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                                                                     Abstract 

 

This paper is fundamentally a review, a thesis, of principal results obtained in some sectors of 

Number Theory and String Theory of various authoritative theoretical physicists and 

mathematicians. 

Precisely, we have described some mathematical results regarding the Fermat’s Last Theorem, the 

Mellin transform, the Riemann zeta function, the Ramanujan’s modular equations, how primes and 

adeles are related to the Riemann zeta functions and the p-adic and adelic string theory. 

Furthermore, we show that also the fundamental relationship concerning the Palumbo-Nardelli 

model (a general relationship that links bosonic string action and superstring action, i.e. bosonic and 

fermionic strings in all natural systems), can be related with some equations regarding the p-adic 

(adelic) string sector. 

Thence, in conclusion, we have described some new interesting connections that are been obtained 

between String Theory and Number Theory, with regard the arguments above mentioned. 

In the Chapters 1 and 2, we have described the mathematics concerning the Fermat’s Last 

Theorem, precisely the Wiles approach in the Chapter 1 and further mathematical aspects 

concerning the Fermat’s Last Theorem, precisely the modular forms, the Euler products, the 

Shimura map and the automorphic L-functions in the Chapter 2. Furthermore. In this chapter, we 

have described also some mathematical applications of the Mellin transform, only mentioned in the 

Chapter 1, the zeta-function quantum field theory and the quantum L-functions. 

In the Chapter 3, we have described how primes and adeles are related to the Riemann zeta 

function, precisely the Connes approach. In the Chapter 4, we have described the p-adic and adelic 

strings, precisely the open and closed p-adic strings, the adelic strings, the solitonic q-branes of p-

adic string theory and the open and closed scalar zeta strings.  

In the Chapter 5, we have described some correlations obtained between some solutions in string 

theory, Riemann zeta function and Palumbo-Nardelli model. Precisely, we have showed the 

cosmological solutions from the D3/D7 system, the classification and stability of cosmological 

solutions, the solution applied to ten dimensional IIB supergravity, the connections with some 

equations concerning the Riemann zeta function, the Palumbo-Nardelli model and the Ramanujan’s 

identities. Furthermore, we have described the interactions between intersecting D-branes and the 

general action and equations of motion for a probe D3-brane moving through a type IIB 

supergravity background. Finally, in the Chapter 6, we have showed the connections between the 

equations of the various chapters.   
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                                                         Introduzione e riassunto 

 

L’ultimo teorema di Fermat è una generalizzazione dell’equazione diofantea 222
cba =+ . Già gli 

antichi Greci ed i Babilonesi sapevano che questa equazione ha delle soluzioni intere, come (3, 4, 5) 

)543( 222 =+  o (5, 12, 13) )13125( 222 =+ . Queste soluzioni sono conosciute come “terne 

pitagoriche” e ne esistono infinite, anche escludendo le soluzioni banali per cui a, b e c hanno un 

divisore in comune e quelle ancor più banali in cui almeno uno dei numeri è uguale a zero. 

Secondo l’ultimo teorema di Fermat, non esistono soluzioni intere positive quando l’esponente 2 è 

sostituito da un numero intero maggiore. Il teorema è particolarmente noto per la sua correlazione 

con molti argomenti matematici che apparentemente non hanno nulla a che vedere con la Teoria dei 

Numeri. Inoltre, la ricerca di una dimostrazione è stata all’origine dello sviluppo di importanti aree 

della matematica, anche legate a moderni settori della fisica teorica, quali ad esempio la Teoria 

delle Stringhe. 

L’ultimo teorema di Fermat può essere dimostrato per n = 4 e nel caso in cui n è un numero primo: 

se infatti si trova una soluzione kpkpkp
cba =+ , si ottiene immediatamente una soluzione 

( ) ( ) ( )pkpkpk cba =+ . Nel corso degli anni il teorema venne dimostrato per un numero sempre 

maggiore di esponenti speciali n, ma il caso generale rimaneva evasivo. Il caso n = 5 è stato 

dimostrato da Dirichlet e Legendre nel 1825 ed il caso n = 7 da Gabriel Lamé nel 1839. Nel 1983 

G. Faltings dimostrò la congettura di Mordell, che implica che per ogni n > 2, c’è al massimo un 

numero finito di interi “co-primi” a, b e c con nnn
cba =+ . (In matematica, gli interi a e b si 

dicono “co-primi” o “primi tra loro” se e solo se essi non hanno nessun divisore comune eccetto 1 e 

-1, o, equivalentemente, se il loro massimo comune divisore è 1).  

