insight into the exact formula for Z (k;O, j ) by rewriting (2.4) as a contour integral over the
real axis,

7 87

_in\l+) )
Z(k;0, j)= 21 2k+2) I dxch; (e“ 2jsmh ( 4 2jexp(—mx2j. (2.5)

Here ch; is the character of SU (2) associated to the representation j,

ch (y)= Ssiirllll;((J;V)):e(n)y LU g e U e U (26)

and the equality between the expressions in (2.4) and (2.5) follows by evaluating (2.5) as a sum of
elementary Gaussian integrals. Thence, we obtain the following expression:

. z/r!l-%—] ’
Z(k;0, j)= 2 Sin( ] j:L 2(k+2) j dxch, (e“ 2jsmh( 2jexp(— (kg-;z)xzj. (2.6b)

k+2 k+2) 2m
The non-degenerate inner product on R ® Zg is given by
(p.g.a)lq.p.b)=~[ deTr(py)-pb-ga. (2.7)
A non-degenerate, invariant inner product on the Lie algebra of U (l) o X (?0 is given by
(p.g.a)(q.p.0))=~] x ndxTr(py)-pb—ga, (2.8)

in direct correspondence with (2.7). Furthermore, the action of U(1), xéo on A is Hamiltonian,
with moment map

<,u,(p,¢,a) =——pj K/\Tr,BA/\A J K/\Tr ¢F I dK/\Tr(¢A) . (29

17



From (2.8) and (2.9), we see immediately that

2
(,u,y):J-MK/\Tr(.BRA/\A)—J.MK/\dKTrl:(KAIZ“;;Z::AAJ :l (2.10)

Using the identity
d=E0A oy
dx A K
let us rewrite (2.10) as
(,u,y):jMK/\Tr(BRA/\A)+2-[MK/\Tr[(zR IK'/\dK‘Tl"[lR ] J.MK‘/\ KTr[(K/\FA)Z].
(2.12)

We also require the following identity

CS(4)= IMTr(A AdA +§A AAN Aj = [ wATH(Led A A)+2[ 10 A Tr{(e, A)F, ]+

~[ xndstr|(gAY] @13)

With regard % and 2 in the eq. (2.13), we have: 2:0,66666 =~ (0,66666667 , i.c. 0,8333333%,

where 0,8333333 is the value inserted in the column “System” in the Table concerning the
universal music system based on Phi.

We consider a general Wilson loop operator
Wo(C)=TrPexpl- ). (2.14)

where C is an oriented closed curve smoothly embedded in M, and R is an irreducible
representation of the simply-connected gauge group G . The basic Wilson loop path integral is:

Z(e;C,R):#(q)(zﬂgj [Daw, C)exp{zgj. Tr(AAdmiAAAAAH

2 .
£ :7, Ag =dimG (2.15)

Thence, the eq. (2.15) can be rewritten also as follows:

1

Z(g;C,R): Vol((})

ik 2
(ng [Daw, C)exp{EIMTr(A/\dA+§A/\A/\Aﬂ. (2.15b)

The Wilson loop path integral in a shift-invariant form is:

18



Z(5:C,R)= Vozl(q) Voll(S)(Zilrg jAg [ @A@@M(C)exp[é@é‘(zél - ch)} . (2.16)

Here M(C ) denotes the generalized Wilson loop operator defined not using A4 but using the shift-
invariant combination 4 — x® , so that

W,(C)=TrPexpl-§ (4-x@)|. 2.17)
The semi-classical description for the Wilson loop operator is:

Wo(C)=2*"[ DU explies, (U; 4

. e=27”, A, =dimLO,. (2.18)

We write ¢LO, to indicate the loopspace LO, equipped with the sigma model metric induced from

the invariant Kahler metric on €O, =0O,,. We have that

J @19

w,(C)= LLO& PU exp[iwa (U ; A

We can formulate the basic Wilson loop path integral in (2.15) using (2.19), as a path integral over
the product Axe&LO,,,

Ag .
Z(;C,R)= #[ 1 j ijaLO,l PADU exp[zl—gGS(A)+ ics, (U;A

Vol@)\ 2 C)} . (2.20)

The topological sigma model action for U in terms of a bulk integral over M is:

e, (U: 4

C):ifCTr(a-g’ldAg): IM O /\Tr(a-g’ldAg). (2.21)

Thence, we note that the eq. (2.20) can be rewritten also as follows:

o1 1) i , 4
Z(g,C,R)—W(g)(%j IAXELOQfDA.‘Z)UeXp{ECS(A)+ZIM§C/\Tr(a-g dAg)] (2.21b)

As in (2.16), we first consider the generalization of the following equation

1 1 )¢ ;
R VOZ(Q)(%MJ IAxdoa eXp{zg () +ica, (U;

c)] (2.22)

obtained by replacing 4 with the shift-invariant combination 4 —x® ,

N I R i
Z(g’C’R)_Voz(q)Voz(s)(z;zgj | .‘l)A.‘l)U.‘l)CDexp[zg S(A,CD,U)}, (2.23)

where
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S(4,D,U)=CS(A—x®)+ 2acs, (U; A— kD).  (2.24)

We assume that the shift symmetry § acts on 4 and @ just as before, and § acts trivially on U .
Upon setting @ =0 with the shift symmetry, we reproduce (2.22) as before. On the other hand, to
underscore the significance of (2.23), let us expand the shift-invariant sigma model action
es,(U; A—x®) in terms of @ . From (2.21), we immediately find

e, (U A= xD)= e, (U1 4)- [ kA6 Tr[[gag " Jo]. (225

The essential observation to make about (2.25) is simply that @ appears linearly. Thus @ still
enters the total shift-invariant action S(4,®,U) quadratically. To be explicit, we expand S(4,®,U)
in terms of @ to obtain

S(4.0,U)=€S(4)+ 2ex, (U 4)- [ 2 ATH{@8,) -k ndxTr(@?)].  (2.26)

Here as a convenient shorthand, we introduce a “generalized” curvature &, which includes the

delta-function contribution from (2.25), so that

—F,+&(gag 5. (227

By virtue of the shift symmetry, the remaining integral over the affine space A then reduces to an

integral over the quotient A = A/S, and we obtain the shift-invariant reformulation of the general
Wilson loop path integral in Chern-Simons theory. Thus,

Z(g;C,R):L(_—’.jAQ/Zj

Vol(Q)\ 27¢ DADU eXP{z S(4, U)} (2.28)

where

S(4,U) = eS(4)+ 2z, (U;

-, L rlkrsy] @29)

KAdx

We consider a product of Wilson loop operators associated to oriented curves C, which are linked
in M and decorated by irreducible representations R, with highest weights ¢, for /=1,..L. On
each curve we introduce a corresponding sigma model field U,, and we apply the semi-classical
description of W, (C) in (2.19) to write the obvious generalization of (2.20),

Z(E(CR ) CLR ) = (1j

Vol ((}) 2re

PADU,..DU, exp{ +zz (U4,

X .[
AxeLO 4 %..xLO 4

)}. (2.30)

Through some manipulations, we find that the shift invariant version of the Wilson link path
integral in (2.30) is given by
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2e(C R ) (CLR )= (—_j

x|
A><.5'LOD,l ><A.A><£LO[XL

where

)-[ ——1lcng)]. @32

K AdK

L
S(4,U,,..,U.) = €S(4)+26> es, (U,; 4
=1

with

G =F, + gi[(gag_l)&CL . (233)

Thence, we can rewrite the eq. (2.32) also as follows:

-1~ Al - TVKKA(FA +e;[(gagl)6clfnz} (2:33b)

L
S(A4,U,,...,U, )= €S(4)+ 26 ea, (U5 4
=1

The moment map u for the action of H on LO, is given up to a constant by

(u.(p.ga))=—§ &7 a-(pe g +g'de)] (234

The shift-invariant path integral describing Z (5;C ,R) in (2.28) becomes a symplectic integral over
A, =AxélO,,

Rt (=) £
Z(&;C,R) = - (q)(z;zgj jxa exp[Qa o S(A,U)] (2.35)

The moment map which describes the Hamiltonian action of H on the product A, = Ax&LO,, is
the sum of the moment map for A in (2.9) with & times the moment map for LO, in (2.34), so

that the total moment map on A is given by

<,u,(p,¢,a)> =a-— pIMK A Tr[%BRA ANA+ ga(gl,BRg)%} - IMK A Tr(¢f§)+ IMdK A Tr(¢A), (2.36)

where
g, =F,+elgag V.. (237

Again, ¥, is the generalized curvature (2.27) appearing already in the shift-invariant action
S (A,U ) From the description of the invariant form on the Lie algebra of H in (2.8), we see that
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(y,,u):IMK/\Tr[BRA/\A+2ga(g"1 Rg)éc]—'[MK/\dKTrKKA%;ZZAAjz:l. (2.38)

To simplify (2.38), let us expand the last term therein as

2
jmdﬂ{(’“@‘d’f“”:j L 1l a3 2k 8 Ydi n A) 4 (dic n V). (239)
M KAdK Mg ANdx

The term in (2.39) which is quadratic in %, appears explicitly in S (A,U ) , and as for the term linear
in &, we need only extract the new contribution from the Seifert loop operator,

- 25.[M KA 5CTr{(gag_l{ZZ2 ﬁﬂ = —25§C KTr[a : (g_lzRAg)] . (2.40)

Here we have applied the identity in (2.11). After a little bit of algebra, we thus rewrite (,u, ,u) using
(2.40) as

(p)= ] & nTr(Ed n A)+2] & AT A)F,)- [ e ndnTr|a) |+
1

- Tk A3 Y] @a1)

+26f kTrla- (g7 g+ g dg)]- |

At this stage, we apply our identity in (2.13) to recognize the first line in (2.41) as the Chern-
Simons action €S(4). We also have the much more transparent identity

ma(U;A C): fCTr(a : g*IdAg)z §CK‘TI’[0( : (g*IBRg + gilzRAg)]. (2.42)

The identity in (2.42) follows immediately if we recall that the vector field R is tangent to C and
satisfies <K‘,R> =1. So from (2.13), (2.41), and (2.42), we finally obtain the following result

(11, 12) = €S(A)+ 2205, (U 4

)|, p AldK Tk A 3V ]=S(4U). 243)

Consequently the Seifert loop path integral in (2.35) assumes the canonical symplectic form
required for non-abelian localization,

. ~ 1 —_l AQ/Z L
Z(g,C,R)——VOI(C})(zwj Iza exp{Qa +o (1, ,u)] (2.44)

With  regard 2L, we have that: L:O,159154943;0,360674%:0,160299; or

/4 2
0,159154943 = 0,159649217 , and this values are in the columns (*Pigreco) and (*1/Pigreco) of the

Table of universal music system based on Phi.

22



We let C, for /=1,..,L be a set of disjoint Seifert fibers of M, each fiber labelled by an

irreducible representation R, with highest weight «,. We then consider the symplectic space
A, =Axel0, x..xelO, , (245)

with symplectic form

L
Q, =0+ Y, , (246)
/=1

where o =(a,,...,, ) serves as a multi-index. The group H=U(1), x(?o now acts on A_ in a
Hamiltonian fashion with moment map

<,u,(p,¢,a)> =a —pIMK/\ Tr(%BRA NA +5;[a(g1£1eg)5c]4j - J.MK‘/\ Tr(@)+jMdKA Tr(¢A),

(2.47)
where

L
g, =F,+5> [(gag )] . (248
(=1
By the same calculations leading to (2.43), the shift-invariant action S(A,Ul,...,UL) in (2.32) is
precisely the square of the moment map (2.47) for the Hamiltonian action of H on A, . So when

applied to multiple Seifert loop operators, the shift-invariant path integral in (2.31) can also be
rewritten in the canonical symplectic form,

Z(;(C,R)...(C,R.)) = Vozl(g)(__lj%/z jxa exp{Qa +i(,u, ,u)} . (2.49)

Non-abelian localization provides a general means to study a symplectic integral of the canonical
form

1 1) | i
Z(é‘)—m(%j IXGXP[Q—Z(ﬂ,IU)}, AH =dimH . (250)

Here X is a symplectic manifold with symplectic form Q, and H is a Lie group which acts on X
in a Hamiltonian fashion with moment map g . Finally, (. , .) is an invariant, positive-definite

quadratic form on the Lie algebra # of H and dually on #° which we use to define the “action”
S= %(y, ,u) and the volume Vol (H ) of H that appear in (2.50). To apply non-abelian localization

to an integral of the form (2.50), we first observe that Z (5) can be rewritten as

Z(e)=— jﬂxx[g}exp{ﬂ—i<u,¢>—§(¢,¢)}. (2.51)
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Here ¢ is an element of the Lie algebra & of H, and [d¢] is the Euclidean measure on A that is
determined by the same invariant form (. , .) which we use to define the volume Vol(H) of H . The
measure [d¢/ 27z] includes a factor of 1/27z for each real component of ¢. The Gaussian integral
over ¢ in (2.51) then leads immediately to the expression for Z in (2.50).

We define the local contribution to Z from the component C < X by the following symplectic
integral over N,

Z() 0 = VOII(H) IﬂxN[%}exp[Q—i<,u,¢>—§(¢,¢)+sD‘I’} . 2.52)

So long as s is non-zero and ¥ is given by the following equation
¥ =JdS = (u,Jdu); in components W =dx"J"d,S =dx"u'J" o u,, (2.53)

the integral (2.52) over the non-compact space N is both convergent and independent of s, so that
Z (e)I u 1s well-defined. Z (5] 4w 1n(2.52) is given by the following integral over f, x M,

dlﬂi| €, (M’Eo)

Z(€)|m=Vol(HO)IWM{2” eHO(M,EI)exp[Q+@—i(yo,w)—%(w,w)}- (2.54)

With regard the non-abelian localization formula in (2.54), let us mention two particularly simple
special cases. At one extreme, we suppose that H acts freely on a neighbourhood of the vanishing

locus € = ,u‘l(O)c X of the moment map . Thus H, is trivial, and y, = E, = E, =0. The non-

abelian localization formula in this case reduces to the following integral over M = ,u‘l(O)/ H,
Z(e)u =, explQ+20]. (255)

Here ® is now the degree-four characteristic class associated to ,u‘l(O), regarded as a principal H -
bundle over M, and determined under the Chern-Weil homomorphism by —%(¢,¢). At the

opposite extreme, we allow the stabilizer H, c H to be non-trivial, but we assume that M 1is
simply a point. The non-abelian localization formula for Z | 4 1n (2.54) then reduces to an integral

over the Lie algebra #,,

2=yt il S ael Lo Joo ] ) e i)~ S| 250

Vol(H,) | 27 275 2

Here we have written the H  -equivariant Euler classes in (2.54) more explicitly as determinants of
v € f, acting on the respective vector spaces E, and E,.

Now we apply non-abelian localization to the Seifert loop path integral, which takes the canonical
form (see eq. (2.44))
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CR) et (=) i
Z(g,C,R)— Vol((})(27rgj an exp{Qa + e (u,,u)}. (2.57)

By the general properties of the canonical symplectic integral, Z (5;C ,R) localizes onto the critical

points in A, = Ax&LO,, of the shift-invariant action

Tk A 5 V], (@58

S(4,.U)=CS(4)+ 25§Tr(a ' g_ldAg)— IM K AdK
C

where
g, =F, +elgag .. (2.59)

Varying S (A,U ) in (2.58) with respect to 4, we immediately find one classical equation of motion,

g [r4
P+ elgag™ o, —( KA, de—m dA(Mj —0. (2.60)
K Adx

K Adik

Varying with respect to g, we find the other equation of motion,

-
KA S,

{a,g‘ldfqg - Kg“( jg} =0. (2.61)
KAndk

To express Z (5;C ,R) in a manner which makes the semi-classical interpretation of the Seifert loop
operator manifest, we find it useful to introduce the quantities

27 N . . d Y
5,:m; P:Haj if N>1, P=1 otherwise; 00:3—F+122s(b/,a/). (2.62)
N =i

Jj=1

Here &, is the renormalized coupling incorporating the shift £ — k£ +2 in the Chern-Simons level
in the case G = SU(2), and s(b,a) is the Dedekind sum,

s(b,a)= —af‘ cot(ll} cot(ibJ . (2.63)
a

We also introduce the analytic functions

AN S , ' (d) . 2d
F(z):(Zsmh(ED -g(%mh(z—an; G()(z):%gr[gjz —g—z. (2.64)

J r

We introduce the character ch, (z) for the irreducible representation j of SU (2) with dimension j,

ch‘(z) = sinh(jz) = Uy pe U g o U (2.65)
! sinh(z)
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The Seifert loop path integral on M can then be written exactly as

(2.66)

z=="2qt ( *

[ 7]
B [rEEl )

Here €Y for /= 0,...,d —1 denote a set of contours in the complex plane over which we evaluate
the integrals in the first line of (2.66). In particular, e is the diagonal line contour through the
origin,

eV =4 xR, (2.67)

and the other contours € for />0 are diagonal line contours parallel to e running through the
stationary phase point of the integrand, given by z = -4/ (P/ d ) Also, “Res” denotes the residue
of the given analytic function evaluated at the given point.

We see from the formula (2.66) that Z (5;C ] ) has exactly the same structure as Z (5) even when j
is non-trivial. Again, Z (5;C, j) appears as a sum of terms associated to each component in the
moduli space M, and the Seifert loop operator is universally described on each component by the
character ch; . Of the terms in (2.66), the contour integral for / =0 represents the contribution from

the trivial connection, which is given explicitly by

(2 sinh@DM ﬁ(z sinh(zia]]] . (2.68)

To gain a bit more insight into the empirical formula (2.66) for Z (g;C, j), let us again specialize to
the case of torus knots ¥ in S*. With the Seifert invariants given from the following

expressions:
h=0, a, =p, a,=q. (2.69);
n=-1, b=p-r, b,=s. (2.70),

the formula for Z(&;C, j) becomes
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exp| — ——

e, )= (1) 4 4 q\;%+pq(jzl)j€j { 1. dzch( jsmh(zpjsmh(i]

I 1 2_ . \2pg-1 j+1. . (7 MZ
O D T A W W S e

In passing from (2.66) to (2.71), we have explicitly evaluated the phase 6§, in (2.62) for the Seifert

37 i(p q

presentation of S° with fiber K, - Here we use two arithmetic properties of the Dedekind sum

s(.,.) that enters 6, . First, as follows more or less directly from the definition (2.63),

se-r.p)=s5(qp), s6P=spP.q@, ps-qr=1. (2.72)
Much more non-trivially, we also use Dedekind reciprocity, which states that
12pqls(p, @)+ s(q, P =p’ +q’~3pg+ 1, gedp,q)=1. (2.73)

Together, we apply (2.72) and (2.73) to compute 6, as

6, —3—L+12[s(p—r p)+ s(s,q]= (2.74)
pq

Q|"c
“cl&

We have also evaluated the residues appearing in the empirical formula for Z(g;C,R). These
residues appear in the sum over ¢ in (2.71), in terms of which we decompose Z (8;5{% o) ) as

Z(e;..‘]ip,q,j): Z(g;..%p’q,j]{O}JrZ(a;J{p’q,j)m , (2.75)

where

eXphm—i(p+q+pQ(jz —1)}9 }
zZ (g X, ]1 =(-1) 7P ><— I dzch,| — |sinh| —
P.q {o} \/E 2 2p

. z i 1),
smh(zjepr—é(g} }, (2.76)

3m i(p ¢q 2
exp{—(++pq(] —l)jgr}
H res pq

x{[k i Jil(-1)’(-’“’sin(%}in(@exp(%kgz)ﬁj}. 2.77)

and

X
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We have that 3T7Z=2,35619 =~ 2,35350, value inserted in the column (*1/1,375) concerning the

Table of the universal music system based on Phi.

