On some equations concerning Fivebranes and Knots, Wilson Loops in Chern-Simons Theory, cusp anomaly and integrability from String theory. Mathematical connections with some sectors of Number Theory

Michele Nardelli ${ }^{1,2}$
${ }^{1}$ Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10
80138 Napoli, Italy
${ }^{2}$ Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

Abstract

The present paper is a review, a thesis of some very important contributes of E. Witten, C. Beasley, R. Ricci, B. Basso et al. regarding various applications concerning the Jones polynomials, the Wilson loops and the cusp anomaly and integrability from string theory. In this work, in the Section 1, we have described some equations concerning the knot polynomials, the Chern-Simons from four dimensions, the D3-NS5 system with a theta-angle, the Wick rotation, the comparison to topological field theory, the Wilson loops, the localization and the boundary formula. We have described also some equations concerning electric-magnetic duality to $\mathrm{N}=4$ super Yang-Mills theory, the gravitational coupling and the framing anomaly for knots. Furthermore, we have described some equations concerning the gauge theory description, relation to Morse theory and the action. In the Section 2, we have described some equations concerning the applications of non-abelian localization to analyze the Chern-Simons path integral including Wilson loop insertions. In the Section 3, we have described some equations concerning the cusp anomaly and integrability from String theory and some equations concerning the cusp anomalous dimension in the transition regime from strong to weak coupling. In the Section 4, we have described also some equations concerning the "fractal" behaviour of the partition function. Also here, we have described some mathematical connections between various equation described in the paper and (i) the Ramanujan's modular equations regarding the physical vibrations of the bosonic strings and the superstrings, thence the relationship with the Palumbo-Nardelli model, (ii) the mathematical connections with the Ramanujan's equations concerning π and, in conclusion, (iii) the mathematical connections with the aurea ratio ($\Phi=\frac{\sqrt{5}+1}{2} \cong 1,618033988$) and with 1,375 that is the mean real value for the number of partitions $\mathrm{p}(\mathrm{n})$.

1. On some equations concerning fivebranes and knots: an approach to Khovanov homology of knots via gauge theory. [1]

The Chern-Simons action for a gauge theory with gauge group G (here G is always a compact Lie group, and all representations considered are finite-dimensional and unitary) and gauge field A on a three-manifold W can be written

$$
\begin{equation*}
I=\frac{k}{4 \pi} \int_{W} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right) \tag{1.1}
\end{equation*}
$$

Here k is an integer for topological reasons; up to a choice of orientation, one may take k to be positive. In this theory, to an oriented embedded loop $K \subset W$ and a representation R of G, one can associate an observable, the trace of the holonomy or Wilson loop operator:

$$
\begin{equation*}
\boldsymbol{w}(K, R)=T r_{R} P \exp \left(-\oint_{K} A\right) . \tag{1.2}
\end{equation*}
$$

Reversing the orientation of K has the same effect as replacing R by its complex conjugate. The Jones polynomial and its generalizations can be computed as expectation values of Wilson loop operators, if we express the argument q of the knot polynomials in terms of the Chern-Simons level k by

$$
\begin{equation*}
q=\exp (2 \pi i /(k+h)) \tag{1.3}
\end{equation*}
$$

where h is the dual Coxeter number of G. For example, if we take $G=S U(2), R$ to be the twodimensional irreducible representation of $S U(2)$, and $W=S^{3}$, then the expectation value of $\boldsymbol{w}(K, R)$ is equal to the Jones polynomial:

$$
\begin{equation*}
\mathfrak{J}(q ; K)=\langle\boldsymbol{w}(K, R)\rangle . \tag{1.4}
\end{equation*}
$$

Now we adopt a ten-dimensional notation in which $\mathcal{N}=4$ super Yang-Mills theory comes by dimensional reduction from ten dimensions and the supersymmetries of the D3-brane transform under $S O(1,9)$ as a spinor $\mathbf{1 6}$ of definite chirality; thus a generator ε of supersymmetry obeys

$$
\begin{equation*}
\Gamma_{012 \ldots . .9} \varepsilon=\varepsilon, \tag{1.5}
\end{equation*}
$$

where $\Gamma_{l}, l=0, \ldots 9$, are the $S O(1,9)$ gamma matrices. The supersymmetries transform as $\mathbf{1 6}=$ $V_{8} \otimes V_{2}$, where V_{2} is a two-dimensional real vector space. The natural operators that act on V_{2} are the even elements of the $S O(1,9)$ Clifford algebra that commute with U, where $\mathrm{U}=S O(1,2) \times S O(3)_{X} \times S O(3)_{Y}$. They are generated by

$$
\begin{equation*}
B_{0}=\Gamma_{456789} ; \quad B_{1}=\Gamma_{3456} ; \quad B_{2}=\Gamma_{3789}, \tag{1.6}
\end{equation*}
$$

and in view of the algebraic relations they obey, we can choose a basis for V_{2} in which

$$
B_{0}=\left(\begin{array}{cc}
0 & 1 \tag{1.7}\\
-1 & 0
\end{array}\right) ; \quad B_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; \quad B_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We take also

$$
\varepsilon_{0}=\binom{-a}{1}, \quad \bar{\varepsilon}_{0}=\left(\begin{array}{ll}
1 & a \tag{1.8}
\end{array}\right)
$$

The fermion fields λ of $\mathcal{N}=4$ super Yang-Mills are adjoint-valued fields that transform as the $\mathbf{1 6}$ of $S O(1,9)$, like the supersymmetry generators. The boundary conditions they obey turn out to be

$$
\begin{equation*}
\lambda \mid \in \mathrm{V}_{8} \otimes \vartheta \tag{1.9}
\end{equation*}
$$

where $\vartheta \in \mathrm{V}_{2}$ is

$$
\begin{equation*}
\vartheta=\binom{a}{1} . \tag{1.10}
\end{equation*}
$$

The boundary conditions on \vec{X} at $x^{3}=0$ are

$$
\begin{equation*}
D_{3} X_{c}-\frac{a}{1+a^{2}} \varepsilon_{c d e}\left[X_{d}, X_{e}\right]=0, \tag{1.11}
\end{equation*}
$$

and the boundary conditions on the gauge fields at $x^{3}=0$ are

$$
\begin{equation*}
F_{3 \mu}+\frac{a}{1-a^{2}} \varepsilon_{\mu \nu \lambda} F^{\nu \lambda}=0 . \tag{1.12}
\end{equation*}
$$

At $a=0$ and $a=\infty$, eqs. (1.11) and (1.12) reduce to the more obvious Neumann boundary conditions $D_{3} X_{a}=F_{3 \mu}=0$. The additional terms in the boundary conditions for generic a reflect boundary corrections to the familiar $\mathcal{N}=4$ super Yang-Mills action in bulk. Let us first consider \vec{X}. The usual bulk action for \vec{X} is in Lorentz signature

$$
\begin{equation*}
I_{\bar{X}}=\frac{1}{g_{Y M}^{2}} \int_{x^{3} \geq 0} d^{4} x \sum_{\mu=0}^{3} \sum_{c=1}^{3} \operatorname{Tr} D_{\mu} X_{c} D^{\mu} X_{c} . \tag{1.13}
\end{equation*}
$$

If we place no restriction on the value of δX_{c} at $x^{3}=0$, we will learn that to make the boundary term in the variation of $I_{\vec{X}}$ vanish, the boundary condition must be $D_{3} X_{c}=0$. Suppose, however, that there is an additional boundary coupling

$$
\begin{equation*}
\widetilde{I}_{\bar{X}}=\frac{2 a}{3 g_{Y M}^{2}\left(1+a^{2}\right)} \int_{x^{3}=0} d^{3} x \varepsilon^{c d e} \operatorname{Tr} X_{c}\left[X_{d}, X_{e}\right] . \tag{1.14}
\end{equation*}
$$

If we now vary $\hat{I}_{\vec{X}}=I_{\vec{X}}+\widetilde{I}_{\vec{X}}$ with respect to \vec{X}, placing again no restriction on $\delta X_{c} \mid$, we find that setting the boundary variation of $\hat{I}_{\vec{X}}$ to zero gives the boundary condition (1.11). So the boundary coupling (1.14) underlies the boundary condition (1.11). The boundary coupling $\widetilde{I}_{\vec{X}}$ is unfamiliar, but it has a more familiar analog for gauge fields. The analog of (1.13) for the gauge field A, whose field strength we denote as $F_{\mu \nu}$, is

$$
\begin{equation*}
I_{A}=\frac{1}{2 g_{Y M}^{2}} \int_{x^{3}>0} d^{4} x \sum_{\mu, v=0}^{3} \operatorname{Tr} F_{\mu v} F^{\mu v} \tag{1.15}
\end{equation*}
$$

Thence, we obtain also that:

$$
\begin{equation*}
I_{\vec{X}}=\frac{1}{g_{Y M}^{2}} \int_{x^{3} \geq 0} d^{4} x \sum_{\mu=0}^{3} \sum_{c=1}^{3} \operatorname{Tr} D_{\mu} X_{c} D^{\mu} X_{c}=\frac{1}{2 g_{Y M}^{2}} \int_{x^{3}>0} d^{4} x \sum_{\mu, \nu=0}^{3} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu} . \tag{1.15b}
\end{equation*}
$$

If we work just with this action, then setting its boundary variation to zero, we learn that the boundary condition on the gauge field must be $F_{3 \mu} \mid=0$.
To arrive at (1.12), we need an additional term in the action. This extra term is the usual topological term of four-dimensional gauge theory

$$
\begin{equation*}
\tilde{I}_{A}=-\frac{\theta}{32 \pi^{2}} \int_{x^{3} \geq 0} d^{4} x \varepsilon^{\mu v \alpha \beta} T r F_{\mu \nu} F_{\alpha \beta}, \tag{1.16}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\theta}{2 \pi}=\frac{2 a}{1-a^{2}} \frac{4 \pi}{g_{Y M}^{2}} \tag{1.16b}
\end{equation*}
$$

Viewed as an equation for a with $\theta, g_{Y M}$ fixed, (1.16b) has two roots. The two roots correspond to half-BPS boundary conditions of the D3-NS5 and $D 3-\bar{N} \overline{5} \overline{5}$ systems, respectively. Although written as a bulk integral, \widetilde{I}_{A} has only a boundary variation, simply because on a manifold V without boundary, $\int_{V} T r F \wedge F$ is a topological invariant. In fact, we can almost write \widetilde{I}_{A} as a boundary integral, the integral over the surface $x^{3}=0$ of the Chern-Simons form:

$$
\begin{equation*}
\widetilde{I}_{A}=-\frac{\theta}{8 \pi^{2}} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} T r\left(A_{\mu} \partial_{v} A_{\lambda}+\frac{2}{3} A_{\mu} A_{v} A_{\lambda}\right) \tag{1.17}
\end{equation*}
$$

Now we want to show an interesting equation concerning the gauge fields as described in the Jormakka's paper "Solutions to Yang-Mills equations" and connected with an Ramanujan's identity concerning π in the my recent paper: "On some equations concerning quantum electrodynamics coupled to quantum gravity, the gravitational contributions to the gauge couplings and quantum effects in the theory of gravitation: mathematical connections with some sector of String Theory and Number Theory"'.

$$
\begin{aligned}
& \int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \int d y_{1} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{1}^{2}}=\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}= \\
& =\frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d x_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d y_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}= \\
& \quad=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}}(2 \pi)(\sqrt{2} \beta)^{-2} \int d x_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)(\sqrt{2} \beta)^{-2} \int d y_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)^{\frac{3}{2}}(\sqrt{2} \beta)^{-3}
\end{aligned}
$$

$$
\begin{align*}
\quad=\left[\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}\right]^{2}=8 \frac{\pi^{3}}{4} \times \frac{1}{(\sqrt{2} \beta)^{6}} \Rightarrow \\
\Rightarrow \pi^{3}\left(\int_{0}^{\infty} x^{3} \frac{\cos \pi x^{2}}{\sinh \pi x} d x+\int_{0}^{\infty} x^{3} \frac{\sin \pi x^{2}}{\sinh \pi x} d x\right)=\frac{1}{16}\left(\frac{\pi^{3}}{4}-3 \pi+\pi^{2}\right) ; \tag{1.18}
\end{align*}
$$

This equation can be connected with the eq. (1.17) that we have multiplied for $\frac{\pi^{2}}{16}$ as follows:

$$
\begin{equation*}
\frac{\theta}{2 \pi}=\frac{2 a}{1-a^{2}} \frac{4 \pi}{g_{Y M}^{2}} \Rightarrow \frac{\theta}{2 \pi} \times \frac{\pi^{2}}{16}=\frac{2 a}{1-a^{2}} \frac{4 \pi}{g_{Y M}^{2}} \times \frac{\pi^{2}}{16}=\frac{2 a}{1-a^{2}} \frac{\pi^{3}}{4 g_{Y M}^{2}} \tag{1.19}
\end{equation*}
$$

thence,

$$
\begin{align*}
\widetilde{I}_{A} & =-\frac{\theta}{2 \pi} \times \frac{1}{4 \pi} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2}{3} A_{\mu} A_{v} A_{\lambda}\right) \Rightarrow \\
\frac{\pi^{2}}{16} \cdot \widetilde{I}_{A} & =-\frac{\theta}{2 \pi} \times \frac{1}{4 \pi} \times \frac{\pi^{2}}{16} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(A_{\mu} \partial_{v} A_{\lambda}+\frac{2}{3} A_{\mu} A_{v} A_{\lambda}\right) \Rightarrow \\
\frac{\pi^{2}}{16} \cdot \widetilde{I}_{A}= & -\frac{1}{4 \pi} \times \frac{2 a}{1-a^{2}} \frac{\pi^{3}}{4 g_{Y M}^{2}} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(A_{\mu} \partial_{v} A_{\lambda}+\frac{2}{3} A_{\mu} A_{v} A_{\lambda}\right) . \tag{1.20}
\end{align*}
$$

We obtain the following mathematical connections:

$$
\begin{gather*}
\frac{\pi^{2}}{16} \cdot \widetilde{I}_{A}=-\frac{1}{4 \pi} \times \frac{2 a}{1-a^{2}} \frac{\pi^{3}}{4 g_{Y M}^{2}} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(A_{\mu} \partial_{V} A_{\lambda}+\frac{2}{3} A_{\mu} A_{v} A_{\lambda}\right) \Rightarrow \\
\Rightarrow \int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \int d y_{1} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{1}^{2}}=\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}= \\
=\frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d x_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d y_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}= \\
=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}}(2 \pi)(\sqrt{2} \beta)^{-2} \int d x_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)(\sqrt{2} \beta)^{-2} \int d y_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)^{\frac{3}{2}}(\sqrt{2} \beta)^{-3}} \\
=\left[\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}\right]^{2}=8 \frac{\pi^{3}}{4} \times \frac{1}{(\sqrt{2} \beta)^{6}} \Rightarrow \\
\Rightarrow \pi^{3}\left(\int_{0}^{\infty} x^{3} \frac{\cos \pi x^{2}}{\sinh \pi x} d x+\int_{0}^{\infty} x^{3} \frac{\sin \pi x^{2}}{\sinh \pi x} d x\right)=\frac{1}{16}\left(\frac{\pi^{3}}{4}-3 \pi+\pi^{2}\right) . \tag{1.21}
\end{gather*}
$$

A Wick rotation $x^{0} \rightarrow-i x^{0}$ reverse the sign of \widetilde{I}_{X}, and multiplies \widetilde{I}_{A} by $-i$. So in Euclidean signature, combining the terms involving X and A, the boundary interactions of the D3-NS5 system are

$$
\begin{equation*}
I^{*}=\frac{1}{g_{Y M}^{2}} \int_{x^{3}=0} d^{3} x\left(-\frac{2 a}{3\left(1+a^{2}\right)} \varepsilon^{a b c} \operatorname{Tr} X_{a}\left[X_{b}, X_{c}\right]+i \frac{2 a}{1-a^{2}} \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2}{3} A_{\mu} A_{v} A_{\lambda}\right)\right) \tag{1.22}
\end{equation*}
$$

In a convenient notation in which $\mathcal{N}=4$ super Yang-Mills is obtained by dimensional reduction from ten dimensions, with the ten dimensions labelled by x^{0}, \ldots, x^{9}, the Euclidean signature version of the chirality condition for supersymmetry generators and fermions is

$$
\begin{equation*}
\Gamma_{0} \Gamma_{1} \ldots \Gamma_{9} \varepsilon=-i \varepsilon, \quad \Gamma_{0} \Gamma_{1} \ldots \Gamma_{9} \lambda=-i \lambda . \tag{1.23}
\end{equation*}
$$

To define a topological field theory, one defines a group $S O^{\prime}(4)$ that acts by rotating x^{0}, \ldots, x^{3} in the usual way, while simultaneously rotating four normal coordinates $x^{4}, \ldots x^{7}$. We pick a supersymmetry generator ε that is $S O^{\prime}(4)$-invariant, meaning that it obeys

$$
\begin{equation*}
\left(\Gamma_{\mu \nu}+\Gamma_{4+\mu, 4+\nu}\right) \varepsilon=0, \quad \mu, \nu=0, \ldots, 3 . \tag{1.24}
\end{equation*}
$$

From the point of view of $S O^{\prime}(4)$ symmetry, four of the adjoint-valued scalar fields of $\mathcal{N}=4$ super Yang-Mills theory are reinterpreted as an adjoint-valued one-form $\phi=\sum_{\mu=0}^{3} \phi_{\mu} d x^{\mu}$, while the other two combine two an adjoint-valued complex scalar field $\sigma . S O^{\prime}(4)$ commutes with a group $S O(2) \cong U(1)$ of R-symmetries that rotates x^{8} and x^{9}. We normalize its generator F so that σ has charge 2 .
We identify that tangential part of ϕ, that is $\vec{\phi}=\sum_{\mu=0}^{2} \phi_{\mu} d x^{\mu}$, with \vec{X}, and we identify the normal part ϕ_{3} with a component of \vec{Y}, say Y_{1}. The boundary couplings (1.22) become in this notation

$$
\begin{equation*}
I^{*}=\frac{1}{g_{Y M}^{2}} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(-\frac{4 a}{3\left(1+a^{2}\right)} \phi_{\mu} \phi_{\nu} \phi_{\lambda}+i \frac{2 a}{1-a^{2}}\left(A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2}{3} A_{\mu} A_{v} A_{\lambda}\right)\right) . \tag{1.25}
\end{equation*}
$$

The condition (1.24) for $S O^{\prime}(4)$-invariance of the supersymmetry generator actually has a twodimensional space of solutions. It is possible to pick a basis of solutions $\varepsilon_{\ell}, \varepsilon_{r}$ that are chiral in the four-dimensional sense,

$$
\begin{equation*}
\Gamma_{0123} \varepsilon_{\ell}=-\varepsilon_{\ell}, \quad \Gamma_{0123} \varepsilon_{r}=\varepsilon_{r} \tag{1.26}
\end{equation*}
$$

It is possible to normalize ε_{ℓ} and ε_{r} so that, for $\mu=0,1,2$, or 3 ,

$$
\begin{equation*}
\Gamma_{\mu, 4+\mu} \varepsilon_{\ell}=-\varepsilon_{r}, \quad \Gamma_{\mu, 4+\mu} \varepsilon_{r}=\varepsilon_{\ell} . \tag{1.27}
\end{equation*}
$$

In constructing a topological field theory, we may take the supersymmetry generator ε to be an arbitrary linear combination of ε_{ℓ} and ε_{r}. Up to an inessential scaling, we take

$$
\begin{equation*}
\varepsilon=\varepsilon_{\ell}+t \varepsilon_{r} . \tag{1.28}
\end{equation*}
$$

Now we can make contact with the D3-NS5 system. From (1.23), (1.26), and (1.6), we have

$$
\begin{equation*}
B_{0} \varepsilon_{\ell}=i \varepsilon_{\ell}, \quad B_{0} \varepsilon_{r}=-i \varepsilon_{r} \tag{1.29}
\end{equation*}
$$

Using also (1.27) and (1.24), one can show, with some gamma matrix algebra, that

$$
\begin{equation*}
B_{1} \varepsilon_{\ell}=-\varepsilon_{r}, \quad B_{1} \varepsilon_{r}=-\varepsilon_{\ell} . \tag{1.30}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left(1+i \frac{1-t^{2}}{1+t^{2}} B_{0}+\frac{2 t}{1+t^{2}} B_{1}\right)\left(\varepsilon_{\ell}+t \varepsilon_{r}\right)=0 \tag{1.31}
\end{equation*}
$$

On the other hand, with the help of (1.7), we see that the object ε_{0} defined in (1.8) obeys the same equation

$$
\begin{equation*}
\left(1+i \frac{1-t^{2}}{1+t^{2}} B_{0}+\frac{2 t}{1+t^{2}} B_{1}\right) \varepsilon_{0}=0 \tag{1.32}
\end{equation*}
$$

if and only if the parameter a used in describing the D3-NS5 system is related to the parameter t of the topological field theory

$$
\begin{equation*}
a=i \frac{1-i t}{1+i t} . \tag{1.33}
\end{equation*}
$$

Substituting (1.33) in (1.16b) and solving for t^{2}, we get the surprisingly simple result

$$
\begin{equation*}
t^{2}=\frac{\bar{\tau}}{\tau} \tag{1.34}
\end{equation*}
$$

The operation $t \rightarrow-t$ corresponds to $a \rightarrow-1 / a$ and to exchange of the D3-NS5 and D3- $\bar{N} \bar{S} \overline{5}$ systems. With the aid of (1.33), the boundary couplings (1.25) can be rewritten

$$
\begin{equation*}
I^{*}=\frac{1}{g_{Y M}^{2}} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(-\frac{t+t^{-1}}{3} \phi_{\mu} \phi_{\nu} \phi_{\lambda}+\frac{t+t^{-1}}{t-t^{-1}}\left(A_{\mu} \partial_{v} A_{\lambda}+\frac{2}{3} A_{\mu} A_{\nu} A_{\lambda}\right)\right) . \tag{1.35}
\end{equation*}
$$

Thence, we can obtain the following mathematical connection:

$$
\begin{align*}
& I^{*}=\frac{1}{g_{Y M}^{2}} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(-\frac{4 a}{3\left(1+a^{2}\right)} \phi_{\mu} \phi_{\nu} \phi_{\lambda}+i \frac{2 a}{1-a^{2}}\left(A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2}{3} A_{\mu} A_{\nu} A_{\lambda}\right)\right) \Rightarrow \\
\Rightarrow & \frac{1}{g_{Y M}^{2}} \int_{x^{3}=0} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(-\frac{t+t^{-1}}{3} \phi_{\mu} \phi_{\nu} \phi_{\lambda}+\frac{t+t^{-1}}{t-t^{-1}}\left(A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2}{3} A_{\mu} A_{\nu} A_{\lambda}\right)\right) . \tag{1.36}
\end{align*}
$$

$\mathcal{N}=4$ super Yang-Mills theory in four dimensions admits 1/16-BPS Wilson loop operators. They are constructed as follows. The supersymmetry transformation law for the bosonic fields of this theory is

$$
\begin{equation*}
\delta A_{I}=i \bar{\varepsilon} \Gamma_{I} \lambda=-i \bar{\lambda} \Gamma_{I} \varepsilon, \quad I=0, \ldots, 9 . \tag{1.37}
\end{equation*}
$$

Here we use a ten-dimensional notation: for $I \leq 3, A_{I}$ is a component of a gauge field, and for $I \geq 4$, it is a scalar field. By twisting, we have converted four of the scalar fields to a one-form ϕ.

Usually, we use Greek letters $\mu, \nu \ldots$ for four-dimensional indices, so we write $A=\sum_{\mu=0}^{3} A_{\mu} d x^{\mu}$, $\phi=\sum_{\mu=0}^{3} \phi_{\mu} d x^{\mu}=\sum_{\mu=0}^{3} A_{4+\mu} d x^{\mu}$. Suppose that ε is such that

$$
\begin{equation*}
\left(\Gamma_{\mu}+i \Gamma_{4+\mu}\right) \varepsilon=0, \quad \mu=0, \ldots, 3 . \tag{1.38}
\end{equation*}
$$

Clearly, in this case, Wilson operators of the form

$$
\begin{equation*}
T r_{R} P \exp \left(-\oint_{K}(A+i \phi)\right) \tag{1.39}
\end{equation*}
$$

are invariant, for an arbitrary embedded loop K in spacetime and any representation R of the gauge group. Similarly, if

$$
\begin{equation*}
\left(\Gamma_{\mu}-i \Gamma_{4+\mu}\right) \varepsilon=0, \quad \mu=0, \ldots, 3 \tag{1.40}
\end{equation*}
$$

then there are supersymmetric Wilson operators of the form

$$
\begin{equation*}
T r_{R} P \exp \left(-\oint_{K}(A-i \phi)\right) \tag{1.41}
\end{equation*}
$$

For a Wilson operator supported entirely at the boundary of V, we can use the boundary conditions obeyed by λ, as well as the conditions obeyed by ε, to establish supersymmetry. We will describe the conditions that on the boundary of V

$$
\begin{equation*}
0=\delta\left(A_{\mu}+w \phi_{\mu}\right)=-i \bar{\lambda}\left(\Gamma_{\mu}+w \Gamma_{4+\mu}\right) \varepsilon, \quad \mu=0,1,2 \tag{1.42}
\end{equation*}
$$

In (1.42) w is a complex number, to be determined. If (1.42) holds, then upon setting

$$
\begin{equation*}
\mathrm{A}_{w}=A+w \phi \tag{1.43}
\end{equation*}
$$

we can construct supersymmetric Wilson operators

$$
\begin{equation*}
\operatorname{Tr}_{R} P \exp \left(-\oint_{K} \mathrm{~A}_{w}\right) \tag{1.44}
\end{equation*}
$$

for any knot K in the boundary of V. The action I of $\mathcal{N}=4$ super Yang-Mills theory on a fourmanifold V is the sum of a term proportional to $1 / g_{Y M}^{2}$, which contains the kinetic energy for all fields, and a term proportional to θ :

$$
\begin{equation*}
I=\frac{1}{g_{Y M}^{2}} \int_{V} d^{4} x \sqrt{g} \mathcal{L}_{k i n}+i \frac{\theta}{32 \pi^{2}} \int_{V} d^{4} x \varepsilon^{\mu \nu \alpha \beta} T r F_{\mu \nu} F_{\alpha \beta} \tag{1.45}
\end{equation*}
$$

Also this equation can be related with the Jormakka's equation (1.18) multiplying both the sides for $8 \pi^{5}$ and obtaining:

$$
I=\frac{8 \pi^{5}}{g_{Y M}^{2}} \int_{V} d^{4} x \sqrt{g} \mathcal{L}_{\text {kin }}+i \frac{\theta \pi^{3}}{4} \int_{V} d^{4} x \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} F_{\mu \nu} F_{\alpha \beta} \Rightarrow
$$

$$
\begin{gather*}
\Rightarrow \int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \int d y_{1} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{1}^{2}}=\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}= \\
=\frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d x_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d y_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}= \\
=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}}(2 \pi)(\sqrt{2} \beta)^{-2} \int d x_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)(\sqrt{2} \beta)^{-2} \int d y_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)^{\frac{3}{2}}(\sqrt{2} \beta)^{-3} \\
=\left[\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}\right]^{2}=8 \frac{\pi^{3}}{4} \times \frac{1}{(\sqrt{2} \beta)^{6}} \Rightarrow \\
\Rightarrow \pi^{3}\left(\int_{0}^{\infty} x^{3} \frac{\cos \pi x^{2}}{\sinh \pi x} d x+\int_{0}^{\infty} x^{3} \frac{\sin \pi x^{2}}{\sinh \pi x} d x\right)=\frac{1}{16}\left(\frac{\pi^{3}}{4}-3 \pi+\pi^{2}\right) . \tag{1.45b}
\end{gather*}
$$

Here, the part of $\mathcal{L}_{\text {kin }}$ that involves A, ϕ only is (in Euclidean signature)

$$
\begin{equation*}
\mathcal{L}_{k i n}^{A, \phi}=-\operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu} F^{\mu \nu}+D_{\mu} \phi_{\nu} D^{\mu} \phi^{\nu}+R_{\mu \nu} \phi^{\mu} \phi^{\nu}+\frac{1}{2}\left[\phi_{\mu}, \phi_{\nu}\right]^{2}\right) \tag{1.46}
\end{equation*}
$$

Both terms on the right hand side of (1.45) are Q-invariant. The θ term is Q-invariant because, more generally, it is a topological invariant, unchanged in any continuous deformations. It represents a nonzero class in the cohomology of Q. One might suspect that the integral of $\mathfrak{L}_{\text {kin }}$ would vanish in the cohomology of Q, as happens in many twisted topological field theories, but this is actually not the case. Instead, the first term on the right of (1.45) is equivalent $\bmod \{Q, \ldots\}$ to a multiple of the second term. The precise relation is

$$
\begin{equation*}
I=\{Q, \ldots\}+\frac{2 \pi i \Psi}{32 \pi^{2}} \int_{V} d^{4} x \varepsilon^{\mu v \alpha \beta} \operatorname{Tr} F_{\mu \nu} F_{\alpha \beta} \tag{1.47}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g_{Y M}^{2}} \frac{t-t^{-1}}{t+t^{-1}} \tag{1.48}
\end{equation*}
$$

is the canonical parameter.
Thence, the eq. (1.45) can be rewritten also as follows:

$$
\begin{equation*}
I=\frac{1}{g_{Y M}^{2}} \int_{V} d^{4} x \sqrt{g} \mathcal{L}_{k i n}+i \frac{\theta}{32 \pi^{2}} \int_{V} d^{4} x \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} F_{\mu \nu} F_{\alpha \beta}=\{Q, \ldots\}+\frac{2 \pi i \Psi}{32 \pi^{2}} \int_{V} d^{4} x \varepsilon^{\mu \nu \alpha \beta} T r F_{\mu \nu} F_{\alpha \beta} . \tag{1.48b}
\end{equation*}
$$

Under a general S-duality transformation

$$
\begin{equation*}
\tau \rightarrow \frac{a \tau+b}{c \tau+d} \tag{1.49}
\end{equation*}
$$

t transforms by

$$
\begin{equation*}
t \rightarrow \frac{c \tau+d}{|c \tau+d|} t \tag{1.50}
\end{equation*}
$$

and that Ψ transforms just as τ does:

$$
\begin{equation*}
\Psi \rightarrow \frac{a \Psi+b}{c \Psi+d} . \tag{1.51}
\end{equation*}
$$

The formula (1.48) for Ψ holds for all τ, t. Imposing the relations (1.16b), (1.33) that are natural in studying the D3-NS5 system, we can derive several interesting alternative formulas. Eliminating t in favour of $g_{Y M}$ and θ, we find

$$
\begin{equation*}
\Psi=\frac{|\tau|^{2}}{\operatorname{Re} \tau} \tag{1.52}
\end{equation*}
$$

showing that Ψ is always real for the D3-NS5 system with physical values of the parameters (real $g_{Y M}$ and θ). Alternatively, eliminating θ in favour of $g_{Y M}$ and t, we get

$$
\begin{equation*}
\Psi=\frac{4 \pi i}{g_{Y M}^{2}}\left(\frac{t-t^{-1}}{t+t^{-1}}-\frac{t+t^{-1}}{t-t^{-1}}\right) . \tag{1.53}
\end{equation*}
$$

The integral $\int_{V} d^{4} x \varepsilon^{\mu \nu \alpha \beta} T r F_{\mu \nu} F_{\alpha \beta}$ is no longer Q-invariant, but varies by a boundary term. It is convenient to replace this integral by a multiple of the Chern-Simons function. We define the Chern-Simons function $C S(\mathrm{~A})$, for any connection A, possibly complex-valued, by

$$
\begin{equation*}
C S(\mathrm{~A})=\frac{1}{4 \pi} \int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(\mathrm{A}_{\mu} \partial_{\nu} \mathrm{A}_{\lambda}+\frac{2}{3} \mathrm{~A}_{\mu} \mathrm{A}_{\nu} \mathrm{A}_{\lambda}\right) \tag{1.54}
\end{equation*}
$$

In terms of this function, we can make the following substitution on the right hand side of eq. (1.47):

$$
\begin{equation*}
\frac{2 \pi i \Psi}{32 \pi^{2}} \int_{V} d^{4} x \varepsilon^{\mu v \alpha \beta} \operatorname{Tr} F_{\mu \nu} F_{\alpha \beta} \rightarrow i \Psi C S(A) \tag{1.55}
\end{equation*}
$$

Writing h for the dual Coxeter number of G, we can write a formula equivalent to (1.54) in terms of a trace $T r_{a d}$ in the adjoint representation of G :

$$
\begin{equation*}
C S(\mathrm{~A})=\frac{1}{8 \pi h} \int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} T r_{a d}\left(\mathrm{~A}_{\mu} \partial_{\nu} \mathrm{A}_{\lambda}+\frac{2}{3} \mathrm{~A}_{\mu} \mathrm{A}_{\nu} \mathrm{A}_{\lambda}\right) \tag{1.56}
\end{equation*}
$$

Thence, we have the following connection:

$$
\begin{equation*}
C S(\mathrm{~A})=\frac{1}{4 \pi} \int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} T r\left(\mathrm{~A}_{\mu} \partial_{\nu} \mathrm{A}_{\lambda}+\frac{2}{3} \mathrm{~A}_{\mu} \mathrm{A}_{\nu} \mathrm{A}_{\lambda}\right)=\frac{1}{8 \pi h} \int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} T r_{a d}\left(\mathrm{~A}_{\mu} \partial_{\nu} \mathrm{A}_{\lambda}+\frac{2}{3} \mathrm{~A}_{\mu} \mathrm{A}_{v} \mathrm{~A}_{\lambda}\right) . \tag{1.56b}
\end{equation*}
$$

Also this expression, can be related with the Jormakka's equation (1.18), multiplying both the sides for π^{4} and obtaining:

$$
\begin{gather*}
C S(\mathrm{~A})=\frac{\pi^{3}}{4} \int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} T r\left(\mathrm{~A}_{\mu} \partial_{\nu} \mathrm{A}_{\lambda}+\frac{2}{3} \mathrm{~A}_{\mu} \mathrm{A}_{\nu} \mathrm{A}_{\lambda}\right)=\frac{\pi^{3}}{8 h} \int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} T r_{a d}\left(\mathrm{~A}_{\mu} \partial_{\nu} \mathrm{A}_{\lambda}+\frac{2}{3} \mathrm{~A}_{\mu} \mathrm{A}_{\nu} \mathrm{A}_{\lambda}\right) \Rightarrow \\
\Rightarrow \int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \int d y_{1} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{1}^{2}}=\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}= \\
=\frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d x_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d y_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}= \\
=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}}(2 \pi)(\sqrt{2} \beta)^{-2} \int d x_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)(\sqrt{2} \beta)^{-2} \int d y_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)^{\frac{3}{2}}(\sqrt{2} \beta)^{-3} \\
=\left[\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right.} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}\right]^{2}=8 \frac{\pi^{3}}{4} \times \frac{1}{(\sqrt{2} \beta)^{6}} \Rightarrow \\
\Rightarrow \pi^{3}\left(\int_{0}^{\infty} x^{3} \frac{\cos \pi x^{2}}{\sinh \pi x} d x+\int_{0}^{\infty} x^{3} \frac{\sin \pi x^{2}}{\sinh \pi x} d x\right)=\frac{1}{16}\left(\frac{\pi^{3}}{4}-3 \pi+\pi^{2}\right) . \tag{1.56c}
\end{gather*}
$$

The boundary couplings must be a function of A_{w} only (modulo Q-exact terms), since this is the only non-trivial Q-invariant combination of boundary fields.
The coefficient of $C S\left(\mathrm{~A}_{w}\right)$ is precisely $i \Psi$. The generalization of (1.47) in the presence of a boundary is

$$
\begin{equation*}
I=\{Q, \ldots\}+i \Psi C S\left(\mathrm{~A}_{w}\right) \tag{1.57}
\end{equation*}
$$

Where $C S\left(\mathrm{~A}_{w}\right)$ is written explicitly as a function of A and ϕ, the ϕ-dependent terms are given by local, gauge-invariant integrals, since

$$
\begin{equation*}
C S\left(\mathrm{~A}_{w}\right)=C S(A)+\frac{1}{4 \pi} \int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(w \phi_{\mu} F_{\nu \lambda}+w^{2} \phi_{\mu} D_{v} \phi_{\lambda}+\frac{2 w^{3}}{3} \phi_{\mu} \phi_{\nu} \phi_{\lambda}\right) \tag{1.58}
\end{equation*}
$$

The coefficient of $C S(A)$ in the boundary interaction is $i \Psi$, and in view of (1.58), the coefficient of $C S\left(\mathrm{~A}_{w}\right)$ must be the same.
Under favourable conditions, computations in topological field theory can be localized on configurations that obey $\{Q, \zeta\}=0$, for all fermion fields ζ. Among the fermions of $\mathrm{F}=-1$ in the present model are a selfdual two-form χ^{+}, and anti-selfdual two-form χ^{-}, and a scalar η. They have the property that $\boldsymbol{v}^{+}=\left\{Q, \chi^{+}\right\}, \boldsymbol{v}^{-}=\left\{Q, \chi^{-}\right\}$, and $\boldsymbol{v}^{0}=\{Q, \eta\}$ depend on A, ϕ only:

$$
\begin{equation*}
\boldsymbol{v}^{+}=\left(F-\phi \wedge \phi+t d_{A} \phi\right)^{+}, \quad \boldsymbol{v}^{-}=\left(F-\phi \wedge \phi-t^{-1} d_{A} \phi\right)^{-}, \quad \boldsymbol{v}^{0}=D_{\mu} \phi^{\mu} \tag{1.59}
\end{equation*}
$$

Here for any two-form α, we write α^{+}and α^{-}for its selfdual and anti-selfdual projections. Localization of A and ϕ can be achieved for real t by adding a suitable term to the action I :

$$
\begin{equation*}
I \rightarrow I-\frac{1}{\varepsilon}\left\{Q, \int_{V} \operatorname{Tr}\left(\chi^{+} \boldsymbol{v}^{+}+\chi^{-} \boldsymbol{v}^{-}+\chi^{0} \boldsymbol{v}^{0}\right)\right\}=I-\frac{1}{\varepsilon} \int_{V} \operatorname{Tr}\left(\left(\boldsymbol{v}^{+}\right)^{2}+\left(\boldsymbol{v}^{-}\right)^{2}+\left(\boldsymbol{v}^{2}\right)^{2}+\ldots\right) \tag{1.60}
\end{equation*}
$$

where ε is a small parameter and the omitted terms are fermion bilinears. For t real, $\boldsymbol{V}^{+}, \boldsymbol{V}^{-}$, and \boldsymbol{V}^{0} are real, and the modified action diverges as $1 / \varepsilon$ unless the localization equations

$$
\begin{equation*}
\left(F-\phi \wedge \phi+t d_{A} \phi\right)^{+}=\left(F-\phi \wedge \phi-t^{-1} d_{A} \phi\right)^{-}=D_{\mu} \phi^{\mu}=0 \tag{1.61}
\end{equation*}
$$

are satisfied. So the path integral is supported, for $\varepsilon \rightarrow 0$, on the space of solutions of those equations.
To understand explicitly the origin of the ϕ-dependent boundary terms in (1.58), we have to make more explicit the relation of the localization procedure of eq. (1.60) to the physical action of $\mathcal{N}=4$ Yang-Mills theory. The identity we need is the following:

$$
\begin{gather*}
-\int_{V} d^{4} x \operatorname{Tr}\left(\frac{t^{-1}}{t+t^{-1}} \boldsymbol{v}_{\mu \nu}^{+} \boldsymbol{v}^{+\mu \nu}+\frac{t}{t+t^{-1}} \boldsymbol{v}_{\mu \nu}^{-} \boldsymbol{v}^{-\mu \nu}+\left(\boldsymbol{v}^{0}\right)^{2}\right)=\int_{V} d^{4} x \sqrt{g} \mathcal{L}_{k i n}^{A, \phi}+\frac{t-t^{-1}}{4\left(t+t^{-1}\right)} \int_{V} d^{4} x \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} F_{\mu \nu} F_{\alpha \beta}+ \\
+\int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} \operatorname{Tr}\left(-\frac{2}{t+t^{-1}} \phi_{\mu} F_{\nu \lambda}-\frac{t-t^{-1}}{t+t^{-1}} \phi_{\mu} D_{\nu} \phi_{\lambda}+\frac{4}{3} \frac{1}{t+t^{-1}} \phi_{\mu} \phi_{\nu} \phi_{\lambda}\right) . \tag{1.62}
\end{gather*}
$$

After multiplying by $1 / g_{Y M}^{2}$ and making the substitution (1.55) in one term, we can rewrite (1.62) as follows:

$$
\begin{align*}
\frac{1}{g_{Y M}^{2}} \int_{V} d^{4} x \sqrt{g} \mathcal{L}_{k i n}= & \{Q, \ldots\}+\frac{1}{g_{Y M}^{2}} \int_{\partial V} d^{3} x \varepsilon^{\mu \nu \lambda} T r\left(-\frac{t-t^{-1}}{t+t^{-1}}\left(A_{\mu} \partial_{\nu} A_{\lambda}+\frac{2}{3} A_{\mu} A_{\nu} A_{\lambda}\right)+\frac{2}{t+t^{-1}} \phi_{\mu} F_{\nu \lambda}+\right. \\
& \left.+\frac{t-t^{-1}}{t+t^{-1}} \phi_{\mu} D_{\nu} \phi_{\lambda}-\frac{4}{3} \frac{1}{t+t^{-1}} \phi_{\mu} \phi_{\nu} \phi_{\lambda}\right) . \tag{1.63}
\end{align*}
$$

When we add the boundary terms that have appeared in (1.63) to the boundary terms (1.35) that are already present in the physical theory, before twisting, we find that the action has the expected form

$$
\begin{equation*}
\{Q, \ldots\}+i \Psi C S\left(\mathrm{~A}_{w}\right) \tag{1.64}
\end{equation*}
$$

with the expected value $w=\left(t-t^{-1}\right) / 2$.
The transformation law (1.51) for the canonical parameter Ψ tells us that the parameter Ψ^{\vee} of the dual theory is related to Ψ by

$$
\begin{equation*}
\Psi^{\vee}=-\frac{1}{\boldsymbol{n}_{\boldsymbol{g}} \Psi} \tag{1.65}
\end{equation*}
$$

On the other hand, since $t^{\vee}=1$, the formula (1.48) for Ψ^{\vee} reduces to

$$
\begin{equation*}
\Psi^{\vee}=\frac{\theta^{\vee}}{2 \pi} \tag{1.66}
\end{equation*}
$$

Combining these formulas,

$$
\begin{equation*}
\theta^{\vee}=2 \pi \Psi^{\vee}=-\frac{2 \pi}{n_{g} \Psi} \tag{1.67}
\end{equation*}
$$

For $G^{\vee}=S U(N)$, we define the instanton number of the G^{\vee} gauge theory by

$$
\begin{equation*}
\mathrm{P}=\frac{1}{32 \pi^{2}} \int_{V} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr} F_{\mu \nu} F_{\alpha \beta}, \tag{1.68}
\end{equation*}
$$

where Tr is the trace in the N -dimensional representation. For any G^{\vee}, we can take

$$
\begin{equation*}
\mathrm{P}=\frac{1}{2 h^{\vee}} \frac{1}{32 \pi^{2}} \int_{V} \varepsilon^{\mu \nu \alpha \beta} T r_{a d j} F_{\mu \nu} F_{\alpha \beta} . \tag{1.69}
\end{equation*}
$$

where h^{\vee} is the dual Coxeter number of G^{\vee}, and $T r_{a d j}$ is the trace in the adjoint representation of G^{\vee} 。
The instanton number of a G^{\vee}-bundle $E \rightarrow V$ is a topological invariant if V is a four-manifold without boundary. It remains a topological invariant if V has a non-empty boundary and we are given a trivialization of E on $W=\partial V$. We have just discovered that instead of being trivialized on W, E is identified on W with the tangent bundle $T W$ to W; the gauge field A restricted to W is similarly identified with the Riemannian connection ω on $T W$, or more precisely with its G^{\vee} valued image $\xi(\omega)$, where $\xi: \boldsymbol{s u}(2) \rightarrow \boldsymbol{g}^{\vee}$ is a principal embedding. This means that the instanton number P is not invariant under a change of metric of V. In general, under any change in the gauge field A, the change in P is given by the change in the Chern-Simons invariant of the restriction of A to the boundary W :

$$
\begin{equation*}
\delta \mathrm{P}=\frac{1}{2 \pi} \delta \mathrm{CS}(A) \tag{1.70}
\end{equation*}
$$

Since when restricted to W we have $A=\xi(\omega)$, we can equivalently write

$$
\begin{equation*}
\delta \mathrm{P}=\frac{1}{2 \pi} \delta \mathrm{CS}(\xi(\omega)) \tag{1.71}
\end{equation*}
$$

In turn, $\operatorname{CS}(\xi(\omega))$ is the same as $\boldsymbol{\ell} \operatorname{CS}(\omega)$ where $\operatorname{CS}(\omega)$ is the Chern-Simons invariant of ω as an $S U(2)$ connection, and \mathfrak{b} is an integer, analyzed presently, that results from the embedding. So we can slightly simplify (1.71) to

$$
\begin{equation*}
\delta \mathrm{P}=\frac{\mathfrak{Q}}{2 \pi} \delta \mathrm{CS}(\omega) \tag{1.72}
\end{equation*}
$$

If V is a compact manifold with boundary, there is a simple cure for this. We simply modify the definition (1.69) of P by subtracting the integral over V of a suitable curvature integral. The curvature integral is a multiple of $\int_{V} T r R \wedge R$, with R the Riemann tensor of V. This integral is a topological invariant if $\partial V=\emptyset$, and in general its variation is a multiple of $\delta \operatorname{CS}(\omega)$. We pick the coefficient to cancel the boundary term in the variation of P. Thus, we replace the definition (1.69) with

$$
\begin{equation*}
\hat{P}=\frac{1}{2 h^{\vee}} \frac{1}{32 \pi^{2}} \int_{V} \varepsilon^{\mu \nu \alpha \beta} T r_{a d j} F_{\mu \nu} F_{\alpha \beta}-\frac{\boldsymbol{\ell}}{4} \frac{1}{32 \pi^{2}} \int_{V} \varepsilon^{\mu \nu \alpha \beta} T r_{T V} R_{\mu \nu} R_{\alpha \beta}, \tag{1.73}
\end{equation*}
$$

where we view the Riemann tensor as a two-form with values in endomorphisms of the tangent bundle $T V$ of V and take the trace accordingly. \hat{P} is an integer-valued topological invariant.