Utilizzando i sofisticati strumenti della geometria algebrica (in particolare curve ellittiche e forme 

modulari), della teoria di Galois e dell’algebra di Hecke, il matematico di Cambridge Andrew John 

Wiles, dell’Università di Princeton, con l’aiuto del suo primo studente, Richard Taylor, diede una 

dimostrazione dell’ultimo teorema di Fermat, pubblicata nel 1995 nella rivista specialistica “Annals 

of Mathematics”.  

Nel 1986, Ken Ribet aveva dimostrato la “Congettura Epsilon” di Gerhard Frey secondo la quale 

ogni contro-esempio nnn
cba =+  all’ultimo teorema di Fermat avrebbe prodotto una curva ellittica 

definita come:    ( ) ( )nn bxaxxy +⋅−⋅=2 ,  che fornirebbe un contro-esempio alla “Congettura di 

Taniyama-Shimura”. Quest’ultima congettura propone un collegamento profondo fra le curve 

ellittiche e le forme modulari. Wiles e Taylor hanno stabilito un caso speciale della Congettura di 

Taniyama-Shimura sufficiente per escludere tali contro-esempi in seguito all’ultimo teorema di 

Fermat.  In pratica, la dimostrazione che le curve ellittiche semistabili sui razionali sono modulari, 

rappresenta una forma ridotta della Congettura di Taniyama-Shimura che tuttavia è sufficiente per 

provare l’ultimo teorema di Fermat.  

Le curve ellittiche sono molto importanti nella Teoria dei Numeri e ne costituiscono il maggior 

campo di ricerca attuale. Nel campo delle curve ellittiche, i “numeri p-adici” sono conosciuti come 

“numeri l-adici”, a causa dei lavori di Jean-Pierre Serre. Il numero primo p è spesso riservato per 

l’aritmetica modulare di queste curve. 

Il sistema dei numeri p-adici è stato descritto per la prima volta da Kurt Hensel nel 1897. Per ogni 

numero primo p, il sistema dei numeri p-adici estende l’aritmetica dei numeri razionali in modo 

differente rispetto l’estensione verso i numeri reali e complessi. L’uso principale di questo 

strumento viene fatto nella Teoria dei Numeri. L’estensione è ottenuta da un’interpretazione 

alternativa del concetto di valore assoluto. Il motivo della creazione dei numeri p-adici era il 

tentativo di introdurre il concetto e le tecniche delle “serie di potenze” nel campo della Teoria dei 

Numeri. Più concretamente per un dato numero primo p, il campo pQ  dei numeri p-adici è 

un’estensione dei numeri razionali. Se tutti i campi pQ  vengono considerati collettivamente, si 
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arriva al “principio locale-globale” di Helmut Hasse, il quale, a grandi linee, afferma che certe 

equazioni possono essere risolte nell’insieme dei numeri razionali se e solo se possono essere risolte 

negli insiemi dei numeri reali e dei numeri p-adici per ogni p. Il campo pQ  possiede una topologia 

derivata da una metrica, che è, a sua volta, derivata da una stima alternativa dei numeri razionali. 

Questa metrica è “completa”, nel senso che ogni serie di Cauchy converge. 

Scopo del presente lavoro è quello di evidenziare le connessioni ottenute tra la matematica inerente 

la dimostrazione dell’ultimo teorema di Fermat ed alcuni settori della Teoria di Stringa, 

precisamente la supersimmetria p-adica e adelica in teoria di stringa. 

I settori inerenti la dimostrazione dell’ultimo teorema di Fermat, riguardano quelle funzioni 

chiamate L p-adiche connesse alla funzione zeta di Riemann, quale estensione analitica al piano 

complesso della serie di Dirichlet. Tali funzioni sono strettamente correlate sia ai numeri primi, sia 

alla funzione zeta, i cui teoremi sono già stati connessi matematicamente con la teoria di stringa in 

alcuni precedenti lavori. 

Quindi, per concludere, anche dalla matematica che riguarda l’ultimo teorema di Fermat è possibile 

ottenere, come vedremo nel corso del lavoro, ulteriori connessioni tra Teoria di Stringa (p-adic 

string theory), Numeri Primi, Funzione zeta di Riemann (numeri p-adici, funzioni L p-adiche) e 

Serie di Fibonacci (quindi identità e funzioni di Ramanujan), che, a loro volta, verranno correlate 

anche al modello Palumbo-Nardelli. 