As we have already mentioned, Z (g;ﬂﬁp,q, Jj 1{0} can be naturally interpreted as the contribution to
the Seifert loop path integral from the reducible point {pab} in the extended moduli space
./l/l(ﬂi . j). Equivalently Z (é‘;{%p’ . j1{0} is the contribution from the trivial connection {O} on S°.

P,
But in the relevant semi-classical limit, for which € — 0 with j fixed, {pab} is indeed the only
point in .M(JCP’ . j). Hence our localization result for the Seifert loop path integral implies that the
additional, oscillatory Gaussian sum in (2.77) must actually vanish,

ZlesK,,.j) =0, gedp,q)=1. (2.78)

After applying the vanishing result (2.78), we obtain a compact formula for the expectation value of
an arbitrary Wilson loop operator wrapping the torus knot J, in S * and decorated with the

irreducible SU(2) representation j,

e, . j)= Zle: %, an1{} [ m (E i+pq(j2—1)ﬂ><

(k+2) p

x | dxch, e%[E sinh e% sinh| e % k+2) . (2.79)
IR / 2 87 pq

With regard _r and M for k=1, we have that L:£=O,52359;O,5252O;
2(k +2) 87 2(1+2) 6
Si=0,11936620,118393. Bothe the values are inserted in the column (*1,375) of the Table
T

regarding the universal music system based on Phi. Furthermore, we have that the eq. (2.79) can
be related with the Ramanujan modular equation concerning the superstrings and with the Palumbo-
Nardelli model equation, thence:

2K, . j)= Zle K,y /) o) = \/1— { Zz(%%wqwz_l)ﬂx

27
x [ dxeh, (w jsmh(e“ jsmh( 42ij p[—%[;—;ﬂ:
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0 10

In writing (2.79), we have rotated the contour C”=¢* xR to the real axis and substituted
g =2/ (k + 2), so that (2.79) appears as a simple generalization of the corresponding formula (2.5)

for the unknot O =%, .

We now apply the non-abelian localization formula in (2.54) to the Seifert loop path integral.
Because {pab}; O, /G 1is a point, the path integral immediately reduces via (2.56) to an integral

over the finite-dimensional Lie algebra ;" = R@® g, ® R of the stabilizer H, ,

det| —

Here y is an element in the algebra " . Because the group H =U(1), xG, xU(1), decomposes

Z(&:C.R)o, 16 = (2”8))1% [dﬂdet(z

B . i€
Vol(Ga 27 .»;lj XGXP[—Z(%,V/)—?(V/,W)}. (2.80)

as a product, we frequently write i in terms of components
v =(p.da)eRDg, DR, (2.81)

where p and a generate U(1), and U(1), respectively, and ¢ is an element of ¢,, .

In arriving at the expression for Z(&;C ,Rxoa ,c 1n (2.80), we have multiplied the result obtained

directly from (2.56) by
VollU(1),]- VollU(1),]- 276,  (2.82)

which accounts for the prefactor involving & in (2.80). By definition, y, € ;" is the dual of the
value of the moment map u evaluated at the point o € O,. According to (2.36), u is generally

given on A_ by

<,u,(p,¢,a)>:a—pIMK/\Tr[%BRAAA+ga(g"l£Rg)5} I K/\Tr I dKATr(¢A) (2.83)

Points in O, correspond to classical configurations of (A,U ) which are annihilated by £, and
satisfy &, =0, so only the first and last terms in (2.83) contribute when x is evaluated at points in
O, . We compute directly the last term in (2.83) to be
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[ dcnTrgd)=| K ATHF,)=~[ xnS:Tr(ap)=-cTr(ap)=s(a.p). (2.84)

From (2.83) and (2.84) we thereby obtain

(70.¥)= (1. (p.0.0))| yeo, = a + (). (2.85)

We also recall from (2.8) that the norm of  is given by
d_. (o
(w.w)=—[ xndxTr(p?)-2pa= —FTr(¢ )-2pa. (2.86)

In passing to the second line of (2.86), we use the description of dx in the following expression
N b
={n+Y L |7"®, (2.86b)
j=14;
along with the identity in the following expression
N b N 1
+> L =+]]—, (2.860)
e
to compute the integral J. KA dx =d/ P, where d is defined as

d=|H (M) (2.86d)

and P is defined in (2.62). Via (2.85) and (2.86), the integral over ;" then takes the more explicit

form
Z(e:C.R}o, = sz]([cg;z)IRxgaxR[zﬂ}Bﬂzﬂ}d t(zn 3 jdet(zn 3 j_l :

X exp{— ia— i€<a, ¢> + %(%)Tr(qﬁz )+ iapa} . (2.87)

The vector bundles & and & both decompose into summands associated to the respective factors
in the product A, = Ax&LO,, so that

gr=g@g", =N, (288)

Consequently, in any regularization, we can factorize the ratio of determinants appearing in (2.87)

as
det( j det(
2150 2l

jl =e(A)-¢(£0,), (2.89)
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where we introduce the separate ratios

-1
—~ y Y Y Y
e(A) = det(g‘go jdet(g‘fl j , e(LOa) = det(g‘g(m) jdet(g

The integral in (2.87) immediately becomes

2(65C,R), 0 = V(Ozlzfé)) j[%{%}%}(ﬁ) (10, )x

xexp{— ia —ze<a ¢>+%(%)Tr(¢2)+i6pa}. (2.91)

a

. j . (2.90)

The essence of localization on O, /G now lies in evaluating e( ) and e(LO,, ). Because the central

generator a of U(l), acts trivially, e(A) depends only on the generators (p,4) of U(1), x G, and
is given by

el ) i 2]
H{Zmn[w ¢>ﬂ Ay =dimG, A, =dimT. (2.92)

j=1 2ajp

Thence, we can rewrite the eq. (2.91) also as follows:

Z(é‘;C,R)(oa/G V(OZI( Rme[ }[ }{ }

o S ol e 22

H{z sm[<'6 ¢>ﬂ (10,) exp{— ia —ie{a. )+ %(%jp(# )+ iepa} . (2.92b)

j=1 2ajp

We have, with regard the eq. (2.92), that 4L =0,079577 = 0,078929 , and % =1,5707963 =1,57560
V4

and both the values are inserted in the column (*1,375) and 0,079577 is very near to value 0,07801

that is in the column (*2,71828...) of the Table regarding the universal music system based on
Phi.

Here we recall that 7 < G is a maximal torus, and in writing this formula for e(K), we assume
without loss than ¢ lies in the associated Cartan subalgebra ¢. Each £ > 0 is then a positive root of
G, and <,> is the canonical dual paring.

The product of determinants associated to the free loopspace LO,,, is
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-1
e ¥ %
e(LOa)—det(g‘g(m)jdet(g‘ﬁa J . (2.93)

Eventually these determinants, along with the moment map on O, which enters the argument of the

exponential in (2.91), will determine the invariant function of ¢ which represents the Seifert loop

operator under localization at the trivial connection on M .
Taking the ratio between the determinants in the following expressions

{8,

. . \Aag-ag, )2
AP ANER S o
j_(ﬂl_a[)>o(2”<ﬂ+’¢>j (27Z'j (/;+l,:[)><oﬂ+’¢>’ A;=dimG A; =dimG,,
(2.94)
(p".9)

2 -<ﬂ+’¢>j 295
Jﬂa)>o<ﬂ+,¢>sm( 2 ) ¢

. j _ (27[)(AG—A% )2 exp[

we see that e(LO, ) is given by

e(Loa)_[ij(AcAoa)expL(A —A, ) <p [;]’ﬂx I1 (ﬂ+,¢)2-{25in(<ﬂ +’¢>ﬂ_l, (2.96)

2z (B, ,a)>0 2p
A; =dimG, A, =dimG,

As manifest in (2.92) and (2.96), neither e(K) nor e(LOa) depends upon the variable @ which

parametrizes the Lie algebra of U(1),. Because U(1), acts in a completely trivial fashion on A,

the result could hardly have been otherwise. Yet this observation does have an important
consequence. We recall from (2.91) that the local contribution from {p,}=0,/G to the Seifert

loop path integral is given by

sk o L[]

125

xexp{— ia—ie(a, ¢>+?(ijTr(¢z)+iepa] (2.97)

Since a enters the integrand of (2.97) only linearly in the argument of the exponential, we can
immediately integrate over a using the elementary identity

f: dyexp(—ixy)=275(x). (2.98)

Hence the integral over a yields a delta-function 27[5(1 - ap). Next, we use the delta-function to
perform the integral over p, thereby setting p =1/¢ . In the process, the prefactor of 27z& which
appears in the normalization of (2.97) is cancelled, and the integral over R @ ¢, @ R reduces to an

integral over g, alone,
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)
(%)(1 . %jrr(# )} (72 ¢>2[25in 5<ﬂ2’ 2 HM]ﬁ[{zsm(ggﬂ—ﬂH ;

x I1 <ﬁ+,¢>2[2sin(‘9</§’¢>ﬂl. (2j.=99) |

Here we have substituted the expressions for e( ) and e(LO ) in (2.92) and (2.96). Also we

emphasize that the products over f and £, in (2.99) run over distinct sets of roots whenever « is
not regular.
Because the integrand of (2.99) is invariant under the adjoint action of G, , we can apply the Weyl

integral formula to reduce the integral from ¢, to ¢. In its infinitesimal version, the Weyl integral
formula generally states that if f is a function on a Lie algebra ¢ invariant under the adjoint action
of a group G, then

J,[as1r(#)= |1|V01(T; [lag)[1(p.9)" 1(#). (2.100)
£>0

Here |M| is the order of the Weyl group of G, and the product over positive roots S of G

appearing on the right in (2.100) is a Jacobian factor generalizing the classical van der Monde
determinant.
We want to apply the Weyl integral formula (2.100) not for G but for G, . The roots of G, are

precisely those roots £, of G orthogonal to ¢ in the invariant metric on ¢*, such that

(B,.a)=0. (2.101)

Consequently, when we apply the Weyl integral formula to reduce the integral in (2.99) from ¢, to

t , the Weyl Jacobian for G, conspires to cancel against the following product of factors in (2.99),

[18.9)° T[] (B..9) =[1(B..¢)" . (2.102)

B>0 (B, .a)>0 BL>0

implying

Z(g;C,R

oa/G:eXP[—%[(%(O)—%(AG—A )H||V1I|Voll (\/—j J.[d¢]exp{—z<a+p ¢>+?

[ij T )]xg{zsm(w ¢>ﬂ ﬁ{zsin(%ﬁﬂx(ﬁgimm[@ﬂ1. (2.103)

In passing to (2.103), we have performed a change of variables ¢+ g to remove extraneous

factors of &. In the process, we introduce the renormalized coupling ¢, ,
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e =27 (2.104)
k+c

»
9

to absorb the explicit shift in the coefficient of T r(¢ ) that arises from e( ) in (2.92). Also, as
.- If G, =T is abelian, then M, is

trivial and ||V|0,| =1. We now make two further substitutions to relate the formula in (2.103) to the

hopefully clear,

empirical result in (2.68). First, we rotate the contour of integration from ¢=¢xR to txe .
Second, we make a change of variables ¢ > i¢ . Hence

. i 1(_1)(AGM—AT)/2 | ATX . oo i
oo En I b s

r

o] 2] o] o

B>0 j=l1 )

Let us now interpret our result (2.105) for Z (g;C,RXOa ,c 1n light of the character formula. This

interpretation is slightly more straightforward when « is a regular weight of G, so we specialize to

the regular case first. When « is regular, G, =T, l“] reduces to the Weyl vector p

itself. Also, the product over roots S, satisfying ( +,0:)> 0 in (2.105) is simply the product over
all positive roots >0 of G . As a result, the final factor in the integrand of (2.105) reduces to the
Weyl denominator 4,

HZsmh(<'B ¢>j . (2.106)

£>0

Thus for regular weights,

Z(é‘;C,R){ /G—exp( 'z (0)]V01T( : jATxj:xe(o)[d¢]mexp{_<a+p,¢>_2%r
[ij 7rlg )]XH{zsmh(m ¢>H2 NﬁP h(@ﬁﬂ’ a regular. (2.107)

B>0 j=1 J

The measure [d¢] in the contour integral is invariant under the Weyl group M of G . Moreover, the
integrand of (2.107) can generally be decomposed as a sum of terms, each of which transforms in a
one-dimensional representation of M. Then since [d¢] is Weyl invariant, only the Weyl invariant
piece of the integrand actually contributes to the integral over ¢.

Since Mis generated by reflections in the root lattice of G, the expression in the last line of (2.107)
is also Weyl invariant, as it arises from a product over all positive roots £ >0 of the even function

Fy(¢)= {2smh(<ﬂ ¢>H lﬁ[{zsmh(w ¢>ﬂ Fy(p)=F,(-9)=F ,(¢). (2.108)

J=1 a]
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So in the integrand of (2.107), we are left to consider the factor

e—<a+p,¢>

S (¢)= OB (2.109)

By construction, the Weyl denominator Ap(¢) is alternating under M. Therefore, only the

alternating piece of the numerator exp[— <a + p, ¢>] in S, (¢) actually contributes to the contour

integral over ¢ in (2.107). We immediately recognize that alternating piece to be

1

—(a+ 1 w (wla+p),— 1 G—Ar
A p’”]ENZM(—l) i) ¢>=MAM(—¢)=(—1)(A A)/Z-MAa+p(¢)- (2.110)

Without loss, we replace S, (¢) in the integrand of (2.107) with the Weyl-invariant function

[ (_ 1)(AG—AT)/2 Aa+ (¢)
S e 20111
L(9)— M 40 (2.111)

Via the following character formula

chyle?)= A“+P(¢), ¢ eT, (2.112)

we finally obtain the following result for the contribution of {paﬂ}; O, /G to the Seifert loop path

integral,

(e, C,R){Oa o= exp{— %”;70(0)} ﬁ (- IIZ(;G(_TA;)/Z (,- \/1; jAr y
x [ o lddkn(ef )exp{— 2%[%)%(# )} x H{z sinh(<'g—;¢>ﬂﬂjﬂ{2 sinh{<'§ ﬁﬂ , a regular.

ﬁ>0 J J

(2.113)

As claimed, all dependence on the weight o has been subsumed into the character ch,, which
represents the Seifert loop operator under localizationon O, /G .

Now we decompose the roots S of G into two sets, consisting of roots £, for which ( +,cz);at 0
and roots A, for which (ﬁL,a)z 0, just as in (2.102). The set of roots S, is empty when « is
regular, and the set of roots /S, runs over all roots when « vanishes. The Weyl denominator 4, in

(2.106) then factorizes as a product over each set,

Ap(¢)=|: I 2sinh(<ﬂ+T’¢>ﬂ-{H2sinh(<ﬂ;¢>ﬂ. (2.114)

(ﬂ+ ’a)>0 ﬂL >0
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Using (2.114), we rewrite the general contour integral in (2.105) as

ot omonl- S n0ly S (5]

Joenld ¢]W[ [12s mh(%z = ﬂexp[— (a+p.9))x

B1>0

(] o]

Once again, we wish to tease the character ch, out of the integrand in (2.115). To do so, let us
introduce the following function of ¢,

B ()= Ho{z sinh(<ﬂl—2’¢>j:|, (2.116)

B>

(2.115)

in terms of which we write the factor in the second line of (2.115) as

e*<a+p[a1,¢> <,3L,¢> (o —a, )12 Ba(_(;ﬁ)
Sa((zﬁ)_w Ll;[ozsmh[ H_(—l) i) (2.117)

Only the Weyl-invariant component of S, (¢), or equivalently the alternating component of B, (¢),
contributes to the contour integral over ¢ . We have that B, (¢) satisfies an identity which extends
the denominator formula in (2.106). According to this extended denominator formula, B, (¢) can be

rewritten as an alternating sum over elements w' of the Weyl group M, of the stabilizer G, , so that

B, ()= D (-1) e (2.118)

)
w'eM,,

Given the identity in (2.118), the alternating component of B, (¢) is easy to evaluate. Clearly,

B0y S 8,095 T T W”*:izAa+p(¢)='T:A7'AW<¢>.

weMw'eM,, |M w'eM,,
(2.119)

In complete analogy to (2.111), we apply the identity in (2.119) to symmetrize S, (¢) under M,

(1"
(A(;fAG )/2 |Ma| Aa+p(¢)
S, (p)>(- 1) )2 el .

(2.120)

The sign on the right in (2.120) again arises after a reflection from —¢ to ¢ in the argument of
A,,,. Via the character formula (2.112), the contour integral in (2.115) then becomes
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sl cof-50li oy )
xLemiwmevf)exp[—i[%jwﬂxn[zmh(@ﬂzNﬁ{zmh(@ﬂ, o)

>0 j=1 j

exactly as in the regular case (2.113). So regardless of whether « is regular or irregular, the Seifert
loop operator reduces to the character ch, under localization on {paﬂ}z O,/G and subsequent

pushdown to the trivial connection {O} on M .
We use the localization formula in (2.54) to reduce the Seifert loop path integral over the infinite-
dimensional space A, = Ax&LO, to the integral of an appropriate de Rham cohomology class

[du] on each smooth component J,(C,«) of the moduli space JM(C,a). Schematically,

Z(e;C,R)(MO(C’a) = I

Mo(c,a)[dﬂ]’ ldu]e H (M(C,)), (2.122)

where the class [d,u] generally depends upon the discrete parameters (n,k,a) which specify

respectively the degree of the S'-bundle, the Chern-Simons level, and the highest weight of the
irreducible representation R .