We note that $32 \pi^{2}=315,8273408 \cong 315,83$ that is possible to connect at the following value: $315,7587390 \cong 315,76$ (see $1 / 1,375$, i.e. $\sigma=$ partition numbers) and also to the value $315,6949704 \cong 315,69$ (see * 2,71828 = "e"), i.e. the Table concerning the "universal music system based on Phi".

We use eq. (1.56), in which $\operatorname{CS}(A)$ is defined for any connection A using a trace in the adjoint representation (and we set $h=2$). It is convenient to evaluate the right hand side of (1.56) as the sum of an integral over W_{1} with the connection ω, an integral over W_{0} with the connection $\hat{\omega}$, and a correction term on the common boundary Ξ of W_{0} and W_{1} that involves the gauge transformation between ω and $\hat{\omega}$:

$$
\begin{equation*}
\operatorname{CS}\left(\omega_{(j)}\right)=\frac{1}{16 \pi} \int_{W_{1}} T_{a d}\left(\omega \wedge d \omega+\frac{2}{3} \omega \wedge \omega \wedge \omega\right)+\frac{1}{16 \pi} \int_{W_{0}} T r_{a d} \hat{\omega} \wedge d \hat{\omega}-\frac{1}{16 \pi} \int_{\Xi} T r_{a d} d s \wedge \hat{\omega} . \tag{1.74}
\end{equation*}
$$

We note that the following equation can be related with the Ramanujan' modular equation concerning the superstrings, multiplying both the sides for $\frac{2}{31}$. Indeed, we obtain:

$$
\begin{gather*}
\frac{2}{31} \operatorname{CS}\left(\omega_{(j)}\right)=\frac{1}{248 \pi} \int_{W_{1}} T r_{a d}\left(\omega \wedge d \omega+\frac{2}{3} \omega \wedge \omega \wedge \omega\right)+\frac{1}{248 \pi} \int_{W_{0}} T r_{a d} \hat{\omega} \wedge d \hat{\omega}-\frac{1}{248 \pi} \int_{\Xi} T r_{a d} d s \wedge \hat{\omega} \Rightarrow \\
\Rightarrow 4\left[\operatorname{anti\operatorname {log}\frac {\int _{0}^{\infty }\frac {\operatorname {cos}\pi txw^{\prime }}{\operatorname {cosh}\pi x}e^{-\pi x^{2}w^{\prime }}dx}{e^{-\frac {\pi t^{2}}{4}w^{\prime }}\phi _{w^{\prime }}(ttw^{\prime })}]\cdot \frac {\sqrt {142}}{t^{2}w^{\prime }}}\right. \tag{1.74b}\\
\Rightarrow \frac{1}{\log \left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right]} \cdot
\end{gather*}
$$

Furthermore, we note that $\frac{2}{31}=0.064516129 \cong 0.0645 \cong 0.0638$, value that is inserted in the columns (π) and (* 1,375) concerning the universal music system based on Phi.

The terms in (1.74) that depend on the framing of K are the integrals over W_{0} and Ξ. A straightforward evaluation gives

$$
\begin{equation*}
\operatorname{CS}\left(\omega_{(j)}\right)=-q j(j+1)+\ldots \tag{1.75}
\end{equation*}
$$

where the ellipses come from the integral over W_{1} and do not depend on the framing of K. Using the following equation

$$
\begin{equation*}
q^{-6 C S(\omega) / 2 \pi}=q^{-6 C C_{g q u} / 8 \pi}, \tag{1.76}
\end{equation*}
$$

(with $v=1$ for $G^{\vee}=S O(3)$), the dependence of the partition function on $\operatorname{CS}\left(\omega_{(j)}\right)$ is a factor of $q^{-C S\left(\omega_{(j)}\right) / 2 \pi}$. So finally, under a unit change in framing, $\tau \rightarrow \tau+2 \pi$, the partition function is multiplied by $q^{j(j+1)}$, just as in Chern-Simons theory.
According to the following equations:

$$
\begin{equation*}
F^{+}-\frac{1}{4} B \times B-\frac{1}{2} D_{y} B=0 ; \quad(1.77) \quad F_{y \mu}+\sum_{v=0}^{3} D^{\nu} B_{v \mu}=0, \quad \mu=0, \ldots, 3 ; \tag{1.77}
\end{equation*}
$$

the equations for a supersymmetric field configuration in this theory (i.e. the gauge theory description) read

$$
\begin{equation*}
F^{+}-\frac{1}{4} B \times B-\frac{1}{2} D_{y} B=0 ; \quad F_{y \mu}+D^{\nu} B_{v \mu}=0 . \tag{1.79}
\end{equation*}
$$

On a manifold Z, with local coordinates u^{i}, a metric tensor $\gamma_{i j}$, and a Morse function Γ, the flow equations of Morse theory read

$$
\begin{equation*}
\frac{d u^{i}}{d t}=-\gamma^{i j} \frac{\partial \Gamma}{\partial u^{j}} \tag{1.80}
\end{equation*}
$$

We endow $W_{3} \times R_{+}$with a metric $g_{i j} d x^{i} d x^{j}+d y^{2}$. On the space of fields on $W_{3} \times R_{+}$, we define the metric

$$
\begin{equation*}
d s^{2}=-\int_{W_{3} \times R_{+}} d^{3} x d y \sqrt{g} \operatorname{Tr}\left(g^{i j} \delta A_{i} \delta A_{j}+\delta A_{y} \delta A_{y}+g^{i j} \delta B_{0 i} \delta B_{0 j}\right) . \tag{1.81}
\end{equation*}
$$

And then we define the Morse function

$$
\begin{equation*}
\Gamma=-\int_{W_{3} \times R_{+}} d^{3} x d y \operatorname{Tr}\left(\sqrt{g} g^{i j} F_{y i} B_{0 j}+\frac{1}{2} \varepsilon^{i j k}\left(A_{i} \partial_{j} A_{k}+\frac{2}{3} A_{i} A_{j} A_{k}-B_{0 i} D_{j} B_{0 k}\right)+\sqrt{g} w\right), \tag{1.82}
\end{equation*}
$$

with w a constant chosen so that the integral converges for $y \rightarrow \infty$. A straightforward computation shows that the supersymmetric equations (1.79), in the gauge $A_{0}=0$, are indeed the flow equations with Γ as a Morse function.
The first-order supersymmetric equations (1.79) imply the second order Euler-Lagrange equations of supersymmetric Yang-Mills theory. Setting

$$
\begin{equation*}
Y_{\mu \nu}=\left(F^{+}-\frac{1}{4} B \times B-\frac{1}{2} D_{y} B\right)_{\mu \nu}, \quad Z_{\mu}=F_{y \mu}+D^{\sigma} B_{\sigma \mu} \tag{1.83}
\end{equation*}
$$

so that the supersymmetric equations are $Y=Z=0$, we find the following identity

$$
\begin{gather*}
-\int_{M_{4} \times R_{+}} d^{4} x d y \sqrt{g} \operatorname{Tr}\left(Y_{\mu \nu} Y^{\mu \nu}+Z_{\mu} Z^{\mu}\right)=-\int_{M_{4} \times R_{+}} d^{4} x d y \sqrt{g} \operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu} F^{\mu \nu}+F_{y \mu} F^{y \mu}+\frac{1}{4}\left(D_{y} B_{\mu \nu}\right)^{2}+\right. \\
\left.+\frac{1}{4}\left(D_{\alpha} B_{\mu \nu}\right)^{2}+\frac{1}{16}(B \times B)_{\mu \nu}(B \times B)^{\mu \nu}+\frac{R}{8} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} R_{\lambda \nu \mu \tau} B^{\lambda \nu} B^{\mu \tau}\right)+\ldots \tag{1.84}
\end{gather*}
$$

Here $R_{\lambda \nu \mu \tau}$ and R are the Riemann tensor and Ricci scalar of M_{4}; these curvature couplings are dictated by supersymmetry when M_{4} becomes curved. In (1.84), the ellipses represent the omission of certain terms whose local variations vanish - both surface terms and a multiple of the instanton number evaluated on M_{4}. In fact, with our boundary conditions, both the volume integral on the right hand side of (1.84) and the omitted terms are divergent. The right hand side of (1.84) is
essentially the bosonic part of the action of maximally supersymmetric Yang-Mills theory in five dimensions.
Indeed, we can to connect this equation with the Ramanujan's modular equation concerning the superstrings:

$$
\begin{gather*}
-\int_{M_{4} \times R_{+}} d^{4} x d y \sqrt{g} \operatorname{Tr}\left(Y_{\mu \nu} Y^{\mu \nu}+Z_{\mu} Z^{\mu}\right)=-\int_{M_{4} \times R_{+}} d^{4} x d y \sqrt{g} \operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu} F^{\mu \nu}+F_{y \mu} F^{y \mu}+\frac{1}{4}\left(D_{y} B_{\mu \nu}\right)^{2}+\right. \\
\left.+\frac{1}{4}\left(D_{\alpha} B_{\mu \nu}\right)^{2}+\frac{1}{16}(B \times B)_{\mu \nu}(B \times B)^{\mu \nu}+\frac{R}{8} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} R_{\lambda \nu \mu \tau} B^{\lambda \nu} B^{\mu \tau}\right)+\ldots \Rightarrow \\
 \tag{1.85}\\
\Rightarrow \frac{1}{3} \frac{\left[\operatorname{anti} \log \frac{\int_{0}^{\infty} \frac{\cos \pi t x w^{\prime}}{\cosh \pi x} e^{-\pi \tau^{2} w^{\prime}} d x}{e^{-\frac{\pi^{2}}{4} w^{\prime}} \phi_{w^{\prime}}\left(i t w^{\prime}\right)}\right] \cdot \frac{\sqrt{142}}{t^{2} w^{\prime}}}{\log \left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right]} .
\end{gather*}
$$

2. On some equations concerning the applications of non-abelian localization to analyze the Chern-Simons path integral including Wilson loop insertions [2]

We recall that a Wilson loop operator $W_{R}(C)$ in any gauge theory on a manifold M is described by the data of an oriented, closed curve C which is smoothly embedded in M and which is decorated by an irreducible representation R of the gauge group G. As a classical functional of the connection A, the Wilson loop operator is then given simply by the trace in R of the holonomy of A around C,

$$
\begin{equation*}
W_{R}(C)=\operatorname{Tr}_{R} P \exp \left(-\oint_{C} A\right) \tag{2.1}
\end{equation*}
$$

To describe the expectation value of $W_{R}(C)$ in the Lagrangian formulation of Chern-Simons theory, we introduce the absolutely-normalized Wilson loop path integral

$$
\begin{equation*}
Z(k ; C, R)=\int \mathscr{D} A W_{R}(C) \exp \left[i \frac{k}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right] \tag{2.2}
\end{equation*}
$$

in terms of which the Wilson loop expectation value is given by the ratio

$$
\begin{equation*}
\left\langle W_{R}(C)\right\rangle=\frac{Z(k ; C, R)}{Z(k)} \tag{2.3}
\end{equation*}
$$

With regard $\frac{1}{4 \pi}$ in the eq. (2.2), we have that $\frac{1}{4 \pi}=0,07957 \cong 0,07893$, value inserted in the column (*Pigreco) concerning the Table of the universal music system based on Phi.

Let us consider the simplest Wilson loop - namely, the unknot Wilson loop - in Chern-Simons theory on S^{3} with gauge group $S U(2)$. For the unknot, the absolutely-normalized Wilson loop path integral in (2.2) is given exactly by

$$
\begin{equation*}
Z(k ; \mathrm{O}, j)=\sqrt{\frac{2}{k+2}} \sin \left(\frac{\pi j}{k+2}\right), \quad j=1, \ldots, k+1 . \tag{2.4}
\end{equation*}
$$

We have that j runs without loss over the finite set of irreducible representations which are integrable in the $S U(2)$ current algebra at level k. This simple result was first obtained by Witten using the Hamiltonian formulation of Chern-Simons theory, and as a special case, when $j=1$ is trivial, the general formula for $Z(k ; \mathrm{O}, j)$ reduces to the standard expression for the $S U(2)$ partition function $Z(k)$ of Chern-Simons theory on S^{3}. From the semi-classical perspective, we can gain greater insight into the exact formula for $Z(k ; \mathrm{O}, j)$ by rewriting (2.4) as a contour integral over the real axis,

$$
\begin{equation*}
Z(k ; \mathrm{O}, j)=\frac{1}{2 \pi i} e^{-\frac{i \pi\left(1+j^{2}\right)}{2(k+2)}} \int_{-\infty}^{+\infty} d x \operatorname{ch}_{j}\left(e^{\frac{i \pi}{4}} \frac{x}{2}\right) \sinh ^{2}\left(e^{\frac{i \pi}{4}} \frac{x}{2}\right) \exp \left(-\frac{(k+2)}{8 \pi} x^{2}\right) . \tag{2.5}
\end{equation*}
$$

Here $c h_{j}$ is the character of $S U(2)$ associated to the representation j,

$$
\begin{equation*}
c h_{j}(y)=\frac{\sinh (j y)}{\sinh (y)}=e^{(j-1) y}+e^{(j-3) y}+\ldots+e^{-(j-3) y}+e^{-(j-1) y}, \tag{2.6}
\end{equation*}
$$

and the equality between the expressions in (2.4) and (2.5) follows by evaluating (2.5) as a sum of elementary Gaussian integrals. Thence, we obtain the following expression:

$$
\begin{equation*}
Z(k ; \mathrm{O}, j)=\sqrt{\frac{2}{k+2}} \sin \left(\frac{\pi j}{k+2}\right)=\frac{1}{2 \pi i} e^{-\frac{i \pi\left(1+j^{2}\right)}{2(k+2)}} \int_{-\infty}^{+\infty} d x \operatorname{ch}_{j}\left(e^{\frac{i \pi}{4}} \frac{x}{2}\right) \sinh ^{2}\left(e^{\frac{i \pi}{4}} \frac{x}{2}\right) \exp \left(-\frac{(k+2)}{8 \pi} x^{2}\right) . \tag{2.6b}
\end{equation*}
$$

The non-degenerate inner product on $R \oplus \widetilde{L}_{g}$ is given by

$$
\begin{equation*}
((p, \phi, a),(q, \psi, b))=-\int_{M} d \tau \operatorname{Tr}(\phi \psi)-p b-q a . \tag{2.7}
\end{equation*}
$$

A non-degenerate, invariant inner product on the Lie algebra of $U(1)_{R} \times \widetilde{\boldsymbol{\mathcal { F }}_{0}}$ is given by

$$
\begin{equation*}
((p, \phi, a),(q, \psi, b))=-\int_{M} \kappa \wedge d \kappa \operatorname{Tr}(\phi \psi)-p b-q a \tag{2.8}
\end{equation*}
$$

in direct correspondence with (2.7). Furthermore, the action of $U(1)_{R} \times \widetilde{\boldsymbol{\mathcal { F }}_{0}}$ on $\overline{\mathrm{A}}$ is Hamiltonian, with moment map

$$
\begin{equation*}
\langle\mu,(p, \phi, a)\rangle=-\frac{1}{2} p \int_{M} \kappa \wedge \operatorname{Tr}\left(\mathcal{L}_{R} A \wedge A\right)-\int_{M} \kappa \wedge \operatorname{Tr}\left(\phi F_{A}\right)+\int_{M} d \kappa \wedge \operatorname{Tr}(\phi A)+a . \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9), we see immediately that

$$
\begin{equation*}
(\mu, \mu)=\int_{M} \kappa \wedge \operatorname{Tr}\left(\mathcal{L}_{R} A \wedge A\right)-\int_{M} \kappa \wedge d \kappa T r\left[\left(\frac{\kappa \wedge F_{A}-d \kappa \wedge A}{\kappa \wedge d \kappa}\right)^{2}\right] \tag{2.10}
\end{equation*}
$$

Using the identity

$$
\begin{equation*}
t_{R} A=\frac{d \kappa \wedge A}{d \kappa \wedge \kappa} \tag{2.11}
\end{equation*}
$$

let us rewrite (2.10) as

$$
\begin{equation*}
(\mu, \mu)=\int_{M} \kappa \wedge \operatorname{Tr}\left(\mathfrak{L}_{R} A \wedge A\right)+2 \int_{M} \kappa \wedge \operatorname{Tr}\left[\left(\left(_{R} A\right) F_{A}\right]-\int_{M} \kappa \wedge d \kappa \operatorname{Tr}\left[\left(l_{R} A\right)^{2}\right]-\int_{M} \frac{1}{\kappa \wedge d \kappa} \operatorname{Tr}\left[\left(\kappa \wedge F_{A}\right)^{2}\right] .\right. \tag{2.12}
\end{equation*}
$$

We also require the following identity

$$
\begin{align*}
\operatorname{CS}(A)=\int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right) & =\int_{M} \kappa \wedge \operatorname{Tr}\left(\mathcal{L}_{R} A \wedge A\right)+2 \int_{M} \kappa \wedge \operatorname{Tr}\left[\left(l_{R} A\right) F_{A}\right]+ \\
& \left.-\int_{M} \kappa \wedge d \kappa \operatorname{Tr} \mid\left(l_{R} A\right)^{2}\right] . \tag{2.13}
\end{align*}
$$

With regard $\frac{2}{3}$ and 2 in the eq. (2.13), we have: $\frac{2}{3}=0,66666 \cong 0,66666667$, i.e. $0,8333333 \cdot \frac{4}{5}$, where 0,8333333 is the value inserted in the column "System" in the Table concerning the universal music system based on Phi.

We consider a general Wilson loop operator

$$
\begin{equation*}
W_{R}(C)=\operatorname{Tr}_{R} P \exp \left(-\oint_{C} A\right) \tag{2.14}
\end{equation*}
$$

where C is an oriented closed curve smoothly embedded in M, and R is an irreducible representation of the simply-connected gauge group G. The basic Wilson loop path integral is:

$$
\begin{gather*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\mathcal{G})}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{G}}} \int \mathscr{D} A W_{R}(C) \exp \left[\frac{i}{2 \varepsilon} \int_{M} T r\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right], \\
\varepsilon=\frac{2 \pi}{k}, \quad \Delta_{\boldsymbol{\mathcal { G }}}=\operatorname{dim} \boldsymbol{\mathcal { G }} \tag{2.15}
\end{gather*}
$$

Thence, the eq. (2.15) can be rewritten also as follows:

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{G}}} \int \mathscr{D} A W_{R}(C) \exp \left[\frac{i k}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)\right] \tag{2.15b}
\end{equation*}
$$

The Wilson loop path integral in a shift-invariant form is:

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})} \frac{1}{\operatorname{Vol}(\boldsymbol{S})}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{\varphi}}} \int \mathscr{D} A \mathscr{D} \Phi \boldsymbol{w}_{R}(C) \exp \left[\frac{i}{2 \varepsilon} \operatorname{es}(A-\kappa \Phi)\right] \tag{2.16}
\end{equation*}
$$

Here $\boldsymbol{w}_{R}(C)$ denotes the generalized Wilson loop operator defined not using A but using the shiftinvariant combination $A-\kappa \Phi$, so that

$$
\begin{equation*}
\boldsymbol{w}_{R}(C)=\operatorname{Tr}_{R} P \exp \left[-\oint_{C}(A-\kappa \Phi)\right] \tag{2.17}
\end{equation*}
$$

The semi-classical description for the Wilson loop operator is:

$$
\begin{equation*}
W_{R}(C)=\varepsilon^{\Delta_{\alpha} / 2} \int_{L \mathrm{O}_{\alpha}} \mathscr{D} U \exp \left[i \boldsymbol{c}_{\alpha}\left(U ;\left.A\right|_{C}\right)\right], \quad \varepsilon=\frac{2 \pi}{k}, \quad \Delta_{\alpha}=\operatorname{dim} L \mathrm{O}_{\alpha} . \tag{2.18}
\end{equation*}
$$

We write $\varepsilon L \mathrm{O}_{\alpha}$ to indicate the loopspace $L \mathrm{O}_{\alpha}$ equipped with the sigma model metric induced from the invariant Kahler metric on $\varepsilon \mathrm{O}_{\alpha} \equiv \mathrm{O}_{\varepsilon \alpha}$. We have that

$$
\begin{equation*}
W_{R}(C)=\int_{\varepsilon L 0_{\alpha}} \mathscr{D} U \exp \left[i \boldsymbol{c s}_{\alpha}\left(U ;\left.A\right|_{C}\right)\right] . \tag{2.19}
\end{equation*}
$$

We can formulate the basic Wilson loop path integral in (2.15) using (2.19), as a path integral over the product $\mathrm{A} \times \varepsilon L \mathrm{O}_{\alpha}$,

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{\varphi}} \int_{\mathrm{A} \times \Delta \mathrm{L}_{\alpha}} \mathscr{D} A \mathscr{D} U \exp \left[\frac{i}{2 \varepsilon} \operatorname{es}(A)+i \boldsymbol{c}_{\alpha}\left(U ;\left.A\right|_{C}\right)\right] . \tag{2.20}
\end{equation*}
$$

The topological sigma model action for U in terms of a bulk integral over M is:

$$
\begin{equation*}
\boldsymbol{c}_{\alpha}\left(U ;\left.A\right|_{C}\right)=\oint_{C} \operatorname{Tr}\left(\alpha \cdot g^{-1} d_{A} g\right)=\int_{M} \delta_{C} \wedge \operatorname{Tr}\left(\alpha \cdot g^{-1} d_{A} g\right) \tag{2.21}
\end{equation*}
$$

Thence, we note that the eq. (2.20) can be rewritten also as follows:

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{\varphi}} \int_{\mathrm{A} \times L \mathrm{O}_{\alpha}} \mathscr{D} A \mathscr{D} U \exp \left[\frac{i}{2 \varepsilon} \operatorname{eS}(A)+i \int_{M} \delta_{C} \wedge \operatorname{Tr}\left(\alpha \cdot g^{-1} d_{A} g\right)\right] \tag{2.21b}
\end{equation*}
$$

As in (2.16), we first consider the generalization of the following equation

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\mathcal{G})}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{\varphi}} \int_{A \times \varepsilon L O_{\alpha}} \mathscr{D} A \mathscr{D} U \exp \left[\frac{i}{2 \varepsilon} \operatorname{es}(A)+i \boldsymbol{c}_{\alpha}\left(U ;\left.A\right|_{C}\right)\right], \tag{2.22}
\end{equation*}
$$

obtained by replacing A with the shift-invariant combination $A-\kappa \Phi$,

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})} \frac{1}{\operatorname{Vol}(\boldsymbol{S})}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{\varphi}}} \int \mathfrak{D} A \mathscr{D} U \mathscr{D} \Phi \exp \left[\frac{i}{2 \varepsilon} S(A, \Phi, U)\right], \tag{2.23}
\end{equation*}
$$

where

$$
\begin{equation*}
S(A, \Phi, U)=\boldsymbol{C} S(A-\kappa \Phi)+2 \varepsilon \operatorname{cs}_{\alpha}(U ; A-\kappa \Phi) . \tag{2.24}
\end{equation*}
$$

We assume that the shift symmetry S acts on A and Φ just as before, and S acts trivially on U. Upon setting $\Phi=0$ with the shift symmetry, we reproduce (2.22) as before. On the other hand, to underscore the significance of (2.23), let us expand the shift-invariant sigma model action $\boldsymbol{c s}_{\alpha}(U ; A-\kappa \Phi)$ in terms of Φ. From (2.21), we immediately find

$$
\begin{equation*}
\boldsymbol{c s}_{\alpha}(U ; A-\kappa \Phi)=\boldsymbol{c}_{\alpha}(U ; A)-\int_{M} \kappa \wedge \delta_{C} \operatorname{Tr}\left[\left(g \alpha g^{-1}\right) \Phi\right] . \tag{2.25}
\end{equation*}
$$

The essential observation to make about (2.25) is simply that Φ appears linearly. Thus Φ still enters the total shift-invariant action $S(A, \Phi, U)$ quadratically. To be explicit, we expand $S(A, \Phi, U)$ in terms of Φ to obtain

$$
\begin{equation*}
S(A, \Phi, U)=\boldsymbol{e s}(A)+2 \operatorname{ces}_{\alpha}(U ; A)-\int_{M}\left[2 \kappa \wedge \operatorname{Tr}\left(\Phi \mathcal{F}_{A}\right)-\kappa \wedge d \kappa \operatorname{Tr}\left(\Phi^{2}\right)\right] . \tag{2.26}
\end{equation*}
$$

Here as a convenient shorthand, we introduce a "generalized" curvature \mathscr{F}_{A} which includes the delta-function contribution from (2.25), so that

$$
\begin{equation*}
\mathscr{F}_{A}=F_{A}+\varepsilon\left(g^{2} \alpha g^{-1}\right) \delta_{C} . \tag{2.27}
\end{equation*}
$$

By virtue of the shift symmetry, the remaining integral over the affine space A then reduces to an integral over the quotient $\overline{\mathrm{A}}=\mathrm{A} / S$, and we obtain the shift-invariant reformulation of the general Wilson loop path integral in Chern-Simons theory. Thus,

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{-i}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{\varphi}} / 2} \int_{\overline{\mathrm{A}} \times \varepsilon L O_{\alpha}} \overline{\mathfrak{D}} \bar{A} \mathscr{D} U \exp \left[\frac{i}{2 \varepsilon} S(A, U)\right], \tag{2.28}
\end{equation*}
$$

where

$$
\begin{equation*}
S(A, U)=\operatorname{eS}(A)+2 \operatorname{ses}_{\alpha}\left(U ;\left.A\right|_{C}\right)-\int_{M} \frac{1}{\kappa \wedge d \kappa} \operatorname{Tr}\left[\left(\kappa \wedge \mathcal{F}_{A}\right)^{2}\right] . \tag{2.29}
\end{equation*}
$$

We consider a product of Wilson loop operators associated to oriented curves C_{ℓ} which are linked in M and decorated by irreducible representations R_{ℓ} with highest weights α_{ℓ} for $\ell=1, \ldots \mathrm{~L}$. On each curve we introduce a corresponding sigma model field U_{ℓ}, and we apply the semi-classical description of $W_{R}(C)$ in (2.19) to write the obvious generalization of (2.20),

$$
\begin{gather*}
Z\left(\varepsilon ;\left(C_{1}, R_{1}\right), \ldots,\left(C_{\mathrm{L}}, R_{\mathrm{L}}\right)\right)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{g}}} \times \\
\times \int_{A \times \varepsilon L \mathrm{O}_{\alpha_{1} \times \ldots} \times \ldots L O_{\alpha_{\mathrm{L}}}} \mathcal{D} A \mathscr{D} U_{1} \ldots D U_{\mathrm{L}} \exp \left[\frac{i}{2 \varepsilon} \operatorname{es}(A)+i \sum_{\ell=1}^{\mathrm{L}} \operatorname{cs}_{\alpha_{\ell}}\left(U_{\ell} ;\left.A\right|_{C}\right)\right] . \tag{2.30}
\end{gather*}
$$

Through some manipulations, we find that the shift invariant version of the Wilson link path integral in (2.30) is given by

$$
\begin{array}{r}
Z\left(\varepsilon ;\left(C_{1}, R_{\mathrm{L}}\right), \ldots,\left(C_{\mathrm{L}}, R_{\mathrm{L}}\right)\right)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{-i}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{q}} / 2} \times \\
\times \int_{\overline{\mathrm{A}} \times L \mathrm{O}_{\alpha_{1}} \times \ldots \times \varepsilon \mathrm{O}_{\alpha_{\mathrm{L}}}} \overline{\mathfrak{D} A} \mathfrak{D} U_{1} \ldots \mathfrak{D} U_{\mathrm{L}} \exp \left[\frac{i}{2 \varepsilon} S\left(A, U_{1}, \ldots, U_{\mathrm{L}}\right)\right], \tag{2.31}
\end{array}
$$

where

$$
\begin{equation*}
S\left(A, U_{1}, \ldots, U_{\mathrm{L}}\right)=e s(A)+2 \varepsilon \sum_{\ell=1}^{\mathrm{L}} \boldsymbol{c}_{\alpha_{\ell}}\left(U_{\ell} ;\left.A\right|_{C}\right)-\int_{M} \frac{1}{\kappa \wedge d \kappa} \operatorname{Tr}\left[\left(\kappa \wedge \mathcal{F}_{A}\right)^{2}\right] \tag{2.32}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{F}_{A}=F_{A}+\varepsilon \sum_{\ell=1}^{\llcorner }\left[\left(g \alpha g^{-1}\right) \delta_{C}\right] . \tag{2.33}
\end{equation*}
$$

Thence, we can rewrite the eq. (2.32) also as follows:

$$
\begin{equation*}
S\left(A, U_{1}, \ldots, U_{\mathrm{L}}\right)=\operatorname{es}(A)+2 \varepsilon \sum_{\ell=1}^{\mathrm{L}} \boldsymbol{c}_{\alpha_{\ell}}\left(U_{\ell} ;\left.A\right|_{C}\right)-\int_{M} \frac{1}{\kappa \wedge d \kappa} \operatorname{Tr}\left[\left(\kappa \wedge\left(F_{A}+\varepsilon \sum_{\ell=1}^{\mathrm{L}}\left[\left(g \alpha g^{-1}\right) \delta_{C}\right]_{\ell}\right)\right)^{2}\right] \tag{2.33b}
\end{equation*}
$$

The moment map μ for the action of H on $L \mathrm{O}_{\alpha}$ is given up to a constant by

$$
\begin{equation*}
\langle\mu,(p, \phi, a)\rangle=-\oint_{C} \kappa \operatorname{Tr}\left[\alpha \cdot\left(p g^{-1} \mathcal{L}_{R} g+g^{-1} \phi g\right)\right] . \tag{2.34}
\end{equation*}
$$

The shift-invariant path integral describing $Z(\varepsilon ; C, R)$ in (2.28) becomes a symplectic integral over $\overline{\mathrm{A}}_{\alpha}=\overline{\mathrm{A}} \times \varepsilon L \mathrm{O}_{\alpha}$,

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{-i}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{\varphi}} / 2} \int_{\overrightarrow{\mathrm{A}}_{\alpha}} \exp \left[\Omega_{\alpha}+\frac{i}{2 \varepsilon} S(A, U)\right] \tag{2.35}
\end{equation*}
$$

The moment map which describes the Hamiltonian action of H on the product $\overline{\mathrm{A}}_{\alpha}=\overline{\mathrm{A}} \times \varepsilon L \mathrm{O}_{\alpha}$, is the sum of the moment map for $\overline{\mathrm{A}}$ in (2.9) with ε times the moment map for $L \mathrm{O}_{\alpha}$ in (2.34), so that the total moment map on $\overline{\mathrm{A}}_{\alpha}$ is given by

$$
\begin{equation*}
\langle\mu,(p, \phi, a)\rangle=a-p \int_{M} \kappa \wedge \operatorname{Tr}\left[\frac{1}{2} \mathcal{L}_{R} A \wedge A+\varepsilon \alpha\left(g^{-1} \mathcal{L}_{R} g\right) \delta_{C}\right]-\int_{M} \kappa \wedge \operatorname{Tr}\left(\phi \mathscr{F}_{A}\right)+\int_{M} d \kappa \wedge \operatorname{Tr}(\phi A), \tag{2.36}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{F}_{A}=F_{A}+\varepsilon\left(g \alpha g^{-1}\right) \delta_{C} . \tag{2.37}
\end{equation*}
$$

Again, \mathcal{F}_{A} is the generalized curvature (2.27) appearing already in the shift-invariant action $S(A, U)$. From the description of the invariant form on the Lie algebra of H in (2.8), we see that

$$
\begin{equation*}
(\mu, \mu)=\int_{M} \kappa \wedge \operatorname{Tr}\left[\mathcal{L}_{R} A \wedge A+2 \varepsilon \alpha\left(g^{-1} \mathcal{L}_{R} g\right) \delta_{C}\right]-\int_{M} \kappa \wedge d \kappa \operatorname{Tr}\left[\left(\frac{\kappa \wedge \mathcal{F}_{A}-d \kappa \wedge A}{\kappa \wedge d \kappa}\right)^{2}\right] \tag{2.38}
\end{equation*}
$$

To simplify (2.38), let us expand the last term therein as

$$
\begin{equation*}
\int_{M} \kappa \wedge d \kappa \operatorname{Tr}\left[\left(\frac{\kappa \wedge \mathcal{F}_{A}-d \kappa \wedge A}{\kappa \wedge d \kappa}\right)^{2}\right]=\int_{M} \frac{1}{\kappa \wedge d \kappa} \operatorname{Tr}\left[\left(\kappa \wedge \mathcal{F}_{A}\right)^{2}-2\left(\kappa \wedge \mathcal{F}_{A}\right)(d \kappa \wedge A)+(d \kappa \wedge A)^{2}\right] . \tag{2.39}
\end{equation*}
$$

The term in (2.39) which is quadratic in \mathscr{F}_{A} appears explicitly in $S(A, U)$, and as for the term linear in \mathscr{F}_{A}, we need only extract the new contribution from the Seifert loop operator,

$$
\begin{equation*}
-2 \varepsilon \int_{M} \kappa \wedge \delta_{C} \operatorname{Tr}\left[\left(g \alpha g^{-1}\right)\left(\frac{d \kappa \wedge A}{d \kappa \wedge \kappa}\right)\right]=-2 \varepsilon \oint_{C} \kappa \operatorname{Tr}\left[\alpha \cdot\left(g^{-1} \iota_{R} A g\right)\right] \tag{2.40}
\end{equation*}
$$

Here we have applied the identity in (2.11). After a little bit of algebra, we thus rewrite (μ, μ) using (2.40) as

$$
\begin{align*}
(\mu, \mu) & =\int_{M} \kappa \wedge \operatorname{Tr}\left(\mathcal{L}_{R} A \wedge A\right)+2 \int_{M} \kappa \wedge \operatorname{Tr}\left[\left(\iota_{R} A\right) F_{A}\right]-\int_{M} \kappa \wedge d \kappa \operatorname{Tr}\left[\left(l_{R} A\right)^{2}\right]+ \\
& +2 \varepsilon \oint_{C} \kappa \operatorname{Tr}\left[\alpha \cdot\left(g^{-1} \mathcal{L}_{R} g+g^{-1} \iota_{R} A g\right)\right]-\int_{M} \frac{1}{\kappa \wedge d \kappa} \operatorname{Tr}\left[\left(\kappa \wedge \mathcal{F}_{A}\right)^{2}\right] . \tag{2.41}
\end{align*}
$$

At this stage, we apply our identity in (2.13) to recognize the first line in (2.41) as the ChernSimons action $\mathcal{C S}(A)$. We also have the much more transparent identity

$$
\begin{equation*}
\boldsymbol{c}_{\alpha}\left(U ;\left.A\right|_{C}\right)=\oint_{C} \operatorname{Tr}\left(\alpha \cdot g^{-1} d_{A} g\right)=\oint_{C} \kappa \operatorname{Tr}\left[\alpha \cdot\left(g^{-1} \mathcal{L}_{R} g+g^{-1}{t_{R}} A g\right)\right] . \tag{2.42}
\end{equation*}
$$

The identity in (2.42) follows immediately if we recall that the vector field R is tangent to C and satisfies $\langle\kappa, R\rangle=1$. So from (2.13), (2.41), and (2.42), we finally obtain the following result

$$
\begin{equation*}
(\mu, \mu)=\boldsymbol{e s}(A)+2 \varepsilon \operatorname{cs}_{\alpha}\left(U ;\left.A\right|_{C}\right)-\int_{M} \frac{1}{\kappa \wedge d \kappa} \operatorname{Tr}\left[\left(\kappa \wedge \mathcal{F}_{A}\right)^{2}\right]=S(A, U) \tag{2.43}
\end{equation*}
$$

Consequently the Seifert loop path integral in (2.35) assumes the canonical symplectic form required for non-abelian localization,

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{-i}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{\mathcal { }}} / 2} \int_{\overline{\mathrm{A}}_{\alpha}} \exp \left[\Omega_{\alpha}+\frac{i}{2 \varepsilon}(\mu, \mu)\right] . \tag{2.44}
\end{equation*}
$$

With regard $\frac{1}{2 \pi}$, we have that: $\frac{1}{2 \pi}=0,159154943 \cong 0,360674 \cdot \frac{4}{9}=0,160299 ; \quad$ or $0,159154943 \cong 0,159649217$, and this values are in the columns (*Pigreco) and (*1/Pigreco) of the Table of universal music system based on Phi.