 

                                                                   Chapter 1. 

  

                         The mathematics concerning the Fermat’s Last Theorem 

 

1.1 The Wiles approach.[1] 

 

An elliptic curve over Q is said to be modular if it has a finite covering by a modular curve of the 

form )(0 NX . Any such elliptic curve has the property that its Hasse-Weil zeta function has an 

analytic continuation and satisfies a functional equation of the standard type. If an elliptic curve 

over Q with a given j-invariant is modular then it is easy to see that all elliptic curves with the same 

j-invariant are modular. A well-known conjecture which grew out of the work of Shimura and 

Taniyama in the 1950’s and 1960’s asserts that every elliptic curve over Q is modular. 

In 1985 Frey made the remarkable observation that this conjecture should imply Fermat’s Last 

Theorem.  The Wiles approach to the study of elliptic curves is via their associated Galois 

representations. Suppose that pρ  is the representation of ( )QQGal /  on the p-division points of an 

elliptic curve over Q, and suppose that 3ρ  is irreducible. The choice of 3 is critical because a 

crucial theorem of Langlands and Tunnell shows that if 3ρ  is irreducible then it is also modular. 

Thence, under the hypothesis that 3ρ  is semistable at 3, together with some milder restrictions on 

the ramification of 3ρ  at the other primes, every suitable lifting of 3ρ  is modular. Furthermore, 

Wiles has obtained that E is modular if and only if the associated 3-adic representation is modular. 

The key development in the proof is a new and surprising link between two strong but distinct 

traditions in number theory, the relationship between Galois representations and modular forms on 

the one hand and the interpretation of special values of L-functions on the other. 

The restriction that 3ρ  be irreducible at 3 is bypassed by means of an intriguing argument with 

families of elliptic curves which share a common 5ρ . Using this, we complete the proof that all 

semistable elliptic curves are modular. In particular, this yields to the proof of Fermat’s Last 

Theorem.  

Now we present the methods and results in more detail. 
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Let f be an eigenform associated to the congruence subgroup ( )N1Γ  of ( )ZSL2  of weight 2≥k  and 

character χ . Thus if nT  is the Hecke operator associated to an integer n there is an algebraic integer 

( )fnc ,  such that ( ) ffncfTn ,=  for each n. We let fK  be the number field generated over Q by 

the ( ){ }fnc ,  together with the values of χ  and let fΟ  be its ring of integers. For any prime λ  of 

fΟ  let λ,fΟ  be the completion of fΟ  at λ . The following theorem is due to Eichler and Shimura 

(for k > 2). 

 

THEOREM 1. 

 

For each prime Zp ∈  and each prime pλ  of fΟ  there is a continuous representation 

 

                                                           ( ) ( )λλρ ,2, /: ff GLQQGal Ο→      (1) 

 

which is unramified outside the primes dividing Np and such that for all primes q | Np, 

 

                        trace λρ ,f (Frob q) = ( )fqc , ,    det  λρ ,f (Frob q) = ( ) 1−kqqχ .     (2) 

 

We will be concerned with trying to prove results in the opposite direction, that is to say, with 

establishing criteria under which a λ -adic representation arises in this way from a modular form. 

Assume 

                                                 ( ) ( )
pFGLQQGal 20 /: →ρ         (3) 

 

is a continuous representation with values in the algebraic closure of a finite field of characteristic p 

and that 0det ρ  is odd. We say that 0ρ  is modular if 0ρ  and λρ λ mod,f  are isomorphic over pF  

for some f  and λ  and some embedding of λ/fΟ  in pF . Serre has conjectured that every 

irreducible 0ρ  of odd determinant is modular. 

If Ο  is the ring of integers of a local field (containing pQ ) we will say that  

 

                                                     ( ) ( )Ο→ 2/: GLQQGalρ        (4) 

 

is a lifting of 0ρ  if, for a specified embedding of the residue field of Ο  in pF , ρ  and 0ρ  are 

isomorphic over pF . We will restrict our attention to two cases: 

 

(I) 0ρ  is ordinary (at p) by which we mean that there is a one-dimensional subspace of 2

pF , stable 

       under a decomposition group at p and such that the action on the quotient space is unramified 

       and distinct from the action on the subspace. 