We now possess all the ingredients required to apply the non-abelian localization formula in (2.54)
to compute the cohomology class [dy] in (2.122). Immediately,

. _(m) dp [ da | eu, (M (C,).&5) o
Z(&;:C,R My (Ca)= |Z(G)| Loxwto(c,a)[ﬂ}[g} 0 (J%(C,a),ff)x exp[Ql +ien® la+1épa].

2.123
Here the prefactor involving & arises for the same reason as the corresponding prefactor(in (2.2&0).
Otherwise, the semiclassical contribution to Z (5;C ,R) from Jl/lo(C ,a) reduces to an integral over
the abelian Lie algebra &, = R® R of the stabilizer H,, as well as an integral over J(,(C,) itself.
Our main task here is to evaluate the ratio of equivariant Euler classes associated to the bundles
(50”‘ ,51”‘) over .MO(C,a). Using the multiplicative property of the Euler class and the identification

in the following expression
E'=E@N,, (2.124)

we immediately factor the ratio in (2.123) as

ey, (J“O(C;a)’g(;z):q*|:eHo(‘/“07§0) 1 (2.125)

ey, (M(C.).&) eHo(Mo,sﬁ)]eH(,(Mo(c,a),M)'

In obtaining (2.125), we observe that &, and & are defined in the following expression

L=eHa(P)®(eer), &-oH(LawP)o(EoLr), @125

t=>1

as equivariant bundles on M, which pull back to JV(O(C ,a), implying that the ratio of Euler classes
pulls back as well.
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Evaluating the ratio of equivariant Euler classes associated to &, and & on J{, turns out to be
fairly tricky. We have that this ratio is

€y (‘/MO"):O) i T inc dim ¢ M, @ A
0 =exp = m\0)+ 50| : 0)=-"2¢ (2126
eHO(J“O,gZI) exp > 770( )+ pcl(‘/’/‘o)-" 27sz H W > 770( ) 6 ( )

Here @, for j=1,...,dim. M; are the Chern roots of the complex tangent bundle of M, so that

dim - dim e M,

- Tlli+a,),  am)= []o,- @127)

According to the general description in the following expression

ey, (M,E)= dﬁ[< J’W>+ej}, (2.127b)

- 2

the equivariant Euler class of W, is given by the formal product

ey (M (C.a) N ) =TT T it +(B.w). (2.128)

t#0 B>0

With regard the computation of the equivariant Euler class of the bundle ./Va , we obtain

p £>0

eHO(%(C,a),M)zexp[—Mj-H < ?u>sinh(ﬁ<i ’“>j, (2.129)

where p is the usual Weyl vector. Combining the formulae in (2.126) and (2.129), we see that the
ratio of equivariant Euler classes in (2.125) becomes

e M(CaVs)  (in o dnlpw)| r (Pa)
o I(Ca) f)‘e"p[ e D e

| exp Za )+ " 0| T (2.130)
X exXp| —c¢ .
7| °xp p 27 2s1nhi7zzv /pj

The ratio in (2.130) depends only on the coordinate p, not a, in the Lie algebra A, = R ® R . Thus

we express Z(E;C,RX #,(c.o) Solely as an integral over the classical Seifert loop moduli space

M(C.a),

Z(é‘;C,RXMO(C,a) = Lexp[—i_ﬂ%(O)j X I%(C’a)exp(27u9<a + p,u>)- H : </3’ u>

|Z(G] 2 50 2s1nh(7z5<ﬂ,u>)><
dim¢ My

1 -— @131
i 2sinhi7rgwj )

X q"lZexp(Q + 7msc, (M) + ien(1 +;—E’)®J :
7
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When obtaining (2.131), we have used the symplectic decomposition
Q, =q¢'Q+2ze(a,u), A=alk. (2.132)

To make the cohomological interpretation of (2.131) more transparent, let us rescale each element
in the cohomology ring of JV(O(C,a) by a factor (272'6‘)751/2, where ¢ is the degree of the given class.
For instance, the Chern roots @; and u, each of degree two, scale by

@, |—>Lw ul—)Lu. (2.133)
2re 2re

To preserve the value of the integral over .MO(C,a), we simultaneously scale the integral itself by

an overall factor (27z£)', where d =dim, M, (C,a). After this change of variables to clear away

extraneous factors of ¢, Z (E;C,R)( #,(C.c) becomes

Z(e;C,R)(%(C,a)=|Z(1G)e p( i;n(o)j f ; >H<ﬁ w)x

xq'| exp LQ+ch(MO)+i (2.134)
2ze 2
Also here we have that %: 1,570796 = 1,5756097 ; 2i =0,1591549 = 0,159649217 ;
T

= =0,025330295 = 0,02562136, values that are inserted in the columns (*1,375), (*1/Pigreco)
T

and (*1,375) of the Table regarding the universal music system based on Phi.

The appearance of the A -genus of the orbit O_; in (2.134) is no accident. We have a holomorphic
fibration of complex manifolds

220, > M(C,ct), A =%

q

M,

(2.135)

The fibration of JV(O(C,a) over M, in (2.135) implies the relation

A

AM(C.a)= 400 ,)- A(M,). (2.136)

We note that the first Chern class of JM,(C,a) is given by the sum

cl(Jl/(O(C,O()): q*cl(‘/“())-i_cl(o—ﬂ,): q*cl(‘/“())-l_ Z<ﬂau> = q*cl(‘/“())-i_ 2<p,u>. (2.137)

£>0
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Using (2.132), (2.136), and (2.137), we then rewrite Z(g;C,RXMO(C’a) in terms of classes defined
intrinsically on M, (C, ),

Z(e; C,R)(MO(C,Q) = mexp(— =1, (0)) x J'MO (C’a),zl(.MO(C,a)) -exp

HLQﬁlcl(mo(c,a))ﬂ n q*®ﬂ- (2.138)

27 2 4r’e,

The integral over Jl/lo(C,a) in (2.138) should be compared to the following expression for the
partition function Z (5)( a

n

Z(e) 4, =@exp{-%%(0)jj% A(A@)-exp{ﬁgz%cl(mo)ﬂwzg @}. (2.139)

r

To recast the result (2.134) entirely in terms of & we apply a theorem of Drezet and Narasimhan
which determines ¢, (), ) in the case G =SU(r +1) to be

¢, (M) =2(r +1),, QO=4L7ZZQ, thence cl(Jl/(O):2(r+l)47lz2§2. (2.140)

Since ¢, =r+1 as well, the local contribution from M,(C,a) to Z(;C,R) becomes

| . (a+p,u)
Z(E;CaR)(.MO(C,a) = mexp[_ %770(0)} X IMD(C,OZ)A—(LL)g<ﬂ’u>
-q*{exp(L(Qﬂl@)j-/](Mo)}, (2.141)
2re, 2r

and all dependence on k has been absorbed into the renormalized coupling ¢, .

Also here we have that % =1,570796 = 1,5756097 ; 2L =0,1591549 = 0,159649217, values that are

/4
inserted in the columns (*1,375) and (*1/Pigreco) of the Table regarding the universal music
system based on Phi.

According to (2.122), the integrand in (2.141) is the class [dy] eH *(Jl/lo (C ,a)) which describes the
local contribution from M, (C,a) to the Seifert loop path integral Z(s;C,R),

(a+p,u)

[du]:mexp[—”g%(oﬂx%-wa’,@ -q*{exp{ﬁmﬂ%@))ﬁ(m} (2.142)
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Like the pair of expressions in (2.138) and (2.139), the integral over JV(O(C,a) in (2.141) should be

compared to the corresponding localization result for the partition function Z (g)( ;o

N

Z(e) .y, = mexp[— %”770 (o)j [, ACH) exp{%& Q+ i%@)} . (2.143)

The Seifert loop class W, (C] u, 18 then the element of H *(M,) such that the pushdown g¢,[du] is

given by the product of W, (CX &, With the integrand of the partition function Z (g)( &, 10 (2.143),
such that

Z(g;C,R){ " = @exp(— %”770(0)) x jMO W, (c)( " exp{ﬁ(ﬂ + i%@)} CAM).  (2.144)

r

Comparing the Seifert integrand [dy]e H *(JI/IO(C ,a)) in (2.142) to the preceding formula (2.144)
for Z(e;C,RXMD , we deduce

(a+p,u)
Wi(Clu, =.5, (), S, (w)=" w g @149
4 £>0
Thence, we have that
(a+p.u)
e
w.C), =q, . ,u). (2.145b
R( XMO q Ap(u) g<ﬂ u> ( )

Recycling the result in the following expression

Wo(C) wir) = 4.5, (w) = ﬁchR ()-[, n=cn(v). @1450)

we find the general description for the Seifert loop class,

Wo(C)ay =chy(¥). (2.146)

Equivalently,
1 in 1 n ~
Zle;C,R =——-—=exp| ——7,(0 ch -ex Q+i—0O |- 4 . (2.147
el {50 bbb on e aeig o] ). eien
Also here we have that % =1,570796 = 1,5756097 ; 2L =0,1591549 = 0,159649217, values that are
V4

inserted in the columns (*1,375) and (*1/Pigreco) of the Table regarding the universal music
system based on Phi.
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The Todd class and the 4 -genus of a complex manifold X generally satisfy the relation

Td(X)zexchl(X)]fl(X), (2.148)

This identity, applied to zgl(Jl/lo) in (2.134), implies that the contribution from M, to Z(&;C,R)
can be alternatively presented as
1 ir . n
Z(£:C.R) , = mexp[—?%(@j f ch () exp{k@o + zmﬁﬂ Td(M,). (2.149)

r

Also here we have that %z 1,570796 =1,5756097 ; % =0,025330295=0,02562136, values that
Vs

are inserted in the column (*1,375) of the Table regarding the universal music system based on
Phi.

3. On some equations concerning the cusp anomaly and integrability from String theory.

[3] [4]

The bosonic contribution to the coefficient of the Catalan constant K comes from the integral term
in the following expression, concerning the bosonic sunset (“diminuzione”, “decline’)

~2
S —Ll{z ” }(2 w02 = 2\1470 + Sﬂﬁle (N )ZD +

&
A2
+deu 7 (1+v )arctanhu G
27r2l\/1+192+u2 +\/1+(1+\92}¢2JZ
whose small v expansion reads
A2
J:d”' 8(1+v )arctanhu _ :[1+l§2_l,;4+l,;6_ 61 198+...jK+
[\/1+\?2 +u’ +\/1+(1+192)142JZ 2 32 64 1024

ey Lo AU st 30
64" 128" 6144

We note that this expression can be related with the Ramanujan modular equation concerning the
superstrings and with the equation regarding the Palumbo-Nardelli model. Indeed, we have that:
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~2
J-Old”' 8(1+v )arctanhu 7 :(1+l‘}2_l1;4+l1;6_ 61 198+...jK+
l\/1+192+u2 +\/1+(1+‘92)42JZ 2 32 64 1024
BLEPYINER SPUR § S
o4 128 6144
© COS 7TXW'

CORTAW. o g ey
4| antilog : Coj}““ : ;4,2
A w
1 e N ¢w'(itw')
:_
3 N(lmnﬁj \/(10”\/5}]
log +
4 4
1
Id26x\/_|:_%_ggﬂpngr(G#vao)f(¢)_5g/wa#¢a"¢:|:
_ )1/2 2(D|:R+4a CD@”CD——‘H‘ _KIOT QF| ):| . (32b)
0 10

Note that 1024 =16x 64 and 6144 =96 x 64 .

Similarly, the fermions contribute only through the integral W in the following expression
concerning the fermionic sunset

W sain, =~ IB (1492 )} + V”ZIB (1+ 02)}1[%(2 + 02)} - (02 - %j]B(l + 02)} +U, (3.3)

and we observe that their net effect is to simply change the sign of the coefficient of the bosonic
contribution to K term in (3.2). Using the following expression

h-20 1 (1 E)m(dflj where /=30 (34
1+ 02 1+

to obtain f,., we need to divide (3.2) by v1+ ¢* , while replacing v — ¢, and change the overall

sign to account for the fermion contribution. Therefore, we find the following integral
representation which can be expanded to any order in /

1 8v1+ ¢* arctan hu | :(_l+i€4_i£6 81 81 s jK 3.5)
[\/1+€2+u +\/1+(1+€ }: JZ : 32 32 1024

OEE

Also this expression can be related with the Ramanujan modular equation concerning the
superstrings and with the equation regarding the Palumbo-Nardelli model. Indeed, we have that:
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fux()=- 1 81+ £ arctan hu R (_1 if“_igﬁr 81 €8+"'sz>
[\/1+€2+u +\/1+(1+£ )u JZ 32 32 1024
wwe*m v dx
4 antilog~—cosh : “142
— w'
1 e ! ¢w'(itw')
:>_
3 N(loﬂlﬁj \/[10+7\/§j]
log +
4 4
26 vo 1 v _
jd x\/_[_167zG__§g g T”(G;,VGM)f((Iﬁ)—Eg” aﬂ¢ay¢}_

0

2
)l/ze_m{R +40, 00" D —%\53\2 ~So g, QF2|2)} .(3.5b)
8o

0

The fact that the fermionic contribution simply changes the sign of the bosonic contribution to the
coefficient of the Catalan constant was first observed for the ordinary cusp anomaly (J = O).

A direct expansion of the integrand in equation (3.2) leads to divergent integrals at sufficiently high
orders in ¥™'. A consistent expansion can be constructed by first using the identity

arctan hu _ J-l dy 1

1_u2y2

(3.6)
u

to evaluate in closed form the u integral in equation (3.2). The integrand of the resulting y integral

can be expanded at large v, the integral of each term being finite. The absence of divergences
indicates the consistency of this procedure. In this way we obtain

J.ldu' 8(1+192)arctanhu 7 :2+(6_”2)AL+EL+ 4_”_2 i_%iJr (3.7)
l«/1+‘92+u2 +\/1+(1+192>42JZ Vo3 Y

Also this expression can be related with the Ramanujan modular equation concerning the
superstrings and with the equation regarding the Palumbo-Nardelli model. Indeed, we have that:

2
J-l 8(1+v )arctanhu 7 :2+(6_7[2)%+E%+(4_ﬂ_j%_ﬁ%+
l\/1+v +u +\/1+(1+‘92)42J2 e 3v 2)vi A5
© COS /IxW' o iy
4| antilog™ cosh zx - 142
L . tw'
1 e N ¢w'(ltw')
:_
3 N(lmnﬁj \/(10”\/5}]
log +
4 4
26 7) vo 1 v _
.[d X\/_|:_@_§g!pg Tr(Gqupo)f(¢)_Eglu a#wﬁ}—
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0

szm [d"x(-G)"e ‘”’[R+46 CD@”CD——‘H‘ —K“)T (7f )} . (3.7b)

0 10

The asymptotic Bethe Ansatz expansion for f, can be written as (g = Ja/ 41)

2 2A &2 2;-2
fomd _ 1627Z 2g aazd‘ (ao) 2g2 ( )+2g255—( S mut 34+ 12) . (3.9)
Jer w1l At 41 07 +1 2560° 640" 320

Here a, =+/1+¢* . All the pieces in this formula can be analytically computed at large /. The first
terms in this expansion are

9 12

__+ —_
45 0% 50 1575 /8

ana_ 71 (32 le 2321 161 204161_(3614 7:2]1 (3.9)

—+ +— |+
/2 30 1575 96 )¢°

The only relevant contributions to the 7” coefficient arise from the last term in parenthesis in (3.8),

i.e.—( 56+ 36+ lzj and a term in &F
2564°  64¢0° 32/

1 5 1 5
F=..+— + + +... (3.10
2 (51266 320¢ 192€2j ( )

In the lecture of Riccardo Ricci “Cusp anomaly and integrability from string theory” (16.04.2011),
from the partition function we can extract the generalized scaling:

f,=-K +€2(810g2€ —6log/ —%10g2+%)+€4(—610g2€ —%logf +3log2log/ —%10g22+

11 3233 ]
+—log2+—K-="|+0(¢f), (3.11
g 573 576) (). e

that is in stupendous agreement with the Bethe-Ansatz prediction.

While, in the lecture of Benjamin Basso “Strong Coupling Expansion of Cusp Anomalous
Dimension in Planar N/ =4" (16.05.2008), with regard the weak coupling expansion of cusp from
Beisert-Eden-Staudacher equation (BES equation), we have that the BES equation is

olt)= 1(K(2gt,0)—4g2jomdt'K(zgt,zgt')a(z')]. (3.12)

e —
Thence, the solution at weak coupling is:

'

e —

olr)=—1 1[K(zgt,o)—4g2j:df1<(2gz,2gt')ef (2gt‘,0)+0(g4)}, (3.13)

45



while the weak coupling expansion of the cusp anomaly is:

4 44 73
1"” :8 2(70:4 2__72_2 4+—7Z'4 6—8_7Z'6+42 8+
cusp (g) g ( ) g 3 g 45 g 630 4,3 g

887 8 4 2 #2 10 12
+32 +— +40 +0 . (3.14
(1417577 3”;3 §3§5jg (g ) ( )

With regard the strong coupling expansion from AdS/CFT correspondence, we have the following
expression

3ln2

T

The integral equation of the strong coupling expansion

s(r)=fsn(g)J"2ift), (3.16)

becomes a finite-dimensional matrix equation for the coefficients s, (g) With regard the numerical

result of the matrix equation and extract the cusp anomaly I’ (g) =4g’s, (g) , we have that

cusp

f(g)=2r,,,(g)=(4.000000+0.000001)g — (0.661907 + 0.000002 ) — 0.0252£0.0001 | (3.17)

cusp
g

The first two terms are in remarkable agreement with the string theory result, and we have that

0661907=2  p;32=2  (3.8)

T

We can to observe that 0.0232 is very near to the following values: 0.02349 (system/2.71828) and
0.023292 (system x1/7 ) where “system” is the column where are defined the values of the musical
system based on Phi (1.618033988); i.e. sum of exponents of Phi.