We let C_{ℓ} for $\ell=1, \ldots, \mathrm{~L}$ be a set of disjoint Seifert fibers of M, each fiber labelled by an irreducible representation R_{ℓ} with highest weight α_{ℓ}. We then consider the symplectic space

$$
\begin{equation*}
\overline{\mathrm{A}}_{\alpha}=\overline{\mathrm{A}} \times \varepsilon L \mathrm{O}_{\alpha_{1}} \times \ldots \times \varepsilon L \mathrm{O}_{\alpha_{\mathrm{L}}} \tag{2.45}
\end{equation*}
$$

with symplectic form

$$
\begin{equation*}
\Omega_{\alpha}=\Omega+\varepsilon \sum_{\ell=1}^{\mathrm{L}} \mathrm{Y}_{\alpha_{\ell}} \tag{2.46}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\mathrm{L}}\right)$ serves as a multi-index. The group $\mathrm{H}=U(1)_{R} \times \widetilde{\boldsymbol{\mathcal { C }}_{0}}$ now acts on $\overline{\mathrm{A}}_{\alpha}$ in a Hamiltonian fashion with moment map

$$
\begin{equation*}
\langle\mu,(p, \phi, a)\rangle=a-p \int_{M} \kappa \wedge \operatorname{Tr}\left(\frac{1}{2} \mathcal{L}_{R} A \wedge A+\varepsilon \sum_{\ell=1}^{\mathrm{L}}\left[\alpha\left(g^{-1} \boldsymbol{\mathcal { L }}_{R} g\right) \delta_{C}\right]_{\ell}\right)-\int_{M} \kappa \wedge \operatorname{Tr}\left(\phi \boldsymbol{F}_{A}\right)+\int_{M} d \kappa \wedge \operatorname{Tr}(\phi A), \tag{2.47}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{F}_{A}=F_{A}+\varepsilon \sum_{\ell=1}^{\mathrm{L}}\left[\left(g \alpha g^{-1}\right) \delta_{C}\right] . \tag{2.48}
\end{equation*}
$$

By the same calculations leading to (2.43), the shift-invariant action $S\left(A, U_{1}, \ldots, U_{\mathrm{L}}\right)$ in (2.32) is precisely the square of the moment map (2.47) for the Hamiltonian action of H on $\overline{\mathrm{A}}_{\alpha}$. So when applied to multiple Seifert loop operators, the shift-invariant path integral in (2.31) can also be rewritten in the canonical symplectic form,

$$
\begin{equation*}
Z\left(\varepsilon ;\left(C_{1}, R_{1}\right), \ldots,\left(C_{\mathrm{L}}, R_{\mathrm{L}}\right)\right)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{-i}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{\mathcal { C }}} / 2} \int_{\overline{\mathrm{A}}_{\alpha}} \exp \left[\Omega_{\alpha}+\frac{i}{2 \varepsilon}(\mu, \mu)\right] . \tag{2.49}
\end{equation*}
$$

Non-abelian localization provides a general means to study a symplectic integral of the canonical form

$$
\begin{equation*}
Z(\varepsilon)=\frac{1}{\operatorname{Vol}(H)}\left(\frac{1}{2 \pi \varepsilon}\right)^{\Delta_{H} / 2} \int_{X} \exp \left[\Omega-\frac{1}{2 \varepsilon}(\mu, \mu)\right], \quad \Delta_{H}=\operatorname{dim} H . \tag{2.50}
\end{equation*}
$$

Here X is a symplectic manifold with symplectic form Ω, and H is a Lie group which acts on X in a Hamiltonian fashion with moment map μ. Finally, (., .) is an invariant, positive-definite quadratic form on the Lie algebra \boldsymbol{h} of H and dually on \boldsymbol{h}^{*} which we use to define the "action" $S=\frac{1}{2}(\mu, \mu)$ and the volume $\operatorname{Vol}(H)$ of H that appear in (2.50). To apply non-abelian localization to an integral of the form (2.50), we first observe that $Z(\varepsilon)$ can be rewritten as

$$
\begin{equation*}
Z(\varepsilon)=\frac{1}{\operatorname{Vol}(H)} \int_{n \times X}\left[\frac{d \phi}{2 \pi}\right] \exp \left[\Omega-i\langle\mu, \phi\rangle-\frac{\varepsilon}{2}(\phi, \phi)\right] . \tag{2.51}
\end{equation*}
$$

Here ϕ is an element of the Lie algebra \boldsymbol{h} of H, and $[d \phi]$ is the Euclidean measure on \boldsymbol{R} that is determined by the same invariant form $(.,$.$) which we use to define the volume \operatorname{Vol}(H)$ of H. The measure $[d \phi / 2 \pi]$ includes a factor of $1 / 2 \pi$ for each real component of ϕ. The Gaussian integral over ϕ in (2.51) then leads immediately to the expression for Z in (2.50).
We define the local contribution to Z from the component $\mathcal{C} \subset X$ by the following symplectic integral over N,

$$
\begin{equation*}
\left.Z(\varepsilon)\right|_{\mathcal{M}}=\frac{1}{\operatorname{Vol}(H)} \int_{n \times N}\left[\frac{d \phi}{2 \pi}\right] \exp \left[\Omega-i\langle\mu, \phi\rangle-\frac{\varepsilon}{2}(\phi, \phi)+s D \Psi\right] . \tag{2.52}
\end{equation*}
$$

So long as s is non-zero and Ψ is given by the following equation

$$
\begin{equation*}
\Psi=J d S=(\mu, J d \mu) ; \text { in components } \quad \Psi=d x^{m} J_{m}^{n} \partial_{n} S=d x^{m} \mu^{a} J_{m}^{n} \partial_{n} \mu_{a}, \tag{2.53}
\end{equation*}
$$

the integral (2.52) over the non-compact space N is both convergent and independent of s, so that $\left.Z(\varepsilon)\right|_{\mathcal{M}}$ is well-defined. $\left.Z(\varepsilon)\right|_{\mathcal{M}}$ in (2.52) is given by the following integral over $\boldsymbol{\beta}_{0} \times \boldsymbol{\mathcal { M }}$,

$$
\begin{equation*}
\left.Z(\varepsilon)\right|_{\mathcal{M}}=\frac{1}{\operatorname{Vol}\left(H_{0}\right)} \int_{\boldsymbol{n}_{0} \times \mathcal{M}}\left[\frac{d \psi}{2 \pi}\right] \frac{e_{H_{0}}\left(\boldsymbol{\mathcal { M }}, E_{0}\right)}{e_{H_{0}}\left(\boldsymbol{\mathcal { M }}, E_{1}\right)} \exp \left[\Omega+\varepsilon \Theta-i\left(\gamma_{0}, \psi\right)-\frac{\varepsilon}{2}(\psi, \psi)\right] . \tag{2.54}
\end{equation*}
$$

With regard the non-abelian localization formula in (2.54), let us mention two particularly simple special cases. At one extreme, we suppose that H acts freely on a neighbourhood of the vanishing locus $\mathbb{C}=\mu^{-1}(0) \subset X$ of the moment map μ. Thus H_{0} is trivial, and $\gamma_{0}=E_{0}=E_{1}=0$. The nonabelian localization formula in this case reduces to the following integral over $\boldsymbol{\mathcal { M }}=\mu^{-1}(0) / H$,

$$
\begin{equation*}
\left.Z(\varepsilon)\right|_{\mathcal{M}}=\int_{\mathcal{M}} \exp [\Omega+\varepsilon \Theta] \tag{2.55}
\end{equation*}
$$

Here Θ is now the degree-four characteristic class associated to $\mu^{-1}(0)$, regarded as a principal H bundle over $\boldsymbol{\mathcal { M }}$, and determined under the Chern-Weil homomorphism by $-\frac{1}{2}(\phi, \phi)$. At the opposite extreme, we allow the stabilizer $H_{0} \subset H$ to be non-trivial, but we assume that \boldsymbol{M} is simply a point. The non-abelian localization formula for $\left.Z\right|_{\mathcal{M}}$ in (2.54) then reduces to an integral over the Lie algebra \boldsymbol{h}_{0},

$$
\begin{equation*}
\left.Z(\varepsilon)\right|_{\mathcal{M}}=\frac{1}{\operatorname{Vol}\left(H_{0}\right)} \int_{n_{0}}\left[\frac{d \psi}{2 \pi}\right] \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{E_{0}}\right) \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{E_{1}}\right)^{-1} \exp \left[-i\left(\gamma_{0}, \psi\right)-\frac{\varepsilon}{2}(\psi, \psi)\right] \tag{2.56}
\end{equation*}
$$

Here we have written the H_{0}-equivariant Euler classes in (2.54) more explicitly as determinants of $\psi \in \boldsymbol{R}_{0}$ acting on the respective vector spaces E_{0} and E_{1}.
Now we apply non-abelian localization to the Seifert loop path integral, which takes the canonical form (see eq. (2.44))

$$
\begin{equation*}
Z(\varepsilon ; C, R)=\frac{1}{\operatorname{Vol}(\boldsymbol{\mathcal { G }})}\left(\frac{-i}{2 \pi \varepsilon}\right)^{\Delta_{\boldsymbol{\xi}} / 2} \int_{\bar{A}_{\alpha}} \exp \left[\Omega_{\alpha}+\frac{i}{2 \varepsilon}(\mu, \mu)\right] \tag{2.57}
\end{equation*}
$$

By the general properties of the canonical symplectic integral, $Z(\varepsilon ; C, R)$ localizes onto the critical points in $\overline{\mathrm{A}}_{\alpha}=\overline{\mathrm{A}} \times \varepsilon L \mathrm{O}_{\alpha}$ of the shift-invariant action

$$
\begin{equation*}
S(A, U)=C S(A)+2 \varepsilon \oint_{C} \operatorname{Tr}\left(\alpha \cdot g^{-1} d_{A} g\right)-\int_{M} \frac{1}{\kappa \wedge d \kappa} \operatorname{Tr}\left[\left(\kappa \wedge \mathcal{F}_{A}\right)^{2}\right] \tag{2.58}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{F}_{A}=F_{A}+\varepsilon\left(g^{\alpha g} g^{-1}\right) \delta_{C} \tag{2.59}
\end{equation*}
$$

Varying $S(A, U)$ in (2.58) with respect to A, we immediately find one classical equation of motion,

$$
\begin{equation*}
F_{A}+\varepsilon\left(g \alpha g^{-1}\right) \delta_{C}-\left(\frac{\kappa \wedge \mathcal{F}_{A}}{\kappa \wedge d \kappa}\right) d \kappa-\kappa \wedge d_{A}\left(\frac{\kappa \wedge \mathscr{F}_{A}}{\kappa \wedge d \kappa}\right)=0 \tag{2.60}
\end{equation*}
$$

Varying with respect to g, we find the other equation of motion,

$$
\begin{equation*}
\left[\alpha, g^{-1} d_{A} g-\kappa g^{-1}\left(\frac{\kappa \wedge \mathcal{F}_{A}}{\kappa \wedge d \kappa}\right) g\right]=0 \tag{2.61}
\end{equation*}
$$

To express $Z(\varepsilon ; C, R)$ in a manner which makes the semi-classical interpretation of the Seifert loop operator manifest, we find it useful to introduce the quantities

$$
\begin{equation*}
\varepsilon_{r}=\frac{2 \pi}{k+2} ; \quad \mathrm{P}=\prod_{j=1}^{N} a_{j} \text { if } \quad N \geq 1, \quad \mathrm{P}=1 \text { otherwise; } \quad \theta_{0}=3-\frac{d}{P}+12 \sum_{j=1}^{N} s\left(b_{j}, a_{j}\right) . \tag{2.62}
\end{equation*}
$$

Here ε_{r} is the renormalized coupling incorporating the shift $k \rightarrow k+2$ in the Chern-Simons level in the case $G=S U(2)$, and $s(b, a)$ is the Dedekind sum,

$$
\begin{equation*}
s(b, a)=\frac{1}{4 a} \sum_{l=1}^{a-1} \cot \left(\frac{\pi l}{a}\right) \cot \left(\frac{\pi l b}{a}\right) \tag{2.63}
\end{equation*}
$$

We also introduce the analytic functions

$$
\begin{equation*}
F(z)=\left(2 \sinh \left(\frac{z}{2}\right)\right)^{2-N} \cdot \prod_{j=1}^{N}\left(2 \sinh \left(\frac{z}{2 a_{j}}\right)\right) ; \quad G^{(l)}(z)=\frac{i}{4 \varepsilon_{r}}\left(\frac{d}{P}\right) z^{2}-\frac{2 \pi l}{\varepsilon_{r}} z \tag{2.64}
\end{equation*}
$$

We introduce the character $\operatorname{ch}_{j}(z)$ for the irreducible representation j of $S U(2)$ with dimension j,

$$
\begin{equation*}
c h_{j}(z)=\frac{\sinh (j z)}{\sinh (z)}=e^{(j-1) z}+e^{(j-3) z}+\ldots+e^{-(j-3) z}+e^{-(j-1) z} \tag{2.65}
\end{equation*}
$$

The Seifert loop path integral on M can then be written exactly as

$$
\begin{gather*}
Z(\varepsilon ; C, j)=(-1) \frac{\exp \left[\frac{3 \pi i}{4}-\frac{i}{4}\left(\theta_{0}+\left(j^{2}-1\right) P\right) \varepsilon_{r}\right]}{4 \sqrt{P}} \times\left\{\sum_{l=0}^{d-1} \frac{1}{2 \pi i} \int_{e^{(l)}} d z c h_{j}\left(\frac{z}{2}\right) F(z) \exp \left[G^{(l)}(z)\right]-\right. \\
-\left.\sum_{t=1}^{2 P-1} \operatorname{Re} s\left(\frac{c h_{j}\left(\frac{z}{2}\right) F(z) \exp \left[G^{(0)}(z)\right]}{1-\exp \left(-\frac{2 \pi}{\varepsilon_{r}} z\right)}\right)\right|_{z=2 \pi i t}-\sum_{l=1}^{d-1} \sum_{t=1}^{\left[\frac{2 P l}{d}\right]} \operatorname{Re} s\left(\left.c h_{j}\left(\frac{z}{2}\right) F(z) \exp \left[G^{(l)}(z)\right]\right|_{z=-2 \pi i t}\right\} . \tag{2.66}
\end{gather*}
$$

Here $\boldsymbol{e}^{(l)}$ for $l=0, \ldots, d-1$ denote a set of contours in the complex plane over which we evaluate the integrals in the first line of (2.66). In particular, $\boldsymbol{e}^{(0)}$ is the diagonal line contour through the origin,

$$
\begin{equation*}
\boldsymbol{e}^{(0)}=e^{\frac{i \pi}{4}} \times \mathrm{R}, \tag{2.67}
\end{equation*}
$$

and the other contours $\boldsymbol{C}^{(l)}$ for $l>0$ are diagonal line contours parallel to $\boldsymbol{C}^{(0)}$ running through the stationary phase point of the integrand, given by $z=-4 \pi i l(P / d)$. Also, "Res" denotes the residue of the given analytic function evaluated at the given point.
We see from the formula (2.66) that $Z(\varepsilon ; C, j)$ has exactly the same structure as $Z(\varepsilon)$ even when j is non-trivial. Again, $Z(\varepsilon ; C, j)$ appears as a sum of terms associated to each component in the moduli space $\boldsymbol{\mathcal { M }}$, and the Seifert loop operator is universally described on each component by the character $c h_{j}$. Of the terms in (2.66), the contour integral for $l=0$ represents the contribution from the trivial connection, which is given explicitly by

$$
\begin{gather*}
\left.Z(\varepsilon ; C, j)\right|_{\{0\}}=(-1) \frac{\exp \left[\frac{3 \pi i}{4}-\frac{i}{4}\left(\theta_{0}+\left(j^{2}-1\right) P\right) \varepsilon_{r}\right]}{4 \sqrt{P}} \times \frac{1}{2 \pi i} \int_{e^{(0)}} d z \operatorname{ch}_{j}\left(\frac{z}{2}\right) \exp \left[\frac{i}{4 \varepsilon_{r}}\left(\frac{d}{P}\right) z^{2}\right] \\
\left(2 \sinh \left(\frac{z}{2}\right)\right)^{2-N} \cdot \prod_{j=1}^{N}\left(2 \sinh \left(\frac{z}{2 a_{j}}\right)\right) \cdot \tag{2.68}
\end{gather*}
$$

To gain a bit more insight into the empirical formula (2.66) for $Z(\varepsilon ; C, j)$, let us again specialize to the case of torus knots $\mathscr{K}_{p, q}$ in S^{3}. With the Seifert invariants given from the following expressions:

$$
\begin{array}{rll}
h=0, & a_{1}=\mathbf{p}, \quad a_{2}=\mathbf{q} . \\
n=-1, & b_{1}=\mathbf{p}-\mathbf{r}, & b_{2}=\mathbf{s} . \tag{2.70}
\end{array}
$$

the formula for $Z(\varepsilon ; C, j)$ becomes

$$
\begin{gather*}
Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)=(-1)-\exp \left[\frac{3 \pi i}{4}-\frac{i}{4}\left(\frac{p}{q}+\frac{q}{p}+p q\left(j^{2}-1\right)\right) \varepsilon_{r}\right] \\
\sqrt{p q} \tag{2.71}\\
\left.\exp \left[\frac{i}{4 \varepsilon_{r}}\left(\frac{1}{p q}\right) z^{2}\right]+\left(\frac{j}{2 \pi i} \int_{e^{(0)}}\right)^{2 p q-1} \sum_{t=1}^{2 p-1}(-1)^{t(j+1)} \sin \left(\frac{z \pi}{p}\right) \sinh \left(\frac{z}{2 p}\right) \sinh \left(\frac{z t}{q}\right) \exp \left(\frac{-i \pi(k+2)}{2 p q} t^{2}\right)\right\} .
\end{gather*}
$$

In passing from (2.66) to (2.71), we have explicitly evaluated the phase θ_{0} in (2.62) for the Seifert presentation of S^{3} with fiber $\mathcal{K}_{p, q}$. Here we use two arithmetic properties of the Dedekind sum $s(.,$.$) that enters \theta_{0}$. First, as follows more or less directly from the definition (2.63),

$$
\begin{equation*}
s(\mathbf{p}-\mathbf{r}, \mathbf{p})=s(\mathbf{q}, \mathbf{p}), \quad s(\mathbf{s}, \mathbf{q})=s(\mathbf{p}, \mathbf{q}), \quad \mathbf{p s}-\mathbf{q} \mathbf{r}=1 . \tag{2.72}
\end{equation*}
$$

Much more non-trivially, we also use Dedekind reciprocity, which states that

$$
\begin{equation*}
12 \mathbf{p q}[s(\mathbf{p}, \mathbf{q})+s(\mathbf{q}, \mathbf{p})]=\mathbf{p}^{2}+\mathbf{q}^{2}-3 \mathbf{p} \mathbf{q}+1, \quad \operatorname{gcd}(\mathbf{p}, \mathbf{q})=1 . \tag{2.73}
\end{equation*}
$$

Together, we apply (2.72) and (2.73) to compute θ_{0} as

$$
\begin{equation*}
\theta_{0}=3-\frac{1}{p q}+12[s(\mathbf{p}-\mathbf{r}, \mathbf{p})+s(\mathbf{s}, \mathbf{q})]=\frac{p}{q}+\frac{q}{p} . \tag{2.74}
\end{equation*}
$$

We have also evaluated the residues appearing in the empirical formula for $Z(\varepsilon ; C, R)$. These residues appear in the sum over t in (2.71), in terms of which we decompose $Z\left(\varepsilon ; \mathcal{H}_{p, q}, j\right)$ as

$$
\begin{equation*}
Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)=\left.Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)\right|_{\{0\}}+Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)_{r e s}, \tag{2.75}
\end{equation*}
$$

where

$$
\begin{align*}
Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right) & \{00\} \\
=(-1)-\frac{\exp \left[\frac{3 \pi i}{4}-\frac{i}{4}\left(\frac{p}{q}+\frac{q}{p}+p q\left(j^{2}-1\right)\right) \varepsilon_{r}\right]}{\sqrt{p q}} & \frac{1}{2 \pi i} \int_{e^{(0)}} d z \operatorname{ch}_{j}\left(\frac{z}{2}\right) \sinh \left(\frac{z}{2 p}\right) \tag{2.76}\\
& \sinh \left(\frac{z}{2 q}\right) \exp \left[\frac{i}{4 \varepsilon_{r}}\left(\frac{1}{p q}\right) z^{2}\right],
\end{align*}
$$

and

$$
\begin{gather*}
Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)_{\text {res }}=(-1) \frac{\exp \left[\frac{3 \pi i}{4}-\frac{i}{4}\left(\frac{p}{q}+\frac{q}{p}+p q\left(j^{2}-1\right)\right) \varepsilon_{r}\right]_{\times}}{\sqrt{p q}} \\
\times\left\{\left(\frac{j}{k+2}\right)^{2 p q-1} \sum_{t=1}(-1)^{t(j+1)} \sin \left(\frac{\pi t}{p}\right) \sin \left(\frac{\pi t}{q}\right) \exp \left(\frac{-i \pi(k+2)}{2 p q} t^{2}\right)\right\} . \tag{2.77}
\end{gather*}
$$

We have that $\frac{3 \pi}{4}=2,35619 \cong 2,35350$, value inserted in the column $(* 1 / 1,375)$ concerning the Table of the universal music system based on Phi.

As we have already mentioned, $\left.Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)\right|_{\{0\}}$ can be naturally interpreted as the contribution to the Seifert loop path integral from the reducible point $\left\{\rho_{a b}\right\}$ in the extended moduli space $\mathcal{M}\left(\mathcal{K}_{p, q}, j\right)$. Equivalently $Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)_{\{0\}}$ is the contribution from the trivial connection $\{0\}$ on S^{3}. But in the relevant semi-classical limit, for which $\varepsilon \rightarrow 0$ with \mathbf{j} fixed, $\left\{\rho_{a b}\right\}$ is indeed the only point in $\mathcal{M}\left(\mathscr{K}_{p, q}, j\right)$. Hence our localization result for the Seifert loop path integral implies that the additional, oscillatory Gaussian sum in (2.77) must actually vanish,

$$
\begin{equation*}
Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)_{r e s}=0, \quad \operatorname{gcd}(\mathbf{p}, \mathbf{q})=1 \tag{2.78}
\end{equation*}
$$

After applying the vanishing result (2.78), we obtain a compact formula for the expectation value of an arbitrary Wilson loop operator wrapping the torus knot $\mathscr{K}_{p, q}$ in S^{3} and decorated with the irreducible $S U(2)$ representation \mathbf{j},

$$
\begin{align*}
& Z\left(\varepsilon ; \mathscr{K}_{p, q}, j\right)=Z\left(\varepsilon ; \mathcal{F}_{p, q}, j\right)_{\{0\}}=\frac{1}{2 \pi i} \frac{1}{\sqrt{p q}} \exp \left[-\frac{i \pi}{2(k+2)}\left(\frac{p}{q}+\frac{q}{p}+p q\left(j^{2}-1\right)\right)\right] \times \\
& \quad \times \int_{R} d x c h_{j}\left(e^{\frac{i \pi}{4}} \frac{x}{2}\right) \sinh \left(e^{\frac{i \pi}{4}} \frac{x}{2 p}\right) \sinh \left(e^{\frac{i \pi}{4}} \frac{x}{2 q}\right) \exp \left[-\frac{(k+2)}{8 \pi}\left(\frac{x^{2}}{p q}\right)\right] . \tag{2.79}
\end{align*}
$$

With regard $\frac{\pi}{2(k+2)}$ and $\frac{k+2}{8 \pi}$ for $k=1$, we have that $\frac{\pi}{2(1+2)}=\frac{\pi}{6}=0,52359 \cong 0,52520$; $\frac{3}{8 \pi}=0,119366 \cong 0,118393$. Bothe the values are inserted in the column $\left({ }^{*} 1,375\right)$ of the Table regarding the universal music system based on Phi. Furthermore, we have that the eq. (2.79) can be related with the Ramanujan modular equation concerning the superstrings and with the PalumboNardelli model equation, thence:

$$
\begin{aligned}
& \left.Z\left(\varepsilon ; \mathscr{K}_{p, q}, j\right)=Z\left(\varepsilon ; \mathcal{K}_{p, q}, j\right)\right)_{\{0\}}=\frac{1}{2 \pi i} \frac{1}{\sqrt{p q}} \exp \left[-\frac{i \pi}{2(k+2)}\left(\frac{p}{q}+\frac{q}{p}+p q\left(j^{2}-1\right)\right)\right] \times \\
& \quad \times \int_{R} d x \operatorname{loh}_{j}\left(e^{\frac{i \pi}{4}} \frac{x}{2}\right) \sinh \left(e^{\frac{i \pi}{4}} \frac{x}{2 p}\right) \sinh \left(e^{\frac{i \pi}{4}} \frac{x}{2 q}\right) \exp \left[-\frac{(k+2)}{8 \pi}\left(\frac{x^{2}}{p q}\right)\right] \Rightarrow
\end{aligned}
$$

$$
\begin{gather*}
4\left[\operatorname{anti\operatorname {log}\frac {\int _{0}^{\infty }\frac {\operatorname {cos}\pi txw^{\prime }}{\operatorname {cosh}\pi x}e^{-\pi x^{2}w^{\prime }}dx}{e^{-\frac {\pi ^{2}}{4}w^{\prime }}\phi _{w^{\prime }}(itw^{\prime })}]\cdot \frac {\sqrt {142}}{t^{2}w^{\prime }}}\right. \\
\Rightarrow \frac{1}{3} \frac{\log \left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right]}{} \Rightarrow \\
\Rightarrow-\int d^{26} x \sqrt{g}\left[-\frac{R}{16 \pi G}-\frac{1}{8} g^{\mu \rho} g^{v \sigma} T r\left(G_{\mu \nu} G_{\rho \sigma}\right) f(\phi)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]= \tag{2.79b}\\
=\int_{0}^{\infty} \frac{1}{2 \kappa_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left[R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|\widetilde{H}_{3}\right|^{2}-\frac{\kappa_{10}^{2}}{g_{10}^{2}} \operatorname{Tr}_{\nu}\left(\left|F_{2}\right|^{2}\right)\right] .
\end{gather*}
$$

In writing (2.79), we have rotated the contour $\boldsymbol{e}^{(0)}=e^{\frac{i \pi}{4}} \times R$ to the real axis and substituted $\varepsilon_{r}=2 \pi /(k+2)$, so that (2.79) appears as a simple generalization of the corresponding formula (2.5) for the unknot $\mathrm{O}=\mathscr{F}_{1,1}$.
We now apply the non-abelian localization formula in (2.54) to the Seifert loop path integral. Because $\left\{\rho_{a b}\right\} \cong \mathrm{O}_{\alpha} / G$ is a point, the path integral immediately reduces via (2.56) to an integral over the finite-dimensional Lie algebra $\boldsymbol{\kappa}_{0}^{\alpha}=R \oplus \boldsymbol{g}_{\alpha} \oplus R$ of the stabilizer H_{0}^{α},

$$
\begin{equation*}
\left.Z(\varepsilon ; C, R)\right|_{\mathrm{o}_{\alpha} / G}=\frac{(2 \pi \varepsilon)}{\operatorname{Vol}\left(G_{\alpha}\right)} \int_{\boldsymbol{n}_{0}^{\alpha}}\left[\frac{d \psi}{2 \pi}\right] \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\xi_{0}^{\alpha}}\right) \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\xi_{1}^{\alpha}}\right)^{-1} \times \exp \left[-i\left(\gamma_{0}, \psi\right)-\frac{i \varepsilon}{2}(\psi, \psi)\right] . \tag{2.80}
\end{equation*}
$$

Here ψ is an element in the algebra $\boldsymbol{~}_{0}^{\alpha}$. Because the group $H_{0}^{\alpha}=U(1)_{R} \times G_{\alpha} \times U(1)_{Z}$ decomposes as a product, we frequently write ψ in terms of components

$$
\begin{equation*}
\psi=(p, \phi, a) \in R \oplus \boldsymbol{g}_{\alpha} \oplus R \tag{2.81}
\end{equation*}
$$

where p and a generate $U(1)_{R}$ and $U(1)_{Z}$ respectively, and ϕ is an element of \boldsymbol{g}_{α}.
In arriving at the expression for $\left.Z(\varepsilon ; C, R)\right|_{o_{\alpha} / G}$ in (2.80), we have multiplied the result obtained directly from (2.56) by

$$
\begin{equation*}
\operatorname{Vol}\left[U(1)_{R}\right] \cdot \operatorname{Vol}\left[U(1)_{Z}\right] \cdot 2 \pi \varepsilon, \tag{2.82}
\end{equation*}
$$

which accounts for the prefactor involving ε in (2.80). By definition, $\gamma_{0} \in \boldsymbol{\boldsymbol { h }}_{0}{ }^{\alpha}$ is the dual of the value of the moment map μ evaluated at the point $\alpha \in \mathrm{O}_{\alpha}$. According to (2.36), μ is generally given on $\overline{\mathrm{A}}_{\alpha}$ by

$$
\begin{equation*}
\langle\mu,(p, \phi, a)\rangle=a-p \int_{M} \kappa \wedge \operatorname{Tr}\left[\frac{1}{2} \mathcal{L}_{R} A \wedge A+\varepsilon \alpha\left(g^{-1} \mathcal{L}_{R} g\right) \delta_{C}\right]-\int_{M} \kappa \wedge \operatorname{Tr}\left(\phi \boldsymbol{F}_{A}\right)+\int_{M} d \kappa \wedge \operatorname{Tr}(\phi A) . \tag{2.83}
\end{equation*}
$$

Points in O_{α} correspond to classical configurations of (A, U) which are annihilated by \mathcal{L}_{R} and satisfy $\mathcal{F}_{A}=0$, so only the first and last terms in (2.83) contribute when μ is evaluated at points in O_{α}. We compute directly the last term in (2.83) to be

$$
\begin{equation*}
\int_{M} d \kappa \wedge \operatorname{Tr}(\phi A)=\int_{M} \kappa \wedge \operatorname{Tr}\left(\phi F_{A}\right)=-\varepsilon \int_{M} \kappa \wedge \delta_{C} \operatorname{Tr}(\alpha \phi)=-\varepsilon \operatorname{Tr}(\alpha \phi)=\varepsilon\langle\alpha, \phi\rangle . \tag{2.84}
\end{equation*}
$$

From (2.83) and (2.84) we thereby obtain

$$
\begin{equation*}
\left(\gamma_{0}, \psi\right)=\left.\langle\mu,(p, \phi, a)\rangle\right|_{\alpha \in \mathrm{O}_{\alpha}}=a+\varepsilon\langle\alpha, \phi\rangle . \tag{2.85}
\end{equation*}
$$

We also recall from (2.8) that the norm of ψ is given by

$$
\begin{equation*}
(\psi, \psi)=-\int_{M} \kappa \wedge d \kappa \operatorname{Tr}\left(\phi^{2}\right)-2 p a=-\frac{d}{P} \operatorname{Tr}\left(\phi^{2}\right)-2 p a . \tag{2.86}
\end{equation*}
$$

In passing to the second line of (2.86), we use the description of $d \kappa$ in the following expression

$$
\begin{equation*}
d \kappa=\left(n+\sum_{j=1}^{N} \frac{b_{j}}{a_{j}}\right) \pi^{*} \hat{\omega} \tag{2.86b}
\end{equation*}
$$

along with the identity in the following expression

$$
\begin{equation*}
n+\sum_{j=1}^{N} \frac{b_{j}}{a_{j}}= \pm \prod_{j=1}^{N} \frac{1}{a_{j}} \tag{2.86c}
\end{equation*}
$$

to compute the integral $\int_{M} \kappa \wedge d \kappa=d / P$, where d is defined as

$$
\begin{equation*}
d=\left|H_{1}(M)\right| \tag{2.86d}
\end{equation*}
$$

and P is defined in (2.62). Via (2.85) and (2.86), the integral over $\boldsymbol{R}_{0}^{\alpha}$ then takes the more explicit form

$$
\begin{align*}
& \left.Z(\varepsilon ; C, R)\right|_{o_{\alpha} / G}=\frac{(2 \pi \varepsilon)}{\operatorname{Vol}\left(G_{\alpha}\right)} \int_{R \times g_{\alpha} \times R}\left[\frac{d p}{2 \pi}\right]\left[\frac{d \phi}{2 \pi}\right]\left[\frac{d a}{2 \pi}\right] \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\xi_{0}^{\alpha}}\right) \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\xi_{1}^{\alpha}}\right)^{-1} \times \\
& \quad \times \exp \left[-i a-i \varepsilon\langle\alpha, \phi\rangle+\frac{i \varepsilon}{2}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)+i \varepsilon p a\right] . \tag{2.87}
\end{align*}
$$

The vector bundles ξ_{0}^{α} and ξ_{1}^{α} both decompose into summands associated to the respective factors in the product $\overline{\mathrm{A}}_{\alpha}=\overline{\mathrm{A}} \times \varepsilon L \mathrm{O}_{\alpha}$, so that

$$
\begin{equation*}
\xi_{0}^{\alpha}=\xi_{0} \oplus \boldsymbol{g}^{(1,0)}, \quad \xi_{1}^{\alpha}=\xi_{1} \oplus \overline{\mathcal{N}}_{\alpha} . \tag{2.88}
\end{equation*}
$$

Consequently, in any regularization, we can factorize the ratio of determinants appearing in (2.87) as

$$
\begin{equation*}
\operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\xi_{0}^{\alpha}}\right) \cdot \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\xi_{1}^{\alpha}}\right)^{-1}=e(\overline{\mathrm{~A}}) \cdot e\left(L \mathrm{O}_{\alpha}\right), \tag{2.89}
\end{equation*}
$$

where we introduce the separate ratios

$$
\begin{equation*}
e(\overline{\mathrm{~A}})=\operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\xi_{0}}\right) \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\xi_{1}}\right)^{-1}, \quad e\left(L \mathrm{O}_{\alpha}\right)=\operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{g^{(1,0)}}\right) \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\bar{N}_{\alpha}}\right)^{-1} . \tag{2.90}
\end{equation*}
$$

The integral in (2.87) immediately becomes

$$
\begin{align*}
& \left.Z(\varepsilon ; C, R)\right|_{O_{\alpha} / G}=\frac{(2 \pi \varepsilon)}{\operatorname{Vol}\left(G_{\alpha}\right)} \int_{R \times g_{\alpha} \times R}\left[\frac{d p}{2 \pi}\right]\left[\frac{d \phi}{2 \pi}\right]\left[\frac{d a}{2 \pi}\right] e(\overline{\mathrm{~A}}) \cdot e\left(L \mathrm{O}_{\alpha}\right) \times \\
& \quad \times \exp \left[-i a-i \varepsilon\langle\alpha, \phi\rangle+\frac{i \varepsilon}{2}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)+i \varepsilon p a\right] . \tag{2.91}
\end{align*}
$$

The essence of localization on O_{α} / G now lies in evaluating $e(\overline{\mathrm{~A}})$ and $e\left(L \mathrm{O}_{\alpha}\right)$. Because the central generator a of $U(1)_{Z}$ acts trivially, $e(\overline{\mathrm{~A}})$ depends only on the generators (p, ϕ) of $U(1)_{R} \times G_{\alpha}$ and is given by

$$
\begin{gather*}
e(\overline{\mathrm{~A}})=\exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \cdot \frac{(2 \pi)^{\Delta_{G}}}{(p \sqrt{P})^{\Delta_{T}}} \times \exp \left[\frac{i \breve{c}_{g}}{4 \pi p^{2}}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)\right] \prod_{\beta>0}\langle\beta, \phi\rangle^{-2}\left[2 \sin \left(\frac{\langle\beta, \phi\rangle}{2 p}\right)\right]^{2-N} \\
\prod_{j=1}^{N}\left[2 \sin \left(\frac{\langle\beta, \phi\rangle}{2 a_{j} p}\right)\right], \quad \Delta_{G}=\operatorname{dim} G, \quad \Delta_{T}=\operatorname{dim} T . \tag{2.92}
\end{gather*}
$$

Thence, we can rewrite the eq. (2.91) also as follows:

$$
\begin{gather*}
\left.Z(\varepsilon ; C, R)\right|_{\mathrm{O}_{\alpha} / G}=\frac{(2 \pi \varepsilon)}{\operatorname{Vol}\left(G_{\alpha}\right)} \int_{R \times g_{\alpha} \times R}\left[\frac{d p}{2 \pi}\right]\left[\frac{d \phi}{2 \pi}\right]\left[\frac{d a}{2 \pi}\right] . \\
\exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \cdot \frac{(2 \pi)^{\Delta_{G}}}{(p \sqrt{P})^{\Delta_{T}}} \times \exp \left[\frac{i \breve{c}_{g}}{4 \pi p^{2}}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)\right] \prod_{\beta>0}\langle\beta, \phi\rangle^{-2}\left[2 \sin \left(\frac{\langle\beta, \phi\rangle}{2 p}\right)\right]^{2-N} \\
\prod_{j=1}^{N}\left[2 \sin \left(\frac{\langle\beta, \phi\rangle}{2 a_{j} p}\right)\right] \cdot e\left(L \mathrm{O}_{\alpha}\right) \times \exp \left[-i a-i \varepsilon\langle\alpha, \phi\rangle+\frac{i \varepsilon}{2}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)+i \varepsilon p a\right] . \tag{2.92b}
\end{gather*}
$$

We have, with regard the eq. (2.92), that $\frac{1}{4 \pi}=0,079577 \cong 0,078929$, and $\frac{\pi}{2}=1,5707963 \cong 1,57560$ and both the values are inserted in the column $(* 1,375)$ and 0,079577 is very near to value 0,07801 that is in the column ($* 2,71828 \ldots$) of the Table regarding the universal music system based on Phi.