 

(II) 0ρ  is flat (at p), meaning that as a representation of a decomposition group at p, 0ρ  is 

       equivalent to one that arises from a finite flat group scheme over pZ , and 0det ρ  restricted to an 

       inertia group at p is the cyclotomic character. 

 

CONJECTURE. 
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Suppose that ( ) ( )Ο→ 2/: GLQQGalρ  is an irreducible lifting of 0ρ  and that ρ  is unramified 

outside of a finite set of primes. There are two cases: 

 

(i) Assume that 0ρ  is ordinary. Then if ρ  is ordinary and χερ 1det −= k  for some integer 

2≥k  and some χ  of finite order, ρ comes from a modular form. 

(ii) Assume that 0ρ  is flat and that p is odd. Then if ρ  restricted to a decomposition group 

at p is equivalent to a representation on a p-divisible group, again ρ  comes from a 

modular form. 

 

Now we will assume that p is an odd prime, we have the following theorem:  

 

THEOREM 2. 

 

Suppose that 0ρ  is irreducible and satisfies either (I) or (II) above. Suppose also that 

 

(i) 0ρ  is absolutely irreducible when restricted to  ( ) 







−

−

pQ
p

2

1

1 .  

(ii) If  1−≡q  pmod  is ramified in 0ρ  then either qD0ρ  is reducible over the algebraic closure  

      where qD  is a decomposition group at q or qI0ρ  is absolutely irreducible where qI  is an  

      inertia  group at q. 

 

Then any representation ρ  as in the conjecture does indeed come from a modular form. 

 

The only condition which really seems essential to our method is the requirement that 0ρ  is 

modular. The most interesting case at the moment is when p = 3 and 0ρ  can be defined over 3F . 

Then since ( ) 432 SFPGL ≅  every such representation is modular by the theorem of Langlands and 

Tunnell. In particular, every representation into ( )32 ZGL  whose reduction satisfies the given 

conditions is modular.  We deduce: 

 

THEOREM 3. 

 

Suppose that E is an elliptic curve defined over Q and that 0ρ  is the Galois action on the 3-division 

points. Suppose that E has the following properties: 

 

(i) E has good or multiplicative reduction at 3. 

(ii) 0ρ  is absolutely irreducible when restricted to ( )3−Q . 

(iii) For any 1−≡q  3mod  either qD0ρ  is reducible over the algebraic closure or qI0ρ  is 

absolutely irreducible. 

 

Then E should be modular. 

 

The important class of semistable curves, i.e., those with square-free conductor, satisfies (i) and (iii) 

but not necessarily (ii). 

 

THEOREM 4. 
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Suppose that E is a semistable elliptic curve defined over Q. Then E is modular. 

 

In 1986, Serre conjectured and Ribet proved a property of the Galois representation associated to 

modular forms which enabled Ribet to show that Theorem 4 implies “Fermat’s Last Theorem”. 

Furthermore, we have the following theorems: 

 

THEOREM 5. 

 

Suppose that 0=++ ppp
wvu  with Qwvu ∈,,  and 3≥p  then 0=uvw . (Equivalently – there are 

no non-zero integers a,b,c,n with n > 2 such that 
nnn

cba =+ .) 

 

THEOREM 6. 

 

Suppose that 0ρ  is irreducible and satisfies the hypothesis of the conjecture, including (I) above. 

Suppose further that 

 

(i) 00 κρ Q

LInd=  for a character 0κ  of an imaginary quadratic extension L of Q which is unramified 

     at p. 

(ii) ωρ =pI0det . 

 

Then a representation ρ  as in the conjecture does indeed come from a modular form. 

 

Wiles has worked on the Iwasawa conjecture for totally real fields and some applications of it, with 

the assumption that the reduction of a given l -adic representation was reducible and tried to prove 

under this hypothesis that the representation itself would have to be modular. Thence, we write p for 

l  because of the connections with Iwasawa theory. 

In the solution to the Iwasawa conjecture for totally real fields, Wiles has introduced a new 

technique in order to deal with the trivial zeroes. 

It involved replacing the standard Iwasawa theory method of considering the fields in the 

cyclotomic pZ -extension by a similar analysis based on a choice of infinitely many distinct primes 

1≡iq  in
pmod  with  ∞→in  as  ∞→i . Wiles has developed further the idea of using auxiliary 

primes to replace the change of field that is used in Iwasawa theory. 