Thence, we can rewrite the results of (3.18) also as follows:

0661907 =112 00232 =(systemx1/7)  (3.18b)

T

With regard the strong coupling expansion of cusp from BES equation, analytically the strong
coupling solution was first analyzed at leading order and then in a more systematic approach, we
have the following result

L. (g+c)=2gll-c.g? —c,g™ — (e, +2¢2 g™ —(es + 23c,0)g ™ +

— (cﬁ + gczq + 54c32 + 25c§’ jg6+ O(g’7 )], (3.19)
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where the expansion coefficients are given by

3In2 1 27
T CTier s o O)
21 43065 1605
4_210 4ﬂ(4)a 5_221 54,(5)’ 6_215 618(6)5 (3.20)

with the special functions

¢(x)= Z n~* = Riemann zeta function; f(x)= Z(— 1Y'(2n+1) = Dirichlet zeta function

nx1 n=0

K= ﬂ(Z) = Catalan’s constant. (3.21)

In the Bethe ansatz approach, the cusp anomalous dimension is determined by the behaviour around
the origin of the auxiliary function 7(t) related to density of Bethe roots

L., (¢)=-8ig"limy(¢c)/t. (3.22)
The function 7(t) depends on ‘t Hooft coupling and has the form

y(t)=7.(0)+ir (), (3.23)

where 7, (t) are real functions of ¢ with a definite parity y, (i t) =ty, (t) For arbitrary coupling the
functions y, (t) satisfy the (infinite-dimensional) system of integral equations

o dt ¢ A 1 o dt A ¢
.[0 _Jzn—l(t)[l _7/6—(1/222,7) + et/}(/Zg() )_ J = _571,1’ J-o J2n(t)[1 _)/e—(t/?Zg) - l/)(/Zg() )_J =0, (3.24)

t 2 t e

with n>1 and Jn(t) being the Bessel functions. These relations are equivalent to BES equation
provided that y, (t) verify certain analyticity conditions. The equations (3.24) can be significantly
simplified with a help of the transformation y(t) — F(t) :

r(t):(Hicoth@y@)zr+(t)+ir_(t). (3.25)

We find from (3.22) and (3.25) the following representation for the cusp anomalous dimension

It follows from (3.23) and (3.24) that Fi(t) are real functions with a definite parity,
I, (— t) =4I, (t) , satisfying the system of integral equations

[Fatcos(wtT ()-T.(e)]=2; [ desinfwe T (1)+T,(0)]=0, (3:27)
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with u being arbitrary real parameter such that —1<u <1. Since I, (t) take real values, we can
rewrite these relations in a compact form

[[die T ()-e T ()]=2. (.28)

We have the following non perturbative scale m, in the AdS/CFT. Its dependence on the

coupling g follows univocally from FRS equation and it has the following form

- i(t-7/4)
Mos) = ge-ﬂg _38 m Re{ jo dte—(n (t)+ il“_(t))} , (3.29)

T T t+img

where T, (¢) are solutions to (3.28).

Also this expression can be related with the Ramanujan modular equation concerning the
superstrings and with the equation concerning the Palumbo-Nardelli model. Indeed, we obtain:

" i(t-7/4)
oy =22 e 88 n Re{ [ e (f))} -

/4 V3 t+ing

» COS /xW'

COSTIIN oo™ e vy
4| antilog ™ coshm : 142
LI trw'
e 4 ¢w'(itw')
3 N(lmnﬁj \/{10+7\/5j]
log +
4 4
1
d26 _ P 7/2] VUT G G - ,uva —
j x|z { 716,61 ()- g #¢av¢}

0

2
”e“’[R +40, 00" D —%\E@f ~Sog, QFZF)} . (3.29b)
8o

0

Furthermore, we have that § =2,546479 = 2,5493902, value that is in the column (*1,375) of the
T

Table regarding the universal music system based on Phi.

To fix the zero modes, we have to impose additional conditions on solutions to (3.28) and (3.24).
These conditions follow unambiguously from BES equation and they can be formulated as a
requirement that y, (t) should be entire functions of # which admit a representation in the form of

Neumann series over Bessel functions

= 22(2” - 1)J2n—1(t)72n—1 ) Vs (t) = 22(2”)J2n(t)72n , (3.30)

nx1 nx1
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with the expansion coefficients y,, , and y,, depending on the coupling constant. This implies in

particular that the series on the right-hand side of (3.30) are convergent on the real axis. Using
orthogonality conditions for the Bessel functions, we obtain from (3.30)

Van1 wdthnfl(t)K(t)a 72n:jwﬂjzn(t)7+(t)- (3.31)

“hr 0 ¢

Here we assumed that the sum over 7 in the right-hand side of (3.30) can be interchanged with the
integral over 7. We will show below that the relations (3.30) and (3.31) determine a unique solution
to the system (3.24). The coefficient y, plays a special role in our analysis since it determines the
cusp anomalous dimension (3.22),

I, (e)=8¢r(g). (3.32)

Here we applied (3.23) and (3.30) and took into account small-t behaviour of the Bessel functions,
J, (t) ~t" as t — 0. Let us now translate (3.30) and (3.31) into properties of the functions I, (t), or

equivalently F(t). It is convenient to rewrite the relation (3.25) as

. t—47zg(k—

sin(tJrﬁ]
D(ir) = i) ——E—2 = y(iN2 [

)
sin r sin(ﬂj i [ Amgh
4g 4

We note that % =0,785398 = 0,786937, value that is inserted in the column (*1/1,375) of the Table

concerning the universal music system based on Phi.

Since y(it) is an entire function in the complex t-plane, we conclude from (3.33) that F(it) has an
infinite number of zeros, I'(iz_,, )= 0, and poles, T'(iz)~1/ (t = potes ), on real t-axis located at

1

tzer()s = 47lg(f - Zj > tpoles = 4ﬂg€' s (334)

where /,0/'e Z and /'# 0 so that F(it) is regular at the origin (see. Eq.(3.22)).
To understand the relationship between analytical properties of F(it) and properties of the cusp
anomalous dimension, it is instructive to slightly simplify the problem and consider a “toy”” model
(“modello giocattolo) in which the function F(it) is replaced with F(’”y)(it). We require that
F("’y)(it) satisfies the same integral equation (3.27) and define, following (3.26), the cusp anomalous
dimension in the toy model as

r)(g)=-2gr)0). (3.35)

cusp

The only difference compared to F(it) is that [0 )(it) has different analytical properties dictated by
the relation

r(wy)(l't) - ;/(wy)(it)HT@ , (3.36)
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while 7(”’}’)(1'1) has the same analytical properties as the function ;/(it). This relation can be
considered as a simplified version of (3.33). Indeed, it can be obtained from (3.33) if we retained in
the product only one term with & = 0. As compared with (3.34), the function e )(it) does not have
poles and it vanishes for ¢t = —7g .

Let us multiply both sides of the two relations in (3.24) by 2(2n—1)y,,, and 2(2n)y,,,

respectively, and perform summation over n>1. Then, we convert the sums into the functions
a (t) using (3.30) and add the second relation to the first one to obtain

_J‘""ﬂ(?ﬁ(t))z +(7’-(t))2 . (3.37)

=), p | o8

Since 7+(t) are real functions of ¢ and the denominator is positively definite for 0 <7 <o, this

relation leads to the following inequality

o dt

7z 7(y,(t))2 >2y7>0. (3.38)

Here we replaced the function y_ (t) by its Bessel series (3.30) and made use of the orthogonality
condition for the Bessel functions with odd indices. We deduce from (3.38) that

0<y, s% (3.39)

and, then, apply (3.32) to translate this inequality into the following relation for the cusp anomalous
dimension

0<T, (g)<4g”. (3.40)

— ~cusp

Notice that the lower bound on the cusp anomalous dimension, I’ (g)z 0, holds in any gauge

cusp

Cusp(g)é 4g” that is a distinguished feature of W =4 theory. Let us
verify the validity of (3.40). At weak coupling '

cusp

theory. It is upper bound I

(g) admits perturbative expansion in powers of
2

g
1 11 73
r =40 1-— e’ +—7° 4—2(—7Z6+4 zj ‘+..|, (341

while at strong coupling it has the form

32 ., K, (3KW2 278, ) »
r 9ol _ _ N +0 . 342
() g{ yo Ay ( 300 )8 (). 42

with K being the Catalan constant. It is easy to see that the relations (3.41) and (3.42) are in an
agreement with (3.40).

We note, with regard the eqgs. (3.41-3.42) that % =0,24444 = 0,243177 ;
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%:0,11587301550,116101; %=0,013183593E0,01355179, values that are inserted in

the columns (*1/1,375 — *1/Pigreco) of the Table concerning the universal music system based on
Phi.

Let us now construct the exact solution to the integral equations (3.28) and (3.24). To this end, it is
convenient to Fourier transform the functions (3.23) and (3.25)

Fi(k) = j*wj_;eikfr(f), (k)= j“wj_:[eikfy(t). (3.43)

According to (3.23) and (3.30), the function y(t) is given by the Neumann series over Bessel
functions. Then, we perform the Fourier transform on both sides of (3.30) and use the well-known
fact that the Fourier transform of the Bessel function J,(¢) vanishes for &> >1 to deduce that the

same is true for y(¢) leading to
7(k)=0, for k> >1. (3.44)

This implies that the Fourier integral for 7(t) only involves modes with —1<k <1 and, therefore,
the function 7(t) behaves at large (complex) ¢ as

y()=e', for | >w. (3.45)

Let us now examine the function f(k) We find from (3.43) and (3.33) that f(k) admits the
following representation

T

. ( r J

sinh| — +i—

T(k)= _ro ﬂe”" dg 4
2z sinh S sin(”j

4g 4

Here the integrand has poles along the imaginary axis at ¢ = 4zign (with n ==x1,42,...). Taking into
account the relation (3.45), we find that the contribution to (3.46) at infinity can be neglected for

k*>1 only. In this case, closing the integration contour into the upper (or lower) half-plane for
k>1 (or k<—-1) we find

y(t). (3.46)

k2>l

T(k) = Ok - I)Z c.(n, g)e"‘”"g(k’l) +0(—k - l)z c (n, g)e’mg(’k’l) . (3.47)

n=1 n>1

Here the notation was introduced for k-independent expansion coefficients

c, (n,g) = ¢4g7(ir 47zign)e4”"g , (3.48)

—4mg

where the factor e is inserted to compensate exponential growth of }/(i 4m'gn)z e*™ at large

n (see eq. (3.45)). We recall that in the toy model (3.36), rler )(it) and }/(“’y )(it) are entire functions
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of ¢+ . At large ¢ they have the same asymptotic behaviour as the Bessel functions,
r)ir) = y'“)(it)~ ¢*" . Performing their Fourier transformation (3.43), we find

70 (k)=T(k)=0, for k*>1, (3.49)

in a close analogy with (3.44). Comparison with (3.47) shows that the coefficients (3.48) vanish in
the toy model for arbitrary » and g

&(n.g) = (n.)=0. (3.50)

The relation (3.47) defines the function T'(k) for % >1 but it involves the coefficients c,(n,g) that

need to be determined. In addition, we have to construct the same function for k* <1. To achieve
both goals, let us return to the integral equations (3.27) and replace Fi(t) by Fourier integrals (see
egs. (3.43) and (3.25)

T.(0)= | dkcos(kt)'(k),  T(e)=-[ disin(ke)T(k). (3.51)

In this way, we obtain from (3.27) the following remarkably simple integral equation for f(k)

ro dll:r(k)+ﬂf(u):_2, (-1<u<l1), (3.52)
—© k—u

where the integral is defined using the principal value prescription. Let us split the integral in (3.52)
into k* <1 and k* >1 and rewrite (3.52) in the form of singular integral equation for the function
f(k) on the interval —1<k <1

f(u)+lf dkf(k):qﬁ(u), (-1<u<1), (3.53)

7l k—u

where the inhomogeneous term is given by

Hu) = —1[2 +f diT (k) | [ dit (k )J . (3.54)

T = -y k—u

Since integration in (3.54) goes over k” >1, the function f(k) can be replaced in the right-hand
side of (3.54) by its expression (3.47) in terms of the coefficients ci(n, g). A general solution for

the integral equation (3.53) for f(k) reads (for —1<k<1)

l:(k):l¢(k)_i(l+kjl/4r du¢(u)(l—ujl/4_£(l+kjm C_ (355)

27\1-k) 1 u—k 1+u 7 \1-k) 1+k°

where the last term describes the zero mode contribution with ¢ being an arbitrary function of the
coupling. We replace ¢(u) by its expression (3.54), interchange the order of integration and find
after some algebra
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1-k I+k 2= p—k \ p+1

f(k)k:1_£(1+ k jm% PR [ M(p—_ljl/4e(p2 1)} . (3.56)

With regard the egs. (3.55-3.56) we have that Q =0,450158 = 0,45085;
T

l =0,318309=0,318322; % =0,1591549 = 0,159649, values that are inserted in the columns
V4

T
(*1/Pigreco), (*1/1,375) and (*1/Pigreco) of the Table concerning the universal music system
based on Phi.

4
Furthermore, we note that the eq. (3.56) multiplied for 4”?, can be related with the Jormakka’s

equation connected with the Ramanujan’s equation concerning 7 (1.18), i.e.

72_4 - K2< 72_3 1+ k 1/4 c 1 wdpf(p) p—l 1/4 )

Fk) = - 2[5 1 (el p 1
NG (k) 4(1—/() "r a2l p—k \p+1 olp*-1)| =
\Fﬁ _Id2xe £ (3 423) \/_ (\/_ﬂy =

B %ﬂ (\/Eﬂ TIJ‘ dxze_ﬂ2y32 j dx,e * A B %\Eﬂ(ﬁﬂ TIJ‘ dx3e_ﬂ2y32 I d)’zeié(ﬁﬂ)2 "

:%\/g(2ﬂ)(x/§ﬂ)zjdx3e_ﬂzy§ =%\/:— 27 (\/_,3) jdyz s _T 5 2 (\/_ﬂy
Udzxe p20323) \/—\/_(\/_ﬂ> } i !

8TXW:>

3
o j , cos o’ det [ sin 7ox’ :L ”__3;;4_;;2 ; (3.56b)
0 " sinhmx 0 smhﬂx 4

:>jdzxe_ﬂ2(yzz+y3 Idyl

We are now ready to write down a general expression for the function F(t). According to (3.43), it

is related to T'(k) through the inverse Fourier transformation
- j_lldke-"k’f(k)+ j_’l dke-””f(k)+jfdke-”“f(k), (3.57)
where we split the integral into three terms since f(k) has a different form for k£ <-1,-1<k <1

and k& >1. Then, we use the obtained expressions for l:(k), eqs. (3.47) and (3.56), to find after
some algebra the following remarkable relation

L(it)= £, W)+ £ (W), (3.58)

Here the notation was introduced for
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Also, V, and U (with n=0,1) stand for integrals

v (x)= %jll du(l+u) "1 —u)" e Ui(x)= %If du(p 21" @ F1)* e (3.60)

which can be expressed in terms of Whittaker functions of 1% and 2™ kind.
Replacing F(z't) by its expression (3.58), we rewrite these relations in equivalent form

0, t= 4ﬂg(€ —ij. (3.61)

fole e+ £ ile,)

Let us substitute (3.58) into the expression (3.26) for the cusp anomalous dimension. The result
involves the functions Vn(t) and fn(t) (with n =1,2) evaluated at # = 0. It is easy to see from (3.60)

that 7,(0)=1 and ¥;(0)=2. In addition, we obtain from (3.59) that f,(0)=—1 for arbitrary
coupling leading to

Replacing fl(O) by its expression (3.59) we find the following relation for the cusp anomalous
dimension in terms of the coefficients cand c,

rm,,(g)=zg{1+zc<g>—zz[c<n,g>uo<4mg>+c+<n,g)va<4mg>]}. .63)

nxl1

The following remarkable relation

oM, (20g)
(g :2({1— 27 ”ZL}, (3.63a)
p( ) ( ) M71/4,0(27Zg)

defines the cusp anomalous dimension in the toy model for arbitrary coupling g >0. At weak
coupling, we find from (3.63a)

3 1 1 5 11 3
T o)=2m? - — 120 — — ot 4+ 2 o’ — —— 2565 2 257 L 0le®). (3.63b
“)(g) AL Sy Ll S St =t (¢*). (3.63b)

The series (3.63b) has a finite radius of convergence | go| =0.796

Furthermore, the eq. (3.56b) can be related with the Ramanujan’s modular equation concerning the
superstrings and the equation regarding the Palumbo-Nardelli model, i.e.

54



3 1 1 5 11 3
(o)== o2 L _ 2 et 2 6607 L 0fef) =
wl(g) o — gt ot e e (")
:cosizltxw e"“zw'dx 5
4| antilog —COSAX =
A r'w'
e 4 ¢w'(l'twv)
:_
3 N 1041142 N 10+ 742
8 4 4
1 Vo 1 Vv
.[d%x\/_{—%—ggmg Tr(Gqupo)f(¢)_Egﬂ 5#¢av¢}:

_°°212 x(-G)" 2“’[R+46 <I>8”CD——‘H‘ —K”)T QFI )} . (3.63¢c)

0 10

Let us replace fo(t) and fl(t) in (3.61) by their explicit expressions (3.59) and rewrite the
quantization conditions (3.61) as

Voldmgx, )+ c(gli(dmgx,) = X e, (n.g)4, (n.x, ) + ¢ (n.g)4 (n.x,)].  (3.64)

nxl1

where x, =/ —% (with ¢/ =0,£1,£2,...) and the notation was introduced for

A (., )= Vildmex o (47mgn)J_+r ;%(472% Lildmg) 3 65
4

The relation (3.64) provides an infinite system of linear equations for ci(g,n) and c(g). The
coefficients in this system depend on V0’1(47zgx() and Uoi,l(47zng) which are known functions. We
examine (3.64) for |x4| >>1. In this limit, for g =fixed we are allowed to replace the functions
1/0(471ng) and V1(47zgx() in both sides of (3.64) by their asymptotic behaviour at infinity. We find
for |x,|>>1

~167gx, +..(x, <0)

+(6,50) (3.60)

where ellipses denote terms suppressed by powers of 1/ (gxz) and ¢***! We divide both sides of
(3.64) by V,(47gx,) and observe that for x, — —co the first term in the left-hand side of (3.64) is

subleading and can be safely neglected. In the similar manner, one has
A,(n,x,)/V,(4mgx,)=O(1/x,) for fixed n in the right-hand side of (3.64). Therefore, going to the

limit x, = —oo in both sides of (3.64) we get

c(g)=0 (3.67)

for arbitrary g .
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Arriving at (3.67), we tacitly assumed that the sum over n in (3.64) remains finite in the limit
x, — —oo. Taking into account large n behaviour of the functions U;(4mg) and U;(4mg), we

obtain that this condition translates into the following condition for asymptotic behaviour of the
coefficients at large n

c+(n,g)=0(n”4), cﬁ(n,g):o(n_”“). (3.68)

These relations also ensure that the sum in the expression (3.63) for the cusp anomalous dimension
is convergent.