Here we recall that $T \subset G$ is a maximal torus, and in writing this formula for $e(\overline{\mathrm{~A}})$, we assume without loss than ϕ lies in the associated Cartan subalgebra \boldsymbol{t}. Each $\beta>0$ is then a positive root of G, and $\langle.,$.$\rangle is the canonical dual paring.$
The product of determinants associated to the free loopspace $L \mathrm{O}_{\alpha}$, is

$$
\begin{equation*}
e\left(L \mathrm{O}_{\alpha}\right)=\operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{g^{(1,0)}}\right) \operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\bar{N}_{\alpha}}\right)^{-1} . \tag{2.93}
\end{equation*}
$$

Eventually these determinants, along with the moment map on O_{α} which enters the argument of the exponential in (2.91), will determine the invariant function of ϕ which represents the Seifert loop operator under localization at the trivial connection on M.
Taking the ratio between the determinants in the following expressions

$$
\begin{gather*}
\operatorname{det}\left(\left.\frac{[\phi, \cdot]}{2 \pi}\right|_{g^{(1,0)}}\right)=\prod_{\left(\beta_{+}, \alpha\right\rangle>0}\left(\frac{i}{2 \pi}\left\langle\beta_{+}, \phi\right\rangle\right)=\left(\frac{i}{2 \pi}\right)^{\left(\Delta_{G}-\Delta_{\sigma_{\alpha}}\right) / 2} \cdot \prod_{\left(\beta_{+}, \alpha\right\rangle>0}\left\langle\beta_{+}, \phi\right\rangle, \quad \Delta_{G}=\operatorname{dim} G \quad \Delta_{G_{\alpha}}=\operatorname{dim} G_{\alpha}, \\
\operatorname{det}\left(\left.\frac{\psi}{2 \pi}\right|_{\bar{N}_{\alpha}}\right)=(2 \pi)^{\left(\Delta_{G}-\Delta_{G_{\alpha}}\right) / 2} \exp \left(i \frac{\left\langle\rho^{[\alpha]}, \phi\right\rangle}{p}\right) \prod_{\left(\beta_{+}, \alpha\right\rangle>0} \frac{2}{\left\langle\beta_{+}, \phi\right\rangle} \sin \left(\frac{\left\langle\beta_{+}, \phi\right\rangle}{2 p}\right), \tag{2.94}
\end{gather*}
$$

we see that $e\left(L \mathrm{O}_{\alpha}\right)$ is given by

$$
\begin{equation*}
e\left(L \mathrm{O}_{\alpha}\right)=\left(\frac{1}{2 \pi}\right)^{\left(\Delta_{G}-\Delta_{G_{\alpha}}\right)} \exp \left[\frac{i \pi}{4}\left(\Delta_{G}-\Delta_{G_{\alpha}}\right)-i \frac{\left\langle\rho^{[\alpha]}, \phi\right\rangle}{p}\right] \times \prod_{\left(\beta_{+}, \alpha\right\rangle>0}\left(\beta_{+}, \phi\right)^{2} \cdot\left[2 \sin \left(\frac{\left\langle\beta_{+}, \phi\right\rangle}{2 p}\right)\right]^{-1}, \tag{2.96}
\end{equation*}
$$

$\Delta_{G}=\operatorname{dim} G, \quad \Delta_{G_{\alpha}}=\operatorname{dim} G_{\alpha}$
As manifest in (2.92) and (2.96), neither $e(\overline{\mathrm{~A}})$ nor $e\left(L \mathrm{O}_{\alpha}\right)$ depends upon the variable a which parametrizes the Lie algebra of $U(1)_{Z}$. Because $U(1)_{Z}$ acts in a completely trivial fashion on $\overline{\mathrm{A}}_{\alpha}$, the result could hardly have been otherwise. Yet this observation does have an important consequence. We recall from (2.91) that the local contribution from $\left\{\rho_{a b}\right\} \cong \mathrm{O}_{\alpha} / G$ to the Seifert loop path integral is given by

$$
\begin{gather*}
\left.Z(\varepsilon ; C, R)\right|_{\mathrm{O}_{\alpha} / G}=\frac{(2 \pi \varepsilon)}{\operatorname{Vol}\left(G_{\alpha}\right)} \int_{R \times g_{\alpha} \times R}\left[\frac{d p}{2 \pi}\right]\left[\frac{d \phi}{2 \pi}\right]\left[\frac{d a}{2 \pi}\right] e(\overline{\mathrm{~A}}) \cdot e\left(L \mathrm{O}_{\alpha}\right) \times \\
\quad \times \exp \left[-i a-i \varepsilon\langle\alpha, \phi\rangle+\frac{i \varepsilon}{2}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)+i \varepsilon p a\right] . \tag{2.97}
\end{gather*}
$$

Since a enters the integrand of (2.97) only linearly in the argument of the exponential, we can immediately integrate over a using the elementary identity

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d y \exp (-i x y)=2 \pi \delta(x) . \tag{2.98}
\end{equation*}
$$

Hence the integral over a yields a delta-function $2 \pi \delta(1-\varepsilon p)$. Next, we use the delta-function to perform the integral over p, thereby setting $p=1 / \varepsilon$. In the process, the prefactor of $2 \pi \varepsilon$ which appears in the normalization of (2.97) is cancelled, and the integral over $R \oplus \boldsymbol{g}_{\alpha} \oplus R$ reduces to an integral over \boldsymbol{g}_{α} alone,

$$
\begin{gather*}
\left.Z(\varepsilon ; C, R)\right|_{\mathrm{o}_{\alpha} / G}=\exp \left[-\frac{i \pi}{2}\left(\eta_{0}(0)-\frac{1}{2}\left(\Delta_{G}-\Delta_{G_{\alpha}}\right)\right)\right] \frac{1}{\operatorname{Vol}\left(G_{\alpha}\right)}\left(\frac{\varepsilon}{\sqrt{P}}\right)^{\Delta_{T}} \times \int_{g_{\alpha}}[d \phi] \exp \left[-i \varepsilon\left\langle\alpha+\rho^{[\alpha]}, \phi\right\rangle+\frac{i \varepsilon}{2}\right. \\
\left(\frac{d}{P}\right)\left(1+\frac{\varepsilon \breve{c}_{q}}{2 \pi}\right) \\
\left.\operatorname{Tr}\left(\phi^{2}\right)\right] \times \prod_{\beta>0}\langle\beta, \phi\rangle^{-2}\left[2 \sin \left(\frac{\varepsilon\langle\beta, \phi\rangle}{2}\right)\right]^{2-N} \prod_{j=1}^{N}\left[2 \sin \left(\frac{\varepsilon\langle\beta, \phi\rangle}{2 a_{j}}\right)\right] \times \tag{2.99}\\
\times \prod_{\left(\beta_{+}, \alpha\right\rangle>0}\left\langle\beta_{+}, \phi\right\rangle^{2}\left[2 \sin \left(\frac{\varepsilon\left\langle\beta_{+}, \phi\right\rangle}{2}\right)\right]^{-1} \cdot
\end{gather*}
$$

Here we have substituted the expressions for $e(\overline{\mathrm{~A}})$ and $e\left(L \mathrm{O}_{\alpha}\right)$ in (2.92) and (2.96). Also we emphasize that the products over β and β_{+}in (2.99) run over distinct sets of roots whenever α is not regular.
Because the integrand of (2.99) is invariant under the adjoint action of G_{α}, we can apply the Weyl integral formula to reduce the integral from \boldsymbol{g}_{α} to \boldsymbol{t}. In its infinitesimal version, the Weyl integral formula generally states that if f is a function on a Lie algebra g invariant under the adjoint action of a group G, then

$$
\begin{equation*}
\int_{q}[d \phi] f(\phi)=\frac{1}{|\mathbf{M}|} \frac{\operatorname{Vol}(G)}{\operatorname{Vol}(T)} \int_{t}[d \phi] \prod_{\beta>0}\langle\beta, \phi\rangle^{2} f(\phi) . \tag{2.100}
\end{equation*}
$$

Here $\mid \mathrm{M}$ is the order of the Weyl group of G, and the product over positive roots β of G appearing on the right in (2.100) is a Jacobian factor generalizing the classical van der Monde determinant.
We want to apply the Weyl integral formula (2.100) not for G but for G_{α}. The roots of G_{α} are precisely those roots β_{\perp} of G orthogonal to α in the invariant metric on \boldsymbol{t}^{*}, such that

$$
\begin{equation*}
\left(\beta_{\perp}, \alpha\right)=0 . \tag{2.101}
\end{equation*}
$$

Consequently, when we apply the Weyl integral formula to reduce the integral in (2.99) from \boldsymbol{g}_{α} to \boldsymbol{t}, the Weyl Jacobian for G_{α} conspires to cancel against the following product of factors in (2.99),

$$
\begin{equation*}
\prod_{\beta>0}\langle\beta, \phi\rangle^{-2} \cdot \prod_{\left(\beta_{+}, \alpha\right\rangle>0}\left\langle\beta_{+}, \phi\right\rangle^{2}=\prod_{\beta_{\perp}>0}\left\langle\beta_{\perp}, \phi\right\rangle^{-2}, \tag{2.102}
\end{equation*}
$$

implying

$$
\begin{align*}
& \left.Z(\varepsilon ; C, R)\right|_{\mathrm{O}_{\alpha} / G}=\exp \left[-\frac{i \pi}{2}\left(\eta_{0}(0)-\frac{1}{2}\left(\Delta_{G}-\Delta_{G_{\alpha}}\right)\right)\right] \frac{1}{\mathrm{M}_{\alpha} \mid} \frac{1}{\operatorname{Vol}(T)}\left(\frac{1}{\sqrt{P}}\right)^{\Delta_{T}} \times \int_{t}[d \phi] \exp \left[-i\left\langle\alpha+\rho^{[\alpha]}, \phi\right\rangle+\frac{i}{2 \varepsilon_{r}}\right. \\
& \left.\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)\right] \times \prod_{\beta>0}\left[2 \sin \left(\frac{\langle\beta, \phi\rangle}{2}\right)\right]^{2-N} \prod_{j=1}^{N}\left[2 \sin \left(\frac{\varepsilon\langle\beta, \phi\rangle}{2 a_{j}}\right)\right] \times \prod_{\left(\beta_{+}, \alpha\right\rangle>0}\left[2 \sin \left(\frac{\left\langle\beta_{+}, \phi\right\rangle}{2}\right)\right]^{-1} . \quad \text { (2.103) } \tag{2.103}
\end{align*}
$$

In passing to (2.103), we have performed a change of variables $\phi \mapsto \varepsilon \phi$ to remove extraneous factors of ε. In the process, we introduce the renormalized coupling ε_{r},

$$
\begin{equation*}
\varepsilon_{r}=\frac{2 \pi}{k+\breve{c}_{q}} \tag{2.104}
\end{equation*}
$$

to absorb the explicit shift in the coefficient of $\operatorname{Tr}\left(\phi^{2}\right)$ that arises from $e(\overline{\mathrm{~A}})$ in (2.92). Also, as hopefully clear, $\left|\mathrm{M}_{\alpha}\right|$ denotes the order of the Weyl group of G_{α}. If $G_{\alpha}=T$ is abelian, then M_{α} is trivial and $\left|\mathrm{M}_{\alpha}\right|=1$. We now make two further substitutions to relate the formula in (2.103) to the empirical result in (2.68). First, we rotate the contour of integration from $\boldsymbol{t}=\boldsymbol{t} \times R$ to $\boldsymbol{t} \times e^{-\frac{i \pi}{4}}$. Second, we make a change of variables $\phi \mapsto i \phi$. Hence

$$
\begin{align*}
& \left.Z(\varepsilon ; C, R)\right|_{\mathrm{o}_{\alpha} / G}=\exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \frac{1}{\left|\mathrm{M}_{\alpha}\right|} \frac{(-1)^{\left(\Delta_{G_{\alpha}}-\Delta_{T}\right) / 2}}{\operatorname{Vol}(T)}\left(\frac{1}{i \sqrt{P}}\right)^{\Delta_{T}} \times \int_{\text {vee }}[0) \\
& \left.\left.\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)\right] \times \prod_{\beta>0}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2}\right)\right]^{2-N} \prod_{j=1}^{N}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2 a_{j}}\right)\right] \times \prod_{\left(\beta_{+}, \alpha\right\rangle>0}\left[2 \sinh \left(\frac{\left\langle\beta_{+}, \phi\right\rangle}{2}\right)\right]^{-1}, \phi\right\rangle-\frac{i}{2 \varepsilon_{r}} \tag{2.105}
\end{align*}
$$

Let us now interpret our result (2.105) for $\left.Z(\varepsilon ; C, R)\right|_{\mathrm{o}_{\alpha} / G}$ in light of the character formula. This interpretation is slightly more straightforward when α is a regular weight of G, so we specialize to the regular case first. When α is regular, $G_{\alpha}=T,\left|\mathrm{M}_{\alpha}\right|=1$, and $\rho^{[\alpha]}$ reduces to the Weyl vector ρ itself. Also, the product over roots β_{+}satisfying $\left(\beta_{+}, \alpha\right)>0$ in (2.105) is simply the product over all positive roots $\beta>0$ of G. As a result, the final factor in the integrand of (2.105) reduces to the Weyl denominator A_{ρ},

$$
\begin{equation*}
A_{\rho}(\phi)=\prod_{\beta>0} 2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2}\right) . \tag{2.106}
\end{equation*}
$$

Thus for regular weights,

$$
\begin{gather*}
\left.Z(\varepsilon ; C, R)\right|_{\alpha_{\alpha} / G}=\exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \frac{1}{\operatorname{Vol}(T)}\left(\frac{1}{i \sqrt{P}}\right)^{\Delta_{T}} \times \int_{v e^{(0)}}[d \phi] \frac{1}{A_{\rho}(\phi)} \exp \left[-\langle\alpha+\rho, \phi\rangle-\frac{i}{2 \varepsilon_{r}}\right. \\
\left.\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)\right] \times \prod_{\beta>0}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2}\right)\right]^{2-N} \prod_{j=1}^{N}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2 a_{j}}\right)\right], \alpha \text { regular. (2.107) } \tag{2.107}
\end{gather*}
$$

The measure $[d \phi]$ in the contour integral is invariant under the Weyl group M of G. Moreover, the integrand of (2.107) can generally be decomposed as a sum of terms, each of which transforms in a one-dimensional representation of M . Then since $[d \phi]$ is Weyl invariant, only the Weyl invariant piece of the integrand actually contributes to the integral over ϕ.
Since M is generated by reflections in the root lattice of G, the expression in the last line of (2.107) is also Weyl invariant, as it arises from a product over all positive roots $\beta>0$ of the even function

$$
\begin{equation*}
F_{\beta}(\phi)=\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2}\right)\right]^{2-N} \prod_{j=1}^{N}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2 a_{j}}\right)\right], \quad F_{\beta}(\phi)=F_{\beta}(-\phi)=F_{-\beta}(\phi) . \tag{2.108}
\end{equation*}
$$

So in the integrand of (2.107), we are left to consider the factor

$$
\begin{equation*}
S_{\alpha}(\phi)=\frac{e^{-\langle\alpha+\rho, \phi\rangle}}{A_{\rho}(\phi)} . \tag{2.109}
\end{equation*}
$$

By construction, the Weyl denominator $A_{\rho}(\phi)$ is alternating under M . Therefore, only the alternating piece of the numerator $\exp [-\langle\alpha+\rho, \phi\rangle]$ in $S_{\alpha}(\phi)$ actually contributes to the contour integral over ϕ in (2.107). We immediately recognize that alternating piece to be

$$
\begin{equation*}
A\left[e^{-\langle\alpha+\rho, \phi\rangle}\right] \equiv \frac{1}{|\mathrm{M}|} \sum_{w \in \mathrm{M}}(-1)^{w} e^{\langle w \cdot(\alpha+\rho),-\phi\rangle}=\frac{1}{|\mathrm{M}|} A_{\alpha+\rho}(-\phi)=(-1)^{\left(\Delta_{G}-\Delta_{T}\right) / 2} \cdot \frac{1}{|\mathrm{M}|} A_{\alpha+\rho}(\phi) \tag{2.110}
\end{equation*}
$$

Without loss, we replace $S_{\alpha}(\phi)$ in the integrand of (2.107) with the Weyl-invariant function

$$
\begin{equation*}
S_{\alpha}(\phi) \stackrel{\left[\cdot[]^{\mathrm{M}}\right.}{\mapsto} \frac{(-1)^{\left(\Delta_{G}-\Delta_{T}\right) / 2}}{\mathrm{M} \mid} \cdot \frac{A_{\alpha+\rho}(\phi)}{A_{\rho}(\phi)} . \tag{2.111}
\end{equation*}
$$

Via the following character formula

$$
\begin{equation*}
c h_{R}\left(e^{\phi}\right)=\frac{A_{\alpha+\rho}(\phi)}{A_{\rho}(\phi)}, \quad e^{\phi} \in T \tag{2.112}
\end{equation*}
$$

we finally obtain the following result for the contribution of $\left\{\rho_{\alpha \beta}\right\} \cong \mathrm{O}_{\alpha} / G$ to the Seifert loop path integral,

$$
\begin{gather*}
\left.Z(\varepsilon, C, R)\right|_{\mathrm{o}_{\alpha} / G}=\exp \left[-\frac{i \pi}{2} \eta_{0}(0)\right] \frac{1}{|\mathbf{M}|} \frac{(-1)^{\left(\Delta_{G}-\Delta_{T}\right) / 2}}{\operatorname{Vol}(T)}\left(\frac{1}{i \sqrt{P}}\right)^{\Delta_{T}} \times \\
\times \int_{t \times e^{(0)}}[d \phi] h_{R}\left(e^{\phi}\right) \exp \left[-\frac{i}{2 \varepsilon_{r}}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)\right] \times \prod_{\beta>0}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2}\right)\right]^{2-N} \prod_{j=1}^{N}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2 a_{j}}\right)\right], \quad \alpha \text { regular. } \tag{2.113}
\end{gather*}
$$

As claimed, all dependence on the weight α has been subsumed into the character $c h_{R}$, which represents the Seifert loop operator under localization on O_{α} / G.
Now we decompose the roots β of G into two sets, consisting of roots β_{+}for which $\left(\beta_{+}, \alpha\right) \neq 0$ and roots β_{\perp} for which $\left(\beta_{\perp}, \alpha\right)=0$, just as in (2.102). The set of roots β_{\perp} is empty when α is regular, and the set of roots β_{\perp} runs over all roots when α vanishes. The Weyl denominator A_{ρ} in (2.106) then factorizes as a product over each set,

$$
\begin{equation*}
A_{\rho}(\phi)=\left[\prod_{\left(\beta_{+}, \alpha\right\rangle>0} 2 \sinh \left(\frac{\left\langle\beta_{+}, \phi\right\rangle}{2}\right)\right] \cdot\left[\prod_{\beta_{\perp}>0} 2 \sinh \left(\frac{\left\langle\beta_{\perp}, \phi\right\rangle}{2}\right)\right] . \tag{2.114}
\end{equation*}
$$

Using (2.114), we rewrite the general contour integral in (2.105) as

$$
\begin{align*}
& Z(\varepsilon, C, R)\left|\left.\right|_{\mathrm{o}_{\alpha} / G}=\exp \left[-\frac{i \pi}{2} \eta_{0}(0)\right] \frac{1}{\mathrm{M}_{\alpha} \mid} \frac{(-1)^{\left(\Delta_{G}-\Delta_{T}\right) / 2}}{\operatorname{Vol}(T)}\left(\frac{1}{i \sqrt{P}}\right)^{\Delta_{T}} \times\right. \\
& \int_{t \times e^{(0)}}[d \phi] \frac{1}{A_{\rho}(\phi)}\left[\prod_{\beta_{\perp}>0} 2 \sinh \left(\frac{\left\langle\beta_{\perp}, \phi\right\rangle}{2}\right)\right] \exp \left[-\left\langle\alpha+\rho^{[\alpha]}, \phi\right\rangle\right] \times \\
& \times \tag{2.115}\\
& \quad \exp \left[-\frac{i}{2 \varepsilon_{r}}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)\right] \times \prod_{\beta>0}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2}\right)\right]^{2-N} \prod_{j=1}^{N}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2 a_{j}}\right)\right]
\end{align*}
$$

Once again, we wish to tease the character $c h_{R}$ out of the integrand in (2.115). To do so, let us introduce the following function of ϕ,

$$
\begin{equation*}
B_{\alpha}(\phi)=e^{\left\langle\alpha+\rho^{[\alpha]}, \phi\right\rangle} \cdot \prod_{\beta_{\perp}>0}\left[2 \sinh \left(\frac{\left\langle\beta_{\perp}, \phi\right\rangle}{2}\right)\right], \tag{2.116}
\end{equation*}
$$

in terms of which we write the factor in the second line of (2.115) as

$$
\begin{equation*}
S_{\alpha}(\phi)=\frac{e^{-\left\langle\alpha+\rho^{[\alpha]}, \phi\right)}}{A_{\rho}(\phi)} \cdot\left[\prod_{\beta_{\perp}>0} 2 \sinh \left(\frac{\left\langle\beta_{\perp}, \phi\right\rangle}{2}\right)\right]=(-1)^{\left(\Delta_{G_{\alpha}}-\Delta_{T}\right) / 2} \cdot \frac{B_{\alpha}(-\phi)}{A_{\rho}(\phi)} . \tag{2.117}
\end{equation*}
$$

Only the Weyl-invariant component of $S_{\alpha}(\phi)$, or equivalently the alternating component of $B_{\alpha}(\phi)$, contributes to the contour integral over ϕ. We have that $B_{\alpha}(\phi)$ satisfies an identity which extends the denominator formula in (2.106). According to this extended denominator formula, $B_{\alpha}(\phi)$ can be rewritten as an alternating sum over elements w^{\prime} of the Weyl group M_{α} of the stabilizer G_{α}, so that

$$
\begin{equation*}
B_{\alpha}(\phi)=\sum_{w^{\prime} \in M_{\alpha}}(-1)^{w^{\prime}} e^{\left\langle w^{\prime}:(\alpha+\rho), \phi\right\rangle} . \tag{2.118}
\end{equation*}
$$

Given the identity in (2.118), the alternating component of $B_{\alpha}(\phi)$ is easy to evaluate. Clearly,

$$
\begin{equation*}
A\left[B_{\alpha}(\phi)\right]=\frac{1}{|\mathrm{M}|} \sum_{w \in \mathrm{M}}(-1)^{w} B_{\alpha}(w \cdot \phi)=\frac{1}{|\mathrm{M}|} \sum_{w \in \mathrm{M} \mathrm{M}^{\prime} \in \mathrm{M}_{\alpha}} \sum(-1)^{\left(w w^{\prime}\right)} e^{\left\langle\left\langle w w^{\prime}\right\rangle \cdot(\alpha+\rho), \phi\right\rangle}=\frac{1}{|\mathrm{M}|} \sum_{w^{\prime} \in \mathrm{M}_{\alpha}} A_{\alpha+\rho}(\phi)=\frac{\left|\mathrm{M}_{\alpha}\right|}{|\mathrm{M}|} A_{\alpha+\rho}(\phi) . \tag{2.119}
\end{equation*}
$$

In complete analogy to (2.111), we apply the identity in (2.119) to symmetrize $S_{\alpha}(\phi)$ under M ,

$$
\begin{equation*}
S_{\alpha}(\phi) \stackrel{[\cdot]^{\mathrm{M}}}{\mapsto}(-1)^{\left(\Delta_{G}-\Delta_{\sigma_{\alpha}}\right) / 2} \cdot \frac{\left|\mathrm{M}_{\alpha}\right|}{|\mathrm{M}|} \cdot \frac{A_{\alpha+\rho}(\phi)}{A_{\rho}(\phi)} . \tag{2.120}
\end{equation*}
$$

The sign on the right in (2.120) again arises after a reflection from $-\phi$ to ϕ in the argument of $A_{\alpha+\rho}$. Via the character formula (2.112), the contour integral in (2.115) then becomes

$$
\begin{gather*}
\left.Z(\varepsilon, C, R)\right|_{\mathrm{o}_{\alpha} / G}=\exp \left[-\frac{i \pi}{2} \eta_{0}(0)\right] \frac{1}{|\mathrm{M}|} \frac{(-1)^{\left(\Delta_{G}-\Delta_{T}\right) / 2}}{\operatorname{Vol}(T)}\left(\frac{1}{i \sqrt{P}}\right)^{\Delta_{T}} \times \\
\times \int_{t \times e^{(0)}}[d \phi] \operatorname{ch}_{R}\left(e^{\phi}\right) \exp \left[-\frac{i}{2 \varepsilon_{r}}\left(\frac{d}{P}\right) \operatorname{Tr}\left(\phi^{2}\right)\right] \times \prod_{\beta>0}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2}\right)\right]^{2-N} \prod_{j=1}^{N}\left[2 \sinh \left(\frac{\langle\beta, \phi\rangle}{2 a_{j}}\right)\right], \tag{2.121}
\end{gather*}
$$

exactly as in the regular case (2.113). So regardless of whether α is regular or irregular, the Seifert loop operator reduces to the character $c h_{R}$ under localization on $\left\{\rho_{\alpha \beta}\right\} \cong \mathrm{O}_{\alpha} / G$ and subsequent pushdown to the trivial connection $\{0\}$ on M.
We use the localization formula in (2.54) to reduce the Seifert loop path integral over the infinitedimensional space $\overline{\mathrm{A}}_{\alpha}=\overline{\mathrm{A}} \times \varepsilon L \mathrm{O}_{\alpha}$ to the integral of an appropriate de Rham cohomology class $[d \mu]$ on each smooth component $\boldsymbol{\mathcal { N }}_{0}(C, \alpha)$ of the moduli space $\boldsymbol{\mathcal { M }}(C, \alpha)$. Schematically,

$$
\begin{equation*}
\left.Z(\varepsilon ; C, R)\right|_{\mathcal{M}_{0}(C, \alpha)}=\int_{\mathcal{M}_{0}(C, \alpha)}[d \mu], \quad[d \mu] \in H^{*}\left(\mathcal{M}_{0}(C, \alpha)\right), \tag{2.122}
\end{equation*}
$$

where the class $[d \mu]$ generally depends upon the discrete parameters (n, k, α) which specify respectively the degree of the S^{1}-bundle, the Chern-Simons level, and the highest weight of the irreducible representation R.
We now possess all the ingredients required to apply the non-abelian localization formula in (2.54) to compute the cohomology class $[d \mu]$ in (2.122). Immediately,

$$
\begin{equation*}
\left.Z(\varepsilon ; C, R)\right|_{\mathcal{N}_{0}(C, \alpha)}=\frac{(2 \pi \varepsilon)}{|Z(G)|} \int_{\hat{n}_{0} \times \mathcal{M}_{0}(C, \alpha)}\left[\frac{d p}{2 \pi}\right]\left[\frac{d a}{2 \pi}\right] \frac{e_{H_{0}}\left(\mathcal{M}_{0}(C, \alpha), \xi_{0}^{\alpha}\right)}{e_{H_{0}}\left(\mathcal{M}_{0}(C, \alpha), \xi_{1}^{\alpha}\right)} \times \exp \left[\Omega_{\lambda}+i \varepsilon n \Theta-i a+i \varepsilon p a\right] . \tag{2.123}
\end{equation*}
$$

Here the prefactor involving ε arises for the same reason as the corresponding prefactor in (2.80). Otherwise, the semiclassical contribution to $Z(\varepsilon ; C, R)$ from $\mathcal{M}_{0}(C, \alpha)$ reduces to an integral over the abelian Lie algebra $\boldsymbol{\epsilon}_{0} \cong R \oplus R$ of the stabilizer H_{0}, as well as an integral over $\boldsymbol{\mathcal { M }}_{0}(C, \alpha)$ itself. Our main task here is to evaluate the ratio of equivariant Euler classes associated to the bundles $\left(\xi_{0}^{\alpha}, \xi_{1}^{\alpha}\right)$ over $\mathcal{M}_{0}(C, \alpha)$. Using the multiplicative property of the Euler class and the identification in the following expression

$$
\begin{equation*}
\xi_{1}^{\alpha}=\xi_{1} \oplus \overline{\mathcal{N}}_{\alpha} \tag{2.124}
\end{equation*}
$$

we immediately factor the ratio in (2.123) as

$$
\begin{equation*}
\frac{e_{H_{0}}\left(\boldsymbol{\mathcal { M }}_{0}(C, \alpha), \xi_{0}^{\alpha}\right)}{e_{H_{0}}\left(\boldsymbol{\mathcal { N }}_{0}(C, \alpha), \xi_{1}^{\alpha}\right)}=q^{*}\left[\frac{e_{H_{0}}\left(\boldsymbol{\mathcal { N }}_{0}, \xi_{0}\right)}{e_{H_{0}}\left(\boldsymbol{\mathcal { M }}_{0}, \xi_{1}\right)}\right] \cdot \frac{1}{e_{H_{0}}\left(\boldsymbol{\mathcal { M }}_{0}(C, \alpha), \overline{\boldsymbol{N}_{\alpha}}\right)} \tag{2.125}
\end{equation*}
$$

In obtaining (2.125), we observe that ξ_{0} and ξ_{1} are defined in the following expression

$$
\begin{equation*}
\xi_{0}=\underset{t \geq 1}{\oplus} H_{\hat{\partial}}^{0}\left(\Sigma, a d(P) \otimes\left(\boldsymbol{L}^{t} \oplus \boldsymbol{L}^{-t}\right)\right), \quad \xi_{1}=\underset{t \geq 1}{\oplus} H_{\hat{\partial}}^{1}\left(\Sigma, a d(P) \otimes\left(\mathcal{L}^{t} \oplus \boldsymbol{L}^{-t}\right)\right), \tag{2.125b}
\end{equation*}
$$

as equivariant bundles on $\boldsymbol{\mathcal { N }}_{0}$ which pull back to $\boldsymbol{\mathcal { N }}_{0}(C, \alpha)$, implying that the ratio of Euler classes pulls back as well.

Evaluating the ratio of equivariant Euler classes associated to ξ_{0} and ξ_{1} on $\boldsymbol{\mathcal { N }}_{0}$ turns out to be fairly tricky. We have that this ratio is

$$
\begin{equation*}
\frac{e_{H_{0}}\left(\boldsymbol{\mathcal { N }}_{0}, \xi_{0}\right)}{e_{H_{0}}\left(\boldsymbol{\mathcal { N }}_{0}, \xi_{1}\right)}=\exp \left[-\frac{i \pi}{2} \eta_{0}(0)+\frac{\pi}{p} c_{1}\left(\boldsymbol{\mathcal { M }}_{0}\right)+\frac{i n \breve{c}_{9}}{2 \pi p^{2}} \Theta\right] \cdot \prod_{j=1}^{\operatorname{dim}_{c} \boldsymbol{M}_{0}} \frac{\varpi_{j}}{2 \sinh \left(\pi \varpi_{j} / p\right)}, \quad \eta_{0}(0)=-\frac{n \Delta_{G}}{6} . \tag{2.126}
\end{equation*}
$$

Here ϖ_{j} for $j=1, \ldots, \operatorname{dim}_{C} \mathcal{M}_{0}$ are the Chern roots of the complex tangent bundle of \mathcal{M}_{0}, so that

$$
\begin{equation*}
c\left(\boldsymbol{\mathcal { N }}_{0}\right)=\prod_{j=1}^{\operatorname{dim}_{c} \mathcal{M}_{\boldsymbol{M}}}\left(1+\varpi_{j}\right), \quad c_{1}\left(\boldsymbol{\mathcal { N }}_{0}\right)=\prod_{j=1}^{\operatorname{dim}_{c} \boldsymbol{\mathcal { M }}_{0}} \varpi_{j} \tag{2.127}
\end{equation*}
$$

According to the general description in the following expression

$$
\begin{equation*}
e_{H_{0}}(\mathcal{M}, E)=\prod_{j=1}^{\operatorname{dim} E}\left(\frac{i\left\langle\alpha_{j}, \psi\right\rangle}{2 \pi}+e_{j}\right), \tag{2.127b}
\end{equation*}
$$

the equivariant Euler class of $\overline{\mathcal{N}_{\alpha}}$ is given by the formal product

$$
\begin{equation*}
e_{H_{0}}\left(\boldsymbol{\mathcal { N }}_{0}(C, \alpha), \overline{\mathcal{N}}_{\alpha}\right)=\prod_{t \neq 0} \prod_{\beta>0}(-i t p+\langle\beta, \boldsymbol{u}\rangle) . \tag{2.128}
\end{equation*}
$$

With regard the computation of the equivariant Euler class of the bundle $\overline{\mathcal{N}_{\alpha}}$, we obtain

$$
\begin{equation*}
e_{H_{0}}\left(\boldsymbol{\mathcal { M }}_{0}(C, \alpha), \overline{\mathcal{N}}_{\alpha}\right)=\exp \left(-\frac{2 \pi\langle\rho, \boldsymbol{u}\rangle}{p}\right) \cdot \prod_{\beta>0} \frac{2}{\langle\beta, \boldsymbol{u}\rangle} \sinh \left(\frac{\pi\langle\beta, \boldsymbol{u}\rangle}{p}\right), \tag{2.129}
\end{equation*}
$$

where ρ is the usual Weyl vector. Combining the formulae in (2.126) and (2.129), we see that the ratio of equivariant Euler classes in (2.125) becomes

$$
\begin{align*}
& \frac{e_{H_{0}}\left(\boldsymbol{\mathcal { M }}_{0}(C, \alpha), \xi_{0}^{\alpha}\right)}{e_{H_{0}}\left(\mathcal{M}_{0}(C, \alpha), \xi_{1}^{\alpha}\right)}=\exp \left(-\frac{i \pi}{2} \eta_{0}(0)+\frac{2 \pi\langle\rho, \boldsymbol{u}\rangle}{p}\right) \cdot \prod_{\beta>0} \frac{\langle\beta, \boldsymbol{u}\rangle}{2 \sinh (\pi\langle\beta, \boldsymbol{u}\rangle / p)} \times \\
& \quad \times q^{*}\left[\exp \left(\frac{\pi}{p} c_{1}\left(\boldsymbol{\mathcal { N }}_{0}\right)+\frac{i n \breve{c}_{g}}{2 \pi p^{2}} \Theta\right) \cdot \prod_{j=1}^{\operatorname{dim}_{c}, \boldsymbol{M}_{0}} \frac{\sigma_{j}}{2 \sinh \left(\pi \sigma_{j} / p\right)}\right] \cdot \tag{2.130}
\end{align*}
$$

The ratio in (2.130) depends only on the coordinate p, not a, in the Lie algebra $\boldsymbol{h}_{0} \cong R \oplus R$. Thus we express $\left.Z(\varepsilon ; C, R)\right|_{\boldsymbol{\mu}_{0}(C, \alpha)}$ solely as an integral over the classical Seifert loop moduli space $\mathcal{M}_{0}(C, \alpha)$,

$$
\begin{align*}
& \left.Z(\varepsilon ; C, R)\right|_{\boldsymbol{M}_{0}(C, \alpha)}=\frac{1}{|Z(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \times \int_{\mathcal{M}_{0}(C, \alpha)} \exp (2 \pi \varepsilon\langle\alpha+\rho, \boldsymbol{u}\rangle) \cdot \prod_{\beta>0} \frac{\langle\beta, \boldsymbol{u}\rangle}{2 \sinh (\pi \varepsilon\langle\beta, \boldsymbol{u}\rangle)} \times \\
& \quad \times q^{*}\left[\exp \left(\Omega+\pi \varepsilon c_{1}\left(\boldsymbol{\mathcal { M }}_{0}\right)+i \varepsilon n\left(1+\frac{\varepsilon \breve{c}_{q}}{2 \pi}\right) \Theta\right) \cdot \prod_{j=1}^{\operatorname{dim}_{c} \boldsymbol{\mu}_{0}} \frac{\varpi_{j}}{2 \sinh \left(\pi \varepsilon \varpi_{j}\right)}\right] \cdot \tag{2.131}
\end{align*}
$$

When obtaining (2.131), we have used the symplectic decomposition

$$
\begin{equation*}
\Omega_{\lambda}=q^{*} \Omega+2 \pi \varepsilon\langle\alpha, \boldsymbol{u}\rangle, \quad \lambda=\alpha / k . \tag{2.132}
\end{equation*}
$$

To make the cohomological interpretation of (2.131) more transparent, let us rescale each element in the cohomology ring of $\mathcal{M}_{0}(C, \alpha)$ by a factor $(2 \pi \varepsilon)^{-q / 2}$, where q is the degree of the given class. For instance, the Chern roots ϖ_{j} and \boldsymbol{u}, each of degree two, scale by

$$
\begin{equation*}
\varpi_{j} \mapsto \frac{1}{2 \pi \varepsilon} \varpi_{j}, \quad \boldsymbol{u} \mapsto \frac{1}{2 \pi \varepsilon} \boldsymbol{u} . \tag{2.133}
\end{equation*}
$$

To preserve the value of the integral over $\mathcal{M}_{0}(C, \alpha)$, we simultaneously scale the integral itself by an overall factor $(2 \pi \varepsilon)^{d}$, where $d=\operatorname{dim}_{C} \mathcal{M}_{0}(C, \alpha)$. After this change of variables to clear away extraneous factors of $\varepsilon,\left.Z(\varepsilon ; C, R)\right|_{\mathcal{M}_{0}(C, \alpha)}$ becomes

$$
\begin{align*}
& \left.Z(\varepsilon ; C, R)\right|_{\boldsymbol{M}_{0}(C, \alpha)}=\frac{1}{|\mathrm{Z}(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \times \int_{\mathcal{M}_{0}(C, \alpha)} \frac{e^{\langle\alpha+\rho, \boldsymbol{u}\rangle}}{A_{\rho}(\boldsymbol{u})} \prod_{\beta>0}\langle\beta, \boldsymbol{u}\rangle \times \\
& \quad \times q^{*}\left[\exp \left(\frac{1}{2 \pi \varepsilon} \Omega+\frac{1}{2} c_{1}\left(\boldsymbol{\mathcal { M }}_{0}\right)+i \frac{n}{4 \pi^{2} \varepsilon_{r}} \Theta\right) \hat{A}\left(\boldsymbol{\mathcal { M }}_{0}\right)\right] . \tag{2.134}
\end{align*}
$$

Also here we have that $\frac{\pi}{2}=1,570796 \cong 1,5756097 ; \quad \frac{1}{2 \pi}=0,1591549 \cong 0,159649217$; $\frac{1}{4 \pi^{2}}=0,025330295 \cong 0,02562136$, values that are inserted in the columns $\left({ }^{*} 1,375\right),\left({ }^{*} 1 /\right.$ Pigreco $)$ and $(* 1,375)$ of the Table regarding the universal music system based on Phi.

The appearance of the \hat{A}-genus of the orbit $\mathrm{O}_{-\lambda}$ in (2.134) is no accident. We have a holomorphic fibration of complex manifolds

$$
\begin{equation*}
2 \pi \mathrm{O}_{-\lambda} \rightarrow \mathcal{M}_{0}(C, \alpha), \quad \lambda=\frac{\alpha}{k} . \tag{2.135}
\end{equation*}
$$

The fibration of $\boldsymbol{\mathcal { M }}_{0}(C, \alpha)$ over $\boldsymbol{\mathcal { N }}_{0}$ in (2.135) implies the relation

$$
\begin{equation*}
\hat{A}\left(\mathcal{M}_{0}(C, \alpha)\right)=\hat{A}\left(\mathrm{O}_{-\lambda}\right) \cdot \hat{A}\left(\mathcal{M}_{0}\right) . \tag{2.136}
\end{equation*}
$$

We note that the first Chern class of $\boldsymbol{\mathcal { M }}_{0}(C, \alpha)$ is given by the sum

$$
\begin{equation*}
c_{1}\left(\boldsymbol{\mathcal { N }}_{0}(C, \alpha)\right)=q^{*} c_{1}\left(\boldsymbol{\mathcal { M }}_{0}\right)+c_{1}\left(\mathrm{O}_{-\lambda}\right)=q^{*} c_{1}\left(\boldsymbol{\mathcal { N }}_{0}\right)+\sum_{\beta>0}\langle\beta, \boldsymbol{u}\rangle=q^{*} c_{1}\left(\boldsymbol{\mathcal { N }}_{0}\right)+2\langle\rho, \boldsymbol{u}\rangle . \tag{2.137}
\end{equation*}
$$

Using (2.132), (2.136), and (2.137), we then rewrite $\left.Z(\varepsilon ; C, R)\right|_{\mathcal{M}_{0}(C, \alpha)}$ in terms of classes defined intrinsically on $\mathcal{M}_{0}(C, \alpha)$,

$$
\begin{gather*}
\left.Z(\varepsilon ; C, R)\right|_{\mathcal{M}_{0}(C, \alpha)}=\frac{1}{|\mathrm{Z}(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \times \int_{\mathcal{M}_{0}(C, \alpha)} \hat{A}\left(\mathcal{M}_{0}(C, \alpha)\right) \cdot \exp \\
{\left[\left(\frac{1}{2 \pi \varepsilon} \Omega_{\lambda}+\frac{1}{2} c_{1}\left(\mathcal{M}_{0}(C, \alpha)\right)+i \frac{n}{4 \pi^{2} \varepsilon_{r}} q^{*} \Theta\right)\right] \cdot} \tag{2.138}
\end{gather*}
$$

The integral over $\mathcal{M}_{0}(C, \alpha)$ in (2.138) should be compared to the following expression for the partition function $\left.Z(\varepsilon)\right|_{\mu_{0}}$:

$$
\begin{equation*}
\left.Z(\varepsilon)\right|_{\mathcal{M}_{0}}=\frac{1}{|Z(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \int_{\mathcal{M}_{0}} \hat{A}\left(\boldsymbol{\mathcal { N }}_{0}\right) \cdot \exp \left[\frac{1}{2 \pi \varepsilon} \Omega+\frac{1}{2} c_{1}\left(\boldsymbol{\mathcal { N }}_{0}\right)+i \frac{n}{4 \pi^{2} \varepsilon_{r}} \Theta\right] \tag{2.139}
\end{equation*}
$$

To recast the result (2.134) entirely in terms of ε_{r} we apply a theorem of Drezet and Narasimhan which determines $c_{1}\left(\boldsymbol{\mathcal { M }}_{0}\right)$ in the case $G=S U(r+1)$ to be

$$
\begin{equation*}
c_{1}\left(\boldsymbol{\mathcal { N }}_{0}\right)=2(r+1) \Omega_{0}, \quad \Omega_{0}=\frac{1}{4 \pi^{2}} \Omega, \quad \text { thence } \quad c_{1}\left(\boldsymbol{\mathcal { N }}_{0}\right)=2(r+1) \frac{1}{4 \pi^{2}} \Omega \tag{2.140}
\end{equation*}
$$

Since $\breve{c}_{g}=r+1$ as well, the local contribution from $\mathcal{M}_{0}(C, \alpha)$ to $Z(\varepsilon ; C, R)$ becomes

$$
\begin{gather*}
\left.Z(\varepsilon ; C, R)\right|_{\boldsymbol{\mu}_{0}(C, \alpha)}=\frac{1}{|\mathrm{Z}(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \times \int_{\mathcal{M}_{0}(C, \alpha)} \frac{e^{\langle\alpha+\rho, \boldsymbol{u}\rangle}}{A_{\rho}(\boldsymbol{u})} \prod_{\beta>0}\langle\beta, \boldsymbol{u}\rangle \\
\cdot q^{*}\left[\exp \left(\frac{1}{2 \pi \varepsilon_{r}}\left(\Omega+i \frac{n}{2 \pi} \Theta\right)\right) \cdot \hat{A}\left(\boldsymbol{\mathcal { M }}_{0}\right)\right], \quad \text { (2.141) } \tag{2.141}
\end{gather*}
$$

and all dependence on k has been absorbed into the renormalized coupling ε_{r}.
Also here we have that $\frac{\pi}{2}=1,570796 \cong 1,5756097 ; \frac{1}{2 \pi}=0,1591549 \cong 0,159649217$, values that are inserted in the columns $(* 1,375)$ and (*1/Pigreco) of the Table regarding the universal music system based on Phi.

According to (2.122), the integrand in (2.141) is the class $[d \mu] \in H^{*}\left(\mathcal{M}_{0}(C, \alpha)\right)$ which describes the local contribution from $\boldsymbol{\mathcal { M }}_{0}(C, \alpha)$ to the Seifert loop path integral $Z(\varepsilon ; C, R)$,

$$
\begin{equation*}
[d \mu]=\frac{1}{|\mathrm{Z}(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \times \frac{e^{\langle\alpha+\rho, \boldsymbol{u}\rangle}}{A_{\rho}(\boldsymbol{u})} \cdot \prod_{\beta>0}\langle\beta, \boldsymbol{u}\rangle \cdot q^{*}\left[\exp \left(\frac{1}{2 \pi \varepsilon_{r}}\left(\Omega+i \frac{n}{2 \pi} \Theta\right)\right) \cdot \hat{A}\left(\boldsymbol{\mathcal { H }}_{0}\right)\right] . \tag{2.142}
\end{equation*}
$$

Like the pair of expressions in (2.138) and (2.139), the integral over $\mathcal{M}_{0}(C, \alpha)$ in (2.141) should be compared to the corresponding localization result for the partition function $\left.Z(\varepsilon)\right|_{\mathcal{M}_{0}}$,

$$
\begin{equation*}
\left.Z(\varepsilon)\right|_{\mathcal{M}_{0}}=\frac{1}{|Z(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \int_{\mathcal{M}_{0}} \hat{A}\left(\mathcal{M}_{0}\right) \cdot \exp \left[\frac{1}{2 \pi \varepsilon_{r}}\left(\Omega+i \frac{n}{2 \pi} \Theta\right)\right] . \tag{2.143}
\end{equation*}
$$

The Seifert loop class $\left.W_{R}(C)\right|_{\mathcal{N}_{0}}$ is then the element of $H^{*}\left(\boldsymbol{\mathcal { N }}_{0}\right)$ such that the pushdown $q_{*}[d \mu]$ is given by the product of $\left.W_{R}(C)\right|_{\mathcal{M}_{0}}$ with the integrand of the partition function $\left.Z(\varepsilon)\right|_{\mathcal{M}_{0}}$ in (2.143), such that

$$
\begin{equation*}
\left.Z(\varepsilon ; C, R)\right|_{\mathcal{M}_{0}}=\frac{1}{|Z(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \times\left.\int_{\mathcal{M}_{0}} W_{R}(C)\right|_{\mathcal{M}_{0}} \cdot \exp \left[\frac{1}{2 \pi \varepsilon_{r}}\left(\Omega+i \frac{n}{2 \pi} \Theta\right)\right] \cdot \hat{A}\left(\mathcal{M}_{0}\right) . \tag{2.144}
\end{equation*}
$$

Comparing the Seifert integrand $[d \mu] \in H^{*}\left(\mathcal{N}_{0}(C, \alpha)\right)$ in (2.142) to the preceding formula (2.144) for $\left.Z(\varepsilon ; C, R)\right|_{\mathcal{M}_{0}}$, we deduce

$$
\begin{equation*}
\left.W_{R}(C)\right|_{\mathcal{M}_{0}}=q_{*} S_{\alpha}(\boldsymbol{u}), \quad S_{\alpha}(\boldsymbol{u})=\frac{e^{\langle\alpha+\rho, \boldsymbol{u}\rangle}}{A_{\rho}(\boldsymbol{u})} \cdot \prod_{\beta>0}\langle\beta, \boldsymbol{u}\rangle \tag{2.145}
\end{equation*}
$$

Thence, we have that

$$
\begin{equation*}
\left.W_{R}(C)\right|_{\mathcal{M}_{0}}=q_{*} \frac{e^{\langle\alpha+\rho, \boldsymbol{u}\rangle}}{A_{\rho}(\boldsymbol{u})} \cdot \prod_{\beta>0}\langle\beta, \boldsymbol{u}\rangle . \tag{2.145b}
\end{equation*}
$$

Recycling the result in the following expression

$$
\begin{equation*}
\left.W_{R}(C)\right|_{N(P)}=q_{*} S_{\alpha}(\boldsymbol{u})=\frac{1}{|\mathbb{M}|} c h_{R}\left(\boldsymbol{v}_{p}\right) \cdot \int_{O_{-\lambda}} \eta=\operatorname{ch}_{R}\left(\boldsymbol{v}_{p}\right) \tag{2.145c}
\end{equation*}
$$

we find the general description for the Seifert loop class,

$$
\begin{equation*}
\left.W_{R}(C)\right|_{\mu_{0}}=c h_{R}\left(\boldsymbol{v}_{p}\right) \tag{2.146}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\left.Z(\varepsilon ; C, R)\right|_{\mathcal{M}_{0}}=\frac{1}{|\mathrm{Z}(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \int_{\mathcal{M}_{0}} c h_{R}\left(\boldsymbol{v}_{p}\right) \cdot \exp \left[\frac{1}{2 \pi \varepsilon_{r}}\left(\Omega+i \frac{n}{2 \pi} \Theta\right)\right] \cdot \hat{A}\left(\boldsymbol{\mathcal { N }}_{0}\right) \tag{2.147}
\end{equation*}
$$

Also here we have that $\frac{\pi}{2}=1,570796 \cong 1,5756097 ; \frac{1}{2 \pi}=0,1591549 \cong 0,159649217$, values that are inserted in the columns $(* 1,375)$ and (*1/Pigreco) of the Table regarding the universal music system based on Phi.