 

Let p be an odd prime. Let Σ  be a finite set of primes including p and let ΣQ  be the maximal 

extension of Q  unramified outside this set and ∞ . Throughout we fix an embedding of Q , and so 

also of ΣQ , in C. We will also fix a choice of decomposition group qD  for all primes q in Z. 

Suppose that k is a finite field characteristic p and that  

 

                                                 ( ) ( )kGLQQGal 20 /: →Σρ           (5) 

 

is an irreducible representation. We will assume that 0ρ  comes with its field of definition k and that 

0det ρ  is odd. 

We will restrict our choice of 0ρ  further by assuming that either: 

 

(i) 0ρ  is ordinary. The restriction of 0ρ  to the decomposition group pD  has (for a suitable choice of 
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     basis) the form 

 

                                                           






 ∗
≈

2

1

0
0 χ

χ
ρ pD       (6) 

 

     where 1χ  and 2χ  are homomorphisms from pD  to ∗
k  with 2χ  unramified. Moreover we require  

     that 21 χχ ≠ . 

 

(ii) 0ρ  is flat at p but not ordinary. Then pD0ρ  is the representation associated to a finite flat group  

      scheme over pZ  but is not ordinary in the sense of (i). We will assume also that ωρ =pI0det  

      where pI  is an inertia group at p and ω  is the Teichmuller character giving the action on thp     

      roots of unity. 

 

Furthermore, we have the following restrictions on the deformations:  

 

(i) (a) Selmer deformations. In this case we assume that 0ρ  is ordinary, with notion as above, and  

           that the deformation has a representative  ( ) )(/: 2 AGLQQGal →Σρ   with the property that 

           (for a suitable choice of basis) 

                                                                






 ∗
≈

2

1

~0

~

χ

χ
ρ pD  

 

           with 2
~χ  unramified, 2

~ χχ ≡  mmod ,  and  21

1det χχεωρ −=pI  where ε  is the cyclotomic  

           character,  ( ) ∗
Σ → pZQQGal /:ε ,  giving the action on all p-power roots of unity, ω  is of  

           order prime to p satisfying  pmodεω ≡ ,  and 1χ  and 2χ  are the characters of (i) viewed as  

           taking values in  ∗∗
Ak a . 

 

(i) (b) Ordinary deformations. The same as in (i) (a) but with no condition on the determinant.      

 

(i) (c) Strict deformations. This is a variant on (i) (a) which we only use when pD0ρ  is not  

           semisimple and not flat. We also assume that  ωχχ =−1

21   in this case. Then a strict  

           deformation is an in (i) (a) except that we assume in addition that ( ) εχχ =pD21
~/~ . 

 

     (ii) Flat (at p) deformations. We assume that each deformations ρ  to ( )AGL2  has the property 

           that for any quotient A / a of finite order pDρ  amod  is the Galois representation associated 

           to the pQ -points of a finite flat group scheme over pZ . 

 

In each of these four cases, as well as in the unrestricted case one can verify that Mazur’s use of 

Schlessinger’s criteria proves the existence of a universal deformation 

 

                                            ( ) ( )RGLQQGal 2/: →Σρ     (7)        

    

With regard the primes pq ≠  which are ramified in 0ρ , we distinguish three special cases: 
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(A)  






 ∗
=

2

1

0 χ

χ
ρ qD  for a suitable choice of basis, with 1χ  and 2χ  unramified, ωχχ =−1

21  and  

        the fixed space of qI  of dimension 1, 

(B)  ,
10

0
0 








= q

qI
χ

ρ  1≠qχ ,  for a suitable choice of basis, 

(C)  ( ) 0,1 =λWQH q  where ( ){ } ( ) 0

12 det0:, ρλλλ
−⊗≅=∈= SymtracefUUHomfW k . 

 

Then in each case we can define a suitable deformation theory by imposing additional restrictions 

on those we have already considered, namely: 

 

(A)  






 ∗
=

2

1

ψ

ψ
ρ qD  for a suitable choice of basis of 2A  with 1ψ  and 2ψ  unramified and         

        εψψ =−1

21 ; 

(B)  







=

10

0q

qI
χ

ρ  for a suitable choice of basis ( qχ  of order prime to p, so the same character as  

        above); 

 

(C)  qq II 0detdet ρρ = , i.e., of order prime to p.  

 

Thus if Μ  is a set of primes in Σ  distinct from p and each satisfying one of (A), (B) or (C) for 0ρ , 

we will impose the corresponding restriction at each prime in Μ . 