In the following Table, we have showed the comparison of the numerical value of T, (g)/(2g)
found from (3.64) and (3.63) for n =40 with the exact one for different values of the coupling
constant g

g | 01 | 02 | 04 | 06 | 08 | 1.0 | 12 | 14 | 1.6 | 18 |

numer | 0.1976 | 0.3616 | 0.5843 | 0.7096 | 0.7825 | 0.8276 | 0.8576 | 0.8787 | 0.8944 | 0.9065 |

exact |0.1939]0.3584 | 0.5821 | 0.7080 | 0.7813 | 0.8267 | 0.8568 | 0.8781 | 0.8938 | 0.9059 |

We note that there is the mathematical connections between these values and the following: 0,1967
(*1/1,375), 0,36067 (*Pigreco), 0,5835 (*Pigreco), 0,7081 (*Pigreco), 0,7869 (*1/Pigreco), 0,8333
(*1/Pigreco), 0,8498 (*Pigreco), 0,8753 (*Pigreco), 0,8989 (*1/1,375), 0,9017 (*1/Pigreco). All
values inserted in the columns of the Table concerning the universal music system based on Phi.

At large g the integral in (3.29) receives a dominant contribution from ¢ ~ g . In order to evaluate
(3.29) it is convenient to change the integration variable as ¢ — 47xgit

Mo(e) 2 T
7 7 sl

4

82 o 88 npe [ dretiers Tlmit) | 3 o)

where integration goes along the imaginary axis. We find from (3.58) that F(47zgit) takes the form
T(4zgit)= f,(4mgt )V, (47gr)+ f,(4mge )V, (47gr),  (3.70)

where V0,1(47zgt) are given by the Whittaker functions of first kind.

82

2
T

concerning the universal music system based on Phi.

We note that

=1,146318 = 1,145833 value that is inserted in the column (*1,375) of the Table

We have that f0,1(4izgt) admit the following representation (see egs. (3.59) and (3.67))
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472gt 2{ M+c(n,g)M}—l,

n>1 n—t n+t

47zgt Zn[c ng (4 g) c_(n,g)@}. (3.71)

>l +1

Replacing F(47zgit) in (3.69) by its expression (3.70), we evaluate the t-integral and find after some
algebra

iy =~ e i )+ - ()] 62)

This relation can be further simplified with a help of the quantization conditions (3.61). For /=0,
we obtain from (3.61) that f; (- zg )V, (— )+ f,(= 2z V;(— 2g) = 0. Together with the Wronskian

relation for the Whittaker functions this leads to the following remarkable relation for the mass gap

_16v2 f(-mg)

"0 )

(3.73)

The functions f(47gt) and f,(47gt) have the form

S4mgt)= £ dmgt)+ o (4mgt),  (n=01). (3.74)

Going through calculation of (3.71), we find after some algebra that perturbative corrections to
fo(47zgt) and f1(47zgt) are given by linear combinations of the ratios of Euler gamma-functions

f<PT>(4ﬂgt):_r(ijr(l_t)+ I (31112+ ljr(ijr(l")_r@“”” olg)

EEERE

4 8
o) | F(DF(IH) F(jjl“(l—t)_ | FG)F(IH) (1 3ln2j+

g 4tF(i+tj : 4tr(j—tj __(47@)2 4tr(i+tj a4
r(3jr(1—t) |

4 (1 +31112) +0( _3)
— g7). (3.75)
4tr(j—tj a4

In the similar manner, we compute non-perturbative corrections to (3.74)
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ijl“(l—t) r@r(m)

il
&, (4mgr) = 22

- +O(g’2) T
Amg| o3, or{ 2 4
4 4

o lr(f‘jr(lw)+ 1 FGJF(I—I) r(j)r(lw)(l ; lj e

R P
8¢ 4

472 rGHj (4mg) Str(i—tj F(i+tj

where ellipses denote O(A4) terms.

Let us obtain the strong coupling expansion of the mass gap (3.73). We replace VO(— ﬂg) by its
asymptotic series

(3.76)

_%j - (2x)5/41“(%j[1 —%+ }

U1+(x):(2x)”4ll“(lj17(l,l

2 \4

U-(x)= (2x)"* lr(ij F(i,i

2 \4

and take into account (3.75) and (3.76) to get

2
o = V2 () e[ 14 3= 61n2 —63+1081n2—108(§n2) +16K |,
F(Sj 3271z 2048(7g)
4

2 —
_ A ez o), 3.79)
8mg 32mg

that can be connected with the eq. (3.69), obtaining the following mathematical connection:

m :8_ ‘26*”&’ _S_ge*”g Re j_iw dte2m=in /4 1"(472glt) _
0(6) e ju 0 -1
f+—
4
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_ 2 () e [, 3-6In2 —63+108In2-108(In2)" +16K |
& 321 2048(mg )

S _1_15—61“2+..1+0(A4)}. (3.80)

With regard this equation, we have that: v2(27)"* = 2,23903 = 2,24730 ;

l—wgzﬁ=0,892161415;0,898958 that are inserted in the columns (*1/Pigreco) and
T

(*1/1,375) of the Table concerning the universal music system based on Phi.
Furthermore, this equation can be related also with the Ramanujan modular equation regarding the
superstrings and the equation concerning the Palumbo-Nardelli model. Thence, we obtain:

= &e_ﬂg _8_ge—7zg Re j(;iw dt€_4ﬂgt_m/4 r(47zglt) =

V4 V4 t+l
4

_ V2 () e 1+3—6ln2+—63+1081n2—108(1n2)2+16K+ s
= 327z 2048(mg )

_X {1— 15-6In2 +..1+O(A“)}:>

8mg 32ng
» COS /ixXW' o gy
) cach V142
4| antilog ’ co”st?izx T
A L t'w
e 4 ¢w'(ltw)
:_
> g [[10+11W2] (104742
8 4 4
’) vo 1 v
= - Id26x\/_|:_@_§gmg Tr(Gﬂvao)f(¢)_Egﬂ 6#¢6V¢:|:

_00212 x(— 1/2 2®{R+48 CD@”@——‘H‘ _K10T QF| )} . (3.81)
10

0 10
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4. On some equations concerning the “fractal” behaviour of the partition function. [5] [6]

(see the following introduction: http://www.fractal.org/Bewustzijns-Besturings-Model/Partition-
numbers-are-fractal.pdf’)

The study of p(n) has played a fundamental role in the number theory. The very famous
mathematicians Hardy and Ramanujan invented the “circle method” in analytic number theory in
their work on p(n) asymptotics. They proved the asymptotic formula

p(n)~—1 ™3 (a)

Rademacher subsequently perfected this method to derive his famous “exact” formula

p() 2”24’1 13/42Ak(n 3/2[7“/24}1—1). (b)

=i 6k

and this equation can be rewritten also as follows:

z Ak(n 3/2(%} ()

il 6k

pln)=

\/(2411—1 ;

In terms of congruences, p(n) has served as a testing ground for fundamental constructions in the
theory of modular forms. The theory of Ramanujan’s celebrated congruences, assert that

p(S'” n+ 0 (m))E 0 (mod 5"),
p(7’”n +6, (m))z 0 (mod 7"/2F,
pl11"n+5,(m))=0 (mod 11™), 4.1

where 0<&,(m)<¢" satisfies the congruence 246,(m)=1 (mod ¢"). To prove these

congruences, Atkin, Ramanujan and Watson made use of special modular equations to produce /¢ -
adic expansions of generating functions

ip(z n+qu24. 42)

(note that ¢ :=e™ throughout, p(0)=1,and p(e)=0 if @ <0 or @ ¢ Z).
Little is known about the ¢ -adic properties of the P((b;z), as b — 4o, for primes />13. Has been

observed that these functions are nicely constrained /-adically. Furthermore, they are “self-
similar”, i.e. have a “fractal” behaviour, with resolution that improves as one “zooms in”
appropriately. Throughout, if /> 5 is prime and m > 1, then we let
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b(m):= m’ if /25 and (#7,
m* if ¢=7 and m is even,
m(m +1) if /=7 and m isodd.  (4.3)

Theorem 1.1

Suppose that 5<(<31 is prime, and that m=1. If b =b, (mod 2) are integers for which
b, > b, > b,(m), then there is an integer A,(b,,b,,m) such that for every non-negative integer n we
have

"+ M+l .
p( 24 jEAf(bl,bz,m)-p( 24 j (mod (™). (4.4)

If 1 €{5,7,11}, then A,(b,,b,,m)=0.

Now we illustrate Theorem 1.1 with /=13. For m =1, Theorem 1.1 applies for every pair of
positive integers b, <b, with the same parity. We let b :=1 and b,:=3. It turns out that

A13(1,3,1) =6, and so we have that

p13°n+1007)=6p(132+6)  (mod13).

By direct calculation, we find that

0

6> p(13n+6)g" = 66 +2940g + 50094g° + 5348044’ + 4291320¢* + 281832304° +...

n=0
=1+2¢+5¢> +10¢° + 7¢* +10¢° +... (mod13),
and

Zp(133n + 1007)q” =31724668493728872881006491578226 +
n=0

+50991675504304667711936377645090414961625834061517111251390¢ + ...
=1+2¢+5¢> +10¢° + 7¢* +10¢° +... (mod13).

We note that (forn=0, 1,2, 3,4,and 5,1.e. 13n+6 =6, 19, 32, 45, 58, and 71)

28183230:%278; 4291320:%278; 534804:%:78;

50094:@=78; 2940:ﬂ=78; 66:ﬁ=78,
13 13 13

and that

p(71)x 78

x= P 2281832305 x:M

—4291320; x =@ — 534804 ;
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:p(6)><78:
13

L PB2)xT8 L PU9)x78

=50094 ; =2940; «x 66.

From these expressions, it is evident the “fractal” behaviour of the partition numbers.
We zoom in and consider m=2. It turns out that b =2 and b, =4 satisfy the conclusion of

Theorem 1.1 with A13(2,4,2) =45, which in turn implies that

p(13'n+27371)=45p(13° 2 +162)  (mod13?).
For n=0,1, and 2, we find that the smaller partition numbers give

45p(13>-0+162)=5846125708665=99  (mod13?),
45p(137-1+162) = 3546056488619997675=89  (mod13?),
45p(13> - 2+162)=103507426465844579776215=20  (mod13*).

Although the other partition numbers are way too large to give here, we find

p(134 -0+ 27371)2 105816538361780139172708561595812210224440752...=99 (m0d132),
p(134 1+ 27371): 747061679432324321866969710089533207619136212...=89 (m0d132),
p(134 2+ 27371): 111777755456127388513960963128155705859381391...= 20 (m0d132).

We note, with regard the second expression, that 89 is a Fibonacci’s number.
We recall Dedekind’s eta-function

3k2+k 1

)= T11-a")=3 g 2 . @3

n=1 keZ

If />5 is prime and m >1, then we let k,(m)=¢""(¢~1). We define Q,(m) to be the Z/("Z -

module of the reductions modulo /" of those forms which arise as images after applying at least the
first b,(m) operators. We bound the dimension of Q,(m) independently of m, and we relate the

partition generating functions to the forms in this space.

Theorem 1.2

If 0>5 is prime and m>1, then Qg(m) is a Z/0"Z -module with rank S[%} Moreover, if

b >b,(m), then we have that

Pz(b;Z)E Ff(bﬂ) (mOdf'”) if b is even
n(z
_ P};EZ;Z;) (mode™)  if b isodd,  (4.6)

where F,(b;z)eQ,(m).
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Each form F,(b;z)e Q,(m) is congruent modulo ¢ to a cusp form in S, M Z[[¢]]. Since these
spaces are trivial for /e {5,7,1 l}, Theorem 1.2 for these ¢ follows immediately from the
Ramanujan congruences. Conversely, if £ € {5,7,11} and m >1, then for b > b,(m) we have that

plt'n+5,1)=0 (modem). (4.7)

Theorem 1.2 shows that the partition numbers are self-similar /-adically with resolutions that
improve as one zooms in properly using the stochastic process which defines the f}(b;z). Indeed,

the P,(b;z) (modé”’), for b>b,(m), form periodic orbits. Theorem 1.2 bounds the corresponding

“Hausdorff dimensions”, and these dimensions only depend on /. For / € {5,7,1 1}, the dimension is

0, a fact that is beautifully illustrated by Ramanujan’s congruences , and for 13</¢<23, the
dimension is 1. Theorem 1.1 summarizes these observations for 5 </ <23 and include the primes
=29 and 31.

*([n mathematics, Ramanujan's congruences are some remarkable congruences for the partition
function p(n). The Indian mathematician Srinivasa Ramanujan discovered the following

p(bk+4)=0 (mod 5)
p(7k+5)=0 (modT7)
p(llk+6)=0 (mod 11).

In his 1919 paper (Ramanujan, 1919), he gave proof for the first two congruences using the
following identities (using q-Pochhammer symbol notation):

[a's) LR

S p(sk+4)g* =59

s I
= [=d H l—r(qI} (qI}I

Tk 4+ 5)g" = 7212 4 49g-~ 0
& BOREI)g Sy e

then stated that “It appears there are no equally simple properties for any moduli involving primes
other than these”) [from Ramanujan's congruences - Wikipedia, the free encyclopedia].

The following theorem gives the finite algebraic formula for p(n)
Theorem 1.3

If n is a positive integer, then we have that

p(n)

= Tr(n). (4.8)

The numbers P(aQ), as Q varies over &, form a multiset of algebraic numbers which is the union
of Galois orbits for the discriminant —24n+1 ring class field. Moreover, for each Q € €, we have

that 6(24n — I)P(ag) is an algebraic integer.
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Theorem 1.3 gives an algorithm for computing p(n), as well as the polynomial

H (x)=x" _ (240 -1)p(n)x">* ) 4 = I (x - P(aQ )) cOlx]. (4.9)

0<t,

Let L be the following lattice
b al/N
L= ca,b,ceZ;. (4.10)
c -b

For k e %Z , we let H,(N) denote the space of harmonic Maass forms of weight k for I':=T},(N).

We let H;(N) denote the subspace of H,(N) consisting of those harmonic Maass forms whose

principal parts at all cusps other than oo are constant. We write M ,’:"(N ) =M, (N )m HS (N ) For a
weak Maass form f of weight —2 for I' we define

A(T,f) = Lz/z,rJ.M (R72,zf(z)bL (Taza(DKM ) (4.11)

The Kudla-Millson theta kernel has exponential decay as O(e_cy 2 ) for y — o at all cusps of I" with
some constant C > 0. Therefore the theta integral converges absolutely. It defines a C [L'/ L]-Valued

function on H that transforms like a non-holomorphic modular form of weight — 1/2 for I'. We
denote by Ah(r, f ) the components of the lift A(r, f ) with respect to the standard basis (e,), of

C[L'/ L]. The group O(L'/ L) can be identified with the group generated by the Atkin-Lehner
involutions. The following proposition, which is easily checked, shows that the theta lift is
equivariant with respect to the action of O(L'/ L).

Proposition 1.1

For y€O(L'/L) and he L'/ L, we have

Ao f)= M A ). @12)
Theorem 1.4

If m is a positive integer, then we have

A(r,Fm (z, s,—2)) =

22S\/ZNS(1_S)Z T ( s 1 1

., |eiso—| @13
(s lj R G j *19
Il ——— 4NR* n
2 2

By definition we have

A(T,Fm (z,s,—2)) = L3/2’7J’M (R_z’sz (z,s,—2))®L(r, Z, Py ) (4.14)
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Employing the following proposition
Proposition 1.2

LR E, (z,5,k)=(s+k/2)F,(z,5,k+2), (4.15)

47mm

and

. 1
L3/2,T®L(Taza¢KM): —dd ®L(Taza¢3): EAO,Z(OL(T’Z’(DS)'Q’ (4.15b)

we see that this is equal to

mls=1)] F,(2.5.0)4,.0,(r.z.0,)Q2. (4.16)

Using the following definition

Fm(z,s,k)zzrzzs) Z[A/Q’k(4ﬂmy)e(—mx)]k7, (4.17)

we find, by the usual unfolding argument, that

m(s - 1)

A(r,Fm (Z, S,—2)) = F(ZS)

J-qu\H‘/’/l&’O(él'my)e(_ mx)AO,z®L (T,Z, (os)gz . (418)

By the following proposition

Proposition 1.3

1 1 & > )
@L(r,z,gps):\/ﬁ-aK(r,O,OH z ZT{GXP(_ 273;2 Jn(r,nu(z),O)}‘_l/zypKy, (4.19)

we may replace AO’Z(’DL(T,Z,QS) by AO,ZC:)L(r,z,qoS), where

o, ( = 0 . (420

1

2Ny
exponential decay as y — oo. Therefore, for :R(s) large, we may move the Laplace operator to the
Poincaré¢ series and obtain

Recall that /%= . The function ©,(r,z,¢;) and its partial derivatives have square

2

N o) =] (o, <4my> (), (5.0, )02 -
:_%waﬂs,o(A‘WY)e(_ mx)@L(T727¢S)Q ;ygrz\r] r,8,m n)‘ VA
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4.21)
where

](T,S,m,l’l)ZJ-OO Il M, o (47my e(— mx) exp( Gl )E(T ny(z),O)dx—cjy. (4.22)
y=0Jx=0 > y

2,20 2002
1/2N 0

If we use the fact that K'=Z7
0 -1/2N

j, and identify K'/ K = Z/2NZ , then we have
E(z,nu(z x/_Ze(——T nbx]eb (4.23)
beZ

Inserting this in the formula for [/ (r,s,m,n), and by integrating over x, we see that [ (r,s,m,n)
vanishes when nim. If njm, then only the summand for b =—-m/n occurs and so

/ 2_2 2
I(z,5,m,n) ij M 47zmy)exp( 'y jﬂe(— m f}m/n. (4.24)
v

y 4Nn*
To compute this last integral, we note that
M, 0(47”")’) = Mo,s—1/2(47sz’) = 223_11—‘(5 + 1/2) 4mmy - Is—l/z(zﬂmJ’)-

5,

Substituting ¢ = »* in the integral, we obtain

2.2
[ Ms,o(4mny)e><p(— 7an—y]

\%
_223 11" S+1/2N J. I3 1/2(27277’1\/_)6)(1)( t] _3/4dt (425)

2.2
@ = 225"1F(s + 1/2).[ 47zmy]s_1/2(27zmy)exp(— M]d_y =
y ‘ vy

The latter integral is a Laplace transform. Inserting the evaluation, we obtain

1/4
o Nn* d . Nn® m’v m’v
J-o ‘Ms,o(47sz’)eXp(_ Y j =2 lr( /2{ 2 j M1/4,s/2—1/4(—jeXP( zj:

v b% my Nn® 2Nn

1/2
o Nn? m’y m’y
=2 IF(S/z{ﬂmva ‘/l/l's/2+1/4,—1/2( N2 jexp(Zan J (4.26)

Consequently, we have in the case n|m that

277 Nn m’y m’
](T755m7n) Jm (S/z)Ms/2+1/4,1/2( N je(_ ANR ujem/n' (4.27)

Substituting this in (4.21), we find
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A, F (z,5,-2))= 22_3&Ns(l_s)2n-9 : (r 5+l,—lj. (4.28)

r(s—lj (T2 472

2 2

Since ¥ h(r,s,—1/2) =% ., (r,s,—1/2), this concludes the proof of the Theorem 1.4.