The Todd class and the \hat{A}-genus of a complex manifold X generally satisfy the relation

$$
\begin{equation*}
\operatorname{Td}(X)=\exp \left[\frac{1}{2} c_{1}(X)\right] \cdot \hat{A}(X) \tag{2.148}
\end{equation*}
$$

This identity, applied to $\hat{A}\left(\mathcal{M}_{0}\right)$ in (2.134), implies that the contribution from \mathcal{M}_{0} to $Z(\varepsilon ; C, R)$ can be alternatively presented as

$$
\begin{equation*}
\left.Z(\varepsilon ; C, R)\right|_{\boldsymbol{\mathcal { N }}_{0}}=\frac{1}{|\mathrm{Z}(G)|} \exp \left(-\frac{i \pi}{2} \eta_{0}(0)\right) \int_{\mathcal{M}_{0}} c h_{R}\left(\boldsymbol{V}_{p}\right) \cdot \exp \left[k \Omega_{0}+i \frac{n}{4 \pi^{2} \varepsilon_{r}} \Theta\right] \cdot \operatorname{Td}\left(\boldsymbol{\mathcal { N }}_{0}\right) . \tag{2.149}
\end{equation*}
$$

Also here we have that $\frac{\pi}{2}=1,570796 \cong 1,5756097 ; \frac{1}{4 \pi^{2}}=0,025330295 \cong 0,02562136$, values that are inserted in the column $(* 1,375)$ of the Table regarding the universal music system based on Phi.
3. On some equations concerning the cusp anomaly and integrability from String theory. [3] [4]

The bosonic contribution to the coefficient of the Catalan constant K comes from the integral term in the following expression, concerning the bosonic sunset ("diminuzione", "decline")

$$
\begin{align*}
W_{2 \text { Bsunset; } m_{x}}= & -\frac{1}{8 \pi} I\left[\frac{2+\hat{v}^{2}}{4}\right]\left(2+\hat{v}^{2}-2 \sqrt{1+\hat{v}^{2}}+8 \pi \hat{v}^{2} I\left[\frac{1}{4}\left(1+\sqrt{1+\hat{v}^{2}}\right)^{2}\right]\right)+ \\
& +\int_{0}^{1} d u \frac{\left(1+\hat{v}^{2}\right) \arctan h u}{2 \pi^{2}\left[\sqrt{1+\hat{v}^{2}+u^{2}}+\sqrt{1+\left(1+\hat{v}^{2}\right) u^{2}}\right.}{ }^{2} \tag{3.1}
\end{align*}
$$

whose small \hat{v} expansion reads

$$
\begin{gather*}
\int_{0}^{1} d u \frac{8\left(1+\hat{v}^{2}\right) \arctan h u}{\left.\sqrt{1+\hat{v}^{2}+u^{2}}+\sqrt{1+\left(1+\hat{v}^{2}\right) u^{2}}\right]^{2}}=\left(1+\frac{1}{2} \hat{v}^{2}-\frac{7}{32} \hat{v}^{4}+\frac{7}{64} \hat{v}^{6}-\frac{61}{1024} \hat{v}^{8}+\ldots\right) K+ \\
-\frac{1}{64} \hat{v}^{4}+\frac{1}{128} \hat{v}^{6}-\frac{11}{6144} \hat{v}^{8}+\ldots \quad \text { (3.2) } \tag{3.2}
\end{gather*}
$$

We note that this expression can be related with the Ramanujan modular equation concerning the superstrings and with the equation regarding the Palumbo-Nardelli model. Indeed, we have that:

$$
\begin{align*}
& \int_{0}^{1} d u \frac{8\left(1+\hat{v}^{2}\right) \arctan h u}{\left.\sqrt{1+\hat{v}^{2}+u^{2}}+\sqrt{1+\left(1+\hat{v}^{2}\right) u^{2}}\right]^{2}}=\left(1+\frac{1}{2} \hat{v}^{2}-\frac{7}{32} \hat{v}^{4}+\frac{7}{64} \hat{v}^{6}-\frac{61}{1024} \hat{v}^{8}+\ldots\right) K+ \\
& -\frac{1}{64} \hat{v}^{4}+\frac{1}{128} \hat{v}^{6}-\frac{11}{6144} \hat{v}^{8}+\ldots \Rightarrow \\
& \Rightarrow \frac{1}{3} \frac{4\left[\operatorname{anti} \log \frac{\int_{0}^{\infty} \frac{\cos \pi t x w^{\prime}}{\cosh \pi x} e^{-\pi x^{2} w^{\prime}} d x}{e^{-\frac{\pi^{2}}{4} w^{\prime}} \phi_{w^{\prime}}\left(i t w^{\prime}\right)}\right] \cdot \frac{\sqrt{142}}{t^{2} w^{\prime}}}{\log \left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right]} \Rightarrow \\
& \Rightarrow-\int d^{26} x \sqrt{g}\left[-\frac{R}{16 \pi G}-\frac{1}{8} g^{\mu \rho} g^{\nu \sigma} \operatorname{Tr}\left(G_{\mu \nu} G_{\rho \sigma}\right) f(\phi)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]= \\
& =\int_{0}^{\infty} \frac{1}{2 \kappa_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left[R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|\widetilde{H}_{3}\right|^{2}-\frac{\kappa_{10}^{2}}{g_{10}^{2}} T r_{v}\left(\left|F_{2}\right|^{2}\right)\right] \text {. } \tag{3.2b}
\end{align*}
$$

Note that $1024=16 \times 64$ and $6144=96 \times 64$.

Similarly, the fermions contribute only through the integral \boldsymbol{W}_{1} in the following expression concerning the fermionic sunset

$$
\begin{equation*}
W_{2 F \text { Fsussel } ; m_{x}}=-\frac{\hat{v}^{2}}{8 \pi} I\left[\frac{1}{4}\left(1+\hat{v}^{2}\right)\right]+\hat{v}^{2} I\left[\frac{1}{4}\left(1+\hat{v}^{2}\right)\right] I\left[\frac{1}{4}\left(2+\hat{v}^{2}\right)\right]-\left(\hat{v}^{2}-\frac{1}{2}\right) I\left[\frac{1}{4}\left(1+\hat{v}^{2}\right)\right]^{2}+\boldsymbol{W}_{1}, \tag{3.3}
\end{equation*}
$$

and we observe that their net effect is to simply change the sign of the coefficient of the bosonic contribution to K term in (3.2). Using the following expression

$$
\begin{equation*}
f_{2}=\frac{\mathcal{F}_{\mathcal{F}}(\ell)}{\sqrt{1+\ell^{2}}}+\frac{1}{2}\left(1+\ell^{2}\right)^{3 / 2}\left(\frac{d f_{1}}{d \ell}\right)^{2} \quad \text { where } \quad f_{1}=\frac{\mathcal{F}(\ell)}{\sqrt{1+\ell^{2}}} \tag{3.4}
\end{equation*}
$$

to obtain $f_{2 ; K}$ we need to divide (3.2) by $\sqrt{1+\ell^{2}}$, while replacing $\hat{v} \rightarrow \ell$, and change the overall sign to account for the fermion contribution. Therefore, we find the following integral representation which can be expanded to any order in ℓ

$$
\begin{equation*}
f_{2 ; K}(\ell)=-\left.\left.\int_{0}^{1} d u \frac{8 \sqrt{1+\ell^{2}} \arctan h u}{\left[\sqrt{1+\ell^{2}+u^{2}}+\sqrt{1+\left(1+\ell^{2}\right) u^{2}}\right.}\right|^{2}\right|_{K}=\left(-1+\frac{3}{32} \ell^{4}-\frac{3}{32} \ell^{6}+\frac{81}{1024} \ell^{8}+\ldots\right) K . \tag{3.5}
\end{equation*}
$$

Also this expression can be related with the Ramanujan modular equation concerning the superstrings and with the equation regarding the Palumbo-Nardelli model. Indeed, we have that:

$$
\begin{align*}
& f_{2 ; K}(\ell)=-\left.\int_{0}^{1} d u \frac{8 \sqrt{1+\ell^{2}} \arctan h u}{\left.\sqrt{1+\ell^{2}+u^{2}}+\sqrt{1+\left(1+\ell^{2}\right) u^{2}}\right]^{2}}\right|_{K}=\left(-1+\frac{3}{32} \ell^{4}-\frac{3}{32} \ell^{6}+\frac{81}{1024} \ell^{8}+\ldots\right) K \Rightarrow \\
& \Rightarrow \frac{1}{3} \frac{4\left[\operatorname{anti} \log \frac{\int_{0}^{\infty} \frac{\cos \pi t x w^{\prime}}{\cosh \pi x} e^{-\pi x^{2} w^{\prime}} d x}{e^{-\frac{\pi^{2}}{4} w^{\prime}} \phi_{w^{\prime}}\left(i t w^{\prime}\right)}\right] \cdot \frac{\sqrt{142}}{t^{2} w^{\prime}}}{\log \left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right]} \Rightarrow \\
& \Rightarrow-\int d^{2 \sigma} x \sqrt{g}\left[-\frac{R}{16 \pi G}-\frac{1}{8} g^{\mu \rho} g^{\nu \sigma} \operatorname{Tr}\left(G_{\mu \nu} G_{\rho \sigma}\right) f(\phi)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]= \\
& =\int_{0}^{\infty} \frac{1}{2 \kappa_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left[R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|\widetilde{H}_{3}\right|^{2}-\frac{\kappa_{10}^{2}}{g_{10}^{2}} T r_{v}\left(\left|F_{2}\right|^{2}\right)\right] . \tag{3.5b}
\end{align*}
$$

The fact that the fermionic contribution simply changes the sign of the bosonic contribution to the coefficient of the Catalan constant was first observed for the ordinary cusp anomaly $(J=0)$.
A direct expansion of the integrand in equation (3.2) leads to divergent integrals at sufficiently high orders in \hat{v}^{-1}. A consistent expansion can be constructed by first using the identity

$$
\begin{equation*}
\frac{\arctan h u}{u}=\int_{0}^{1} d y \frac{1}{1-u^{2} y^{2}} \tag{3.6}
\end{equation*}
$$

to evaluate in closed form the u integral in equation (3.2). The integrand of the resulting y integral can be expanded at large \hat{v}, the integral of each term being finite. The absence of divergences indicates the consistency of this procedure. In this way we obtain

$$
\begin{equation*}
\int_{0}^{1} d u \frac{8\left(1+\hat{v}^{2}\right) \arctan h u}{\left[\sqrt{1+\hat{v}^{2}+u^{2}}+\sqrt{1+\left(1+\hat{v}^{2}\right) u^{2}}\right]^{2}}=2+\left(6-\pi^{2}\right) \frac{1}{\hat{v}^{2}}+\frac{16}{3} \frac{1}{\hat{v}^{3}}+\left(4-\frac{\pi^{2}}{2}\right) \frac{1}{\hat{v}^{4}}-\frac{104}{45} \frac{1}{\hat{v}^{5}}+\ldots \tag{3.7}
\end{equation*}
$$

Also this expression can be related with the Ramanujan modular equation concerning the superstrings and with the equation regarding the Palumbo-Nardelli model. Indeed, we have that:

$$
\begin{gathered}
\int_{0}^{1} d u \frac{8\left(1+\hat{v}^{2}\right) \arctan h u}{\left.\sqrt{1+\hat{v}^{2}+u^{2}}+\sqrt{1+\left(1+\hat{v}^{2}\right) u^{2}}\right]^{2}}=2+\left(6-\pi^{2}\right) \frac{1}{\hat{v}^{2}}+\frac{16}{3} \frac{1}{\hat{v}^{3}}+\left(4-\frac{\pi^{2}}{2}\right) \frac{1}{\hat{v}^{4}}-\frac{104}{45} \frac{1}{\hat{v}^{5}}+\ldots \\
4\left[\operatorname{anti\operatorname {log}\frac {\int _{0}^{\infty }\frac {\operatorname {cos}\pi txw^{\prime }}{\operatorname {cosh}\pi x}e^{-\pi \pi ^{2}w^{\prime }}dx}{e^{-\frac {\pi ^{2}}{4}w^{\prime }}\phi _{w^{\prime }}(itw^{\prime })}]\cdot \frac {\sqrt {142}}{t^{2}w^{\prime }}}\right. \\
\Rightarrow \frac{1}{3} \frac{\left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right]}{\log \left[\sqrt{\left(\frac{1}{4}\right)}\right.} \Rightarrow \\
\Rightarrow-\int d^{26} x \sqrt{g}\left[-\frac{R}{16 \pi G}-\frac{1}{8} g^{\mu \rho} g^{v \sigma} T r\left(G_{\mu \nu} G_{\rho \sigma}\right) f(\phi)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]=
\end{gathered}
$$

$$
\begin{equation*}
=\int_{0}^{\infty} \frac{1}{2 \kappa_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left[R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|\widetilde{H}_{3}\right|^{2}-\frac{\kappa_{10}^{2}}{g_{10}^{2}} T r_{v}\left(\left|F_{2}\right|^{2}\right)\right] . \tag{3.7b}
\end{equation*}
$$

The asymptotic Bethe Ansatz expansion for f_{2} can be written as $(g=\sqrt{\lambda} / 4 \pi)$

$$
\begin{equation*}
f_{2}^{A B A}=\frac{16 \pi^{2}}{\sqrt{\ell^{2}+1}}\left[\frac{2 g^{2} \partial_{a} \widetilde{\mathcal{F}}^{2}\left(a_{0}\right)}{\sqrt{\ell^{2}+1}}-\frac{2 g^{2} \widetilde{\mathcal{F}}^{2}\left(a_{0}\right)}{\ell^{2}+1}+2 g^{2} \delta \tilde{F}-\left(\frac{5}{256 \ell^{6}}+\frac{3}{64 \ell^{4}}+\frac{1}{32 \ell^{2}}\right)\right] . \tag{3.8}
\end{equation*}
$$

Here $a_{0}=\sqrt{1+\ell^{2}}$. All the pieces in this formula can be analytically computed at large ℓ. The first terms in this expansion are

$$
\begin{equation*}
f_{2}^{A B A}=\frac{\pi^{2}}{3} \frac{1}{\ell^{3}}+\left(-\frac{32}{9}+\frac{\pi^{2}}{12}\right) \frac{1}{\ell^{5}}-\frac{232}{45} \frac{1}{\ell^{6}}+\frac{16}{5} \frac{1}{\ell^{7}}+\frac{20416}{1575} \frac{1}{\ell^{8}}-\left(\frac{3614}{1575}+\frac{\pi^{2}}{96}\right) \frac{1}{\ell^{9}}+\ldots \tag{3.9}
\end{equation*}
$$

The only relevant contributions to the π^{2} coefficient arise from the last term in parenthesis in (3.8), i.e. $-\left(\frac{5}{256 \ell^{6}}+\frac{3}{64 \ell^{6}}+\frac{1}{32 \ell^{2}}\right)$ and a term in $\delta \mathcal{F}$

$$
\begin{equation*}
\delta \mathcal{F}=\ldots+\frac{1}{g^{2}}\left(\frac{5}{512 \ell^{6}}+\frac{1}{32 \ell^{4}}+\frac{5}{192 \ell^{2}}\right)+\ldots \tag{3.10}
\end{equation*}
$$

In the lecture of Riccardo Ricci "Cusp anomaly and integrability from string theory" (16.04.2011), from the partition function we can extract the generalized scaling:

$$
\begin{gather*}
f_{2}=-K+\ell^{2}\left(8 \log ^{2} \ell-6 \log \ell-\frac{3}{2} \log 2+\frac{11}{4}\right)+\ell^{4}\left(-6 \log ^{2} \ell-\frac{7}{6} \log \ell+3 \log 2 \log \ell-\frac{9}{8} \log ^{2} 2+\right. \\
+ \tag{3.11}\\
\left.+\frac{11}{8} \log 2+\frac{3}{32} K-\frac{233}{576}\right)+\mathrm{O}\left(\ell^{6}\right)
\end{gather*}
$$

that is in stupendous agreement with the Bethe-Ansatz prediction.
While, in the lecture of Benjamin Basso "Strong Coupling Expansion of Cusp Anomalous Dimension in Planar $\mathcal{N}=4 "$ (16.05.2008), with regard the weak coupling expansion of cusp from Beisert-Eden-Staudacher equation (BES equation), we have that the BES equation is

$$
\begin{equation*}
\sigma(t)=\frac{t}{e^{t}-1}\left(K(2 g t, 0)-4 g^{2} \int_{0}^{+\infty} d t^{\prime} K\left(2 g t, 2 g t^{\prime}\right) \sigma\left(t^{\prime}\right)\right) \tag{3.12}
\end{equation*}
$$

Thence, the solution at weak coupling is:

$$
\begin{equation*}
\sigma(t)=\frac{t}{e^{t}-1}\left[K(2 g t, 0)-4 g^{2} \int_{0}^{\infty} d t^{\prime} K\left(2 g t, 2 g t^{\prime}\right) \frac{t^{\prime}}{e^{t^{\prime}}-1} K\left(2 g t^{\prime}, 0\right)+O\left(g^{4}\right)\right] \tag{3.13}
\end{equation*}
$$

while the weak coupling expansion of the cusp anomaly is:

$$
\begin{align*}
& \Gamma_{\text {cusp }}(g)=8 g^{2} \sigma(0)=4 g^{2}-\frac{4}{3} \pi^{2} g^{4}+\frac{44}{45} \pi^{4} g^{6}-8\left(\frac{73}{630} \pi^{6}+4 \zeta_{3}^{2}\right) g^{8}+ \\
& \quad+32\left(\frac{887}{14175} \pi^{8}+\frac{4}{3} \pi^{2} \zeta_{3}^{2}+40 \zeta_{3} \zeta_{5}\right) g^{10}+\mathrm{O}\left(g^{12}\right) . \tag{3.14}
\end{align*}
$$

With regard the strong coupling expansion from AdS/CFT correspondence, we have the following expression

$$
\begin{equation*}
\Gamma_{\text {cusp }}(g)=2 g-\frac{3 \ln 2}{2 \pi}+\mathrm{O}(1 / g) . \tag{3.15}
\end{equation*}
$$

The integral equation of the strong coupling expansion

$$
\begin{equation*}
s(t)=\sum_{n=1}^{M} s_{n}(g) \frac{J_{n}(2 g t)}{2 g t}, \tag{3.16}
\end{equation*}
$$

becomes a finite-dimensional matrix equation for the coefficients $s_{n}(g)$. With regard the numerical result of the matrix equation and extract the cusp anomaly $\Gamma_{\text {cusp }}(g)=4 g^{2} s_{1}(g)$, we have that

$$
\begin{equation*}
f(g)=2 \Gamma_{\text {cusp }}(g)=(4.000000 \pm 0.000001) g-(0.661907 \pm 0.000002)-\frac{0.0232 \pm 0.0001}{g}+\ldots \tag{3.17}
\end{equation*}
$$

The first two terms are in remarkable agreement with the string theory result, and we have that

$$
\begin{equation*}
0.661907=\frac{3 \ln 2}{\pi}, \quad 0.0232=? \tag{3.18}
\end{equation*}
$$

We can to observe that 0.0232 is very near to the following values: 0.02349 (system/2.71828) and 0.023292 (system $\times 1 / \pi$) where "system" is the column where are defined the values of the musical system based on Phi (1.618033988); i.e. sum of exponents of Phi.
Thence, we can rewrite the results of (3.18) also as follows:

$$
\begin{equation*}
0.661907=\frac{3 \ln 2}{\pi}, \quad 0.0232=(\text { system } \times 1 / \pi) \tag{3.18b}
\end{equation*}
$$

With regard the strong coupling expansion of cusp from BES equation, analytically the strong coupling solution was first analyzed at leading order and then in a more systematic approach, we have the following result

$$
\begin{align*}
\Gamma_{\text {cusp }}\left(g+c_{1}\right) & =2 g\left[1-c_{2} g^{-2}-c_{3} g^{-3}-\left(c_{4}+2 c_{2}^{2}\right) g^{-4}-\left(c_{5}+23 c_{2} c_{3}\right) g^{-5}+\right. \\
& \left.-\left(c_{6}+\frac{166}{7} c_{2} c_{4}+54 c_{3}^{2}+25 c_{2}^{3}\right) g^{-6}+O\left(g^{-7}\right)\right], \tag{3.19}
\end{align*}
$$

where the expansion coefficients are given by

$$
\begin{gather*}
c_{1}=\frac{3 \ln 2}{4 \pi}, \quad c_{2}=\frac{1}{16 \pi^{2}} K, \quad c_{3}=\frac{27}{2^{11} \pi^{3}} \zeta(3), \\
c_{4}=\frac{21}{2^{10} \pi^{4}} \beta(4), \quad c_{5}=\frac{43065}{2^{21} \pi^{5}} \zeta(5), \quad c_{6}=\frac{1605}{2^{15} \pi^{6}} \beta(6), \tag{3.20}
\end{gather*}
$$

with the special functions

$$
\begin{gather*}
\zeta(x)=\sum_{n \geq 1} n^{-x}=\text { Riemann zeta function; } \quad \beta(x)=\sum_{n \geq 0}(-1)^{n}(2 n+1)^{-x}=\text { Dirichlet zeta function } \\
K=\beta(2)=\text { Catalan's constant. } \tag{3.21}
\end{gather*}
$$

In the Bethe ansatz approach, the cusp anomalous dimension is determined by the behaviour around the origin of the auxiliary function $\gamma(t)$ related to density of Bethe roots

$$
\begin{equation*}
\Gamma_{\text {cusp }}(g)=-8 i g^{2} \lim _{t \rightarrow 0} \gamma(t) / t \tag{3.22}
\end{equation*}
$$

The function $\gamma(t)$ depends on ' t Hooft coupling and has the form

$$
\begin{equation*}
\gamma(t)=\gamma_{+}(t)+i \gamma_{-}(t) \tag{3.23}
\end{equation*}
$$

where $\gamma_{ \pm}(t)$ are real functions of t with a definite parity $\gamma_{ \pm}(\pm t)= \pm \gamma_{ \pm}(t)$. For arbitrary coupling the functions $\gamma_{ \pm}(t)$ satisfy the (infinite-dimensional) system of integral equations

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{t} J_{2 n-1}(t)\left[\frac{\gamma_{-}(t)}{1-e^{-t /(2 g)}}+\frac{\gamma_{+}(t)}{e^{t /(2 g)}-1}\right]=\frac{1}{2} \delta_{n, 1}, \quad \int_{0}^{\infty} \frac{d t}{t} J_{2 n}(t)\left[\frac{\gamma_{+}(t)}{1-e^{-t /(2 g)}}-\frac{\gamma_{-}(t)}{e^{t /(2 g)}-1}\right]=0 \tag{3.24}
\end{equation*}
$$

with $n \geq 1$ and $J_{n}(t)$ being the Bessel functions. These relations are equivalent to BES equation provided that $\gamma_{ \pm}(t)$ verify certain analyticity conditions. The equations (3.24) can be significantly simplified with a help of the transformation $\gamma(t) \rightarrow \Gamma(t)$:

$$
\begin{equation*}
\Gamma(t)=\left(1+i \operatorname{coth} \frac{t}{4 g}\right) \gamma(t) \equiv \Gamma_{+}(t)+i \Gamma_{-}(t) . \tag{3.25}
\end{equation*}
$$

We find from (3.22) and (3.25) the following representation for the cusp anomalous dimension

$$
\begin{equation*}
\Gamma_{\text {cusp }}(g)=-2 g \Gamma(0) . \tag{3.26}
\end{equation*}
$$

It follows from (3.23) and (3.24) that $\Gamma_{ \pm}(t)$ are real functions with a definite parity, $\Gamma_{ \pm}(-t)= \pm \Gamma_{ \pm}(t)$, satisfying the system of integral equations

$$
\begin{equation*}
\int_{0}^{\infty} d t \cos (u t)\left[\Gamma_{-}(t)-\Gamma_{+}(t)\right]=2 ; \quad \int_{0}^{\infty} d t \sin (u t)\left[\Gamma_{-}(t)+\Gamma_{+}(t)\right]=0 \tag{3.27}
\end{equation*}
$$

with u being arbitrary real parameter such that $-1 \leq u \leq 1$. Since $\Gamma_{ \pm}(t)$ take real values, we can rewrite these relations in a compact form

$$
\begin{equation*}
\int_{0}^{\infty} d t\left[e^{i u t} \Gamma_{-}(t)-e^{-i u t} \Gamma_{+}(t)\right]=2 . \tag{3.28}
\end{equation*}
$$

We have the following non perturbative scale $m_{O(6)}$ in the AdS/CFT. Its dependence on the coupling g follows univocally from FRS equation and it has the following form

$$
\begin{equation*}
m_{O(6)}=\frac{8 \sqrt{2}}{\pi^{2}} e^{-\pi g}-\frac{8 g}{\pi} e^{-\pi g} \operatorname{Re}\left[\int_{0}^{\infty} \frac{d t e^{i(t-\pi / 4)}}{t+i \pi g}\left(\Gamma_{+}(t)+i \Gamma_{-}(t)\right)\right], \tag{3.29}
\end{equation*}
$$

where $\Gamma_{ \pm}(t)$ are solutions to (3.28).
Also this expression can be related with the Ramanujan modular equation concerning the superstrings and with the equation concerning the Palumbo-Nardelli model. Indeed, we obtain:

$$
\begin{gather*}
m_{O(6)}=\frac{8 \sqrt{2}}{\pi^{2}} e^{-\pi g}-\frac{8 g}{\pi} e^{-\pi g} \operatorname{Re}\left[\int_{0}^{\infty} \frac{d t e^{i(t-\pi / 4)}}{t+i \pi g}\left(\Gamma_{+}(t)+i \Gamma_{-}(t)\right)\right] \Rightarrow \\
\Rightarrow\left[\frac{1}{3} \frac{\left[\operatorname{anti} \log \frac{\int_{0}^{\infty} \frac{\cos \pi t x w^{\prime}}{\cosh \pi x} e^{-\pi x^{2} w^{\prime}} d x}{\log \left[\sqrt{\left(\frac{\pi^{2}}{4} w^{\prime}\right.} \phi_{w^{\prime}}\left(i t t w^{\prime}\right)\right.}\right] \cdot \frac{\sqrt{142}}{t^{2} w^{\prime}}}{4}\right)+\sqrt{\left(\frac{11 \sqrt{2}}{4}\right)} \Rightarrow \\
\Rightarrow-\int d^{26} x \sqrt{g}\left[-\frac{R}{16 \pi G}-\frac{1}{8} g^{\mu \rho} g^{v \sigma} T r\left(G_{\mu \nu} G_{\rho \sigma}\right) f(\phi)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]= \\
=\int_{0}^{\infty} \frac{1}{2 \kappa_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left[R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|\widetilde{H}_{3}\right|^{2}-\frac{\kappa_{10}^{2}}{g_{10}^{2}} T r_{\nu}\left(\left|F_{2}\right|^{2}\right)\right] . \tag{3.29b}
\end{gather*}
$$

Furthermore, we have that $\frac{8}{\pi}=2,546479 \cong 2,5493902$, value that is in the column $(* 1,375)$ of the Table regarding the universal music system based on Phi.

To fix the zero modes, we have to impose additional conditions on solutions to (3.28) and (3.24). These conditions follow unambiguously from BES equation and they can be formulated as a requirement that $\gamma_{ \pm}(t)$ should be entire functions of t which admit a representation in the form of Neumann series over Bessel functions

$$
\begin{equation*}
\gamma_{-}(t)=2 \sum_{n \geq 1}(2 n-1) J_{2 n-1}(t) \gamma_{2 n-1}, \quad \gamma_{+}(t)=2 \sum_{n \geq 1}(2 n) J_{2 n}(t) \gamma_{2 n}, \tag{3.30}
\end{equation*}
$$

with the expansion coefficients $\gamma_{2 n-1}$ and $\gamma_{2 n}$ depending on the coupling constant. This implies in particular that the series on the right-hand side of (3.30) are convergent on the real axis. Using orthogonality conditions for the Bessel functions, we obtain from (3.30)

$$
\begin{equation*}
\gamma_{2 n-1}=\int_{0}^{\infty} \frac{d t}{t} J_{2 n-1}(t) \gamma_{-}(t), \quad \gamma_{2 n}=\int_{0}^{\infty} \frac{d t}{t} J_{2 n}(t) \gamma_{+}(t) \tag{3.31}
\end{equation*}
$$

Here we assumed that the sum over n in the right-hand side of (3.30) can be interchanged with the integral over t. We will show below that the relations (3.30) and (3.31) determine a unique solution to the system (3.24). The coefficient γ_{1} plays a special role in our analysis since it determines the cusp anomalous dimension (3.22),

$$
\begin{equation*}
\Gamma_{\text {cusp }}(g)=8 g^{2} \gamma_{1}(g) . \tag{3.32}
\end{equation*}
$$

Here we applied (3.23) and (3.30) and took into account small-t behaviour of the Bessel functions, $J_{n}(t) \approx t^{n}$ as $t \rightarrow 0$. Let us now translate (3.30) and (3.31) into properties of the functions $\Gamma_{ \pm}(t)$, or equivalently $\Gamma(t)$. It is convenient to rewrite the relation (3.25) as

$$
\begin{equation*}
\Gamma(i t)=\gamma(i t) \frac{\sin \left(\frac{t}{4 g}+\frac{\pi}{4}\right)}{\sin \left(\frac{t}{4 g}\right) \sin \left(\frac{\pi}{4}\right)}=\gamma(i t) \sqrt{2} \prod_{k=-\infty}^{\infty} \frac{t-4 \pi g\left(k-\frac{1}{4}\right)}{t-4 \pi g k} . \tag{3.33}
\end{equation*}
$$

We note that $\frac{\pi}{4}=0,785398 \cong 0,786937$, value that is inserted in the column $\left({ }^{*} 1 / 1,375\right)$ of the Table concerning the universal music system based on Phi.

Since $\gamma(i t)$ is an entire function in the complex t-plane, we conclude from (3.33) that $\Gamma(i t)$ has an infinite number of zeros, $\Gamma\left(i t_{\text {zeros }}\right)=0$, and poles, $\Gamma(i t) \approx 1 /\left(t-t_{\text {poles }}\right)$, on real t-axis located at

$$
\begin{equation*}
t_{\text {zeros }}=4 \pi g\left(\ell-\frac{1}{4}\right), \quad t_{\text {poles }}=4 \pi g \ell^{\prime} \tag{3.34}
\end{equation*}
$$

where $\ell, \ell^{\prime} \in Z$ and $\ell^{\prime} \neq 0$ so that $\Gamma(i t)$ is regular at the origin (see. Eq.(3.22)).
To understand the relationship between analytical properties of $\Gamma(i t)$ and properties of the cusp anomalous dimension, it is instructive to slightly simplify the problem and consider a "toy" model ("modello giocattolo") in which the function $\Gamma(i t)$ is replaced with $\Gamma^{(t o y)}(i t)$. We require that $\Gamma^{(t o y)}(i t)$ satisfies the same integral equation (3.27) and define, following (3.26), the cusp anomalous dimension in the toy model as

$$
\begin{equation*}
\Gamma_{\text {cusp }}^{(t o y)}(g)=-2 g \Gamma^{(t o y)}(0) . \tag{3.35}
\end{equation*}
$$

The only difference compared to $\Gamma(i t)$ is that $\Gamma^{(t o y)}(i t)$ has different analytical properties dictated by the relation

$$
\begin{equation*}
\Gamma^{(t o y)}(i t)=\gamma^{(t o y)}(i t) \frac{t+\pi g}{t} \tag{3.36}
\end{equation*}
$$

while $\gamma^{(t o y)}(i t)$ has the same analytical properties as the function $\gamma(i t)$. This relation can be considered as a simplified version of (3.33). Indeed, it can be obtained from (3.33) if we retained in the product only one term with $k=0$. As compared with (3.34), the function $\Gamma^{(t o y)}(i t)$ does not have poles and it vanishes for $t=-\pi g$.
Let us multiply both sides of the two relations in (3.24) by $2(2 n-1) \gamma_{2 n-1}$ and $2(2 n) \gamma_{2 n}$, respectively, and perform summation over $n \geq 1$. Then, we convert the sums into the functions $\gamma_{ \pm}(t)$ using (3.30) and add the second relation to the first one to obtain

$$
\begin{equation*}
\gamma_{1}=\int_{0}^{\infty} \frac{d t}{t} \frac{\left(\gamma_{+}(t)\right)^{2}+\left(\gamma_{-}(t)\right)^{2}}{1-e^{-t /(2 g)}} \tag{3.37}
\end{equation*}
$$

Since $\gamma_{ \pm}(t)$ are real functions of t and the denominator is positively definite for $0 \leq t<\infty$, this relation leads to the following inequality

$$
\begin{equation*}
\gamma_{1} \geq \int_{0}^{\infty} \frac{d t}{t}\left(\gamma_{-}(t)\right)^{2} \geq 2 \gamma_{1}^{2} \geq 0 \tag{3.38}
\end{equation*}
$$

Here we replaced the function $\gamma_{-}(t)$ by its Bessel series (3.30) and made use of the orthogonality condition for the Bessel functions with odd indices. We deduce from (3.38) that

$$
\begin{equation*}
0 \leq \gamma_{1} \leq \frac{1}{2} \tag{3.39}
\end{equation*}
$$

and, then, apply (3.32) to translate this inequality into the following relation for the cusp anomalous dimension

$$
\begin{equation*}
0 \leq \Gamma_{\text {cusp }}(g) \leq 4 g^{2} . \tag{3.40}
\end{equation*}
$$

Notice that the lower bound on the cusp anomalous dimension, $\Gamma_{\text {cusp }}(g) \geq 0$, holds in any gauge theory. It is upper bound $\Gamma_{\text {cusp }}(g) \leq 4 g^{2}$ that is a distinguished feature of $\mathcal{N}=4$ theory. Let us verify the validity of (3.40). At weak coupling $\Gamma_{\text {cusp }}(g)$ admits perturbative expansion in powers of g^{2}

$$
\begin{equation*}
\Gamma_{\text {cusp }}(g)=4 g^{2}\left[1-\frac{1}{3} \pi^{2} g^{2}+\frac{11}{45} \pi^{4} g^{4}-2\left(\frac{73}{630} \pi^{6}+4 \zeta_{3}^{2}\right) g^{6}+\ldots\right], \tag{3.41}
\end{equation*}
$$

while at strong coupling it has the form

$$
\begin{equation*}
\Gamma_{\text {cusp }}(g)=2 g\left[1-\frac{3 \ln 2}{4 \pi} g^{-1}-\frac{K}{16 \pi^{2}} g^{-2}-\left(\frac{3 K \ln 2}{64 \pi^{3}}+\frac{27 \zeta_{3}}{2048 \pi^{3}}\right) g^{-3}+O\left(g^{-4}\right)\right], \tag{3.42}
\end{equation*}
$$

with K being the Catalan constant. It is easy to see that the relations (3.41) and (3.42) are in an agreement with (3.40).

We note, with regard the eqs. (3.41-3.42) that $\frac{11}{45}=0,24444 \cong 0,243177$;
$\frac{73}{630}=0,115873015 \cong 0,116101 ; ~ \frac{27}{1048}=0,013183593 \cong 0,01355179$, values that are inserted in the columns (*1/1,375-*1/Pigreco) of the Table concerning the universal music system based on Phi.