Thus to each set of data { }ΜΟΣ⋅= ,,,D  where . is Se, str, ord, flat or unrestricted, we can associate 

a deformation theory to 0ρ  provided 

 

                                                   ( ) ( )kGLQQGal 20 /: →Σρ      (8) 

 

is itself of type D  and Ο  is the ring of integers of a totally ramified extension of ( )kW ; 0ρ  is 

ordinary if . is Se or ord, strict if . is strict and flat if . is flat; 0ρ  is of type Μ , i.e., of type (A), (B) 

or (C) at each ramified primes pq ≠ , Μ∈q . 

 

Suppose that q is a prime not dividing N. Let  ( ) ( ) ( )qNqN 011 , ΓΓ=Γ I  and let  

( ) ( )
Q

qNXqNX /11 ,, =   be the corresponding curve. The two natural maps  ( ) ( )NXqNX 11 , →  

induced by the maps zz →  and qzz →  on the upper half plane permit us to define a map 

( ) ( ) ( )qNJNJNJ ,111 →× . Using a theorem of Ihara, Ribet shows that this map is injective. Thus 

we can define ϕ  by  

                                             ( ) ( ) ( )qNJNJNJ ,0 111

ϕ

→×→ .     (9) 

 

Dualizing, we define B by 

                                                ( ) ( ) ( ) 0,0 11

ˆ

1 →×→→→ NJNJqNJB
ϕψ

. 
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Let ( )qNT ,1  be the ring of endomorphism of ( )qNJ ,1  generated by the standard Hecke operators. 

One can check that pU  preserves B either by an explicit calculation or by noting that B is the 

maximal abelian subvariety of ( )qNJ ,1  with multiplicative reduction at q. We set 

( )NJNJJ 112 )( ×= . More generally, one can consider ( )NJH  and ( )qNJH ,  in place of ( )NJ1  and 

( )qNJ ,1  (where ( )qNJH ,  corresponds to ( ) HqNX /,1 ) and we write ( )NTH  and ( )qNTH ,  for the 

associated Hecke rings.  

In the following lemma if m  is a maximal ideal of ( )1

1

−Τ rNq  or ( )rNq1Τ  we use ( )q
m  to denote the 

maximal ideal of ( )( )1

1 , +Τ rrq qNq  compatible with m , the ring   ( )( ) ( )1

1

1

1 ,, ++ Τ⊂Τ rrrrq qNqqNq   being 

the sub-ring obtained by omitting qU  from the list of generators. 

 

LEMMA 1. 

 

If pq ≠  is a prime and 1≥r  then the sequence of abelian varieties  

 

                           ( ) ( ) ( ) ( )1

111

1

1 ,0
21

+− →×→→ rrrrr qNqJNqJNqJNqJ
ξξ

    (10) 

 

where ( ) ( )( )∗∗
−= ππππξ oo rr ,2,11 ,   and  ( )∗∗= rr ,3,42 ,ππξ   induces a corresponding sequence of p-

divisible groups which becomes exact when localized at any 
( )q

m  for which mρ  is irreducible. 

 

Now, we have the following theorem: 

 

THEOREM 7. 

 

Assume that 0ρ  is modular and absolutely irreducible when restricted to ( ) 







−

−

pQ
p

2

1

1 . Assume 

also that 0ρ  is of type (A), (B) or (C) at each pq ≠  in Σ . Then the map DDD R Τ→:ϕ  (remember 

that Dϕ  is an isomorphism) is an isomorphism for all D  associated to 0ρ , i.e., where 

( )ΜΟΣ⋅= ,,,D  with =⋅ Se, str, fl or ord. In particular if =⋅ Se, str or fl  and f  is any newform for 

which λρ ,f  is a deformation of 0ρ  of type D  then 

 

                                        ( ) ( ) ∞<Ο=Σ fDfD VQQH ,

1 /#,/# η     (11) 

 

where fD,η  is the invariant defined in the following equation  ( ) ( ) ( )( )1ˆ
, πηη == fD .   

 

We assume that  

 

                                        ( ) ( )Ο→= 2/: GLQQGalInd Q

L κρ     (12) 

 

is the p-adic representation associated to a character   ( ) ×Ο→LLGal /:κ   of an imaginary 

quadratic field L . 

Let ∞M  be the maximal abelian p-extension of ( )νL  unramified outside p .   