Corollary 1.5

If feH_z(N) is a harmonic Maass form of weight — 2 for FO(N), then A(r,f) belongs to

H_,, , . In particular, we have

Az, F, (2,2,-2)) _—2Nzn Iy (r,%,—%). (4.29)

4Nn? ' n

The formula for the image of the Poincaré series F, (z,2,~2) is a direct consequence of Theorem

1.4. These Poincaré series for m e Z_, span the subspace H”,(N)c H_,(N) of harmonic Maass
forms whose principal parts at all cusps other than oo are constant. Consequently, we find that the
image of H”, (N ) is contained in H_,,, , . For simplicity, here we only prove that the image of the

full space Hﬁz(N ) is contained in H ,, , in the special case when N is squarefree. When N is

squarefree, then the group O(L'/L) of Atkin-Lehner involutions acts transitively on the cusps of
[,(N). Consequently, we have

= Y HS(N). (4.30)
;/EO(L'/L)

Using Proposition 1.1, we see that the whole space H_Z(N ) is mapped to H_,,, , .

Theorem 1.6

Let feH_z(N) and put af::%R_zqu. For meQ,, and hel'/lL the (m,h)-th Fourier
z

coefficient of the holomorphic part of A(r, f ) is equal to

tr,(mh)=—— >0f(z). (431)

mzeth

Inserting the definition of the theta lifting and using (4.15b), we have
A(Z',f)= 47[L3/2,r.[Maf(z)®L(T’29¢KM) J. af( ) (T z @S)Q- (4.32)

For X e V(R) and ze D we define ¢y (X ,z): s )(pS (X ,z). Then the Fourier expansion of the
Siegel theta function in the variable 7 is given by
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L(.200)= S olWvx, 2|2 We, . (4.33)
Xel'
For meQ,, and hel'/L, weput L, , = {XeL+h Q( ) } The group I'acts on L, , with

finitely many orbits. We write C(m,h) for the (m,)-th Fourier coefficient of the holomorphic part
of A(z, f). Using (4.33), we see that

Clm)=[ @A, T oz, @34

XeL,,,

For Q(X ) >0 the function ¢y (X ,z) has square exponential decay as y — o. This implies that we
may move the Laplacian in the integral to the function 0f . Since A, 0f =-20f , we see that

Clm.h)=-2] o(z) Y oblVvx.z2. (439)

XeL,, ,

Using the usual unfolding argument, we obtain

C(m,h)=—

‘j o ().l (436)

XeF\L ‘FX

Furthermore, we have the following relationship:

Clm.h)=-2] o(z) Y oblVvx.zlp=-2

XeL, , Xel"\L i

il j o (ptWvx.z). (436b)

It is convenient to rewrite the integral over D as an integral over G(R)=SL,(R). If we normalize
the Haar measure such that the maximal compact subgroup SO(2) has volume 1, we have

1(X)=[ arEetlvx.zo =] orleotlVvx.gikg. @37
Using the Cartan decomposition of G(R) and the uniqueness of spherical functions, we find that

1(X)=3f(Dy)-Y,(Vmv/N), (438)

where

Y,(0)=4x] g leala) X (b, ()™ ‘2 @)

a 0
Here o, (g) is the standard spherical function with eigenvalue 4 =-2, and a(a) = (0 1] . Note
a

2 -2
that a)_z(a(a)) =2 za . It is easy computed that
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olea(a) X (0).i)=ve ™l ="T | (4.40)

and therefore
v

TaNg

Y,(6)=2m| e ™ ™) cosh(r)sinh(r )dr (4.41)

Thence, we have the following relationship:

2 -2
Y,()=4x| oea(a) X ()i ko, (er(a)) =2 da = 2" e cosh(r )sinh(r)dr =

2 a
(4.41b)

4Nt

Hence YA(«/ mv/ N ): 4L . Inserting this into (4.36), we obtain the assertion.
m

Now we consider the theta integral (4.11) in the special case when N =6. We identify the
discriminant form L'/L with Z/12Z together with the Q/Z -valued quadratic form r > —r*/24 .
The function 77(1')_1 can be viewed as a component of a vector valued modular form in M’ /2., @S

follows. We define
G(c)= D xu(rhn(z)’e,. (4.42)

reZ/12Z

Using the transformation law of the eta-function under 7+ 7+1 and 7+ —1/7, it is easily
checked that GeM',,, , . The principal part of G is equal to ¢™'* (¢ —e;—e, +¢,). On the

other hand, G can be obtained as a theta lift. Let F e M',(6) be the function defined in the
following expression

1 E,(2)-2E,(22)-3E,(32)+6E,(62) _ -+ 10 50 40
2 77(2)277(22)277(32)277(62)2 q qg—.. (4.42b)

It is invariant under the Fricke involution W, and under the Atkin-Lehner involution W] it is taken

F (Z) =

to its negative. Hence, in terms of Poincaré series we have

F = F(,2,2)= F (2,20, = B (2,20, + F(.2,-2)0,. (4.43)

The function P is given by %Rz(F ) Using Corollary 1.5 and Proposition 1.1, we see that
/4

A(z,F) is an element of M!—I/Z,pL with principal part —4Ng™"'* (¢, —e ; —e, +¢,). Consequently,

we have
1
G=——Alr,F). (4.44
v AEF). @a4d)

Now Theorem 1.6 tells us that for any positive integer n the coefficient of G with index
(2411—1

,lj is equal to
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3 1
N@an D) l)zez(;-l 1JP(z) = a1 Q%P(ag). (4.45)
24

On the other hand, this coefficient is equal to p(n) because

We have proved, with all these computations and proofs, that p(n)=Tr(n)/(24n—1). To complete

the proof of Theorem 1.3, we require results from the theory of complex multiplication, and some
new general results which bound the denominators of singular moduli.
We first recall classical facts about Klein’s j -function

j(z)=q™" +744 +196884q +21493760¢" +.... (4.47)

A point 7 € H is a CM point if it is a root of a quadratic equation over Z. The singular moduli for
j(z) , its values at such CM points, play a central role in the theory of complex multiplication.

Theorem 1.7

Suppose that QO =ax’ +bxy+cy’is a primitive positive definite binary quadratic form with
discriminant D =5b" —4ac <0and let a, € Hbe the point for which Q(aQ,l):O . Then the

following are true: (1) We have that j(aq) 1s an algebraic integer, and its minimal polynomial has
degree h(D), the class number of discriminant D positive definite binary quadratic forms. (2) The
Galois orbit of j(ag) consists of the j(z)-singular moduli associated to the h(D) classes of
discriminant D forms. (3) If K = Q(\D), then the discriminant D singular moduli are conjugate to
one another over K. Moreover, K(j(aq)) is the discriminant — D Hilbert class field of K.

Theorem 1.7 and the properties of the weight 2 nonholomorphic Eisenstein series

Ei(2)=—=+E(z)=1 —i—z4i2dq”
xy xy n=1d|n (448)

will play a cental role in the proof of Theorem 1.3.

For a positive integer N, we let {x denote a primitive N-th root of unity. For a discriminant — D <0
and r€Z with r* = — D (mod 4N) we let Qp:~ denote the set of positive definite integral binary
quadratic forms [a,b,c] of discriminant — D with N |a and b =r (mod 2N).

-b+~-D
2a
Op for the order of discriminant — D in Q(\-D).

For Q = [a,b,c]€Qp,N we let a, = be the corresponding Heegner point in H. We write

Theorem 1.8
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Let D > 0 be coprime to 6 and r € Z with r* =—D (mod 24). If Q€ Q.6 18 primitive, then 6D - P(0q)
is an algebraic integer contained in the ring class field corresponding to the order Op < Q(V-D).

By Theorem 1.8, the multiset of values P(0q) is a union of Galois orbits. Thereofore, Theorem 1.8
completes the proof of Theorem 1.3.

Conclusion

The important result that we have obtained in this paper, is that the “fractal” behaviour of
the partition numbers can be the motivation whose very values of the equations concerning
the string theory are connected with (*1,375) that is the mean value (o factor) of the partition
numbers.

The golden angle is about 137,5 degrees. The exact value is 360/Phi* = 137,50776405.
The music system contains exactly this value with the pure number of 1,90983006 multiplied by
72Hz, the basis frequency that was chosen.

There is also the mathematical connection with PiGreco, indeed: 432/PiGreco = 137,509870831
almost identical to the value of the golden angle. We note that both the values 137,5077 and
137,5098 divided by 100 give 1,375077 and 1,375098 thence once again the mean coefficient (o
factor) of the number of partitions.

So, everything is connected: Pigreco, Phi and Sigma that are all in the music system based on Phi
and they determine the “notes”, thence the vibrations “gold” of the universe of strings.

Appendix A. (Francesco Di Noto) [7]

Now we want to analyze the following 4 series of numbers that we have in various equations of the
third Section of this paper. We show the mathematical connections with F, 2T, W, i.e. with the
Fibonacci's numbers, the triangular numbers and the Witten's numbers.

First series: 3,4, 8, 32, 40, 44, 45, 73, 630, 887, 14175
Second series: 1, 2,3, 4,7, 16, 21, 23, 25, 27, 54, 166, 1605, 43065
Third series:  1,2,3,4,5,6,7,8,11, 16,32, 45, 61, 64, 81, 104, 128, 192, 512, 1024, 6144

Fourth series: 1,2,3,5,9, 12, 16, 32, 45, 64, 96, 232, 256, 1575, 3614, 20416

1°serie 2°serie 3°serie 4°serie Fibonacci Triangular 2T W
1 1 1 1 1 2
2 2 2 2 3 4
3 3 3 3 3 6 12
4 4 4 5 10 20
7 5 5 8 15 30 14
8 6 9 13 21 42
32 16 7 12 21 28 56
21 8 16 34=32 36 72
40 23 11 32 55=54 45 90 105
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44 25 16 45 89=96 55 110 154
45 27 32 64 144=166 66 112 175
73 54 45 96 233=232 78 156
630 166 61 232 377 91 182 945
887 1605 64 256 610=630 105 210 4096
14175 43065 81 1575 987~887 120 240 8085
104 3614 1597=1605 136 272 10493
128 20416 2584 153 306 74247
192 4181 171 342 363825
512 6765 190 380
1024 10946 210 420
6144 17711 231 462
28657 252 504
46368 275 550
75025 299 598
121393 324 648
196418 350 700
317811 377 754
405 810
434 868
464 928
495 990
527 1054
560 1120
594 1188
629 1258
665 1330
702 1404
740 1480
779 1558
819 1638
860 1720
902 1804
945 1890
989 1978
1034 2068
1080 2160
1127 2254
1175 2350
1224 2448
1274 2548
1325 2650
1377 2754
1430 2860
1484 2968
1539 3078
1595 3190
1652 3304
1710 3420
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1769 3538

1829 3658
1890 3780
1952 3904
2015 4030
2079 4158

In blue we have the numbers that are in two or most series: they are powers of 2: 2,4, 8§, 16, 32,
64.In red we have other powers of 2: 128, 256, 512, 1024. In green some powers of 3 (9, 27, 81)
not repeated. In clear brown the Witten's numbers W that are in some of the four series :

: that are all powers of 2 (except 7 and 21 =7*3) and with index 1, 2, 3, 4, 5, 8, that
are all Fibonacci's numbers except 4.
All the numbers of the four series almost coincide with each other, and also with the Fibonacct'
numbers, the triangular numbers T and 2T, and the Witten's numbers, after thin out more. It would
be interesting to compare their graphics, similar at the begin and after more and more divergent.

Fibonacci's numbers:

0,1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, 317811

The numbers in blue, coincide exactly with the Fibonacci's numbers, furthermore, also the other
numbers of the four Tables are algebraic sums of Fibonacci's numbers. Indeed:

4=3+1;6=5+1;7=5+2;9=8+1;11=3+8; 12=5+5+2;16=3+13;32=21+8+3;45
=34+8+3;61=55+5+1;64=55+8+1;81=89-8;96=89+5+2;104=89+ 13 +2;128
=89+34+5;192=144+34+ 13+ 1;232=233-1;256=233+21 +2;512=2x 256; 1024 =
2x512;1575=1597-21-1;3614=2584 + 987 +34 + 8 + I,

6144 =6765—-610—-8—-3;20416=17711 + 1597 + 987 + 89 + 21 + 8 + 3.

23=21+2; 25=2113+1;27=21+5+1;40=34+5+1;44=34+8+2;54=55-1,73 =
55+13+5;166=144+21+1;630=610+13 +5+2; 887 =987—-89—-8—-3;1605=1597 +8§;
14175 = 10946 + 2584 + 610 + 34 + 1; 43065 = 46368 — 2584 — 610 -89 — 13 -5 - 2.

Also with the Witten's numbers can be done the same reasoning.
Indeed, for example, we have that:

1605 =945 +256 +256 + 105 +32+7 +4; 1575=945+256 +256 +32+32+21 +21 +8+4;
6144 = 4096 + 945 + 945 + 154 + 4; 3614 =4096 —256 —175-32-8 -7 —4.

Also here, thence, numbers of the Tables that are algebraic sums of Witten's numbers.

In conclusion, also for the Triangular numbers can be done the same reasoning of the algebraic
sums. Indeed:
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166 =110+ 56; 1605 = 1558 +45+2;3614=3538+ 72 + 4,
6144 =4158 + 1890 + 90 + 6.

Also here, thence, numbers of the Tables that are algebraic sums of triangular numbers T and 2T

Partitions of numbers, p(n)

1,1,2,3,5,7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255,
1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637,
26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134

Numbers 4° series coinciding with p(n)- 1, 2, 3, 5, 1575

Numbers 4° series very near to p(n) 12 =11+ /
16 =15+ 1
32= 30 +2
45=42+3

232 =231+]
3614=3718-104 (104=101+3 )
20416 =21637- 20416= 1221 = (1221=1255-34

We note that, five numbers of the 4° series are also numbers p(n) (1,2,3,5,1575)
while the others (12,16,32,45,232,3614 and 201416) are very near to others p(n) bigger and
with differences corresponding to small Fibonacci's numbers)

Table
Numbers 4°serie p(n) d =. N 4° serie -P(n) Fibonacci
1 1 0 yes
2 2 0 yes
3 3 0 yes
5 5 0 yes
12 11 1 yes
16 15 1 yes
32 30 2 yes
45 42 3 yes
232 231 1 yes
1575 1575 0 yes
3614 3718 -104 104 -101=3
20416 21637 -1221 1221-1255=-34

101 and 1255 are p(n) numbers (see series at the begin of the present page)

All this look very interesting and not casual...
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Connections between prime numbers, Lie's numbers, Triangular numbers T, 2T, Fibonacci's
numbers, partitions of numbers, String Theory

There exist various mathematical connections that concerning the prime numbers and the String
Theory. Indeed, we have as follows:

Prime Numbers:
In the equation of the projective geometry n*+n-+1, the number n must be prime or power of prime

This equation is also the equation of the Lie's numbers L(n) = n*+n+1, to the base of the Lie's
groups:

L(2) =2%+2+1="7, 2*7= 14 number of dimension of the Lie group G2
L(3) =3*+3+1 =13, 4*13 = 52 number of dimension of the Lie group F4
6*13 =78 number of dimension of the Lie group E6
L(5) =5"+5+1 =31= 8*31 =248 number of dimens. of the Lie group ES8
L(11)=11*+11+1=133 133 number of dimens. of the Lie group E7

The equation L(n) = n’+n+1 = 2T, where T are the triangular numbers (binomial coefficients (the
second diagonal of the Tartaglia triangle)) the Lie's prime numbers 7, 13, 31 are of the form 6k+1,
and also 133 = 7*19 with also 19 of the form 6k+1, and this suggests that Nature may prefer this
form with respect to the form 6k -1 (both the forms are the forms of the prime numbers, except the
2 and 3, for many values of k.

We note that 2T is also the sum of the first n even numbers

L(n) =2T+1 is to the base also of the Fibonacci's numbers F and also of the partitions of the
numbers p(n), that are both in many natural phenomena (quantistics and cosmologic), giving them
some stability and regularity (especially in the processes of growth).

The prime numbers are the base of the Riemann zeta function, that is connected to the string
theory, as also the Fibonacci's numbers (connected to the zeta of Fibonacci, thence also connected
to the string theory).

These five exceptional Lie's groups are to the base of the string theory, and are the groups of
simmetry, especially E8, candidate in whole or in part to the Teory of Everything (see Garrett Lisi).