Let us now construct the exact solution to the integral equations (3.28) and (3.24). To this end, it is convenient to Fourier transform the functions (3.23) and (3.25)

$$
\begin{equation*}
\widetilde{\Gamma}(k)=\int_{-\infty}^{\infty} \frac{d t}{2 \pi} e^{i k t} \Gamma(t), \quad \widetilde{\gamma}(k)=\int_{-\infty}^{\infty} \frac{d t}{2 \pi} e^{i k t} \gamma(t) \tag{3.43}
\end{equation*}
$$

According to (3.23) and (3.30), the function $\gamma(t)$ is given by the Neumann series over Bessel functions. Then, we perform the Fourier transform on both sides of (3.30) and use the well-known fact that the Fourier transform of the Bessel function $J_{n}(t)$ vanishes for $k^{2}>1$ to deduce that the same is true for $\gamma(t)$ leading to

$$
\begin{equation*}
\tilde{\gamma}(k)=0, \quad \text { for } k^{2}>1 . \tag{3.44}
\end{equation*}
$$

This implies that the Fourier integral for $\gamma(t)$ only involves modes with $-1 \leq k \leq 1$ and, therefore, the function $\gamma(t)$ behaves at large (complex) t as

$$
\begin{equation*}
\gamma(t) \approx e^{|t|}, \quad \text { for }|t| \rightarrow \infty \tag{3.45}
\end{equation*}
$$

Let us now examine the function $\widetilde{\Gamma}(k)$. We find from (3.43) and (3.33) that $\widetilde{\Gamma}(k)$ admits the following representation

$$
\begin{equation*}
\widetilde{\Gamma}(k)=\int_{-\infty}^{\infty} \frac{d t}{2 \pi} e^{i k t} \frac{\sinh \left(\frac{t}{4 g}+i \frac{\pi}{4}\right)}{\sinh \left(\frac{t}{4 g}\right) \sin \left(\frac{\pi}{4}\right)} \gamma(t) . \tag{3.46}
\end{equation*}
$$

Here the integrand has poles along the imaginary axis at $t=4 \pi i g n$ (with $n= \pm 1, \pm 2, \ldots$). Taking into account the relation (3.45), we find that the contribution to (3.46) at infinity can be neglected for $k^{2}>1$ only. In this case, closing the integration contour into the upper (or lower) half-plane for $k>1$ (or $k<-1$) we find

$$
\begin{equation*}
\widetilde{\Gamma}(k) \stackrel{k^{2}>1}{=} \theta(k-1) \sum_{n \geq 1} c_{+}(n, g) e^{-4 m n g(k-1)}+\theta(-k-1) \sum_{n \geq 1} c_{-}(n, g) e^{-4 m n g(-k-1)} . \tag{3.47}
\end{equation*}
$$

Here the notation was introduced for k-independent expansion coefficients

$$
\begin{equation*}
c_{ \pm}(n, g)=\mp 4 g \gamma(\pm 4 \pi i g n) e^{-4 \pi n g}, \tag{3.48}
\end{equation*}
$$

where the factor $e^{-4 m m g}$ is inserted to compensate exponential growth of $\gamma(\pm 4 \pi i g n) \approx e^{4 m g g}$ at large n (see eq. (3.45)). We recall that in the toy model (3.36), $\Gamma^{(t o y)}(i t)$ and $\gamma^{(t o y)}(i t)$ are entire functions
of t. At large t they have the same asymptotic behaviour as the Bessel functions, $\Gamma^{(t o y)}(i t) \approx \gamma^{(t o y)}(i t) \approx e^{ \pm i t}$. Performing their Fourier transformation (3.43), we find

$$
\begin{equation*}
\widetilde{\gamma}^{(t o y)}(k)=\widetilde{\Gamma}^{(t o y)}(k)=0, \quad \text { for } \quad k^{2}>1 \tag{3.49}
\end{equation*}
$$

in a close analogy with (3.44). Comparison with (3.47) shows that the coefficients (3.48) vanish in the toy model for arbitrary n and g

$$
\begin{equation*}
c_{+}^{(t o y)}(n, g)=c_{-}^{(t o y)}(n, g)=0 . \tag{3.50}
\end{equation*}
$$

The relation (3.47) defines the function $\widetilde{\Gamma}(k)$ for $k^{2}>1$ but it involves the coefficients $c_{ \pm}(n, g)$ that need to be determined. In addition, we have to construct the same function for $k^{2} \leq 1$. To achieve both goals, let us return to the integral equations (3.27) and replace $\Gamma_{ \pm}(t)$ by Fourier integrals (see eqs. (3.43) and (3.25)

$$
\begin{equation*}
\Gamma_{+}(t)=\int_{-\infty}^{\infty} d k \cos (k t) \widetilde{\Gamma}(k), \quad \Gamma_{-}(t)=-\int_{-\infty}^{\infty} d k \sin (k t) \widetilde{\Gamma}(k) \tag{3.51}
\end{equation*}
$$

In this way, we obtain from (3.27) the following remarkably simple integral equation for $\widetilde{\Gamma}(k)$

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d k \tilde{\Gamma}(k)}{k-u}+\pi \tilde{\Gamma}(u)=-2, \quad(-1 \leq u \leq 1) \tag{3.52}
\end{equation*}
$$

where the integral is defined using the principal value prescription. Let us split the integral in (3.52) into $k^{2} \leq 1$ and $k^{2}>1$ and rewrite (3.52) in the form of singular integral equation for the function $\widetilde{\Gamma}(k)$ on the interval $-1 \leq k \leq 1$

$$
\begin{equation*}
\widetilde{\Gamma}(u)+\frac{1}{\pi} \int_{-1}^{1} \frac{d k \widetilde{\Gamma}(k)}{k-u}=\phi(u), \quad(-1 \leq u \leq 1), \tag{3.53}
\end{equation*}
$$

where the inhomogeneous term is given by

$$
\begin{equation*}
\phi(u)=-\frac{1}{\pi}\left(2+\int_{-\infty}^{-1} \frac{d k \widetilde{\Gamma}(k)}{k-u}+\int_{1}^{\infty} \frac{d k \widetilde{\Gamma}(k)}{k-u}\right) . \tag{3.54}
\end{equation*}
$$

Since integration in (3.54) goes over $k^{2}>1$, the function $\widetilde{\Gamma}(k)$ can be replaced in the right-hand side of (3.54) by its expression (3.47) in terms of the coefficients $c_{ \pm}(n, g)$. A general solution for the integral equation (3.53) for $\tilde{\Gamma}(k)$ reads (for $-1 \leq k \leq 1$)

$$
\begin{equation*}
\widetilde{\Gamma}(k)=\frac{1}{2} \phi(k)-\frac{1}{2 \pi}\left(\frac{1+k}{1-k}\right)^{1 / 4} \int_{-1}^{1} \frac{d u \phi(u)}{u-k}\left(\frac{1-u}{1+u}\right)^{1 / 4}-\frac{\sqrt{2}}{\pi}\left(\frac{1+k}{1-k}\right)^{1 / 4} \frac{c}{1+k}, \tag{3.55}
\end{equation*}
$$

where the last term describes the zero mode contribution with c being an arbitrary function of the coupling. We replace $\phi(u)$ by its expression (3.54), interchange the order of integration and find after some algebra

$$
\begin{equation*}
\widetilde{\Gamma}(k) \stackrel{k^{2} \leq 1}{=}-\frac{\sqrt{2}}{\pi}\left(\frac{1+k}{1-k}\right)^{1 / 4}\left[1+\frac{c}{1+k}+\frac{1}{2} \int_{-\infty}^{\infty} \frac{d p \widetilde{\Gamma}(p)}{p-k}\left(\frac{p-1}{p+1}\right)^{1 / 4} \theta\left(p^{2}-1\right)\right] . \tag{3.56}
\end{equation*}
$$

With regard the eqs. (3.55-3.56) we have that $\frac{\sqrt{2}}{\pi}=0,450158 \cong 0,45085$; $\frac{1}{\pi}=0,318309 \cong 0,318322 ; \quad \frac{1}{2 \pi}=0,1591549 \cong 0,159649$, values that are inserted in the columns (*1/Pigreco), (*1/1,375) and (${ }^{*} 1 /$ Pigreco $)$ of the Table concerning the universal music system based on Phi.
Furthermore, we note that the eq. (3.56) multiplied for $\frac{\pi^{4}}{4 \sqrt{2}}$, can be related with the Jormakka's equation connected with the Ramanujan's equation concerning π (1.18), i.e.

$$
\begin{gather*}
\frac{\pi^{4}}{4 \sqrt{2}} \widetilde{\Gamma}(k)^{k^{2} \leq 1}=-\frac{\pi^{3}}{4}\left(\frac{1+k}{1-k}\right)^{1 / 4}\left[1+\frac{c}{1+k}+\frac{1}{2} \int_{-\infty}^{\infty} \frac{d p \widetilde{\Gamma}(p)}{p-k}\left(\frac{p-1}{p+1}\right)^{1 / 4} \theta\left(p^{2}-1\right)\right] \Rightarrow \\
\Rightarrow \int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \int d y_{1} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{1}^{2}}=\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}= \\
=\frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d x_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1} \int d x_{3} e^{-\beta^{2} y_{3}^{2}} \int d y_{2} e^{-\frac{1}{2}(\sqrt{2} \beta)^{2} y_{2}^{2}}= \\
=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}}(2 \pi)(\sqrt{2} \beta)^{-2} \int d x_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)(\sqrt{2} \beta)^{-2} \int d y_{3} e^{-\beta^{2} y_{3}^{2}}=\frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \frac{1}{2}(2 \pi)^{\frac{3}{2}}(\sqrt{2} \beta)^{-3} \\
=\left[\int d^{2} x e^{-\beta^{2}\left(y_{2}^{2}+y_{3}^{2}\right)} \frac{1}{\sqrt{3}} \sqrt{2 \pi}(\sqrt{2} \beta)^{-1}\right]^{2}=8 \frac{\pi^{3}}{4} \times \frac{1}{(\sqrt{2} \beta)^{6}} \Rightarrow \\
\Rightarrow \pi^{3}\left(\int_{0}^{\infty} x^{3} \frac{\cos \pi x^{2}}{\sinh \pi x} d x+\int_{0}^{\infty} x^{3} \frac{\sin \pi x^{2}}{\sinh \pi x} d x\right)=\frac{1}{16}\left(\frac{\pi^{3}}{4}-3 \pi+\pi^{2}\right) ; \tag{3.56b}
\end{gather*}
$$

We are now ready to write down a general expression for the function $\Gamma(t)$. According to (3.43), it is related to $\widetilde{\Gamma}(k)$ through the inverse Fourier transformation

$$
\begin{equation*}
\Gamma(t)=\int_{-1}^{1} d k e^{-i k t} \widetilde{\Gamma}(k)+\int_{-\infty}^{-1} d k e^{-i k t} \widetilde{\Gamma}(k)+\int_{1}^{\infty} d k e^{-i k t} \widetilde{\Gamma}(k), \tag{3.57}
\end{equation*}
$$

where we split the integral into three terms since $\widetilde{\Gamma}(k)$ has a different form for $k<-1,-1 \leq k \leq 1$ and $k>1$. Then, we use the obtained expressions for $\widetilde{\Gamma}(k)$, eqs. (3.47) and (3.56), to find after some algebra the following remarkable relation

$$
\begin{equation*}
\Gamma(i t)=f_{0}(t) V_{0}(t)+f_{1}(t) V_{1}(t) . \tag{3.58}
\end{equation*}
$$

Here the notation was introduced for

$$
\begin{array}{r}
f_{0}(t)=-1+\sum_{n \geq 1} t\left[c_{+}(n, g) \frac{U_{1}^{+}(4 \pi n g)}{4 \pi n g-t}+c_{-}(n, g) \frac{U_{1}^{-}(4 \pi n g)}{4 \pi n g+t}\right], \\
f_{1}(t)=-c(g)+\sum_{n \geq 1} 4 \pi n g\left[c_{+}(n, g) \frac{U_{0}^{+}(4 \pi n g)}{4 \pi n g-t}+c_{-}(n, g) \frac{U_{0}^{-}(4 \pi n g)}{4 \pi n g+t}\right] . \tag{3.59}
\end{array}
$$

Also, V_{n} and $U_{n}^{ \pm}$(with $n=0,1$) stand for integrals

$$
\begin{equation*}
V_{n}(x)=\frac{\sqrt{2}}{\pi} \int_{-1}^{1} d u(1+u)^{1 / 4-n}(1-u)^{-1 / 4} e^{u x} ; \quad U_{n}^{ \pm}(x)=\frac{1}{2} \int_{1}^{\infty} d u(u \pm 1)^{-1 / 4}(u \mp 1)^{1 / 4-n} e^{-(u-1) x} \tag{3.60}
\end{equation*}
$$

which can be expressed in terms of Whittaker functions of $1^{\text {st }}$ and $2^{\text {nd }}$ kind.
Replacing Γ (it) by its expression (3.58), we rewrite these relations in equivalent form

$$
\begin{equation*}
f_{0}\left(t_{\ell}\right) V_{0}\left(t_{\ell}\right)+f_{1}\left(t_{\ell}\right) V_{1}\left(t_{\ell}\right)=0, \quad t_{\ell}=4 \pi g\left(\ell-\frac{1}{4}\right) \tag{3.61}
\end{equation*}
$$

Let us substitute (3.58) into the expression (3.26) for the cusp anomalous dimension. The result involves the functions $V_{n}(t)$ and $f_{n}(t)$ (with $n=1,2$) evaluated at $t=0$. It is easy to see from (3.60) that $V_{0}(0)=1$ and $V_{1}(0)=2$. In addition, we obtain from (3.59) that $f_{0}(0)=-1$ for arbitrary coupling leading to

$$
\begin{equation*}
\Gamma_{\text {cusp }}(g)=2 g\left[1-2 f_{1}(0)\right] . \tag{3.62}
\end{equation*}
$$

Replacing $f_{1}(0)$ by its expression (3.59) we find the following relation for the cusp anomalous dimension in terms of the coefficients c and $c_{ \pm}$

$$
\begin{equation*}
\Gamma_{\text {cusp }}(g)=2 g\left\{1+2 c(g)-2 \sum_{n \geq 1}\left[c_{-}(n, g) U_{0}^{-}(4 \pi n g)+c_{+}(n, g) U_{0}^{+}(4 \pi n g)\right]\right\} . \tag{3.63}
\end{equation*}
$$

The following remarkable relation

$$
\begin{equation*}
\Gamma_{\text {cusp }}^{(t o y)}(g)=2 g\left[1-(2 \pi g)^{-1 / 2} \frac{M_{1 / 4,1 / 2}(2 \pi g)}{M_{-1 / 4,0}(2 \pi g)}\right], \tag{3.63a}
\end{equation*}
$$

defines the cusp anomalous dimension in the toy model for arbitrary coupling $g>0$. At weak coupling, we find from (3.63a)

$$
\begin{equation*}
\Gamma_{\text {cusp }}^{(t o y)}(g)=\frac{3}{2} \pi g^{2}-\frac{1}{2} \pi^{2} g^{3}-\frac{1}{64} \pi^{3} g^{4}+\frac{5}{64} \pi^{4} g^{5}-\frac{11}{512} \pi^{5} g^{6}-\frac{3}{512} \pi^{6} g^{7}+O\left(g^{8}\right) \tag{3.63b}
\end{equation*}
$$

The series (3.63b) has a finite radius of convergence $\left|g_{0}\right|=0.796$
Furthermore, the eq. (3.56b) can be related with the Ramanujan's modular equation concerning the superstrings and the equation regarding the Palumbo-Nardelli model, i.e.

$$
\begin{gather*}
\Gamma_{\text {cusp }}^{(t o y)}(g)=\frac{3}{2} \pi g^{2}-\frac{1}{2} \pi^{2} g^{3}-\frac{1}{64} \pi^{3} g^{4}+\frac{5}{64} \pi^{4} g^{5}-\frac{11}{512} \pi^{5} g^{6}-\frac{3}{512} \pi^{6} g^{7}+O\left(g^{8}\right) \Rightarrow \\
4\left[\frac{1}{3} \frac{\left.\int^{\infty} t i \log \frac{\int_{0}^{\infty} \frac{\cos \pi t x w^{\prime}}{\cosh \pi x} e^{-\pi \pi^{2} w^{\prime}} d x}{e^{-\frac{\pi^{2}}{4} w^{\prime}} \phi_{w^{\prime}}\left(i t w^{\prime}\right)}\right] \cdot \frac{\sqrt{142}}{t^{2} w^{\prime}}}{\log \left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right]} \Rightarrow\right. \\
\Rightarrow-\int d^{26} x \sqrt{g}\left[-\frac{R}{16 \pi G}-\frac{1}{8} g^{\mu \rho} g^{\nu \sigma} T r\left(G_{\mu \nu} G_{\rho \sigma}\right) f(\phi)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]= \\
=\int_{0}^{\infty} \frac{1}{2 \kappa_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left[R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|\widetilde{H}_{3}\right|^{2}-\frac{\kappa_{10}^{2}}{g_{10}^{2}} T_{v}\left(\left|F_{2}\right|^{2}\right)\right] . \tag{3.63c}
\end{gather*}
$$

Let us replace $f_{0}(t)$ and $f_{1}(t)$ in (3.61) by their explicit expressions (3.59) and rewrite the quantization conditions (3.61) as

$$
\begin{equation*}
V_{0}\left(4 \pi g x_{\ell}\right)+c(g) V_{1}\left(4 \pi g x_{\ell}\right)=\sum_{n \geq 1}\left[c_{+}(n, g) A_{+}\left(n, x_{\ell}\right)+c_{-}(n, g) A_{-}\left(n, x_{\ell}\right)\right], \tag{3.64}
\end{equation*}
$$

where $x_{\ell}=\ell-\frac{1}{4}$ (with $\ell=0, \pm 1, \pm 2, \ldots$) and the notation was introduced for

$$
\begin{equation*}
A_{ \pm}\left(n, x_{\ell}\right)=\frac{n V_{1}\left(4 \pi g x_{\ell}\right) U_{0}^{ \pm}(4 \pi n g)+x_{\ell} V_{0}\left(4 \pi g x_{\ell}\right) U_{1}^{ \pm}(4 \pi n g)}{n \mp x_{\ell}} . \tag{3.65}
\end{equation*}
$$

The relation (3.64) provides an infinite system of linear equations for $c_{ \pm}(g, n)$ and $c(g)$. The coefficients in this system depend on $V_{0,1}\left(4 \pi g x_{\ell}\right)$ and $U_{0,1}^{ \pm}(4 \pi n g)$ which are known functions. We examine (3.64) for $\left|x_{\ell}\right| \gg 1$. In this limit, for $g=$ fixed we are allowed to replace the functions $V_{0}\left(4 \pi g x_{\ell}\right)$ and $V_{1}\left(4 \pi g x_{\ell}\right)$ in both sides of (3.64) by their asymptotic behaviour at infinity. We find for $\left|x_{\ell}\right| \gg 1$

$$
r\left(x_{\ell}\right) \equiv \frac{V_{1}\left(4 \pi g x_{\ell}\right)}{V_{0}\left(4 \pi g x_{\ell}\right)}=\left\{\begin{array}{l}
-16 \pi g x_{\ell}+\ldots\left(x_{\ell}<0\right) \tag{3.66}\\
\frac{1}{2}+\ldots,\left(x_{\ell}>0\right)
\end{array}\right.
$$

where ellipses denote terms suppressed by powers of $1 /\left(g x_{\ell}\right)$ and $e^{-8 \pi g\left|x_{\ell}\right|}$. We divide both sides of (3.64) by $V_{1}\left(4 \pi g x_{\ell}\right)$ and observe that for $x_{\ell} \rightarrow-\infty$ the first term in the left-hand side of (3.64) is subleading and can be safely neglected. In the similar manner, one has $A_{ \pm}\left(n, x_{\ell}\right) / V_{1}\left(4 \pi g x_{\ell}\right)=O\left(1 / x_{\ell}\right)$ for fixed n in the right-hand side of (3.64). Therefore, going to the limit $x_{\ell} \rightarrow-\infty$ in both sides of (3.64) we get

$$
\begin{equation*}
c(g)=0 \tag{3.67}
\end{equation*}
$$

for arbitrary g.

Arriving at (3.67), we tacitly assumed that the sum over n in (3.64) remains finite in the limit $x_{\ell} \rightarrow-\infty$. Taking into account large n behaviour of the functions $U_{0}^{ \pm}(4 \pi n g)$ and $U_{1}^{ \pm}(4 \pi n g)$, we obtain that this condition translates into the following condition for asymptotic behaviour of the coefficients at large n

$$
\begin{equation*}
c_{+}(n, g)=o\left(n^{1 / 4}\right), \quad c_{-}(n, g)=o\left(n^{-1 / 4}\right) . \tag{3.68}
\end{equation*}
$$

These relations also ensure that the sum in the expression (3.63) for the cusp anomalous dimension is convergent.
In the following Table, we have showed the comparison of the numerical value of $\Gamma_{\text {cusp }}(g) /(2 g)$ found from (3.64) and (3.63) for $n_{\max }=40$ with the exact one for different values of the coupling constant g

We note that there is the mathematical connections between these values and the following: 0,1967 (*1/1,375), 0,36067 (*Pigreco), 0,5835 (*Pigreco), 0,7081 (*Pigreco), 0,7869 (*1/Pigreco), 0,8333 (*1/Pigreco), 0,8498 (*Pigreco), 0,8753 (*Pigreco), 0,8989 (*1/1,375), 0,9017 (*1/Pigreco). All values inserted in the columns of the Table concerning the universal music system based on Phi.

At large g the integral in (3.29) receives a dominant contribution from $t \approx g$. In order to evaluate (3.29) it is convenient to change the integration variable as $t \rightarrow 4 \pi g i t$

$$
\begin{equation*}
m_{O(6)}=\frac{8 \sqrt{2}}{\pi^{2}} e^{-\pi g}-\frac{8 g}{\pi} e^{-\pi g} \operatorname{Re}\left[\int_{0}^{-i \infty} d t e^{-4 \pi g t-i \pi / 4} \frac{\Gamma(4 \pi g i t)}{t+\frac{1}{4}}\right], \tag{3.69}
\end{equation*}
$$

where integration goes along the imaginary axis. We find from (3.58) that $\Gamma(4 \pi g i t)$ takes the form

$$
\begin{equation*}
\Gamma(4 \pi g i t)=f_{0}(4 \pi g t) V_{0}(4 \pi g t)+f_{1}(4 \pi g t) V_{1}(4 \pi g t), \tag{3.70}
\end{equation*}
$$

where $V_{0,1}(4 \pi g t)$ are given by the Whittaker functions of first kind.
We note that $\frac{8 \sqrt{2}}{\pi^{2}}=1,146318 \cong 1,145833$ value that is inserted in the column $(* 1,375)$ of the Table concerning the universal music system based on Phi.

We have that $f_{0,1}(4 \pi g t)$ admit the following representation (see eqs. (3.59) and (3.67))

$$
\begin{align*}
& f_{0}(4 \pi g t)=\sum_{n \geq 1} t\left[c_{+}(n, g) \frac{U_{1}^{+}(4 \pi n g)}{n-t}+c_{-}(n, g) \frac{U_{1}^{-}(4 \pi n g)}{n+t}\right]-1, \\
& f_{1}(4 \pi g t)=\sum_{n \geq 1} n\left[c_{+}(n, g) \frac{U_{0}^{+}(4 \pi n g)}{n-t}+c_{-}(n, g) \frac{U_{0}^{-}(4 \pi n g)}{n+t}\right] . \tag{3.71}
\end{align*}
$$

Replacing $\Gamma(4 \pi g i t)$ in (3.69) by its expression (3.70), we evaluate the t-integral and find after some algebra

$$
\begin{equation*}
m_{O(6)}=-\frac{16 \sqrt{2}}{\pi} g e^{-\pi g}\left[f_{0}(-\pi g) U_{0}^{-}(\pi g)+f_{1}(-\pi g) U_{1}^{-}(\pi g)\right] . \tag{3.72}
\end{equation*}
$$

This relation can be further simplified with a help of the quantization conditions (3.61). For $\ell=0$, we obtain from (3.61) that $f_{0}(-\pi g) V_{0}(-\pi g)+f_{1}(-\pi g) V_{1}(-\pi g)=0$. Together with the Wronskian relation for the Whittaker functions this leads to the following remarkable relation for the mass gap

$$
\begin{equation*}
m_{O(6)}=\frac{16 \sqrt{2}}{\pi^{2}} \frac{f_{1}(-\pi g)}{V_{0}(-\pi g)} . \tag{3.73}
\end{equation*}
$$

The functions $f_{0}(4 \pi g t)$ and $f_{1}(4 \pi g t)$ have the form

$$
\begin{equation*}
f_{n}(4 \pi g t)=f_{n}^{(P T)}(4 \pi g t)+\delta f_{n}(4 \pi g t), \quad(n=0,1) \tag{3.74}
\end{equation*}
$$

Going through calculation of (3.71), we find after some algebra that perturbative corrections to $f_{0}(4 \pi g t)$ and $f_{1}(4 \pi g t)$ are given by linear combinations of the ratios of Euler gamma-functions

$$
\begin{align*}
f_{0}^{(P T)}(4 \pi g t)= & -\frac{\Gamma\left(\frac{3}{4}\right) \Gamma(1-t)}{\Gamma\left(\frac{3}{4}-t\right)}+\frac{1}{4 \pi g}\left[\left(\frac{3 \ln 2}{4}+\frac{1}{8 t}\right) \frac{\Gamma\left(\frac{3}{4}\right) \Gamma(1-t)}{\Gamma\left(\frac{3}{4}-t\right)}-\frac{\Gamma\left(\frac{1}{4}\right) \Gamma(1+t)}{8 t \Gamma\left(\frac{1}{4}+t\right)}\right]+O\left(g^{-2}\right), \\
f_{1}^{(P T)}(4 \pi g t)= & \frac{1}{4 \pi g}\left[\frac{\Gamma\left(\frac{1}{4}\right) \Gamma(1+t)}{4 t \Gamma\left(\frac{1}{4}+t\right)}-\frac{\Gamma\left(\frac{3}{4}\right) \Gamma(1-t)}{4 t \Gamma\left(\frac{3}{4}-t\right)}\right]-\frac{1}{(4 \pi g)^{2}}\left[\frac{\Gamma\left(\frac{1}{4}\right) \Gamma(1+t)}{4 t \Gamma\left(\frac{1}{4}+t\right)}\left(\frac{1}{4 t}-\frac{3 \ln 2}{4}\right)+\right. \\
& \left.-\frac{\Gamma\left(\frac{3}{4}\right) \Gamma(1-t)}{4 t \Gamma\left(\frac{3}{4}-t\right)}\left(\frac{1}{4 t}+\frac{3 \ln 2}{4}\right)\right]+O\left(g^{-3}\right) . \tag{3.75}
\end{align*}
$$

In the similar manner, we compute non-perturbative corrections to (3.74)

$$
\begin{gather*}
\delta f_{0}(4 \pi g t)=\Lambda^{2}\left\{\frac{1}{4 \pi g}\left[\frac{\Gamma\left(\frac{3}{4}\right) \Gamma(1-t)}{2 \Gamma\left(\frac{3}{4}-t\right)}-\frac{\Gamma\left(\frac{5}{4}\right) \Gamma(1+t)}{2 \Gamma\left(\frac{5}{4}+t\right)}\right]+O\left(g^{-2}\right)\right\}+\ldots, \\
\delta f_{1}(4 \pi g t)=\Lambda^{2}\left\{\frac{1}{4 \pi g} \frac{\Gamma\left(\frac{5}{4}\right) \Gamma(1+t)}{\Gamma\left(\frac{5}{4}+t\right)}+\frac{1}{(4 \pi g)^{2}}\left[\frac{\Gamma\left(\frac{3}{4}\right) \Gamma(1-t)}{8 t \Gamma\left(\frac{3}{4}-t\right)}-\frac{\Gamma\left(\frac{5}{4}\right) \Gamma(1+t)}{\Gamma\left(\frac{5}{4}+t\right)}\left(\frac{1}{8 t}+\frac{3}{4} \ln 2-\frac{1}{4}\right)\right]+O\left(g^{-3}\right)\right\}+\ldots \tag{3.76}
\end{gather*}
$$

where ellipses denote $O\left(\Lambda^{4}\right)$ terms.
Let us obtain the strong coupling expansion of the mass gap (3.73). We replace $V_{0}(-\pi g)$ by its asymptotic series

$$
\begin{align*}
& V_{0}(-\pi g)=\frac{(2 \pi g)^{-5 / 4} e^{\pi g}}{\Gamma\left(\frac{3}{4}\right)}\left[F\left(\frac{1}{4}, \frac{5}{4} \left\lvert\, \frac{1}{2 \pi g}+i \varepsilon\right.\right)+\Lambda^{2} F\left(-\frac{1}{4}, \frac{3}{4} \left\lvert\,-\frac{1}{2 \pi g}\right.\right)\right], \tag{3.77}\\
& U_{0}^{+}(x)=(2 x)^{-5 / 4} \Gamma\left(\frac{5}{4}\right) F\left(\frac{1}{4}, \frac{5}{4} \left\lvert\,-\frac{1}{2 x}\right.\right)=(2 x)^{-5 / 4} \Gamma\left(\frac{5}{4}\right)\left[1-\frac{5}{32 x}+\ldots\right], \\
& U_{0}^{-}(x)=(2 x)^{-3 / 4} \Gamma\left(\frac{3}{4}\right) F\left(-\frac{1}{4}, \frac{3}{4} \left\lvert\,-\frac{1}{2 x}\right.\right)=(2 x)^{-3 / 4} \Gamma\left(\frac{3}{4}\right)\left[1+\frac{3}{32 x}+\ldots\right], \\
& U_{1}^{+}(x)=(2 x)^{-1 / 4} \frac{1}{2} \Gamma\left(\frac{1}{4}\right) F\left(\frac{1}{4}, \frac{1}{4} \left\lvert\,-\frac{1}{2 x}\right.\right)=(2 x)^{-1 / 4} \frac{1}{2} \Gamma\left(\frac{1}{4}\right)\left[1-\frac{1}{32 x}+\ldots\right], \\
& U_{1}^{-}(x)=(2 x)^{-3 / 4} \frac{1}{2} \Gamma\left(\frac{3}{4}\right) F\left(\frac{3}{4}, \frac{3}{4} \left\lvert\,-\frac{1}{2 x}\right.\right)=(2 x)^{-3 / 4} \frac{1}{2} \Gamma\left(\frac{3}{4}\right)\left[1-\frac{9}{32 x}+\ldots\right], \tag{3.78}
\end{align*}
$$

and take into account (3.75) and (3.76) to get

$$
\begin{gather*}
m_{O(6)}=\frac{\sqrt{2}}{\Gamma\left(\frac{5}{4}\right)}(2 \pi g)^{1 / 4} e^{-\pi g}\left\{\left[1+\frac{3-6 \ln 2}{32 \pi g}+\frac{-63+108 \ln 2-108(\ln 2)^{2}+16 K}{2048(\pi g)^{2}}+\ldots\right]+\right. \\
\left.-\frac{\Lambda^{2}}{8 \pi g}\left[1-\frac{15-6 \ln 2}{32 \pi g}+\ldots\right]+O\left(\Lambda^{4}\right)\right\}, \quad \text { (3.79) } \tag{3.79}
\end{gather*}
$$

that can be connected with the eq. (3.69), obtaining the following mathematical connection:

$$
m_{O(6)}=\frac{8 \sqrt{2}}{\pi^{2}} e^{-\pi g}-\frac{8 g}{\pi} e^{-\pi g} \operatorname{Re}\left[\int_{0}^{-i \infty} d t e^{-4 \pi g t-i \pi / 4} \frac{\Gamma(4 \pi g i t)}{t+\frac{1}{4}}\right]=
$$

$$
\begin{gather*}
=\frac{\sqrt{2}}{\Gamma\left(\frac{5}{4}\right)}(2 \pi g)^{1 / 4} e^{-\pi g}\left\{\left[1+\frac{3-6 \ln 2}{32 \pi g}+\frac{-63+108 \ln 2-108(\ln 2)^{2}+16 K}{2048(\pi g)^{2}}+\ldots\right]+\right. \\
\left.-\frac{\Lambda^{2}}{8 \pi g}\left[1-\frac{15-6 \ln 2}{32 \pi g}+\ldots\right]+O\left(\Lambda^{4}\right)\right\} . \tag{3.80}
\end{gather*}
$$

With regard this equation, we have that: $\sqrt{2}(2 \pi)^{1 / 4}=2,23903 \cong 2,24730$;
$1-\frac{15-6 \ln 2}{32 \pi}=0,892161415 \cong 0,898958$ that are inserted in the columns (*1/Pigreco) and (*1/1,375) of the Table concerning the universal music system based on Phi.
Furthermore, this equation can be related also with the Ramanujan modular equation regarding the superstrings and the equation concerning the Palumbo-Nardelli model. Thence, we obtain:

$$
\begin{gather*}
m_{O(6)}=\frac{8 \sqrt{2}}{\pi^{2}} e^{-\pi g}-\frac{8 g}{\pi} e^{-\pi g} \operatorname{Re}\left[\int_{0}^{-i \infty} d t e^{-4 \pi g t-i \pi / 4} \frac{\Gamma(4 \pi g i t)}{t+\frac{1}{4}}\right]= \\
\begin{aligned}
&= \frac{\sqrt{2}}{\Gamma\left(\frac{5}{4}\right)}(2 \pi g)^{1 / 4} e^{-\pi g}\left\{\left[1+\frac{3-6 \ln 2}{32 \pi g}+\frac{-63+108 \ln 2-108(\ln 2)^{2}+16 K}{2048(\pi g)^{2}}+\ldots\right]+\right. \\
&\left.-\frac{\Lambda^{2}}{8 \pi g}\left[1-\frac{15-6 \ln 2}{32 \pi g}+\ldots\right]+O\left(\Lambda^{4}\right)\right\} \Rightarrow \\
& \Rightarrow \frac{1}{3} \frac{4\left[a n t i \log \frac{\int_{0}^{\infty} \frac{\cos \pi t x w^{\prime}}{\cosh \pi x} e^{-\pi \pi^{2} w^{\prime}} d x}{e^{-\frac{\pi^{2}}{4} w^{\prime}} \phi_{w^{\prime}}\left(i t w^{\prime}\right)}\right] \cdot \frac{\sqrt{142}}{t^{2} w^{\prime}}}{\log \left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)} \Rightarrow\right.} \Rightarrow \\
& \Rightarrow-\int d^{26} x \sqrt{g}\left[-\frac{R}{16 \pi G}-\frac{1}{8} g^{\mu \rho} g^{v \sigma} T r\left(G_{\mu \nu} G_{\rho \sigma}\right) f(\phi)-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]= \\
&=\int_{0}^{\infty} \frac{1}{2 \kappa_{10}^{2}} \int d^{10} x(-G)^{1 / 2} e^{-2 \Phi}\left[R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|\widetilde{H}_{3}\right|^{2}-\frac{\kappa_{10}^{2}}{g_{10}^{2}} T r_{\nu}\left(\left|F_{2}\right|^{2}\right)\right] .
\end{aligned}
\end{gather*}
$$

4. On some equations concerning the "fractal" behaviour of the partition function. [5] [6]

(see the following introduction: http://www.fractal.org/Bewustzijns-Besturings-Model/Partition-numbers-are-fractal.pdf)

The study of $p(n)$ has played a fundamental role in the number theory. The very famous mathematicians Hardy and Ramanujan invented the "circle method" in analytic number theory in their work on $p(n)$ asymptotics. They proved the asymptotic formula

$$
\begin{equation*}
p(n) \approx \frac{1}{4 n \sqrt{3}} \cdot e^{\pi \sqrt{2 n / 3}} . \tag{a}
\end{equation*}
$$

Rademacher subsequently perfected this method to derive his famous "exact" formula

$$
\begin{equation*}
p(n)=2 \pi(24 n-1)^{-3 / 4} \sum_{k=1}^{\infty} \frac{A_{k}(n)}{k} \cdot I_{3 / 2}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right) . \tag{b}
\end{equation*}
$$

and this equation can be rewritten also as follows:

$$
\begin{equation*}
p(n)=\frac{2 \pi}{\sqrt[4]{(24 n-1)^{3}}} \sum_{k=1}^{\infty} \frac{A_{k}(n)}{k} \cdot I_{3 / 2}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right) . \tag{c}
\end{equation*}
$$

In terms of congruences, $p(n)$ has served as a testing ground for fundamental constructions in the theory of modular forms. The theory of Ramanujan's celebrated congruences, assert that

$$
\begin{align*}
& p\left(5^{m} n+\delta_{5}(m)\right) \equiv 0 \quad\left(\bmod 5^{m}\right) \\
& p\left(7^{m} n+\delta_{7}(m)\right) \equiv 0 \quad\left(\bmod 7^{[m / 2]+1}\right) \\
& p\left(11^{m} n+\delta_{11}(m)\right) \equiv 0 \quad\left(\bmod 11^{m}\right) \tag{4.1}
\end{align*}
$$

where $0<\delta_{\ell}(m)<\ell^{m}$ satisfies the congruence $24 \delta_{\ell}(m) \equiv 1 \quad\left(\bmod \ell^{m}\right)$. To prove these congruences, Atkin, Ramanujan and Watson made use of special modular equations to produce ℓ adic expansions of generating functions

$$
\begin{equation*}
P_{\ell}(b ; z):=\sum_{n=0}^{\infty} p\left(\frac{\ell^{b} n+1}{24}\right) q^{\frac{n}{24}} . \tag{4.2}
\end{equation*}
$$

(note that $q:=e^{2 \pi i z}$ throughout, $p(0)=1$, and $p(\alpha)=0$ if $\alpha<0$ or $\alpha \notin Z$).
Little is known about the ℓ-adic properties of the $P_{\ell}(b ; z)$, as $b \rightarrow+\infty$, for primes $\ell \geq 13$. Has been observed that these functions are nicely constrained ℓ-adically. Furthermore, they are "selfsimilar", i.e. have a "fractal" behaviour, with resolution that improves as one "zooms in" appropriately. Throughout, if $\ell \geq 5$ is prime and $m \geq 1$, then we let

$$
\begin{array}{rlr}
b_{\ell}(m):= & m^{2} & \text { if } \ell \geq 5 \text { and } \ell \neq 7, \\
& m^{2} & \text { if } \ell=7 \text { and } m \text { is even, } \\
& m(m+1) & \text { if } \ell=7 \text { and } m \text { is odd. } \tag{4.3}
\end{array}
$$

Theorem 1.1

Suppose that $5 \leq \ell \leq 31$ is prime, and that $m \geq 1$. If $b_{1} \equiv b_{2}(\bmod 2)$ are integers for which $b_{2}>b_{1} \geq b_{\ell}(m)$, then there is an integer $A_{\ell}\left(b_{1}, b_{2}, m\right)$ such that for every non-negative integer n we have

$$
\begin{equation*}
p\left(\frac{\ell^{b_{2}} n+1}{24}\right) \equiv A_{\ell}\left(b_{1}, b_{2}, m\right) \cdot p\left(\frac{\ell^{b_{1}} n+1}{24}\right) \quad\left(\bmod \ell^{m}\right) . \tag{4.4}
\end{equation*}
$$

If $\ell \in\{5,7,11\}$, then $A_{\ell}\left(b_{1}, b_{2}, m\right)=0$.
Now we illustrate Theorem 1.1 with $\ell=13$. For $m=1$, Theorem 1.1 applies for every pair of positive integers $b_{1}<b_{2}$ with the same parity. We let $b_{1}:=1$ and $b_{2}:=3$. It turns out that $A_{13}(1,3,1)=6$, and so we have that

$$
p\left(13^{3} n+1007\right) \equiv 6 p(13 n+6) \quad(\bmod 13) .
$$

By direct calculation, we find that

$$
\begin{aligned}
6 \sum_{n=0}^{\infty} p(13 n+6) q^{n} & =66+2940 q+50094 q^{2}+534804 q^{3}+4291320 q^{4}+28183230 q^{5}+\ldots \\
& \equiv 1+2 q+5 q^{2}+10 q^{3}+7 q^{4}+10 q^{5}+\ldots \quad(\bmod 13)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p\left(13^{3} n+1007\right) q^{n}=31724668493728872881006491578226+ \\
& +50991675504304667711936377645090414961625834061517111251390 q+\ldots \\
& \equiv 1+2 q+5 q^{2}+10 q^{3}+7 q^{4}+10 q^{5}+\ldots \quad(\bmod 13)
\end{aligned}
$$

We note that (for $\mathrm{n}=0,1,2,3,4$, and 5 , i.e. $13 \mathrm{n}+6=6,19,32,45,58$, and 71)

$$
\begin{aligned}
& 28183230: \frac{p(71)}{13}=78 ; \quad 4291320: \frac{p(58)}{13}=78 ; 534804: \frac{p(45)}{13}=78 ; \\
& 50094: \frac{p(32)}{13}=78 ; \quad 2940: \frac{p(19)}{13}=78 ; \quad 66: \frac{p(6)}{13}=78,
\end{aligned}
$$

and that

$$
x=\frac{p(71) \times 78}{13}=28183230 ; \quad x=\frac{p(58) \times 78}{13}=4291320 ; \quad x=\frac{p(45) \times 78}{13}=534804 ;
$$

$$
x=\frac{p(32) \times 78}{13}=50094 ; \quad x=\frac{p(19) \times 78}{13}=2940 ; \quad x=\frac{p(6) \times 78}{13}=66 .
$$

From these expressions, it is evident the "fractal" behaviour of the partition numbers.
We zoom in and consider $m=2$. It turns out that $b_{1}:=2$ and $b_{2}:=4$ satisfy the conclusion of Theorem 1.1 with $A_{13}(2,4,2)=45$, which in turn implies that

$$
p\left(13^{4} n+27371\right) \equiv 45 p\left(13^{2} n+162\right) \quad\left(\bmod 13^{2}\right) .
$$

For $n=0,1$, and 2 , we find that the smaller partition numbers give

$$
\begin{aligned}
& 45 p\left(13^{2} \cdot 0+162\right)=5846125708665 \equiv 99 \quad\left(\bmod 13^{2}\right), \\
& 45 p\left(13^{2} \cdot 1+162\right)=3546056488619997675 \equiv 89 \quad\left(\bmod 13^{2}\right), \\
& 45 p\left(13^{2} \cdot 2+162\right)=103507426465844579776215 \equiv 20 \quad\left(\bmod 13^{2}\right) .
\end{aligned}
$$

Although the other partition numbers are way too large to give here, we find

$$
\begin{aligned}
& p\left(13^{4} \cdot 0+27371\right)=105816538361780139172708561595812210224440752 \ldots \equiv 99 \quad\left(\bmod 13^{2}\right), \\
& p\left(13^{4} \cdot 1+27371\right)=747061679432324321866969710089533207619136212 \ldots \equiv 89 \quad\left(\bmod 13^{2}\right), \\
& p\left(13^{4} \cdot 2+27371\right)=111777755456127388513960963128155705859381391 \ldots \equiv 20 \quad\left(\bmod 13^{2}\right) .
\end{aligned}
$$

We note, with regard the second expression, that 89 is a Fibonacci's number.
We recall Dedekind's eta-function

$$
\begin{equation*}
\eta(z):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)=\sum_{k \in Z}(-1)^{k} q^{\frac{3 k^{2}+k}{2}+\frac{1}{24}} . \tag{4.5}
\end{equation*}
$$

If $\ell \geq 5$ is prime and $m \geq 1$, then we let $k_{\ell}(m):=\ell^{m-1}(\ell-1)$. We define $\Omega_{\ell}(m)$ to be the $Z / \ell^{m} Z-$ module of the reductions modulo ℓ^{m} of those forms which arise as images after applying at least the first $b_{\ell}(m)$ operators. We bound the dimension of $\Omega_{\ell}(m)$ independently of m, and we relate the partition generating functions to the forms in this space.

Theorem 1.2

If $\ell \geq 5$ is prime and $m \geq 1$, then $\Omega_{\ell}(m)$ is a $Z / \ell^{m} Z$-module with rank $\leq\left[\frac{\ell-1}{12}\right]$. Moreover, if $b \geq b_{\ell}(m)$, then we have that

$$
\begin{array}{rlrl}
P_{\ell}(b ; z) & \equiv \frac{F_{\ell}(b ; z)}{\eta(z)} & \left(\bmod \ell^{m}\right) & \\
\text { if } b \text { is even } \tag{4.6}\\
& \equiv \frac{F_{\ell}(b ; z)}{\eta(\ell z)} & \left(\bmod \ell^{m}\right) & \text { if } b \text { is odd, }
\end{array}
$$

where $F_{\ell}(b ; z) \in \Omega_{\ell}(m)$.

Each form $F_{\ell}(b ; z) \in \Omega_{\ell}(m)$ is congruent modulo ℓ to a cusp form in $S_{\ell-1} \cap Z[[q]]$. Since these spaces are trivial for $\ell \in\{5,7,11\}$, Theorem 1.2 for these ℓ follows immediately from the Ramanujan congruences. Conversely, if $\ell \in\{5,7,11\}$ and $m \geq 1$, then for $b \geq b_{\ell}(m)$ we have that

$$
\begin{equation*}
p\left(\ell^{b} n+\delta_{\ell}(b)\right) \equiv 0 \quad\left(\bmod \ell^{m}\right) . \tag{4.7}
\end{equation*}
$$

Theorem 1.2 shows that the partition numbers are self-similar ℓ-adically with resolutions that improve as one zooms in properly using the stochastic process which defines the $P_{\ell}(b ; z)$. Indeed, the $P_{\ell}(b ; z)\left(\bmod \ell^{m}\right)$, for $b \geq b_{\ell}(m)$, form periodic orbits. Theorem 1.2 bounds the corresponding "Hausdorff dimensions", and these dimensions only depend on ℓ. For $\ell \in\{5,7,11\}$, the dimension is 0 , a fact that is beautifully illustrated by Ramanujan's congruences*, and for $13 \leq \ell \leq 23$, the dimension is 1 . Theorem 1.1 summarizes these observations for $5 \leq \ell \leq 23$ and include the primes $\ell=29$ and 31 .
*(In mathematics, Ramanujan's congruences are some remarkable congruences for the partition function $p(n)$. The Indian mathematician Srinivasa Ramanujan discovered the following

$$
\begin{aligned}
p(5 k+4) & \equiv 0 \quad(\bmod 5) \\
p(7 k+5) & \equiv 0 \quad(\bmod 7) \\
p(11 k+6) & \equiv 0 \quad(\bmod 11) .
\end{aligned}
$$

In his 1919 paper (Ramanujan, 1919), he gave proof for the first two congruences using the following identities (using q-Pochhammer symbol notation):

$$
\begin{gathered}
\sum_{k=0}^{\infty} p(5 k+4) q^{k}=5 \frac{\left(q^{5}\right)_{\infty}^{5}}{(q)_{\infty}^{6}} \\
\sum_{k=0}^{\infty} p(7 k+5) q^{k}=7 \frac{\left(q^{7}\right)_{\infty}^{3}}{(q)_{\infty}^{4}}+49 q \frac{\left(q^{7}\right)_{\infty}^{7}}{(q)_{\infty}^{8}} .
\end{gathered}
$$

then stated that "It appears there are no equally simple properties for any moduli involving primes other than these") [from Ramanujan's congruences - Wikipedia, the free encyclopedia].