Appendix B (Christian Lange)

Here, we have showed the various columns concerning the universal music system based on Phi

Sistema *PiGreco *1/PiGreco *1,375

0,0131556174964 0,0413295912802 0,0041875631080 0,0180889740576

OSSO0  0.0425718202538 0,0043134272179 0,0186326679820
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0,0142348954757

0,0301499924438

0,0325224750231

0,0344418537486

0,0372674401817

0,0394668524893

0,0425724725044

0,0452249886658

0,0487837125347

0,0526224699857

0,0557280900008

0,0602999848877

0,0638587087566

0,0447202430511 0,0045311079587 0,0195729812791
0,0452242957761 0,0045821791774 0,0197935931067
0,0473594973837 0,0047985203316 0,0207281198051
0,0487829651221 0,0049427477677 0,0213511376041
0,0510861843046 0,0051761126615 0,0223592015784
0,0526216637597 0,0053316892574 0,0230312442279
0,0542691549314 0,0054986150129 0,0237523117281
0,0557272361938 0,0056463495323 0,0243904790390
0,0585395581465 0,0059312973213 0,0256213651249
0,0602990610349 0,0061095722366 0,0263914574756
0,0631459965116 0,0063980271088 0,0276374930735
0,0638577303808 0,0064701408269 0,0279490019730
0,0668726834325 0,0067756194387 0,0292685748468
0,0688826521337 0,0069792718466 0,0301482900960
0,0723588732418 0,0073314866839 0,0316697489707
0,0731744476831 0,0074141216516 0,0320267064062
0,0766292764569 0,0077641689923 0,0335388023676
0,0789324956395 0,0079975338860 0,0345468663419
0,0826591825604 0,0083751262159 0,0361779481152
0,0851436405077 0,0086268544359 0,0372653359640
0,0878093372197 0,0088969459819 0,0384320476874
0,0901685622606 0,0091359854556 0,0394646240870
0,0947189947674 0,0095970406632 0,0414562396103
0,0975659302441 0,0098854955355 0,0427022752082
0,1021723686092 0,0103522253230 0,0447184031568
0,1033239782005 0,0104689077699 0,0452224351440
0,1082022747127 0,0109631825467 0,0473575489044
0,1114544723875 0,0112926990645 0,0487809580780
0,1170791162929 0,0118625946426 0,0512427302498
0,1183987434592 0,0119963008291 0,0518202995129
0,1239887738406 0,0125626893239 0,0542669221728
0,1277154607615 0,0129402816538 0,0558980039460
0,1337453668650 0,0585371496936
0,1377653042674 0,0602965801919
0,1420784921511 0,0621843594154
0,1458957984544 0,0638551031260
0,1532585529139 0,0670776047352
0,1578649912790 0,0690937326838
0,1653183651208 0,0723558962303
0,1671817085813 0,0731714371170
0,1750749581452 0,0766261237512
0,1803371245212 0,0789292481740
0,1894379895348 0,0829124792206
0,1915731911423 0,0838470059190
0,2006180502975 0,0878057245404
0,2066479564010 0,0209378155398 0,0904448702879
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0,0688837074973 0,2164045494254 0,0947150978087
0,2229089447751 0,0975619161560

0,2298878293708 0,1006164071028
0,2360643607150 0,1033197272129

0,2479775476812 0,1085338443455
0,2554309215231 0,1117960078920

0,2674907337301 0,1170742993871
0,2705056867818 0,1183938722609

0,2832772328580 0,1239836726555
0,2917915969087 0,1277102062519

0,3065171058277 0,1341552094704
0,3099719346015 0,1356673054319

0,3246068241382 0,1420726467131
0,3343634171626 0,1463428742339

0,3501499162905 0,1532522475023
0,3606742490424 0,1578584963479

0,3719663215219 0,1628007665183
0,3819601591693 0,1671748303389

0,4012361005951 0,1756114490807
0,4132959128021 0,1808897405758

0,4328090988509 0,1894301956175
0,4376873953631 0,1915653093779

0,4583521910032 0,2006097964067
0,4721287214299 0,2066394544259

0,4959550953625 0,2170676886910
0,5015451257439 0,2195143113509

0,5252248744357 0,2298783712535
0,5410113735636 0,2367877445219

0,5665544657159 0,2479673453111
0,5835831938175 0,2554204125039

0,6018541508926 0,2634171736211
0,6180245198843 0,2704945575518

0,6492136482763 0,2841452934262
0,6687268343252 0,2926857484679

0,7002998325809 0,3065044950046
0,7081930821449 0,3099591816388

0,7416294238611 0,3245934690622
0,7639203183387 0,3343496606778

0,8024722011902 0,3512228981614
0,8115170603454 0,3551816167828

0,8498316985739 0,3719510179666
0,8753747907262 0,3831306187558

0,9167043820064 0,4012195928134
0,9442574428599 0,0956732817736 0,4132789088518

0,3099766837377 0,9738204724145 0,0986686429202 0,4262179401393
0,3183050093751 0,9999846790536 0,1013196313059 0,4376693878907
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0,3343685400051 1,0504497488714 0,1064328119124 0,4597567425069
0,3444185374863 1,0820227471272 0,1096318254669 0,4735754890437
0,3606797749979 1,1331089314318 0,1148079381284 0,4959346906221
0,3647450843758 1,1458804775080 0,1161019662938 0,5015244910167
0,3819660112501 1,1999816148643 0,1215835575671 0,5252032654689
0,3934466291663 1,2360490397686 0,1252379517493 0,5409891151037
0,4133022449836 1,2984272965527 0,1315581905602 0,5682905868525
0,4179606750063 1,3130621860893 0,1330410148906 0,5746959281337
0,4376941012510 1,3750565730096 0,1393223595525 0,6018293892201
0,4508497187474 1,4163861642898 0,1435099226605 0,6199183632776
0,4721359549996 1,4832588477223 0,1502855420992 0,6491869381244
0,4863267791677 1,5278406366773 0,1548026217250 0,6686993213556
0,5015528100076 1,5756746233071 0,1596492178687 0,6896351137604
0,5150283239582 1,6180091989379 0,1639386071806 0,7081639454426
0,5410196624969 1,6996633971477 0,1722119071926 0,7439020359332
0,5572809000084 1,7507495814524 0,1773880198541 0,7662612375116
0,5835921350013 1,8334087640128 0,1857631460700 0,8024391856267
0,5901699437495 1,8540735596529 0,1878569276240 0,8114836726555
0,6180339887499 1,9416110387255 0,1967263286167 0,8497967345311
0,6366100187502 1,9999693581072 0,2026392626118 0,8753387757815
0,6687370800101 2,1008994977428 0,2128656238249 0,9195134850139
0,6762745781211 2,1245792464347 0,2152648839907 0,9298775449165
0,7082039324994 2,2248882715834 0,2254283131488 0,9737804071866
0,7294901687516 2,2917609550160 0,2322039325875 1,0030489820334
0,7639320225002 2,3999632297287 0,2431671151342 1,0504065309378
0,7868932583326 2,4720980795372 0,2504759034987 1,0819782302074
0,8115294937453 2,5494950957216 0,2583178607888 1,1158530538998
0,8333333333333 2,6179938779915 0,2652582384865 1,1458333333333
0,8753882025019 2,7501131460191 0,2786447191050 1,2036587784401
0,9016994374948 2,8327723285796 0,2870198453209 1,2398367265553
0,9442719099992 2,9665176954446 0,3005710841984 1,2983738762489
0,9549150281253 2,9999540371608 0,3039588939177 1,3130081636722
1,0000000000000 3,1415926535898 0,3183098861838 1,3750000000000
1,0300566479165 3,2360183978758 0,3278772143612 1,4163278908852
1,0820393249937 3,3993267942955 0,3444238143851 1,4878040718663
1,0942352531274 3,4376414325239 0,3483058988813 1,5045734730501
1,1458980337503 3,5999448445930 0,3647506727013 1,5756097964067
1,1803398874990 3,7081471193057 0,3757138552480 1,6229673453111
1,2360679774998 3,8832220774509 0,3934526572334 1,6995934690622
1,2732200375004 3,9999387162144 0,4052785252237 1,7506775515630
1,3130823037529 4,1251697190287 0,4179670786575 1,8054881676602
1,3483616572916 4,2360030769294 0,4291968456671 1,8539972787759
1,4164078649987 4,4497765431669 0,4508566262976 1,9475608143733
1,4589803375032 4,5835219100319 0,4644078651750 2,0060979640669
1,5278640450004 4,7999264594573 0,4863342302684 2,1008130618756
1,5450849718747 4,8540275968137 0,4918158215417 2,1244918363278
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1,6180339887499 5,0832036923152 0,5150362148005 2,2247967345311
1,6666666666667 5,2359877559830 0,5305164769730 2,2916666666667
1,7507764050038 5,5002262920383 0,5572894382100 2,4073175568802
1,7705098312484 5,5622206789585 0,5635707828720 2,4344510179666
1,8541019662497 5,8248331161764 0,5901789858501 2,5493902035933
1,9098300562505 5,9999080743217 0,6079177878355 2,6260163273445
2,0000000000000 6,2831853071796 0,6366197723676 2,7500000000000
2,0601132958330 6,4720367957516 0,6557544287223 2,8326557817704
2,1246117974981 6,6746648147503 0,6762849394464 2,9213412215599
2,1816949906249 6,8539969549208 0,6944550841536 2,9998306121092
2,2917960675006 7,1998896891860 0,7295013454026 3,1512195928134
2,3606797749979 7,4162942386115 0,7514277104960 3,2459346906221
2,4721359549996 7,7664441549019 0,7869053144668 3,3991869381244
2,5000000000000 7,8539816339745 0,7957747154595 3,4375000000000
2,6180339887499 8,2247963459050 0,8333461009843 3,5997967345311
2,6967233145832 8,4720061538587 0,8583936913341 3,7079945575518
2,8328157299975 8,8995530863337 0,9017132525952 3,8951216287466
2,8647450843758 8,9998621114824 0,9118766817532 3,9390244910167
3,0000000000000 9,4247779607693 0,9549296585514 4,1250000000000
3,0901699437495 9,7080551936273 0,9836316430835 4,2489836726555
3,2360679774998 10,1664073846305 1,0300724296010 4,4495934690622
3,3333333333333 10,4719755119659 1,0610329539460 4,5833333333333
3,4376941012510 10,7998345337790 1,0942520181039 4,7268293892201

3,5300566479165

11,0900000318502

1,1236519298206

4,8538278908851

3,7082039324994

11,6496662323528

1,1803579717002

5,0987804071866

3,8196601125011

11,9998161486433

1,2158355756710

5,2520326546890

4,0000000000000 12,5663706143591 1,2732395447352 5,5000000000000
4,0450849718747 12,7080092307881 1,2875905370012 5,5619918363277
4,2360679774998 13,3080000382202 1,3483823157848 5,8245934690622
4,3633899812498 13,7079939098417 1,3889101683071 5,9996612242185
4,5835921350013 14,3997793783719 1,4590026908052 6,3024391856267
4,6352549156242 14,5620827904409 1,4754474646252 6,3734755089832
4,8541019662497 15,2496110769457 1,5451086444014 6,6743902035933
5,0000000000000 15,7079632679489 1,5915494309190 6,8750000000000
5,2360679774998 16,4495926918100 1,6666922019685 7,1995934690622
5,3934466291663 16,9440123077174 1,7167873826683 7,4159891151036
5,5623058987491 17,4744993485292 1,7705369575502 7,6481706107799
5,7117516385413 17,9439969867709 1,8181070139742 7,8536585029943
6,0000000000000 18,8495559215387 1,9098593171027 8,2500000000000
6,1803398874990 19,4161103872547 1,9672632861669 8,4979673453111
6,4721359549995 20,3328147692609 2,0601448592019 8,8991869381244
6,5450849718747 20,5619908647625 2,0833652524607 8,9994918363277
6,8541019662496 21,5327963841251 2,1817284167690 9,4243902035932
7,0601132958329 22,1800000637003 2,2473038596412 9,7076557817703
7,4164078649987 23,2993324647056 2,3607159434003 10,1975608143733
7,4999999999999 23,5619449019232 2,3873241463784 10,3124999999999

79




7,8541019662496 24,6743890377149 2,5000383029528 10,7993902035932
8,0901699437494 25,4160184615762 2,5751810740024 11,1239836726555
8,4721359549995 26,6160000764404 2,6967646315695 11,6491869381243
8,7267799624996 27,4159878196832 2,7778203366142 11,9993224484369
9,0000000000000 28,2743338823080 2,8647889756541 12,3749999999999
9,2418082864578 29,0339970186210 2,9417589437948 12,7074863938794
9,7082039324993 30,4992221538913 3,0902172888029 13,3487804071865
10,0000000000000 31,4159265358978 3,1830988618379 13,7500000000000
10,4721359549995 32,8991853836199 3,3333844039371 14,3991869381243
10,5901699437494 33,2700000955505 3,3709557894619 14,5614836726554
11,0901699437493 34,8407964223452 3,5301107325537 15,2489836726553
11,4235032770827 35,8879939735419 3,6362140279484 15,7073170059887
11,9999999999999 37,6991118430773 3,8197186342055 16,4999999999999
12,1352549156240 38,1240276923639 3,8627716110036 16,6859755089831
12,7082039324992 39,9240001146604 4,0451469473542 17,4737804071864
13,0901699437494 41,1239817295249 4,1667305049213 17,9989836726554
13,7082039324992 43,0655927682502 4,3634568335380 18,8487804071864
14,1202265916658 44,3600001274005 4,4946077192825 19,4153115635405
14,5623058987489 45,7488332308370 4,6353259332043 20,0231706107798
14,9535599249990 46,9779940053917 4,7598659577689 20,5611448968737
15,7082039324992 49,3487780754298 5,0000766059056 21,5987804071864
16,1803398874989 50,8320369231523 5,1503621480048 22,2479673453109

16,9442719099990 53,2320001528806 5,3935292631390 23,2983738762486
17,1352549156240 53,8319909603127 5,4543210419225 23,5609755089830
17,9442719099988 56,3735928064701 5,7118391493227 24,6733738762484
18,4836165729155 58,0679940372419 5,8835178875896 25,4149727877588
19,4164078649986 60,9984443077827 6,1804345776058 26,6975608143731
19,6352549156239 61,6859725942869 6,2500957573820 26,9984755089828
20,5623058987487 64,5983891523750 6,5451852503070 28,2731706107795
21,1803398874987 66,5400001911008 6,7419115789237 29,1229673453107
22,1803398874986 69,6815928446902 7,0602214651075 30,4979673453106
22,8470065541653 71,7759879470834 7,2724280558967 31,4146340119772
23,5623058987488 74,0231671131447 7,5001149088584 32,3981706107796
24,1953682114567 76,0119910240124 7,7016249015637 33,2686312907529
25,4164078649984 79,8480002293208 8,0902938947084 34,9475608143728
26,1803398874987 82,2479634590498 8,3334610098427 35,9979673453107
27,4164078649983 86,1311855365002 8,7269136670760 37,6975608143727
27,7254248593732 87,1019910558628 8,8252768313843 38,1224591816382
29,0344418537480 91,2143892288148 9,2419498818764 39,9223575489035
29,9071198499981 93,9559880107834 9,5197319155379 41,1222897937473
31,4164078649984 98,6975561508596 10,0001532118112 43,1975608143728
31,7705098312478 99,8100002866504 10,1128673683855 43,6844510179657
33,2705098312478 104,5223892670350 10,5903321976612 45,7469510179657
34,2705098312479 107,6639819206250 10,9086420838450 47,1219510179659
35,8885438199976 112,7471856129400 11,4236782986454 49,3467477524968
36,9672331458309 116,1359880744830 11,7670357751791 50,8299455755175
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38,1246117974976 119,7720003439810 12,1354408420627 52,4213412215592
39,1489281364556 122,9899850294040 12,4614908593326 53,8297761876264
41,1246117974974 129,1967783047500 13,0903705006140 56,5463412215590
42,3606797749974 133,0800003822020 13,4838231578474 58,2459346906214
44,3606797749971 139,3631856893800 14,1204429302149 60,9959346906210
44,8606797749971 140,9339820161750 14,2795978733068 61,6834346906210
46,9787137637467 147,5879820352840 14,9537890311991 64,5957314251517
48,3907364229134 152,0239820480250 15,4032498031274 66,5372625815059
50,8328157299968 159,6960004586420 16,1805877894169 69,8951216287456
51,4057647468715 161,4959728809370 16,3629631257674 70,6829265269483
53,8328157299963 169,1207784194090 17,1355174479681 74,0201216287449
55,4508497187464 174,2039821117250 17,6505536627687 76,2449183632763
58,0688837074960 182,4287784576290 18,4838997637528 79,8447150978070
59,8142396999959 187,9119760215660 19,0394638310757 82,2445795874944
61,6869176962462 193,7951674571250 19,6355557509210 84,8195118323385
63,3442963479120 199,0019760534150 20,1631157608962 87,0984074783790
66,5410196624956 209,0447785340700 21,1806643953223 91,4939020359314
68,5410196624959 215,3279638412510 21,8172841676900 94,2439020359318
71,7770876399951 225,4943712258790 22,8473565972908 98,6934955049933
72,5861046343700 228,0359730720370 23,1048747046910 99,8058938722587
76,0131556174944 238,8023712640980 24,1957389130754 104,5180889740550
78,2978562729111 245,9799700588070 24,9229817186651 107,6595523752530
82,2492235949949 258,3935566095000 26,1807410012280 113,0926824431180
83,1762745781189 261,3059731675860 26,4758304941528 114,3673775449140
87,1033255612437 273,6431676864430 27,7258496456292 119,7670726467100
89,7213595499940 281,8679640323490 28,5591957466135 123,3668693812420
93,9574275274933 295,1759640705680 29,9075780623981 129,1914628503030
96,7814728458264 304,0479640960480 30,8064996062546 133,0745251630110
99,8115294937434 313,5671678011050 31,7709965929835 137,2408530538970
102,4932244843670 321,9919610828170 32,6246066202286 140,9281836660050
107,6656314599930 338,2415568388190 34,2710348959362 148,0402432574900
110,9016994374930 348,4079642234510 35,3011073255373 152,4898367265530
116,1377674149920 364,8575569152580 36,9677995275056 159,6894301956140
117,4467844093670 368,9699550882100 37,3844725779977 161,4893285628790
122,9918693812410 386,3903532993810 39,1495279442743 169,1138203992060
126,6885926958240 398,0039521068300 40,3262315217924 174,1968149567580
133,0820393249910 418,0895570681400 42,3613287906447 182,9878040718630
134,5820393249900 422,8019460485210 42,8387936199200 185,0503040718610
140,9361412912390 442,7639461058510 44,8613670935971 193,7871942754540
145,1722092687400 456,0719461440730 46,2097494093820 199,6117877445170
152,0263112349890 477,6047425281960 48,3914778261508 209,0361779481090
156,5957125458220 491,9599401176120 49,8459634373301 215,3191047505050
161,4984471899890 507,3623352582280 51,4065523439043 222,0603648862350
165,8375208322780 520,9939371362300 52,7877223811246 228,0265911443830
174,2066511224870 547,2863353728870 55,4516992912583 239,5341452934200
179,4427190999880 563,7359280646990 57,1183914932271 246,7337387624830
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187,9148550549860 590,3519281411350 59,8151561247962 258,3829257006060
190,0328890437360 597,0059281602450 60,4893472826885 261,2952224351370
199,0050249987340 625,1927245634760 63,3452668573495 273,6319093732590
204,9864489687340 643,9839221656350 65,2492132404572 281,8563673320100
215,3312629199850 676,4831136776380 68,5420697918724 296,0804865149800
217,7583139031080 684,1079192161040 69,3146241140724 299,4176816167730
228,0394668524820 716,4071137922910 72,5872167392259 313,5542669221630
234,8935688187330 737,9399101764200 74,7689451559952 322,9786571257580
245,9837387624810 772,7807065987610 78,2990558885486 338,2276407984110
253,3771853916470 796,0079042136570 80,6524630435844 348,3936299135150
261,3099766837310 820,9295030593300 83,1775489368874 359,3012179401300
268,3307453166450 842,9858982190440 85,4123290013528 368,9547748103860
281,8722825824790 885,5278922117020 89,7227341871941 387,5743885509080
290,3444185374800 912,1438922881460 92,4194988187640 399,2235754890340
304,0526224699770 955,2094850563890 96,7829556523013 418,0723558962180
307,4796734531010 965,9758832484510 97,8738198606857 422,7845509980140
321,9968943799730 | 1011,5830778628500 | 102,4947948016230 442,7457297724640
331,6750416645570 | 1041,9878742724600 | 105,5754447622490 456,0531822887660
348,4133022449750 | 1094,5726707457700 | 110,9033985825170 479,0682905868400
352,3403532280960 | 1106,9098652646200 | 112,1534177339920 484,4679856886330
368,9756081437200 | 1159,1710598981400 | 117,4485838328230 507,3414611976150
380,0657780874710 | 1194,0118563204900 | 120,9786945653770 522,5904448702730
398,0100499974680 | 1250,3854491269500 | 126,6905337146990 547,2638187465180
409,9728979374670 | 1287,9678443312600 | 130,4984264809140 563,7127346640170
422,8084238737180 | 1328,2918383175500 | 134,5841012807910 581,3615828263630
434,1682661489210 | 1363,9798353552700 | 138,2000513824770 596,9813659547670
456,0789337049640 | 1432,8142275845800 | 145,1744334784520 627,1085338443260
469,7871376374660 | 1475,8798203528400 | 149,5378903119900 645,9573142515150
491,9674775249610 | 1545,5614131975200 | 156,5981117770970 676,4552815968210
497,5125624968350 | 1562,9818114086900 | 158,3631671433740 684,0797734331480
521,0019193787060 | 1636,7758024263200 | 165,8400616589720 716,3776391457200
536,6614906332890 | 1685,9717964380900 | 170,8246580027060 737,9095496207730
563,7445651649580 | 1771,0557844234000 | 179,4454683743880 775,1487771018170
570,0986671312020 | 1791,0177844807200 | 181,4680418480640 783,8856673054030
597,0150749962000 | 1875,5781736904200 | 190,0358005720480 820,8957281197750
614,9593469062010 | 1931,9517664969000 | 195,7476397213710 845,5691019960270
643,9937887599460 | 2023,1661557257000 | 204,9895896032470 885,4914595449260
663,3500833291110 | 2083,9757485449100 | 211,1508895244970 912,1063645775280
684,1184005574470 | 2149,2213413768700 | 217,7616502176780 940,6628007664890
702,4990114655630 | 2206,9657335743000 | 223,6123803838290 965,9361407651490
737,9512162874400 | 2318,3421197962700 | 234,8971676656450 | 1014,6829223952300
760,1315561749420 | 2388,0237126409800 | 241,9573891307530 | 1045,1808897405500
796,0200999949340 | 2500,7708982539000 | 253,3810674293970 | 1094,5276374930300
804,9922359499330 | 2528,9576946571300 | 256,2369870040580 | 1106,8643244311600
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*1/1,375 *2,71828
0,0095677218156 0,035760652
0,0098552954616 0,036835497
0,0103526512551 0,038694432
0,0104693385027 0,039130566
0,0109636336159 0,040978061
0,0112931636914 0,042209724
0,0118263545539 0,044202597
0,0121818151288 0,045531179
0,0125632062033 0,046956679
0,0129007492438 0,048218292
0,0135517964297 0,050651669
0,0139591180036 0,052174088
0,0146181781546 0,054637414
0,0147829431923 0,055253246
0,0154808990925 0,05786195
0,0159462030260 0,059601087
0,0167509416044 0,062608906
0,0169397455371 0,063314586
0,0177395318308 0,066303895
0,0182727226932 0,068296768
0,0191354436312 0,071521304
0,0197105909231 0,073670995
0,0203276946446 0,075977503
0,0208738507567 0,078018835
0,0219272672319 0,081956121
0,0225863273829 0,084419448
0,0236527091077 0,088405193
0,0239193045390 0,08940163
0,0250486209081 0,093622602
0,0258014984875 0,096436584
0,0271035928594 0,101303337
0,0274090840399 0,102445152
0,0287031654467 0,107281956
0,0295658863847 0,110506492
0,0309617981850 0,115723901
0,0318924060519 0,119202173
0,0328909008478 0,122934182
0,0337746000005 0,126237127
0,0354790636616 0,13260779
0,0365454453865 0,136593536
0,0382708872623 0,143042608
0,0387022477313 0,144654876
0,0405295200006 0,151484552
0,0417477015135 0,15603767
0,0438545344638 0,163912243

12,71828
0,004839684
0,004985149
0,005236729
0,005295753
0,005545785
0,005712473
0,005982179
0,006161983
0,006354904
0,006525645
0,006854967
0,007061004
0,00739438
0,007477724
0,007830774
0,008066141
0,008473205
0,008568709
0,008973268
0,009242975
0,009679369
0,009970298
0,010282451
0,010558715
0,01109157
0,011424945
0,011964358
0,012099211
0,012670458
0,01305129
0,013709934
0,013864462
0,014519053
0,014955447
0,015661548
0,016132282
0,016637355
0,01708436
0,017946537
0,01848595
0,019358738
0,019576935
0,020501232
0,021117431
0,02218314
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0,0443488295770

0,0464426972775

0,0478386090779

0,0500972418162

0,0516029969751

0,0532185954924

0,0546484507573

0,0574063308935

0,0591317727693

0,0619235963701

0,0626215522702

0,0655781409087

0,0675492000010

0,0709581273232

0,0717579136169

0,0751458627243

0,0774044954626

0,0810590400012

0,0834954030270

0,0861094963402

0,0884230507578

0,0928853945551

0,0956772181558

0,1001944836324

0,1013238000015

0,1061076609093

0,1092969015145

0,1148126617870

0,1161067431939

0,1215885600018

0,1252431045405

0,1311562818174

0,1350984000020

0,1393280918326

0,1430715015150

0,1502917254486

0,1548089909252

0,1621180800025

0,1639453522718

0,1716858018180

0,1768461015155

0,1857707891102

0,1878646568107

0,1967344227261

0,2026476000031

0,2122153218186

0,165759738
0,173585851

0,17880326
0,187245204
0,192873168
0,198911685
0,204255962
0,214563912
0,221012984
0,231447801
0,234056506
0,245107155
0,252474254

0,26521558
0,268204889
0,280867807
0,289309751
0,302969105
0,312075341
0,321845867
0,330493089
0,347171702
0,357606519
0,374490409
0,378711381
0,396591707
0,408511924
0,429127823
0,433964627
0,454453657
0,468113011
0,490214309
0,504948508
0,520757553
0,534749052
0,561735613
0,578619503

0,60593821
0,612767887
0,641698862
0,660986179
0,694343403
0,702169517
0,735321464
0,757422762
0,793183414

0,022433171
0,023492322
0,024198422
0,025340917

0,02610258
0,026919805
0,027643076
0,029038107
0,029910895
0,031323096
0,031676146
0,033171691
0,034168721
0,035893074
0,036297634
0,038011375

0,03915387
0,041002465
0,042234861

0,04355716
0,044727436
0,046984644
0,048396845
0,050681834
0,051253081
0,053672923
0,055286151
0,058076214
0,058730805
0,061503697
0,063352292
0,066343382
0,068337441
0,070476966
0,072370512
0,076022751

0,07830774

0,08200493
0,082929227
0,086844614
0,089454872
0,093969288
0,095028438
0,099515072
0,102506162
0,107345846
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0,2185938030290

0,2254375881729

0,2314945522728

0,2431771200037

0,2504862090810

0,2623125636348

0,2652691522733

0,2777934627274

0,2861430030301

0,3005834508972

0,3039714000046

0,3183229827280

0,3278907045435

0,3433716036361

0,3536922030311

0,3647656800055

0,3745660537878

0,3934688454523

0,4052952000061

0,4244306436373

0,4292145045451

0,4494792645454

0,4629891045456

0,4863542400073

0,4918360568153

0,5150574054541

0,5305383045466

0,5555869254547

0,5722860060601

0,5902032681784

0,6060606060606

0,6366459654559

0,6557814090871

0,6867432072721

0,6944836568184

0,7272727272727

0,7491321075756

0,7869376909045

0,7958074568199

0,8333803881820

0,8584290090902

0,8989585290908

0,9259782090912

0,9549689481839

0,9806266598484

1,0301148109082

0,817023849
0,84260342
0,865242141
0,908907315
0,936226022
0,980428619
0,991479268
1,038290569
1,069498103
1,123471226
1,136134144
1,189775122
1,225535773
1,283397724
1,321972357
1,363360972
1,399991192
1,470642928
1,514845525
1,586366829
1,604247155
1,679989431
1,730484282
1,81781463
1,83830366
1,925096586
1,982958536
2,076581138
2,138996206
2,205964392
2,265233333
2,379550243
2,451071547
2,566795448
2,595726423
2,71828
2,799982385
2,941285856
2,974437804
3,114871707
3,208494309
3,359978862
3,460968564
3,569325365
3,665224526
3,850193171

0,110572303
0,114034126
0,117097948
0,123007394
0,126704584
0,132686763
0,134182308
0,140517537
0,144741023
0,152045501
0,153759243

0,16101877
0,165858454
0,173689228
0,178909744
0,184511092
0,189468459
0,199030145
0,205012324
0,214691693
0,217111535
0,227362151
0,234195895
0,246014789
0,248787681
0,260533842
0,268364616
0,281035075
0,289482047
0,298545217
0,306566407
0,322037539
0,331716908
0,347378456
0,351293843
0,367879689
0,378936919

0,39806029
0,402546924
0,421552612

0,43422307
0,454724303
0,468391791
0,483056309
0,496034867
0,521067684
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1,0610766090932

1,1111738509094

1,1236981613635

1,1767519918181

1,2121212121212

1,2732919309119

1,2876435136352

1,3484377936361

1,3889673136368

1,4545454545455

1,4982642151513

1,5451722163623

1,5866872659090

1,6667607763641

1,7168580181803

1,7979170581815

1,8181818181818

1,9040247190908

1,9612533196968

2,0602296218164

2,0834509704551

2,1818181818182

2,2473963227269

2,3535039836362

2,4242424242424

2,5001411645462

2,5673139257574

2,6968755872723

2,7779346272735

2,9090909090909

2,9418799795453

3,0807767109089

3,1733745318180

3,3335215527282

3,3710944840903

3,5302559754543

3,6363636363636

3,8080494381816

3,9225066393937

4,0453133809084

4,1540011916664

4,3636363636363

4,4947926454538

4,7070079672724

4,7600617977271

4,9848014299997

3,965917072
4,153162276
4,199973577
4,398269431
4,530466667
4,759100486
4,812741464
5,039968293
5,191452845
5,43656
5,59996477
5,775289757
5,930457859
6,229743414
6,416988619
6,719957724
6,7957
7,116549431
7,330449052
7,700386343
7,787179268
8,15484
8,399947155
8,796538862
9,060933333
9,344615122
9,595682385
10,07993659
10,38290569
10,87312
10,99567358
11,51481886
11,86091572
12,45948683
12,59992073
13,19480829
13,5914
14,23309886
14,6608981
15,11990488
15,52614024
16,30968
16,79989431
17,59307772
17,79137358
18,63136829

0,536729232
0,562070149
0,568405378
0,59524184
0,613132814
0,644075079
0,651334605
0,682086454
0,702587686
0,735759377
0,757873838
0,781601527
0,802601274
0,843105224
0,868446141
0,909448605
0,919699222
0,963121529
0,992069733
1,042135369
1,05388153
1,103639066
1,136810757
1,19048368
1,226265629
1,264657836
1,29863614
1,364172908
1,405175373
1,471518755
1,4881046
1,558363369
1,605202548
1,686210447
1,705216135
1,78572552
1,839398443
1,926243057
1,984139467
2,046259362
2,101237414
2,207278132
2,273621513
2,38096736
2,407803821
2,521484897

86



5,1346278515149

5,3937511745445

5,4545454545454

5,7120741572724

5,8837599590905

6,1615534218178

6,3467490636361

6,5454545454545

6,7213151174238

7,0605119509086

7,2727272727273

7,6160988763633

7,7019417772723

8,0655781409086

8,3080023833329

8,7272727272727

8,8256399386357

9,2423301327267

9,5201235954541

9,9696028599994

10,2692557030297

10,5907679263629

10,8753163090902

11,4241483145449

11,7675199181810

12,3231068436356

12,4620035749993

13,0503795709082

13,4426302348477

14,1210239018172

14,2801853931810

14,9544042899991

15,4038835545445

16,1311562818172

16,6160047666656

17,1362224718173

17,5966314265140

18,4846602654534

19,0402471909082

19,9392057199988

20,1639453522715

21,1159577118168

21,7506326181804

22,8482966290898

23,1058253318166

24,1967344227257

19,19136477
20,15987317
20,3871
21,34964829
21,99134715
23,02963772
23,72183144
24,46452
25,12182263
26,38961659
27,1828
28,46619772
28,78704715
30,14618715
31,05228049
32,61936
32,98702073
34,54445659
35,58274715
37,26273659
38,38272954
39,58442488
40,64796287
42,69929659
43,98269431
46,05927545
46,57842073
48,77755545
50,24364526
52,77923317
53,37412073
55,89410488
57,57409431
60,29237431
62,10456098
64,04894488
65,7697855
69,08891317
71,16549431
74,52547317
75,36546789
78,9237426
81,29592575
85,39859317
86,36114146
90,43856146

2,597272281
2,728345816
2,759097665
2,889364586
2,9762092
3,116726737
3,210405095
3,310917198
3,399873555
3,57145104
3,678796886
3,852486114
3,895908421
4,079848266
4,202474829
4,414556264
4,4643138
4,675090106
4,815607643
5,042969794
5,194544562
5,35717656
5,501110969
5,778729172
5,9524184
6,233453474
6,303712243
6,601333163
6,79974711
7,14290208
7,223411464
7,564454691
7,791816843
8,159696531
8,404949657
8,668093757
8,900984524
9,350180211
9,631215286
10,08593959
10,19962066
10,68118143
11,00222194
11,55745834
11,68772526
12,2395448
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24,9240071499985

26,1007591418165

26,8852604696952

27,7269903981801

28,4719477356040

29,9088085799981

30,8077671090890

32,2623125636343

32,6259489272706

34,1663372827249

35,1932628530279

36,9693205309068

37,3860107249974

39,1511387127246

40,3278907045428

42,2319154236334

43,5012652363607

44,8632128699972

46,0685791621178

48,3934688454513

49,8480142999970

52,2015182836328

52,7898942795418

55,2822949945414

56,9438954712081

59,8176171599963

60,4918360568138

63,3478731354500

65,2518978545411

68,3326745654496

70,3865257060556

72,5902032681770

74,5405268977216

78,3022774254491

80,6557814090857

84,4638308472667

85,4158432068121

89,4486322772659

92,1371583242356

96,7869376909026

97,8778467818108

102,4990118481740

105,5797885590830

110,5645899890830

113,8877909424160

117,4534161381740

93,15684146

97,5551109
100,4872905
103,6333698
106,4177484
111,7882098
115,1481886
120,5847486
121,9438886

127,701298

131,539571
138,1778263
139,7352622
146,3326663
150,7309358
157,8474852
162,5918515
167,6823146
172,1875339
180,8771229
186,3136829
195,1102218
197,3093565
206,6250407
212,8354967
223,5764195
226,0964037
236,7712278
243,8877772
255,4025961

263,079142
271,3156844
278,6052823
292,6653327
301,4618715
315,6949704
319,2532451
334,3263387
344,3750678
361,7542459
365,8316659
383,1038941

394,618713
413,2500813
425,6709935

438,997999

12,60742449
13,20266633
13,59949422
14,02527032
14,40209549
15,12890938
15,58363369
16,31939306
16,50333291
17,28251459
17,80196905
18,70036042
18,91113673
19,80399949
20,39924133
21,36236286
22,00444388
22,69336407
23,30308002
24,47908959
25,21484897
26,40533265
26,70295357
27,96369602
28,80419099
30,25781877
30,59886199
32,04354429
33,00666581
34,56502918

35,6039381
36,71863439
37,70517551
39,60799898
40,79848266
42,72472571
43,20628648
45,24621061
46,60616003
48,95817919
49,50999872
51,84754377
53,40590714
55,92739204
57,60838197
59,41199847
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120,6091060598390

126,6957462709000

130,5037957090820

136,6653491308990

138,2057374863530

144,7309272718070

149,0810537954430

156,6045548508980

158,3696828386240

165,8468849836230

170,8316864136240

178,8972645545310

184,2743166484710

190,0436194063500

195,1496329575600

204,9980236963480

211,1595771181670

221,1291799781650

223,6215806931640

234,1795595490720

241,2182121196780

253,3914925418000

256,2475296204340

268,3458968317960

276,4114749727060

289,4618545436130

298,1621075908850

307,4970355445220

315,7587390173970

331,6937699672470

341,6633728272480

357,7945291090620

361,8273181795160

378,9104868208770

390,2992659151190

409,9960473926970

414,6172124590560

434,1927818154180

447,2431613863280

468,3591190981430

482,4364242393540

497,5406549508700

510,9083719749550

536,6917936635930

552,8229499454120

578,9237090872250

450,7928161
473,5424556
487,7755545
510,8051922
516,5626016
540,9513794
557,2105645
585,3306654
591,9280695

619,875122
638,5064902
668,6526774
688,7501355
710,3136834
729,3980984
766,2077883

789,237426
826,5001626
835,8158468
875,2777181
901,5856323
947,0849112
957,7597354
1002,979016
1033,125203
1081,902759
1114,421129
1149,311682
1180,190915
1239,750244

1277,01298
1337,305355
1352,378448
1416,229097
1458,796197
1532,415577
1549,687805
1622,854138
1671,631694
1750,555436
1803,171265
1859,625366
1909,589013
2005,958032
2066,250407
2163,805517

61,00825553
64,08708857
66,01333163
69,13005837
69,90924005
73,20990663
75,41035102
79,21599795
80,10886071
83,89108806
86,41257296
90,49242122
93,21232007
96,13063286
98,71343104
103,6950875
106,8118143
111,8547841
113,1155265
118,4561172
122,0165111
128,1741771
129,6188594
135,7386318
139,8184801
146,4198133

150,820702
155,5426313
159,7216866
167,7821761
172,8251459
180,9848424
183,0247666
191,6660239
197,4268621
207,3901751
209,7277202
219,6297199
226,2310531
236,9122345
244,0330221
251,6732642
258,4351176
271,4772637
279,6369602
292,8396265
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585,4488988726780 2188,194295 296,1402931
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