The following theorem gives the finite algebraic formula for $p(n)$.

Theorem 1.3

If n is a positive integer, then we have that

$$
\begin{equation*}
p(n)=\frac{1}{24 n-1} \cdot \operatorname{Tr}(n) . \tag{4.8}
\end{equation*}
$$

The numbers $P\left(\alpha_{Q}\right)$, as Q varies over \mathbb{Q}_{n}, form a multiset of algebraic numbers which is the union of Galois orbits for the discriminant $-24 n+1$ ring class field. Moreover, for each $Q \in \mathbb{Q}_{n}$ we have that $6(24 n-1) P\left(\alpha_{Q}\right)$ is an algebraic integer.

Theorem 1.3 gives an algorithm for computing $p(n)$, as well as the polynomial

$$
\begin{equation*}
H_{n}(x)=x^{h(-24 n+1)}-(24 n-1) p(n) x^{h(-24 n+1)}+\ldots:=\prod_{Q \in Q_{n}}\left(x-P\left(\alpha_{Q}\right)\right) \in Q[x] . \tag{4.9}
\end{equation*}
$$

Let L be the following lattice

$$
L:=\left\{\left(\begin{array}{cc}
b & a / N \tag{4.10}\\
c & -b
\end{array}\right): a, b, c \in Z\right\} .
$$

For $k \in \frac{1}{2} Z$, we let $H_{k}(N)$ denote the space of harmonic Maass forms of weight k for $\Gamma:=\Gamma_{0}(N)$. We let $H_{k}^{\infty}(N)$ denote the subspace of $H_{k}(N)$ consisting of those harmonic Maass forms whose principal parts at all cusps other than ∞ are constant. We write $M_{k}^{\text {! }}(N)=M_{k}^{!}(N) \cap H_{k}^{\infty}(N)$. For a weak Maass form f of weight -2 for Γ we define

$$
\begin{equation*}
\Lambda(\tau, f)=L_{3 / 2, \tau} \int_{M}\left(R_{-2, z} f(z)\right) \Theta_{L}\left(\tau, z, \varphi_{K M}\right) \tag{4.11}
\end{equation*}
$$

The Kudla-Millson theta kernel has exponential decay as $O\left(e^{-C y^{2}}\right)$ for $y \rightarrow \infty$ at all cusps of Γ with some constant $C>0$. Therefore the theta integral converges absolutely. It defines a $C\left[L^{\prime} / L\right]$-valued function on H that transforms like a non-holomorphic modular form of weight $-1 / 2$ for $\widetilde{\Gamma}$. We denote by $\Lambda_{h}(\tau, f)$ the components of the lift $\Lambda(\tau, f)$ with respect to the standard basis $\left(e_{h}\right)_{h}$ of $C\left[L^{\prime} / L\right]$. The group $\mathrm{O}\left(L^{\prime} / L\right)$ can be identified with the group generated by the Atkin-Lehner involutions. The following proposition, which is easily checked, shows that the theta lift is equivariant with respect to the action of $\mathrm{O}\left(L^{\prime} / L\right)$.

Proposition 1.1

For $\gamma \in \mathrm{O}\left(L^{\prime} / L\right)$ and $h \in L^{\prime} / L$, we have

$$
\begin{equation*}
\Lambda_{y h}(\tau, f)=\Lambda_{h}\left(\tau,\left.f\right|_{-2} \gamma^{-1}\right) . \tag{4.12}
\end{equation*}
$$

Theorem 1.4

If m is a positive integer, then we have

$$
\begin{equation*}
\Lambda\left(\tau, F_{m}(z, s,-2)\right)=\frac{2^{2-s} \sqrt{\pi} N s(1-s)}{\Gamma\left(\frac{s}{2}-\frac{1}{2}\right)} \sum_{n \mid m} n \cdot \mathcal{F}_{\frac{m^{2}}{4 N n^{2}}, \frac{m}{n}}\left(\tau, \frac{s}{2}+\frac{1}{4},-\frac{1}{2}\right) . \tag{4.13}
\end{equation*}
$$

By definition we have

$$
\begin{equation*}
\Lambda\left(\tau, F_{m}(z, s,-2)\right)=L_{3 / 2, \tau} \int_{M}\left(R_{-2, z} F_{m}(z, s,-2)\right) \Theta_{L}\left(\tau, z, \varphi_{K M}\right) . \tag{4.14}
\end{equation*}
$$

Employing the following proposition

Proposition 1.2

$$
\begin{equation*}
\frac{1}{4 \pi m} R_{k} F_{m}(z, s, k)=(s+k / 2) F_{m}(z, s, k+2), \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{3 / 2, \tau} \Theta_{L}\left(\tau, z, \varphi_{K M}\right)=-d d^{c} \Theta_{L}\left(\tau, z, \varphi_{S}\right)=\frac{1}{4 \pi} \Delta_{0, z} \Theta_{L}\left(\tau, z, \varphi_{S}\right) \cdot \Omega, \tag{4.15b}
\end{equation*}
$$

we see that this is equal to

$$
\begin{equation*}
m(s-1) \int_{M} F_{m}(z, s, 0) \Delta_{0, z} \Theta_{L}\left(\tau, z, \varphi_{S}\right) \Omega \tag{4.16}
\end{equation*}
$$

Using the following definition
we find, by the usual unfolding argument, that

$$
\begin{equation*}
\Lambda\left(\tau, F_{m}(z, s,-2)\right)=\frac{m(s-1)}{\Gamma(2 s)} \int_{\Gamma_{\infty} \backslash H} \boldsymbol{\mathcal { N }}_{s, 0}(4 \pi m y) e(-m x) \Delta_{0, z} \Theta_{L}\left(\tau, z, \varphi_{S}\right) \Omega . \tag{4.18}
\end{equation*}
$$

By the following proposition

Proposition 1.3

$$
\begin{equation*}
\Theta_{L}\left(\tau, z, \varphi_{S}\right)=\frac{1}{\sqrt{2 \ell_{z}^{2}}} \cdot \Xi_{K}(\tau, 0,0)+\frac{1}{2 \sqrt{2 \ell_{z}^{2}}} \sum_{n=1}^{\infty} \sum_{\gamma \in \tilde{\Gamma}_{\infty} \stackrel{\Gamma}{r}}\left[\exp \left(-\frac{\pi n^{2}}{2 v \ell_{z}^{2}}\right) \Xi(\tau, n \mu(z), 0)\right]_{-1 / 2, \rho_{K}} \gamma, \tag{4.19}
\end{equation*}
$$

we may replace $\Delta_{0, z} \Theta_{L}\left(\tau, z, \varphi_{S}\right)$ by $\Delta_{0, z} \widetilde{\Theta}_{L}\left(\tau, z, \varphi_{S}\right)$, where

$$
\begin{equation*}
\widetilde{\Theta}_{L}\left(\tau, z, \varphi_{S}\right)=\frac{1}{2 \sqrt{2 \ell_{z}^{2}}} \sum_{n=1}^{\infty} \sum_{\gamma \in \tilde{\Gamma}_{\infty} \stackrel{\Gamma}{\mid}}\left[\exp \left(-\frac{\pi n^{2}}{2 v \ell_{z}^{2}}\right) \Xi(\tau, n \mu(z), 0)\right]_{-1 / 2, \rho_{K}} \gamma . \tag{4.20}
\end{equation*}
$$

Recall that $\ell_{z}^{2}=\frac{1}{2 N y^{2}}$. The function $\widetilde{\Theta}_{L}\left(\tau, z, \varphi_{S}\right)$ and its partial derivatives have square exponential decay as $y \rightarrow \infty$. Therefore, for $\mathscr{R}(s)$ large, we may move the Laplace operator to the Poincaré series and obtain

$$
\begin{aligned}
& \Lambda\left(\tau, F_{m}(z, s,-2)\right)=\frac{m(s-1)}{\Gamma(2 s)} \int_{\Gamma_{\infty} \backslash H}\left(\Delta_{0, z} \boldsymbol{\mathcal { N }}_{s, 0}(4 \pi m y) e(-m x)\right) \widetilde{\Theta}_{L}\left(\tau, z, \varphi_{S}\right) \Omega= \\
& =-\frac{m s(s-1)^{2}}{\Gamma(2 s)} \int_{\Gamma_{\infty} \backslash H} \boldsymbol{\mathcal { N }}_{s, 0}(4 \pi m y) e(-m x) \widetilde{\Theta}_{L}\left(\tau, z, \varphi_{S}\right) \Omega=-\left.\frac{m s(s-1)^{2}}{\Gamma(2 s)} \sum_{n=1}^{\infty} \sum_{\gamma \in \widetilde{\Gamma}_{\infty}(\widetilde{\Gamma}} I(\tau, s, m, n)\right|_{-1 / 2, \rho_{K}} \gamma,
\end{aligned}
$$

where

$$
\begin{equation*}
I(\tau, s, m, n)=\int_{y=0}^{\infty} \int_{x=0}^{1} \mathcal{M}_{s, 0}(4 \pi m y) e(-m x) \frac{1}{2 \sqrt{2 \ell_{z}^{2}}} \exp \left(-\frac{\pi n^{2}}{2 v \ell_{z}^{2}}\right) \Xi(\tau, n \mu(z), 0) \frac{d x d y}{y^{2}} . \tag{4.22}
\end{equation*}
$$

If we use the fact that $K^{\prime}=Z\left(\begin{array}{cc}1 / 2 N & 0 \\ 0 & -1 / 2 N\end{array}\right)$, and identify $K^{\prime} / K \cong Z / 2 N Z$, then we have

$$
\begin{equation*}
\Xi(\tau, n \mu(z), 0)=\sqrt{v} \sum_{b \in Z} e\left(-\frac{b^{2}}{4 N} \bar{\tau}-n b x\right) \boldsymbol{e}_{b} . \tag{4.23}
\end{equation*}
$$

Inserting this in the formula for $I(\tau, s, m, n)$, and by integrating over x, we see that $I(\tau, s, m, n)$ vanishes when $\mathrm{n} \dagger \mathrm{m}$. If $\mathrm{n} \mid \mathrm{m}$, then only the summand for $b=-m / n$ occurs and so

$$
\begin{equation*}
I(\tau, s, m, n)=\frac{\sqrt{N v}}{2} \int_{0}^{\infty} \boldsymbol{\mathcal { N }}_{s, 0}(4 \pi m y) \exp \left(-\frac{\pi N n^{2} y^{2}}{v}\right) \frac{d y}{y} e\left(-\frac{m^{2}}{4 N n^{2}} \bar{\tau}\right) \boldsymbol{e}_{-m / n} . \tag{4.24}
\end{equation*}
$$

To compute this last integral, we note that

$$
\boldsymbol{\mathcal { N }}_{s, 0}(4 \pi m y)=M_{0, s-1 / 2}(4 \pi m y)=2^{2 s-1} \Gamma(s+1 / 2) \sqrt{4 \pi m y} \cdot I_{s-1 / 2}(2 \pi m y) .
$$

Substituting $t=y^{2}$ in the integral, we obtain

$$
\begin{gather*}
\int_{0}^{\infty} \boldsymbol{\mathcal { N }}_{s, 0}(4 \pi m y) \exp \left(-\frac{\pi N n^{2} y^{2}}{v}\right) \frac{d y}{y}=2^{2 s-1} \Gamma(s+1 / 2) \int_{0}^{\infty} \sqrt{4 \pi m y} I_{s-1 / 2}(2 \pi m y) \exp \left(-\frac{\pi N n^{2} y^{2}}{v}\right) \frac{d y}{y}= \\
=2^{2 s-1} \Gamma(s+1 / 2) \sqrt{\pi m} \int_{0}^{\infty} I_{s-1 / 2}(2 \pi m \sqrt{t}) \exp \left(-\frac{\pi N n^{2} t}{v}\right) t^{-3 / 4} d t \tag{4.25}
\end{gather*}
$$

The latter integral is a Laplace transform. Inserting the evaluation, we obtain

$$
\begin{gather*}
\int_{0}^{\infty} \boldsymbol{\mathcal { N }}_{s, 0}(4 \pi m y) \exp \left(-\frac{\pi N n^{2} y^{2}}{v}\right) \frac{d y}{y}=2^{2 s-1} \Gamma(s / 2)\left(\frac{N n^{2}}{\pi m^{2} v}\right)^{1 / 4} M_{1 / 4, s / 2-1 / 4}\left(\frac{\pi m^{2} v}{N n^{2}}\right) \exp \left(\frac{\pi m^{2} v}{2 N n^{2}}\right)= \\
=2^{2 s-1} \Gamma(s / 2)\left(\frac{N n^{2}}{\pi m^{2} v}\right)^{1 / 2} \boldsymbol{\mathcal { N }}_{s / 2+1 / 4,-1 / 2}\left(\frac{\pi m^{2} v}{N n^{2}}\right) \exp \left(\frac{\pi m^{2} v}{2 N n^{2}}\right) \tag{4.26}
\end{gather*}
$$

Consequently, we have in the case $n \mid m$ that

$$
\begin{equation*}
I(\tau, s, m, n)=\frac{2^{2 s-2} N n}{\sqrt{\pi} m} \Gamma(s / 2) \boldsymbol{\mu}_{s / 2+1 / 4,-1 / 2}\left(\frac{\pi m^{2} v}{N n^{2}}\right) e\left(-\frac{m^{2}}{4 N n^{2}} u\right) \boldsymbol{e}_{-m / n} \tag{4.27}
\end{equation*}
$$

Substituting this in (4.21), we find

$$
\begin{equation*}
\Lambda\left(\tau, F_{m}(z, s,-2)\right)=\frac{2^{2-s} \sqrt{\pi} N s(1-s)}{\Gamma\left(\frac{s}{2}-\frac{1}{2}\right)} \sum_{n \mid m} n \cdot \mathcal{F}_{\frac{m^{2}}{4 N n^{2}},-\frac{m}{n}}\left(\tau, \frac{s}{2}+\frac{1}{4},-\frac{1}{2}\right) . \tag{4.28}
\end{equation*}
$$

Since $\mathscr{F}_{m, h}(\tau, s,-1 / 2)=\mathscr{F}_{m,-h}(\tau, s,-1 / 2)$, this concludes the proof of the Theorem 1.4.

Corollary 1.5

If $f \in H_{-2}(N)$ is a harmonic Maass form of weight -2 for $\Gamma_{0}(N)$, then $\Lambda(\tau, f)$ belongs to $H_{-1 / 2, \rho_{L}}$. In particular, we have

$$
\begin{equation*}
\Lambda\left(\tau, F_{m}(z, 2,-2)\right)=-2 N \sum_{m \mid n} n \cdot \mathcal{F}_{\frac{m^{2}}{4 N n^{2}}, \frac{m}{n}}\left(\tau, \frac{5}{4},-\frac{1}{2}\right) . \tag{4.29}
\end{equation*}
$$

The formula for the image of the Poincare series $F_{m}(z, 2,-2)$ is a direct consequence of Theorem 1.4. These Poincaré series for $m \in Z_{>0}$ span the subspace $H_{-2}^{\infty}(N) \subset H_{-2}(N)$ of harmonic Maass forms whose principal parts at all cusps other than ∞ are constant. Consequently, we find that the image of $H_{-2}^{\infty}(N)$ is contained in $H_{-1 / 2, \rho_{L}}$. For simplicity, here we only prove that the image of the full space $H_{-2}(N)$ is contained in $H_{-1 / 2, \rho_{L}}$ in the special case when N is squarefree. When N is squarefree, then the group $\mathrm{O}\left(L^{\prime} / L\right)$ of Atkin-Lehner involutions acts transitively on the cusps of $\Gamma_{0}(N)$. Consequently, we have

$$
\begin{equation*}
H_{-2}(N)=\sum_{\gamma \in \mathrm{O}\left(L^{\prime} / L\right)} \gamma H_{-2}^{\infty}(N) . \tag{4.30}
\end{equation*}
$$

Using Proposition 1.1, we see that the whole space $H_{-2}(N)$ is mapped to $H_{-1 / 2, \rho_{L}}$.

Theorem 1.6

Let $f \in H_{-2}(N)$ and put $\partial f:=\frac{1}{4 \pi} R_{-2, z} f$. For $m \in Q_{>0}$ and $h \in L^{\prime} / L$ the (m, h)-th Fourier coefficient of the holomorphic part of $\Lambda(\tau, f)$ is equal to

$$
\begin{equation*}
t r_{f}(m, h)=-\frac{1}{2 m} \sum_{z \in Z(m, h)} \partial f(z) \tag{4.31}
\end{equation*}
$$

Inserting the definition of the theta lifting and using (4.15b), we have

$$
\begin{equation*}
\Lambda(\tau, f)=4 \pi L_{3 / 2, \tau} \int_{M} \partial f(z) \Theta_{L}\left(\tau, z, \varphi_{K M}\right)=\int_{M} \partial f(z) \Delta_{0, z} \Theta_{L}\left(\tau, z, \varphi_{S}\right) \Omega \tag{4.32}
\end{equation*}
$$

For $X \in V(R)$ and $z \in D$ we define $\varphi_{S}^{0}(X, z)=e^{2 \pi Q(X)} \varphi_{S}(X, z)$. Then the Fourier expansion of the Siegel theta function in the variable τ is given by

$$
\begin{equation*}
\Theta_{L}\left(\tau, z, \varphi_{S}\right)=\sum_{X \in L^{\prime}} \varphi_{S}^{0}(\sqrt{v} X, z) q^{Q(X)} \boldsymbol{e}_{X} . \tag{4.33}
\end{equation*}
$$

For $m \in Q_{>0}$ and $h \in L^{\prime} / L$, we put $L_{m, h}=\{X \in L+h ; Q(X)=m\}$. The group Γ acts on $L_{m, h}$ with finitely many orbits. We write $C(m, h)$ for the (m, h)-th Fourier coefficient of the holomorphic part of $\Lambda(\tau, f)$. Using (4.33), we see that

$$
\begin{equation*}
C(m, h)=\int_{M} \partial f(z) \Delta_{0, z} \sum_{X \in L_{m, h}} \varphi_{S}^{0}(\sqrt{v} X, z) \Omega \tag{4.34}
\end{equation*}
$$

For $Q(X)>0$ the function $\varphi_{S}^{0}(X, z)$ has square exponential decay as $y \rightarrow \infty$. This implies that we may move the Laplacian in the integral to the function ∂f. Since $\Delta_{0} \partial f=-2 \partial f$, we see that

$$
\begin{equation*}
C(m, h)=-2 \int_{M} \partial f(z) \sum_{X \in L_{m, h}} \varphi_{S}^{0}(\sqrt{v} X, z) \Omega . \tag{4.35}
\end{equation*}
$$

Using the usual unfolding argument, we obtain

$$
\begin{equation*}
C(m, h)=-2 \sum_{X \in \Gamma \backslash L_{m, h}} \frac{1}{\left|\bar{\Gamma}_{X}\right|} \int_{D} \partial f(z) \varphi_{S}^{0}(\sqrt{v} X, z) \Omega . \tag{4.36}
\end{equation*}
$$

Furthermore, we have the following relationship:

$$
\begin{equation*}
C(m, h)=-2 \int_{M} \partial f(z) \sum_{X \in L_{m, h}} \varphi_{S}^{0}(\sqrt{v} X, z) \Omega=-2 \sum_{X \in \Gamma \backslash L_{m, h}} \frac{1}{\left|\bar{\Gamma}_{X}\right|} \int_{D} \partial f(z) \varphi_{S}^{0}(\sqrt{v} X, z) \Omega . \tag{4.36b}
\end{equation*}
$$

It is convenient to rewrite the integral over D as an integral over $G(R)=S L_{2}(R)$. If we normalize the Haar measure such that the maximal compact subgroup $\operatorname{SO}(2)$ has volume 1 , we have

$$
\begin{equation*}
I(X):=\int_{D} \partial f(z) \varphi_{S}^{0}(\sqrt{v} X, z) \Omega=\int_{G(R)} \partial f(g i) \varphi_{S}^{0}(\sqrt{v} X, g i) d g \tag{4.37}
\end{equation*}
$$

Using the Cartan decomposition of $G(R)$ and the uniqueness of spherical functions, we find that

$$
\begin{equation*}
I(X)=\partial f\left(D_{X}\right) \cdot Y_{\lambda}(\sqrt{m v / N}) \tag{4.38}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{\lambda}(t)=4 \pi \int_{1}^{\infty} \varphi_{S}^{0}\left(t \alpha(a)^{-1} X(i), i\right) \omega_{\lambda}(\alpha(a)) \frac{a^{2}-a^{-2}}{2} \frac{d a}{a} . \tag{4.39}
\end{equation*}
$$

Here $\omega_{\lambda}(g)$ is the standard spherical function with eigenvalue $\lambda=-2$, and $\alpha(a)=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$. Note that $\omega_{-2}(\alpha(a))=\frac{a^{2}+a^{-2}}{2}$. It is easy computed that

$$
\begin{equation*}
\varphi_{S}^{0}\left(t \alpha(a)^{-1} X(i), i\right)=v e^{-\pi V_{t^{2}}\left(a^{2}-a^{-2}\right)^{2}}, \tag{4.40}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
Y_{\lambda}(t)=2 \pi v \int_{0}^{\infty} e^{-4 \pi N t^{2} \sinh (r)^{2}} \cosh (r) \sinh (r) d r=\frac{v}{4 N t^{2}} \tag{4.41}
\end{equation*}
$$

Thence, we have the following relationship:

$$
\begin{equation*}
Y_{\lambda}(t)=4 \pi \int_{1}^{\infty} \varphi_{S}^{0}\left(t \alpha(a)^{-1} X(i), i\right) \omega_{\lambda}(\alpha(a)) \frac{a^{2}-a^{-2}}{2} \frac{d a}{a}=2 \pi v \int_{0}^{\infty} e^{-4 \pi V t^{2} \sinh (r)^{2}} \cosh (r) \sinh (r) d r=\frac{v}{4 N t^{2}} . \tag{4.41b}
\end{equation*}
$$

Hence $Y_{\lambda}(\sqrt{m v / N})=\frac{1}{4 m}$. Inserting this into (4.36), we obtain the assertion.
Now we consider the theta integral (4.11) in the special case when $N=6$. We identify the discriminant form L^{\prime} / L with $Z / 12 Z$ together with the Q / Z-valued quadratic form $r \mapsto-r^{2} / 24$. The function $\eta(\tau)^{-1}$ can be viewed as a component of a vector valued modular form in $M_{-1 / 2, \rho_{L}}^{!}$as follows. We define

$$
\begin{equation*}
G(\tau):=\sum_{r \in Z / 12 Z} \chi_{12}(r) \eta(\tau)^{-1} \boldsymbol{e}_{r} . \tag{4.42}
\end{equation*}
$$

Using the transformation law of the eta-function under $\tau \mapsto \tau+1$ and $\tau \mapsto-1 / \tau$, it is easily checked that $G \in M_{-1 / 2, \rho_{L}}^{!}$. The principal part of G is equal to $q^{-1 / 24}\left(\boldsymbol{e}_{1}-\boldsymbol{e}_{-5}-\boldsymbol{e}_{7}+\boldsymbol{e}_{11}\right)$. On the other hand, G can be obtained as a theta lift. Let $F \in M_{-2}^{!}(6)$ be the function defined in the following expression

$$
\begin{equation*}
F(z):=\frac{1}{2} \cdot \frac{E_{2}(z)-2 E_{2}(2 z)-3 E_{2}(3 z)+6 E_{2}(6 z)}{\eta(z)^{2} \eta(2 z)^{2} \eta(3 z)^{2} \eta(6 z)^{2}}=q^{-1}-10-29 q-\ldots \tag{4.42b}
\end{equation*}
$$

It is invariant under the Fricke involution W_{6}, and under the Atkin-Lehner involution W_{3} it is taken to its negative. Hence, in terms of Poincaré series we have

$$
\begin{equation*}
F=F_{1}(\cdot, 2,-2)-F_{1}(\cdot, 2,-2) W_{2}-F_{1}(\cdot, 2,-2)\left|W_{3}+F_{1}(\cdot, 2,-2)\right| W_{6} . \tag{4.43}
\end{equation*}
$$

The function P is given by $\frac{1}{4 \pi} R_{-2}(F)$. Using Corollary 1.5 and Proposition 1.1, we see that $\Lambda(\tau, F)$ is an element of $M_{-1 / 2, \rho_{L}}^{!}$with principal part $-4 N q^{-1 / 24}\left(\boldsymbol{e}_{1}-\boldsymbol{e}_{-5}-\boldsymbol{e}_{7}+\boldsymbol{e}_{11}\right)$. Consequently, we have

$$
\begin{equation*}
G=-\frac{1}{4 N} \cdot \Lambda(\tau, F) . \tag{4.44}
\end{equation*}
$$

Now Theorem 1.6 tells us that for any positive integer n the coefficient of G with index $\left(\frac{24 n-1}{24}, 1\right)$ is equal to

$$
\begin{equation*}
\frac{3}{N(24 n-1)} \sum_{z \in Z\left(\frac{24 n-1}{24}, 1\right)} P(z)=\frac{1}{24 n-1} \sum_{Q \in \mathscr{Q}_{n}} P\left(\alpha_{Q}\right) . \tag{4.45}
\end{equation*}
$$

On the other hand, this coefficient is equal to $p(n)$ because

$$
\begin{equation*}
\frac{q^{\frac{1}{24}}}{\eta(z)}=\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}=\sum_{n=0}^{\infty} p(n) q^{n} . \tag{4.46}
\end{equation*}
$$

We have proved, with all these computations and proofs, that $p(n)=\operatorname{Tr}(n) /(24 n-1)$. To complete the proof of Theorem 1.3, we require results from the theory of complex multiplication, and some new general results which bound the denominators of singular moduli.
We first recall classical facts about Klein's j-function

$$
\begin{equation*}
j(z)=q^{-1}+744+196884 q+21493760 q^{2}+\ldots \tag{4.47}
\end{equation*}
$$

A point $\tau \in H$ is a CM point if it is a root of a quadratic equation over Z . The singular moduli for $j(z)$, its values at such CM points, play a central role in the theory of complex multiplication.

Theorem 1.7

Suppose that $Q=a x^{2}+b x y+c y^{2}$ is a primitive positive definite binary quadratic form with discriminant $D=b^{2}-4 a c<0$ and let $\alpha_{Q} \in H$ be the point for which $Q\left(\alpha_{Q}, 1\right)=0$. Then the following are true: (1) We have that $\mathrm{j}\left(\alpha_{\mathrm{Q}}\right)$ is an algebraic integer, and its minimal polynomial has degree $h(D)$, the class number of discriminant D positive definite binary quadratic forms. (2) The Galois orbit of $j\left(\alpha_{Q}\right)$ consists of the $j(z)$-singular moduli associated to the $h(D)$ classes of discriminant D forms. (3) If $K=Q(\sqrt{ })$, then the discriminant D singular moduli are conjugate to one another over K. Moreover, $K\left(j\left(\alpha_{Q}\right)\right)$ is the discriminant - D Hilbert class field of K.

Theorem 1.7 and the properties of the weight 2 nonholomorphic Eisenstein series

$$
\begin{equation*}
E_{2}^{*}(z):=-\frac{3}{x y}+E_{2}(z)=1-\frac{3}{x y}-24 \sum_{n=1}^{\infty} \sum_{\left.d\right|_{n}} d q^{n} \tag{4.48}
\end{equation*}
$$

will play a cental role in the proof of Theorem 1.3.
For a positive integer N , we let ζ_{N} denote a primitive N -th root of unity. For a discriminant - $\mathrm{D}<0$ and $r \in Z$ with $r^{2} \equiv-D(\bmod 4 N)$ we let $Q_{D, r, N}$ denote the set of positive definite integral binary quadratic forms $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ of discriminant -D with $\mathrm{N} \mid \mathrm{a}$ and $\mathrm{b} \equiv \mathrm{r}(\bmod 2 \mathrm{~N})$.
For $\mathrm{Q}=[\mathrm{a}, \mathrm{b}, \mathrm{c}] \in \mathrm{Q}_{\mathrm{D}, \mathrm{r}, \mathrm{N}}$ we let $\alpha_{Q}=\frac{-b+\sqrt{-D}}{2 a}$ be the corresponding Heegner point in H. We write O_{D} for the order of discriminant - D in $Q(\sqrt{ }-D)$.

Theorem 1.8

Let $\mathrm{D}>0$ be coprime to 6 and $r \in Z$ with $r^{2} \equiv-D(\bmod 24)$. If $Q \in Q_{D, r, 6}$ is primitive, then $6 D \cdot P\left(\alpha_{Q}\right)$ is an algebraic integer contained in the ring class field corresponding to the order $O_{D} \subset Q(\sqrt{ }-D)$.

By Theorem 1.8, the multiset of values $\mathrm{P}\left(\alpha_{\mathrm{Q}}\right)$ is a union of Galois orbits. Thereofore, Theorem 1.8 completes the proof of Theorem 1.3.

Conclusion

The important result that we have obtained in this paper, is that the "fractal" behaviour of the partition numbers can be the motivation whose very values of the equations concerning the string theory are connected with $(* 1,375)$ that is the mean value (σ factor) of the partition numbers.

The golden angle is about 137,5 degrees. The exact value is $360 / \mathrm{Phi}^{2}=137,50776405$. The music system contains exactly this value with the pure number of 1,90983006 multiplied by 72 Hz , the basis frequency that was chosen.
There is also the mathematical connection with PiGreco, indeed: $432 /$ PiGreco $=137,509870831$ almost identical to the value of the golden angle. We note that both the values 137,5077 and 137,5098 divided by 100 give 1,375077 and 1,375098 thence once again the mean coefficient (σ factor) of the number of partitions.
So, everything is connected: Pigreco, Phi and Sigma that are all in the music system based on Phi and they determine the "notes", thence the vibrations "gold" of the universe of strings.

Appendix A. (Francesco Di Noto) [7]

Now we want to analyze the following 4 series of numbers that we have in various equations of the third Section of this paper. We show the mathematical connections with F, 2 T , W, i.e. with the Fibonacci's numbers, the triangular numbers and the Witten's numbers.

First series: 3, 4, 8, 32, 40, 44, 45, 73, 630, 887, 14175
Second series: $1,2,3,4,7,16,21,23,25,27,54,166,1605,43065$
Third series: $\quad 1,2,3,4,5,6,7,8,11,16,32,45,61,64,81,104,128,192,512,1024,6144$
Fourth series: 1, 2, 3, 5, 9, 12, 16, 32, 45, 64, 96, 232, 256, 1575, 3614, 20416

1° serie	2° serie	3° serie	4° serie	Fibonacci	Triangular	2 T	W
	1	1	1	1	$\mathbf{1}$	$\mathbf{2}$	2
	2	2	2	2	$\mathbf{3}$	$\mathbf{4}$	4
3	3	3	3	3	$\mathbf{6}$	$\mathbf{1 2}$	7
4	4	4		5	10	20	8
	7	5	5	8	15	30	14
8		6	$\mathbf{9}$	13	$\mathbf{2 1}$	42	16
32	16	7	12	21	28	56	21
	21	8	16	$34 \approx 32$	36	72	32
40	23	11	32	$55 \approx 54$	$\mathbf{4 5}$	90	105

44	25	16	45	89 96	55	110	154
45	27	32	64	144~166	66	112	175
73	54	45	96	$233 \sim 232$	78	156	256
630	166	61	232	377	91	182	945
887	1605	64	256	610 630	105	210	4096
14175	43065	81	1575	987~887	120	240	8085
		104	3614	1597 ≈ 1605	136	272	10493
		128	20416	2584	153	306	74247
		192		4181	171	342	363825
		512		6765	190	380	
		1024		10946	210	420	
		6144		17711	231	462	
				28657	252	504	
				46368	275	550	
				75025	299	598	
				121393	324	648	
				196418	350	700	
				317811	377	754	
					405	810	
					434	868	
					464	928	
					495	990	
					527	1054	
					560	1120	
					594	1188	
					629	1258	
					665	1330	
					702	1404	
					740	1480	
					779	1558	
					819	1638	
					860	1720	
					902	1804	
					945	1890	
					989	1978	
					1034	2068	
					1080	2160	
					1127	2254	
					1175	2350	
					1224	2448	
					1274	2548	
					1325	2650	
					1377	2754	
					1430	2860	
					1484	2968	
					1539	3078	
					1595	3190	
					1652	3304	
					1710	3420	

					1769	3538	
					1829	3658	
					1890	3780	
					1952	3904	
					2015	4030	
					2079	4158	

In blue we have the numbers that are in two or most series: they are powers of 2: $2,4,8,16,32$, 64.In red we have other powers of 2: 128, $256,512,1024$. In green some powers of $3(9,27,81)$ not repeated. In clear brown the Witten's numbers W that are in some of the four series : 2, 4, 7, 8, $16,21,32,256$: that are all powers of 2 (except 7 and $21=7 * 3$) and with index $1,2,3,4,5,8$, that are all Fibonacci's numbers except 4.
All the numbers of the four series almost coincide with each other, and also with the Fibonacci' numbers, the triangular numbers T and 2 T , and the Witten's numbers, after thin out more. It would be interesting to compare their graphics, similar at the begin and after more and more divergent.

Fibonacci's numbers:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946$, 17711, 28657, 46368, 75025, 121393, 196418, 317811

The numbers in blue, coincide exactly with the Fibonacci's numbers, furthermore, also the other numbers of the four Tables are algebraic sums of Fibonacci's numbers. Indeed:
$4=3+1 ; 6=5+1 ; 7=5+2 ; 9=8+1 ; 11=3+8 ; 12=5+5+2 ; 16=3+13 ; 32=21+8+3 ; 45$
$=34+8+3 ; 61=55+5+1 ; 64=55+8+1 ; 81=89-8 ; 96=89+5+2 ; 104=89+13+2 ; 128$
$=89+34+5 ; 192=144+34+13+1 ; 232=233-1 ; 256=233+21+2 ; 512=2 \times 256 ; 1024=$
$2 \times 512 ; 1575=1597-21-1 ; 3614=2584+987+34+8+1$;
$6144=6765-610-8-3 ; 20416=17711+1597+987+89+21+8+3$.
$23=21+2 ; 25=21+3+1 ; 27=21+5+1 ; 40=34+5+1 ; 44=34+8+2 ; 54=55-1 ; 73=$ $55+13+5 ; 166=144+21+1 ; 630=610+13+5+2 ; 887=987-89-8-3 ; 1605=1597+8$; $14175=10946+2584+610+34+1 ; 43065=46368-2584-610-89-13-5-2$.

Also with the Witten's numbers can be done the same reasoning.
Indeed, for example, we have that:
$1605=945+256+256+105+32+7+4 ; 1575=945+256+256+32+32+21+21+8+4 ;$
$6144=4096+945+945+154+4 ; 3614=4096-256-175-32-8-7-4$.
Also here, thence, numbers of the Tables that are algebraic sums of Witten's numbers.
In conclusion, also for the Triangular numbers can be done the same reasoning of the algebraic sums. Indeed:
$166=110+56 ; 1605=1558+45+2 ; 3614=3538+72+4 ;$
$6144=4158+1890+90+6$.

Also here, thence, numbers of the Tables that are algebraic sums of triangular numbers T and 2T

Partitions of numbers, $\mathbf{p (n)}$

$1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792,1002,1255$, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134

Numbers 4° series coinciding with $\mathrm{p}(\mathrm{n})-\mathbf{1 , 2 , 3 , 5 , 1 5 7 5}$
Numbers 4° series very near to $p(n) \quad 12=\mathbf{1 1}+1$

$$
\begin{aligned}
& \mathbf{1 6}=\mathbf{1 5}+1 \\
& \mathbf{3 2}=\mathbf{3 0}+2 \\
& \mathbf{4 5}=\mathbf{4 2}+3 \\
& \ldots \\
& \mathbf{2 3 2}=\mathbf{2 3 1}+1 \\
& \mathbf{3 6 1 4}=\mathbf{3 7 1 8} \mathbf{- 1 0 4}(104=\mathbf{1 0 1}+\mathbf{3}) \\
& \mathbf{2 0 4 1 6}=\mathbf{2 1 6 3 7}-20416=1221=(1221=\mathbf{1 2 5 5}-34
\end{aligned}
$$

We note that, five numbers of the 4° series are also numbers $p(n)(1,2,3,5,1575)$
while the others $(12,16,32,45,232,3614$ and 201416) are very near to others $p(n)$ bigger and with differences corresponding to small Fibonacci's numbers)

Table

Numbers $\mathbf{4}^{\circ}$ serie	$\mathbf{p (n)}$	$\mathbf{d}=. \mathbf{N ~}^{\circ}{ }^{\circ}$ serie $-\mathbf{P}(\mathbf{n})$	Fibonacci
1	1	0	yes
2	2	0	yes
3	3	0	yes
5	5	0	yes
12	11	1	yes
16	15	1	yes
32	30	2	yes
45	42	3	yes
232	231	1	yes
1575	1575	0	yes
3614	3718	-104	$104-101=3$
20416	21637	-1221	$1221-1255=-34$

101 and 1255 are $p(n)$ numbers (see series at the begin of the present page)
All this look very interesting and not casual...

There exist various mathematical connections that concerning the prime numbers and the String Theory. Indeed, we have as follows:

Prime Numbers:
In the equation of the projective geometry $\mathrm{n}^{2}+\mathrm{n}+1$, the number n must be prime or power of prime
This equation is also the equation of the Lie's numbers $L(n)=n^{2}+n+1$, to the base of the Lie's groups:
$\mathrm{L}(2)=2^{2}+2+1=7,2 * 7=14$ number of dimension of the Lie group G2
$\mathrm{L}(3)=3^{2}+3+1=\mathbf{1 3}, 4^{*} 13=\mathbf{5 2}$ number of dimension of the Lie group F4 $6^{*} 13=78$ number of dimension of the Lie group E6
$\mathrm{L}(5)=5^{2}+5+1=\mathbf{3 1}=8 * 31=\mathbf{2 4 8}$ number of dimens. of the Lie group E8
$\mathrm{L}(11)=11^{2}+11+1=133 \quad 133 \quad$ number of dimens. of the Lie group E7
The equation $\mathrm{L}(\mathrm{n})=\mathrm{n}^{2}+\mathrm{n}+1=2 \mathrm{~T}$, where T are the triangular numbers (binomial coefficients (the second diagonal of the Tartaglia triangle)) the Lie's prime numbers 7, 13, 31 are of the form $6 \mathrm{k}+1$, and also $133=7^{*} 19$ with also 19 of the form $6 \mathrm{k}+1$, and this suggests that Nature may prefer this form with respect to the form $6 \mathrm{k}-1$ (both the forms are the forms of the prime numbers, except the 2 and 3 , for many values of k.

We note that 2 T is also the sum of the first n even numbers
$\mathrm{L}(\mathrm{n})=2 \mathrm{~T}+1$ is to the base also of the Fibonacci's numbers F and also of the partitions of the numbers $\mathrm{p}(\mathrm{n})$, that are both in many natural phenomena (quantistics and cosmologic), giving them some stability and regularity (especially in the processes of growth).
The prime numbers are the base of the Riemann zeta function, that is connected to the string theory, as also the Fibonacci's numbers (connected to the zeta of Fibonacci, thence also connected to the string theory).

These five exceptional Lie's groups are to the base of the string theory, and are the groups of simmetry, especially E8, candidate in whole or in part to the Teory of Everything (see Garrett Lisi).

Appendix B (Christian Lange)

Here, we have showed the various columns concerning the universal music system based on Phi

Sistema	*PiGreco	*1/PiGreco	*1,375
0,0131556174964	0,0413295912802	0,0041875631080	0,0180889740576
0,0135510312596	0,0425718202538	0,0043134272179	0,0186326679820

0,0142348954757	0,0447202430511	0,0045311079587	0,0195729812791
0,0143953404412	0,0452242957761	0,0045821791774	0,0197935931067
0,0150749962219	0,0473594973837	0,0047985203316	0,0207281198051
0,0155281000757	0,0487829651221	0,0049427477677	0,0213511376041
0,0162612375116	0,0510861843046	0,0051761126615	0,0223592015784
0,0167499958021	0,0526216637597	0,0053316892574	0,0230312442279
0,0172744085295	0,0542691549314	0,0054986150129	0,0237523117281
0,0177385302102	0,0557272361938	0,0056463495323	0,0243904790390
0,0186337200909	0,0585395581465	0,0059312973213	0,0256213651249
0,0191937872550	0,0602990610349	0,0061095722366	0,0263914574756
0,0200999949626	0,0631459965116	0,0063980271088	0,0276374930735
0,0203265468895	0,0638577303808	0,0064701408269	0,0279490019730
0,0212862362522	0,0668726834325	0,0067756194387	0,0292685748468
0,0219260291607	0,0688826521337	0,0069792718466	0,0301482900960
0,0230325447060	0,0723588732418	0,0073314866839	0,0316697489707
0,0232921501136	0,0731744476831	0,0074141216516	0,0320267064062
0,0243918562674	0,0766292764569	0,0077641689923	0,0335388023676
0,0251249937032	0,0789324956395	0,0079975338860	0,0345468663419
0,0263112349929	0,0826591825604	0,0083751262159	0,0361779481152
0,0271020625193	0,0851436405077	0,0086268544359	0,0372653359640
0,0279505801363	0,0878093372197	0,0088969459819	0,0384320476874
0,0287015447905	0,0901685622606	0,0091359854556	0,0394646240870
0,0301499924438	0,0947189947674	0,0095970406632	0,0414562396103
0,0310562001514	0,0975659302441	0,0098854955355	0,0427022752082
0,0325224750231	0,1021723686092	0,0103522253230	0,0447184031568
0,0328890437411	0,1033239782005	0,0104689077699	0,0452224351440
0,0344418537486	0,1082022747127	0,0109631825467	0,0473575489044
0,0354770604203	0,1114544723875	0,0112926990645	0,0487809580780
0,0372674401817	0,1170791162929	0,0118625946426	0,0512427302498
0,0376874905548	0,1183987434592	0,0119963008291	0,0518202995129
0,0394668524893	0,1239887738406	0,0125626893239	0,0542669221728
0,0406530937789	0,1277154607615	0,0129402816538	0,0558980039460
0,0425724725044	0,1337453668650	0,0135512388774	0,0585371496936
0,0438520583214	0,1377653042674	0,0139585436932	0,0602965801919
0,0452249886658	0,1420784921511	0,0143955609949	0,0621843594154
0,0464400750007	0,1458957984544	0,0147823349878	0,0638551031260
0,0487837125347	0,1532585529139	0,0155283379845	0,0670776047352
0,0502499874064	0,1578649912790	0,0159950677721	0,0690937326838
0,0526224699857	0,1653183651208	0,0167502524319	0,0723558962303
0,0532155906305	0,1671817085813	0,0169390485968	0,0731714371170
0,0557280900008	0,1750749581452	0,0177388019854	0,0766261237512
0,0574030895811	0,1803371245212	0,0182719709111	0,0789292481740
0,0602999848877	0,1894379895348	0,0191940813265	0,0829124792206
0,0609796406684	0,1915731911423	0,0194104224807	0,0838470059190
0,0638587087566	0,2006180502975	0,0203268583162	0,0878057245404
0,0657780874821	0,2066479564010	0,0209378155398	0,0904448702879

0,0688837074973	0,2164045494254	0,0219263650934	0,0947150978087
0,0709541208407	0,2229089447751	0,0225853981291	0,0975619161560
0,0731755688021	0,2298878293708	0,0232925069768	0,1006164071028
0,0751416197912	0,2360643607150	0,0239183204434	0,1033197272129
0,0789337049786	0,2479775476812	0,0251253786478	0,1085338443455
0,0813061875578	0,2554309215231	0,0258805633076	0,1117960078920
0,0851449450088	0,2674907337301	0,0271024777549	0,1170742993871
0,0861046343716	0,2705056867818	0,0274079563667	0,1183938722609
0,0901699437495	0,2832772328580	0,0287019845321	0,1239836726555
0,0928801500014	0,2917915969087	0,0295646699757	0,1277102062519
0,0975674250694	0,3065171058277	0,0310566759691	0,1341552094704
0,0986671312232	0,3099719346015	0,0314067233097	0,1356673054319
0,1033255612459	0,3246068241382	0,0328895476401	0,1420726467131
0,1064311812610	0,3343634171626	0,0338780971936	0,1463428742339
0,1114561800017	0,3501499162905	0,0354776039708	0,1532522475023
0,1148061791621	0,3606742490424	0,0365439418223	0,1578584963479
0,1184005574678	0,3719663215219	0,0376880679717	0,1628007665183
0,1215816947919	0,3819601591693	0,0387006554313	0,1671748303389
0,1277174175133	0,4012361005951	0,0406537166323	0,1756114490807
0,1315561749643	0,4132959128021	0,0418756310796	0,1808897405758
0,1377674149945	0,4328090988509	0,0438527301867	0,1894301956175
0,1393202250021	0,4376873953631	0,0443470049635	0,1915653093779
0,1458980337503	0,4583521910032	0,0464407865175	0,2006097964067
0,1502832395825	0,4721287214299	0,0478366408868	0,2066394544259
0,1578674099571	0,4959550953625	0,0502507572956	0,2170676886910
0,1596467718916	0,5015451257439	0,0508171457904	0,2195143113509
0,1671842700025	0,5252248744357	0,0532164059562	0,2298783712535
0,1722092687432	0,5410113735636	0,0548159127334	0,2367877445219
0,1803398874990	0,5665544657159	0,0574039690642	0,2479673453111
0,1857603000028	0,5835831938175	0,0591293399514	0,2554204125039
0,1915761262699	0,6018541508926	0,0609805749485	0,2634171736211
0,1967233145832	0,6180245198843	0,0626189758747	0,2704945575518
0,2066511224918	0,6492136482763	0,0657790952801	0,2841452934262
0,2128623625221	0,6687268343252	0,0677561943872	0,2926857484679
0,2229123600034	0,7002998325809	0,0709552079416	0,3065044950046
0,2254248593737	0,7081930821449	0,0717549613302	0,3099591816388
0,2360679774998	0,7416294238611	0,0751427710496	0,3245934690622
0,2431633895839	0,7639203183387	0,0774013108625	0,3343496606778
0,2554348350265	0,8024722011902	0,0813074332647	0,3512228981614
0,2583139031148	0,8115170603454	0,0822238691001	0,3551816167828
0,2705098312484	0,8498316985739	0,0861059535963	0,3719510179666
0,2786404500042	0,8753747907262	0,0886940099270	0,3831306187558
0,2917960675006	0,9167043820064	0,0928815730350	0,4012195928134
0,3005664791649	0,9442574428599	0,0956732817736	0,4132789088518
0,3099766837377	0,9738204724145	0,0986686429202	0,4262179401393
0,3183050093751	0,9999846790536	0,1013196313059	0,4376693878907

0,3343685400051	1,0504497488714	0,1064328119124	0,4597567425069
0,3444185374863	1,0820227471272	0,1096318254669	0,4735754890437
0,3606797749979	1,1331089314318	0,1148079381284	0,4959346906221
0,3647450843758	1,1458804775080	0,1161019662938	0,5015244910167
0,3819660112501	1,1999816148643	0,1215835575671	0,5252032654689
0,3934466291663	1,2360490397686	0,1252379517493	0,5409891151037
0,4133022449836	1,2984272965527	0,1315581905602	0,5682905868525
0,4179606750063	1,3130621860893	0,1330410148906	0,5746959281337
0,4376941012510	1,3750565730096	0,1393223595525	0,6018293892201
0,4508497187474	1,4163861642898	0,1435099226605	0,6199183632776
0,4721359549996	1,4832588477223	0,1502855420992	0,6491869381244
0,4863267791677	1,5278406366773	0,1548026217250	0,6686993213556
0,5015528100076	1,5756746233071	0,1596492178687	0,6896351137604
0,5150283239582	1,6180091989379	0,1639386071806	0,7081639454426
0,5410196624969	1,6996633971477	0,1722119071926	0,7439020359332
0,5572809000084	1,7507495814524	0,1773880198541	0,7662612375116
0,5835921350013	1,8334087640128	0,1857631460700	0,8024391856267
0,5901699437495	1,8540735596529	0,1878569276240	0,8114836726555
0,6180339887499	1,9416110387255	0,1967263286167	0,8497967345311
0,6366100187502	1,9999693581072	0,2026392626118	0,8753387757815
0,6687370800101	2,1008994977428	0,2128656238249	0,9195134850139
0,6762745781211	2,1245792464347	0,2152648839907	0,9298775449165
0,7082039324994	2,2248882715834	0,2254283131488	0,9737804071866
0,7294901687516	2,2917609550160	0,2322039325875	1,0030489820334
0,7639320225002	2,3999632297287	0,2431671151342	1,0504065309378
0,7868932583326	2,4720980795372	0,2504759034987	1,0819782302074
0,8115294937453	2,5494950957216	0,2583178607888	1,1158530538998
0,8333333333333	2,6179938779915	0,2652582384865	1,1458333333333
0,8753882025019	2,7501131460191	0,2786447191050	1,2036587784401
0,9016994374948	2,8327723285796	0,2870198453209	1,2398367265553
0,9442719099992	2,9665176954446	0,3005710841984	1,2983738762489
0,9549150281253	2,9999540371608	0,3039588939177	1,3130081636722
1,0000000000000	3,1415926535898	0,3183098861838	1,3750000000000
1,0300566479165	3,2360183978758	0,3278772143612	1,4163278908852
1,0820393249937	3,3993267942955	0,3444238143851	1,4878040718663
1,0942352531274	3,4376414325239	0,3483058988813	1,5045734730501
1,1458980337503	3,5999448445930	0,3647506727013	1,5756097964067
1,1803398874990	3,7081471193057	0,3757138552480	1,6229673453111
1,2360679774998	3,8832220774509	0,3934526572334	1,6995934690622
1,2732200375004	3,9999387162144	0,4052785252237	1,7506775515630
1,3130823037529	4,1251697190287	0,4179670786575	1,8054881676602
1,3483616572916	4,2360030769294	0,4291968456671	1,8539972787759
1,4164078649987	4,4497765431669	0,4508566262976	1,9475608143733
1,4589803375032	4,5835219100319	0,4644078651750	2,0060979640669
1,5278640450004	4,7999264594573	0,4863342302684	2,1008130618756
1,5450849718747	4,8540275968137	0,4918158215417	2,1244918363278

1,6180339887499	5,0832036923152	0,5150362148005	2,2247967345311
1,6666666666667	5,2359877559830	0,5305164769730	2,2916666666667
1,7507764050038	5,5002262920383	0,5572894382100	2,4073175568802
1,7705098312484	5,5622206789585	0,5635707828720	2,4344510179666
1,8541019662497	5,8248331161764	0,5901789858501	2,5493902035933
1,9098300562505	5,9999080743217	0,6079177878355	2,6260163273445
2,0000000000000	6,2831853071796	0,6366197723676	2,7500000000000
2,0601132958330	6,4720367957516	0,6557544287223	2,8326557817704
2,1246117974981	6,6746648147503	0,6762849394464	2,9213412215599
2,1816949906249	6,8539969549208	0,6944550841536	2,9998306121092
2,2917960675006	7,1998896891860	0,7295013454026	3,1512195928134
2,3606797749979	7,4162942386115	0,7514277104960	3,2459346906221
2,4721359549996	7,7664441549019	0,7869053144668	3,3991869381244
2,5000000000000	7,8539816339745	0,7957747154595	3,4375000000000
2,6180339887499	8,2247963459050	0,8333461009843	3,5997967345311
2,6967233145832	8,4720061538587	0,8583936913341	3,7079945575518
2,8328157299975	8,8995530863337	0,9017132525952	3,8951216287466
2,8647450843758	8,9998621114824	0,9118766817532	3,9390244910167
3,0000000000000	9,4247779607693	0,9549296585514	4,1250000000000
3,0901699437495	9,7080551936273	0,9836316430835	4,2489836726555
3,2360679774998	10,1664073846305	1,0300724296010	4,4495934690622
3,3333333333333	10,4719755119659	1,0610329539460	4,5833333333333
3,4376941012510	10,7998345337790	1,0942520181039	4,7268293892201
3,5300566479165	11,0900000318502	1,1236519298206	4,8538278908851
3,7082039324994	11,6496662323528	1,1803579717002	5,0987804071866
3,8196601125011	11,9998161486433	1,2158355756710	5,2520326546890
4,0000000000000	12,5663706143591	1,2732395447352	5,5000000000000
4,0450849718747	12,7080092307881	1,2875905370012	5,5619918363277
4,2360679774998	13,3080000382202	1,3483823157848	5,8245934690622
4,3633899812498	13,7079939098417	1,3889101683071	5,9996612242185
4,5835921350013	14,3997793783719	1,4590026908052	6,3024391856267
4,6352549156242	14,5620827904409	1,4754474646252	6,3734755089832
4,8541019662497	15,2496110769457	1,5451086444014	6,6743902035933
5,0000000000000	15,7079632679489	1,5915494309190	6,8750000000000
5,2360679774998	16,4495926918100	1,6666922019685	7,1995934690622
5,3934466291663	16,9440123077174	1,7167873826683	7,4159891151036
5,5623058987491	17,4744993485292	1,7705369575502	7,6481706107799
5,7117516385413	17,9439969867709	1,8181070139742	7,8536585029943
6,0000000000000	18,8495559215387	1,9098593171027	8,2500000000000
6,1803398874990	19,4161103872547	1,9672632861669	8,4979673453111
6,4721359549995	20,3328147692609	2,0601448592019	8,8991869381244
6,5450849718747	20,5619908647625	2,0833652524607	8,9994918363277
6,8541019662496	21,5327963841251	2,1817284167690	9,4243902035932
7,0601132958329	22,1800000637003	2,2473038596412	9,7076557817703
7,4164078649987	23,2993324647056	2,3607159434003	10,1975608143733
7,4999999999999	23,5619449019232	2,3873241463784	10,3124999999999

7,8541019662496	24,6743890377149	2,5000383029528	10,7993902035932
8,0901699437494	25,4160184615762	2,5751810740024	11,1239836726555
8,4721359549995	26,6160000764404	2,6967646315695	11,6491869381243
8,7267799624996	27,4159878196832	2,7778203366142	11,9993224484369
9,0000000000000	28,2743338823080	2,8647889756541	12,3749999999999
9,2418082864578	29,0339970186210	2,9417589437948	12,7074863938794
9,7082039324993	30,4992221538913	3,0902172888029	13,3487804071865
10,0000000000000	31,4159265358978	3,1830988618379	13,7500000000000
10,4721359549995	32,8991853836199	3,3333844039371	14,3991869381243
10,5901699437494	33,2700000955505	3,3709557894619	14,5614836726554
11,0901699437493	34,8407964223452	3,5301107325537	15,2489836726553
11,4235032770827	35,8879939735419	3,6362140279484	15,7073170059887
11,9999999999999	37,6991118430773	3,8197186342055	16,4999999999999
12,1352549156240	38,1240276923639	3,8627716110036	16,6859755089831
12,7082039324992	39,9240001146604	4,0451469473542	17,4737804071864
13,0901699437494	41,1239817295249	4,1667305049213	17,9989836726554
13,7082039324992	43,0655927682502	4,3634568335380	18,8487804071864
14,1202265916658	44,3600001274005	4,4946077192825	19,4153115635405
14,5623058987489	45,7488332308370	4,6353259332043	20,0231706107798
14,9535599249990	46,9779940053917	4,7598659577689	20,5611448968737
15,7082039324992	49,3487780754298	5,0000766059056	21,5987804071864
16,1803398874989	50,8320369231523	5,1503621480048	22,2479673453109
16,9442719099990	53,2320001528806	5,3935292631390	23,2983738762486
17,1352549156240	53,8319909603127	5,4543210419225	23,5609755089830
17,9442719099988	56,3735928064701	5,7118391493227	24,6733738762484
18,4836165729155	58,0679940372419	5,8835178875896	25,4149727877588
19,4164078649986	60,9984443077827	6,1804345776058	26,6975608143731
19,6352549156239	61,6859725942869	6,2500957573820	26,9984755089828
20,5623058987487	64,5983891523750	6,5451852503070	28,2731706107795
21,1803398874987	66,5400001911008	6,7419115789237	29,1229673453107
22,1803398874986	69,6815928446902	7,0602214651075	30,4979673453106
22,8470065541653	71,7759879470834	7,2724280558967	31,4146340119772
23,5623058987488	74,0231671131447	7,5001149088584	32,3981706107796
24,1953682114567	76,0119910240124	7,7016249015637	33,2686312907529
25,4164078649984	79,8480002293208	8,0902938947084	34,9475608143728
26,1803398874987	82,2479634590498	8,3334610098427	35,9979673453107
27,4164078649983	86,1311855365002	8,7269136670760	37,6975608143727
27,7254248593732	87,1019910558628	8,8252768313843	38,1224591816382
29,0344418537480	91,2143892288148	9,2419498818764	39,9223575489035
29,9071198499981	93,9559880107834	9,5197319155379	41,1222897937473
31,4164078649984	98,6975561508596	10,0001532118112	43,1975608143728
31,7705098312478	99,8100002866504	10,1128673683855	43,6844510179657
33,2705098312478	104,5223892670350	10,5903321976612	45,7469510179657
34,2705098312479	107,6639819206250	10,9086420838450	47,1219510179659
35,8885438199976	112,7471856129400	11,4236782986454	49,3467477524968
36,9672331458309	116,1359880744830	11,7670357751791	50,8299455755175

38,1246117974976	119,7720003439810	12,1354408420627	52,4213412215592
39,1489281364556	122,9899850294040	12,4614908593326	53,8297761876264
41,1246117974974	129,1967783047500	13,0903705006140	56,5463412215590
42,3606797749974	133,0800003822020	13,4838231578474	58,2459346906214
44,3606797749971	139,3631856893800	14,1204429302149	60,9959346906210
44,8606797749971	140,9339820161750	14,2795978733068	61,6834346906210
46,9787137637467	147,5879820352840	14,9537890311991	64,5957314251517
48,3907364229134	152,0239820480250	15,4032498031274	66,5372625815059
50,8328157299968	159,6960004586420	16,1805877894169	69,8951216287456
51,4057647468715	161,4959728809370	16,3629631257674	70,6829265269483
53,8328157299963	169,1207784194090	17,1355174479681	74,0201216287449
55,4508497187464	174,2039821117250	17,6505536627687	76,2449183632763
58,0688837074960	182,4287784576290	18,4838997637528	79,8447150978070
59,8142396999959	187,9119760215660	19,0394638310757	82,2445795874944
61,6869176962462	193,7951674571250	19,6355557509210	84,8195118323385
63,3442963479120	199,0019760534150	20,1631157608962	87,0984074783790
66,5410196624956	209,0447785340700	21,1806643953223	91,4939020359314
68,5410196624959	215,3279638412510	21,8172841676900	94,2439020359318
71,7770876399951	225,4943712258790	22,8473565972908	98,6934955049933
72,5861046343700	228,0359730720370	23,1048747046910	99,8058938722587
76,0131556174944	238,8023712640980	24,1957389130754	104,5180889740550
78,2978562729111	245,9799700588070	24,9229817186651	107,6595523752530
82,2492235949949	258,3935566095000	26,1807410012280	113,0926824431180
83,1762745781189	261,3059731675860	26,4758304941528	114,3673775449140
87,1033255612437	273,6431676864430	27,7258496456292	119,7670726467100
89,7213595499940	281,8679640323490	28,5591957466135	123,3668693812420
93,9574275274933	295,1759640705680	29,9075780623981	129,1914628503030
96,7814728458264	304,0479640960480	30,8064996062546	133,0745251630110
99,8115294937434	313,5671678011050	31,7709965929835	137,2408530538970
102,4932244843670	321,9919610828170	32,6246066202286	140,9281836660050
107,6656314599930	338,2415568388190	34,2710348959362	148,0402432574900
110,9016994374930	348,4079642234510	35,3011073255373	152,4898367265530
116,1377674149920	364,8575569152580	36,9677995275056	159,6894301956140
117,4467844093670	368,9699550882100	37,3844725779977	161,4893285628790
122,9918693812410	386,3903532993810	39,1495279442743	169,1138203992060
126,6885926958240	398,0039521068300	40,3262315217924	174,1968149567580
133,0820393249910	418,0895570681400	42,3613287906447	182,9878040718630
134,5820393249900	422,8019460485210	42,8387936199200	185,0503040718610
140,9361412912390	442,7639461058510	44,8613670935971	193,7871942754540
145,1722092687400	456,0719461440730	46,2097494093820	199,6117877445170
152,0263112349890	477,6047425281960	48,3914778261508	209,0361779481090
156,5957125458220	491,9599401176120	49,8459634373301	215,3191047505050
161,4984471899890	507,3623352582280	51,4065523439043	222,0603648862350
165,8375208322780	520,9939371362300	52,7877223811246	228,0265911443830
174,2066511224870	547,2863353728870	55,4516992912583	239,5341452934200
179,4427190999880	563,7359280646990	57,1183914932271	246,7337387624830

187,9148550549860	590,3519281411350	59,8151561247962	258,3829257006060
190,0328890437360	597,0059281602450	60,4893472826885	261,2952224351370
199,0050249987340	625,1927245634760	63,3452668573495	273,6319093732590
204,9864489687340	643,9839221656350	65,2492132404572	281,8563673320100
215,3312629199850	676,4831136776380	68,5420697918724	296,0804865149800
217,7583139031080	684,1079192161040	69,3146241140724	299,4176816167730
228,0394668524820	716,4071137922910	72,5872167392259	313,5542669221630
234,8935688187330	737,9399101764200	74,7689451559952	322,9786571257580
245,9837387624810	772,7807065987610	78,2990558885486	338,2276407984110
253,3771853916470	796,0079042136570	80,6524630435844	348,3936299135150
261,3099766837310	820,9295030593300	83,1775489368874	359,3012179401300
268,3307453166450	842,9858982190440	85,4123290013528	368,9547748103860
281,8722825824790	885,5278922117020	89,7227341871941	387,5743885509080
290,3444185374800	912,1438922881460	92,4194988187640	399,2235754890340
304,0526224699770	955,2094850563890	96,7829556523013	418,0723558962180
307,4796734531010	965,9758832484510	97,8738198606857	422,7845509980140
321,9968943799730	1011,5830778628500	102,4947948016230	442,7457297724640
331,6750416645570	1041,9878742724600	105,5754447622490	456,0531822887660
348,4133022449750	1094,5726707457700	110,9033985825170	479,0682905868400
352,3403532280960	1106,9098652646200	112,1534177339920	484,4679856886330
368,9756081437200	1159,1710598981400	117,4485838328230	507,3414611976150
380,0657780874710	1194,0118563204900	120,9786945653770	522,5904448702730
398,0100499974680	1250,3854491269500	126,6905337146990	547,2638187465180
409,9728979374670	1287,9678443312600	130,4984264809140	563,7127346640170
422,8084238737180	1328,2918383175500	134,5841012807910	581,3615828263630
434,1682661489210	1363,9798353552700	138,2000513824770	596,9813659547670
456,0789337049640	1432,8142275845800	145,1744334784520	627,1085338443260
469,7871376374660	1475,8798203528400	149,5378903119900	645,9573142515150
491,9674775249610	1545,5614131975200	156,5981117770970	676,4552815968210
497,5125624968350	1562,9818114086900	158,3631671433740	684,0797734331480
521,0019193787060	1636,7758024263200	165,8400616589720	716,3776391457200
536,6614906332890	1685,9717964380900	170,8246580027060	737,9095496207730
563,7445651649580	1771,0557844234000	179,4454683743880	775,1487771018170
570,0986671312020	1791,0177844807200	181,4680418480640	783,8856673054030
597,0150749962000	1875,5781736904200	190,0358005720480	820,8957281197750
614,9593469062010	1931,9517664969000	195,7476397213710	845,5691019960270
643,9937887599460	2023,1661557257000	204,9895896032470	885,4914595449260
663,3500833291110	2083,9757485449100	211,1508895244970	912,1063645775280
684,1184005574470	2149,2213413768700	217,7616502176780	940,6628007664890
702,4990114655630	2206,9657335743000	223,6123803838290	965,9361407651490
737,9512162874400	2318,3421197962700	234,8971676656450	1014,6829223952300
760,1315561749420	2388,0237126409800	241,9573891307530	1045,1808897405500
796,0200999949340	2500,7708982539000	253,3810674293970	1094,5276374930300
804,9922359499330	2528,9576946571300	256,2369870040580	1106,8643244311600

* 1/1,375	*2,71828	/2,71828
0,0095677218156	0,035760652	0,004839684
0,0098552954616	0,036835497	0,004985149
0,0103526512551	0,038694432	0,005236729
0,0104693385027	0,039130566	0,005295753
0,0109636336159	0,040978061	0,005545785
0,0112931636914	0,042209724	0,005712473
0,0118263545539	0,044202597	0,005982179
0,0121818151288	0,045531179	0,006161983
0,0125632062033	0,046956679	0,006354904
0,0129007492438	0,048218292	0,006525645
0,0135517964297	0,050651669	0,006854967
0,0139591180036	0,052174088	0,007061004
0,0146181781546	0,054637414	0,00739438
0,0147829431923	0,055253246	0,007477724
0,0154808990925	0,05786195	0,007830774
0,0159462030260	0,059601087	0,008066141
0,0167509416044	0,062608906	0,008473205
0,0169397455371	0,063314586	0,008568709
0,0177395318308	0,066303895	0,008973268
0,0182727226932	0,068296768	0,009242975
0,0191354436312	0,071521304	0,009679369
0,0197105909231	0,073670995	0,009970298
0,0203276946446	0,075977503	0,010282451
0,0208738507567	0,078018835	0,010558715
0,0219272672319	0,081956121	0,01109157
0,0225863273829	0,084419448	0,011424945
0,0236527091077	0,088405193	0,011964358
0,0239193045390	0,08940163	0,012099211
0,0250486209081	0,093622602	0,012670458
0,0258014984875	0,096436584	0,01305129
0,0271035928594	0,101303337	0,013709934
0,0274090840399	0,102445152	0,013864462
0,0287031654467	0,107281956	0,014519053
0,0295658863847	0,110506492	0,014955447
0,0309617981850	0,115723901	0,015661548
0,0318924060519	0,119202173	0,016132282
0,0328909008478	0,122934182	0,016637355
0,0337746000005	0,126237127	0,01708436
0,0354790636616	0,13260779	0,017946537
0,0365454453865	0,136593536	0,01848595
0,0382708872623	0,143042608	0,019358738
0,0387022477313	0,144654876	0,019576935
0,0405295200006	0,151484552	0,020501232
0,0417477015135	0,15603767	0,021117431
0,0438545344638	0,163912243	0,02218314

0,0443488295770
0,0464426972775
0,0478386090779
0,0500972418162
0,0516029969751
0,0532185954924
0,0546484507573
0,0574063308935
0,0591317727693
0,0619235963701
0,0626215522702
0,0655781409087
0,0675492000010
0,0709581273232
0,0717579136169
0,0751458627243
0,0774044954626
0,0810590400012
0,0834954030270
0,0861094963402
0,0884230507578
0,0928853945551
0,0956772181558
0,1001944836324
0,1013238000015
0,1061076609093
0,1092969015145
0,1148126617870
0,1161067431939
0,1215885600018
0,1252431045405
0,1311562818174
0,1350984000020
0,1393280918326
0,1430715015150
0,1502917254486
0,1548089909252
0,1621180800025
0,1639453522718
0,1716858018180
0,1768461015155
0,1857707891102
0,1878646568107
0,1967344227261
0,2026476000031
0,2122153218186

$0,1657597380,022433171$
$0,173585851 \quad 0,023492322$
0,17880326 0,024198422
0,187245204 0,025340917
0,192873168 0,02610258
0,198911685 0,026919805
0,204255962 0,027643076
0,214563912 0,029038107
0,221012984 0,029910895
$0,2314478010,031323096$
0,234056506 0,031676146
0,245107155 0,033171691
$0,2524742540,034168721$
0,26521558 0,035893074
0,268204889 0,036297634
0,280867807 0,038011375
0,289309751 0,03915387
0,302969105 0,041002465
0,312075341 0,042234861
0,321845867 0,04355716
0,330493089 0,044727436
0,347171702 0,046984644
0,357606519 0,048396845
0,374490409 0,050681834
0,378711381 0,051253081
0,396591707 0,053672923
$0,4085119240,055286151$
0,429127823 0,058076214
0,433964627 0,058730805
0,454453657 0,061503697
0,468113011 0,063352292
0,490214309 0,066343382
0,504948508 0,068337441
0,520757553 0,070476966
$0,534749052 \quad 0,072370512$
0,561735613 0,076022751
0,578619503 0,07830774
$0,60593821 \quad 0,08200493$
0,612767887 0,082929227
0,641698862 0,086844614
0,660986179 0,089454872
0,694343403 0,093969288
0,702169517 0,095028438
0,735321464 0,099515072
0,757422762 0,102506162
0,793183414 0,107345846

0,2185938030290	0,817023849	0,110572303
0,2254375881729	0,84260342	0,114034126
0,2314945522728	0,865242141	0,117097948
0,2431771200037	0,908907315	0,123007394
0,2504862090810	0,936226022	0,126704584
0,2623125636348	0,980428619	0,132686763
0,2652691522733	0,991479268	0,134182308
0,2777934627274	1,038290569	0,140517537
0,2861430030301	1,069498103	0,144741023
0,3005834508972	1,123471226	0,152045501
0,3039714000046	1,136134144	0,153759243
0,3183229827280	1,189775122	0,16101877
0,3278907045435	1,225535773	0,165858454
0,3433716036361	1,283397724	0,173689228
0,3536922030311	1,321972357	0,178909744
0,3647656800055	1,363360972	0,184511092
0,3745660537878	1,399991192	0,189468459
0,3934688454523	1,470642928	0,199030145
0,4052952000061	1,514845525	0,205012324
0,4244306436373	1,586366829	0,214691693
0,4292145045451	1,604247155	0,217111535
0,4494792645454	1,679989431	0,227362151
0,4629891045456	1,730484282	0,234195895
0,4863542400073	1,81781463	0,246014789
0,4918360568153	1,83830366	0,248787681
0,5150574054541	1,925096586	0,260533842
0,5305383045466	1,982958536	0,268364616
0,5555869254547	2,076581138	0,281035075
0,5722860060601	2,138996206	0,289482047
0,5902032681784	2,205964392	0,298545217
0,6060606060606	2,265233333	0,306566407
0,6366459654559	2,379550243	0,322037539
0,6557814090871	2,451071547	0,331716908
0,6867432072721	2,566795448	0,347378456
0,6944836568184	2,595726423	0,351293843
0,7272727272727	2,71828	0,367879689
0,7491321075756	2,799982385	0,378936919
0,7869376909045	2,941285856	0,39806029
0,7958074568199	2,974437804	0,402546924
0,8333803881820	3,114871707	0,421552612
0,8584290090902	3,208494309	0,43422307
0,8989585290908	3,359978862	0,454724303
0,9259782090912	3,460968564	0,468391791
0,9549689481839	3,569325365	0,483056309
0,9806266598484	3,665224526	0,496034867
1,0301148109082	3,850193171	0,521067684

1,0610766090932	3,965917072	0,536729232
1,1111738509094	4,153162276	0,562070149
1,1236981613635	4,199973577	0,568405378
1,1767519918181	4,398269431	0,59524184
1,2121212121212	4,530466667	0,613132814
1,2732919309119	4,759100486	0,644075079
1,2876435136352	4,812741464	0,651334605
1,3484377936361	5,039968293	0,682086454
1,3889673136368	5,191452845	0,702587686
1,4545454545455	5,43656	0,735759377
1,4982642151513	5,59996477	0,757873838
1,5451722163623	5,775289757	0,781601527
1,5866872659090	5,930457859	0,802601274
1,6667607763641	6,229743414	0,843105224
1,7168580181803	6,416988619	0,868446141
1,7979170581815	6,719957724	0,909448605
1,8181818181818	6,7957	0,919699222
1,9040247190908	7,116549431	0,963121529
1,9612533196968	7,330449052	0,992069733
2,0602296218164	7,700386343	1,042135369
2,0834509704551	7,787179268	1,05388153
2,1818181818182	8,15484	1,103639066
2,2473963227269	8,399947155	1,136810757
2,3535039836362	8,796538862	1,19048368
2,4242424242424	9,060933333	1,226265629
2,5001411645462	9,344615122	1,264657836
2,5673139257574	9,595682385	1,29863614
2,6968755872723	10,07993659	1,364172908
2,7779346272735	10,38290569	1,405175373
2,9090909090909	10,87312	1,471518755
2,9418799795453	10,99567358	1,4881046
3,0807767109089	11,51481886	1,558363369
3,1733745318180	11,86091572	1,605202548
3,3335215527282	12,45948683	1,686210447
3,3710944840903	12,59992073	1,705216135
3,5302559754543	13,19480829	1,78572552
3,6363636363636	13,5914	1,839398443
3,8080494381816	14,23309886	1,926243057
3,9225066393937	14,6608981	1,984139467
4,0453133809084	15,11990488	2,046259362
4,1540011916664	15,52614024	2,101237414
4,3636363636363	16,30968	2,207278132
4,4947926454538	16,79989431	2,273621513
4,7070079672724	17,59307772	2,38096736
4,7600617977271	17,79137358	2,407803821
4,9848014299997	18,63136829	2,521484897

5,1346278515149
5,3937511745445
5,4545454545454
5,7120741572724
5,8837599590905
6,1615534218178
6,3467490636361
6,5454545454545
6,7213151174238
7,0605119509086
7,2727272727273
7,6160988763633
7,7019417772723
8,0655781409086
8,3080023833329
8,7272727272727
8,8256399386357
9,2423301327267
9,5201235954541
9,9696028599994
10,2692557030297
10,5907679263629
10,8753163090902
11,4241483145449
11,7675199181810
12,3231068436356
12,4620035749993
13,0503795709082
13,4426302348477
14,1210239018172
14,2801853931810
14,9544042899991
15,4038835545445
16,1311562818172
16,6160047666656
17,1362224718173
17,5966314265140
18,4846602654534
19,0402471909082
19,9392057199988
20,1639453522715
21,1159577118168
21,7506326181804
22,8482966290898
23,1058253318166
24,1967344227257

19,19136477 2,597272281 20,15987317 2,728345816 20,3871 2,759097665
21,34964829 2,889364586
21,99134715 2,9762092
23,02963772 3,116726737
23,72183144 3,210405095
24,46452 3,310917198
25,12182263 3,399873555
26,38961659 3,57145104
27,1828 3,678796886
28,46619772 3,852486114
28,78704715 3,895908421
30,14618715 4,079848266
31,05228049 4,202474829 32,61936 4,414556264
32,98702073 4,4643138
34,54445659 4,675090106
35,58274715 4,815607643
37,26273659 5,042969794
38,38272954 5,194544562
39,58442488 5,35717656
40,64796287 5,501110969
42,69929659 5,778729172
43,98269431 5,9524184
46,05927545 6,233453474
46,57842073 6,303712243
48,77755545 6,601333163
50,24364526 6,79974711
52,77923317 7,14290208
53,37412073 7,223411464
55,89410488 7,564454691
57,57409431 7,791816843
60,29237431 8,159696531
62,10456098 8,404949657
64,04894488 8,668093757
65,7697855 8,900984524
69,08891317 9,350180211
71,16549431 9,631215286
74,52547317 10,08593959
75,36546789 10,19962066
78,9237426 10,68118143
81,29592575 11,00222194
85,39859317 11,55745834
86,36114146 11,68772526
90,43856146 12,2395448

24,9240071499985	93,15684146 12,60742449
26,1007591418165	97,5551109 13,20266633
26,8852604696952	100,4872905 13,59949422
27,7269903981801	103,6333698 14,02527032
28,4719477356040	106,4177484 14,40209549
29,9088085799981	111,7882098 15,12890938
30,8077671090890	115,1481886 15,58363369
32,2623125636343	120,5847486 16,31939306
32,6259489272706	121,9438886 16,50333291
34,1663372827249	127,701298 17,28251459
35,1932628530279	131,539571 17,80196905
36,9693205309068	138,1778263 18,70036042
37,3860107249974	139,7352622 18,91113673
39,1511387127246	146,3326663 19,80399949
40,3278907045428	150,7309358 20,39924133
42,2319154236334	157,8474852 21,36236286
43,5012652363607	162,5918515 22,00444388
44,8632128699972	167,6823146 22,69336407
46,0685791621178	172,1875339 23,30308002
48,3934688454513	180,8771229 24,47908959
49,8480142999970	186,3136829 25,21484897
52,2015182836328	195,1102218 26,40533265
52,7898942795418	197,3093565 26,70295357
55,2822949945414	206,6250407 27,96369602
56,9438954712081	212,8354967 28,80419099
59,8176171599963	223,5764195 30,25781877
60,4918360568138	226,0964037 30,59886199
63,3478731354500	236,7712278 32,04354429
65,2518978545411	243,8877772 33,00666581
68,3326745654496	255,4025961 34,56502918
70,3865257060556	263,079142 35,6039381
72,5902032681770	271,3156844 36,71863439
74,5405268977216	278,6052823 37,70517551
78,3022774254491	292,6653327 39,60799898
80,6557814090857	301,4618715 40,79848266
84,4638308472667	315,6949704 42,72472571
85,4158432068121	319,2532451 43,20628648
89,4486322772659	334,3263387 45,24621061
92,1371583242356	344,3750678 46,60616003
96,7869376909026	361,7542459 48,95817919
97,8778467818108	365,8316659 49,50999872
102,4990118481740	383,1038941 51,84754377
105,5797885590830	394,618713 53,40590714
110,5645899890830	413,2500813 55,92739204
113,8877909424160	425,6709935 57,60838197
117,4534161381740	438,997999 59,41199847

120,6091060598390
126,6957462709000
130,5037957090820
136,6653491308990
138,2057374863530
144,7309272718070
149,0810537954430
156,6045548508980
158,3696828386240
165,8468849836230
170,8316864136240
178,8972645545310
184,2743166484710
190,0436194063500
195,1496329575600
204,9980236963480
211,1595771181670
221,1291799781650
223,6215806931640
234,1795595490720
241,2182121196780
253,3914925418000
256,2475296204340
268,3458968317960
276,4114749727060
289,4618545436130
298,1621075908850
307,4970355445220
315,7587390173970
331,6937699672470
341,6633728272480
357,7945291090620
361,8273181795160
378,9104868208770
390,2992659151190
409,9960473926970
414,6172124590560
434,1927818154180
447,2431613863280
468,3591190981430
482,4364242393540
497,5406549508700
510,9083719749550
536,6917936635930
552,8229499454120
578,9237090872250

$450,792816161,00825553$ 473,5424556 64,08708857 487,7755545 66,01333163 510,8051922 69,13005837 516,5626016 69,90924005 540,9513794 73,20990663 557,2105645 75,41035102 585,3306654 79,21599795 591,9280695 80,10886071 619,875122 83,89108806 638,5064902 86,41257296 668,6526774 90,49242122 688,7501355 93,21232007 710,3136834 96,13063286 729,3980984 98,71343104 766,2077883 103,6950875 789,237426 106,8118143 826,5001626 111,8547841 835,8158468 113,1155265 875,2777181 118,4561172 901,5856323 122,0165111 947,0849112 128,1741771 957,7597354 129,6188594 $1002,979016135,7386318$ 1033,125203 139,8184801 1081,902759 146,4198133 1114,421129 150,820702 1149,311682 155,5426313 1180,190915 159,7216866 1239,750244 167,7821761 1277,01298 172,8251459 1337,305355 180,9848424 1352,378448 183,0247666 1416,229097 191,6660239 1458,796197 197,4268621 1532,415577 207,3901751 1549,687805 209,7277202 1622,854138 219,6297199 1671,631694 226,2310531 1750,555436 236,9122345 1803,171265 244,0330221 1859,625366 251,6732642 1909,589013 258,4351176 2005,958032 271,4772637 2066,250407 279,6369602 2163,805517 292,8396265

Acknowledgments

I would like to thank Prof. Branko Dragovich of Institute of Physics of Belgrade (Serbia) for his availability and friendship, P.A. Francesco Di Noto for the very useful discussions and contributes in various sectors of Number Theory. In conclusion, I would like to thank Ing. Christian Lange for his useful discussions and contributes concerning the various applications of the columns concerning the universal music system based on Phi.

References

[1] Edward Witten - "Fivebranes and Knots" - arXiv:1101.3216v1 [hep-th] 17 Jan 2011;
[2] Chris Beasley - "Localization For Wilson Loops In Chern-Simons Theory" arXiv:0911.2687v2 [hep-th] 12 May 2010;
[3] S. Giombi, R. Ricci, R. Roiban and A. A. Tseytlin - "Two-loop $A d S_{5} \times S^{5}$ superstring: testing asymptotic Bethe ansatz and finite size corrections" - arXiv:1010.4594v2 [hep-th] 23 Dec 2010;
[4] B. Basso, G. P. Korchemsky - "Nonperturbative scales in AdS/CFT" - arXiv:0901.4945v2 [hep-th] 3 May 2009;
[5] A. Folsom, Z. A. Kent and Ken Ono - " ℓ-Adic properties of the partition function"; http://www.aimath.org/ - 2011;
[6] Jan Hendrik Bruinier and Ken Ono - "Algebraic formulas for the coefficients of half-integral weight harmonic weak maass forms"; http://www.aimath.org/ - 2011;
[7] Connessioni tra partizioni di numeri p(n) e funzione di Landau come ipotesi RH equivalente; La funzione di Landau come ipotesi RH equivalente - Parte seconda; Nuove connessioni aritmetiche tra i "numeri magici" degli elementi chimici più stabili, i livelli energetici nei gas nobili ed i numeri di Fibonacci; Scoperta una nuova formula per le partizioni di numeri; Una teoria aritmetica, o aritmetica-geometrica, per la TOE (Il principio aritmetico per le teorie di stringa complementare al PGTS; Scoperto il legame tra la sezione aurea e la simmetria; Vedi Sito http://nardelli.xoom.it/virgiliowizard/teoria-delle-stringhe-e-teoria-dei-numeri. La serie di Fibonacci e le altre serie numeriche naturali (snn) (come la natura evita i quadrati) - sul Sito http://www.gruppoeratostene.com/articoli/
Nardelli, Michele e Palumbo, Antonino (2007) "Su una possibile TOE e su alcune nuove connessioni matematiche tra teoria di Stringa, Numeri Primi, Serie di Fibonacci e Partizioni" http://eprints.bice.rm.cnr.it/448/1/Nardelli20.pdf
Nardelli Michele (2008) "On the physical interpretation of the Riemann zeta function, the Rigid Surface Operators in Gauge Theory, the adeles and ideles groups applied to various formulae
regarding the Riemann zeta function and the Selberg trace formula, p-adic strings, zeta strings, and p-adic cosmology and mathematical connections with some sectors of String Theory and Number Theory"

- http://eprints.bice.rm.cnr.it/625/1/Nardnwit01.pdf and http://www.scribd.com/doc/50088827/