 

PROPOSITION 1. 
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There is an isomorphism 

 

                      ( ) ( )( ) ( )( )( ) ( )( )LLGal

unr KLMGalHomYQQH
/1 /,/,/

ννν Ο→ ∞

≈
∗

Σ     (13) 

 

where 
1

unrH  denotes the subgroup of classes which are Selmer at p and unramified everywhere else. 

 

Now we write  ( )∗
Σ nstr YQQH ,/1   (where ∗∗ = nYYn λ

 and similarly for nY ) for the subgroup of 

( ) ( ) ( )( ){ }0111 /,0:,/,/ ∗∗∗
Σ

∗
Σ =∈= nnppnunrnunr YYQinHYQQHYQQH αα   where ( )0∗

nY  is the first step in the 

filtration under pD , thus equal to ( )∗0/ nn YY  or equivalently to ( )0nY λ
∗  where ( )0∗Y  is the divisible 

submodule of ∗Y  on which the action of pI  is via 2ε . It follows from an examination of the action 

pI  on λY  that  

 

                                           ( ) ( )nunrnstr YQQHYQQH ,/,/ 11

ΣΣ = .    (14) 

 

In the case of ∗Y  we will use the inequality 

 

                                       ( ) ( )∗
Σ

∗
Σ ≤ YQQHYQQH unrstr ,/#,/# 11 .    (15) 

 

Furthermore, for n sufficiently large the map  

 

                                           ( ) ( )∗
Σ

∗
Σ → YQQHYQQH strnstr ,/,/ 11     (16) 

 

is injective. 

The above map is then injective whenever the connecting homomorphism 

 

                                         ( )( )( ) ( )( )( )nKLHKLH
pp λνν Ο→Ο ∗∗ /,/, 10  

 

is injective, which holds for sufficiently large n. Furthermore, we have 

 

                       
( )
( ) ( )( ) ( )

( )∗

∗

∗
Σ

Σ =
n

n
np

nstr

nstr

YQH

YQH
YQH

YQQH

YQQH

,#

,#
,#

,/#

,/#
0

0
00

1

1

.    (17) 

 

Thence, setting  ( )( )( )qt q ν−Ο= 1/#inf  if  1mod =λν   or   1=t   if  1mod ≠λν   (17b),  we get 

       

       ( ) ( )( ) ( )( )( ) ( )( )
∏

Σ∈
∞Σ Ο⋅⋅≤

LLGal

qSe KLMGalHom
t

YQQH
/1 /,/#

1
,/#

νννl     (18) 

 

where ( )∗= YQH qq ,# 0
l  for pq ≠ , ( )( )∗

∞→
= 00 ,#lim np

n
p YQHl .  This follows from Proposition 1, (14)-

(17) and the elementary estimate 

 

                                   ( ) ( )( )
{ }

∏
−Σ∈

ΣΣ ≤
pq

qunrSe YQQHYQQH l,//,/# 11 ,    (19) 
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which follows from the fact that ( ) ( )
q

QQGalunr

q

q
unr
q

YQH l=
/1 ,# .  (Remember that l  is the l -adic 

representation). 

Let fw  denote the number of roots of unity ζ  of L  such that fmod1≡ζ  ( f  an integral ideal of 

LΟ ). We choose an f  prime to p such that 1=fw . Then there is a grossencharacter ϕ  of L  

satisfying ( )( ) ααϕ =  for fmod1≡α . According to Weil, after fixing an embedding  pQQ a  we 

can associate a p-adic character pϕ  to ϕ . We choose an embedding corresponding to a prime above 

p  and then we find  χκϕ ⋅=p  for some χ  of finite order and conductor prime to p. 

The grossencharacter ϕ  (or more precisely  LFN /oϕ ) is associated to a (unique) elliptic curve E 

defined over ( )fLF = , the ray class field of conductor f , with complex multiplication by LΟ  and 

isomorphic over C  to LC Ο/ . We may even fix a Weierstrass model of E over FΟ  which has good 

reduction at all primes above p . For each prime Β  of  F   above p  we have a formal group ΒÊ , 

and this is a relative Lubin-Tate group with respect to ΒF  over pL . We let  
Β

=
Ê

λλ  be the 

logarithm of this formal group. 

Let ∞U  be the product of the principal local units at the primes above p  of ( )∞fpL ; i.e., 

 

                                       ∏
Β

Β∞∞ =
p

UU ,     where    Β=
←

Β∞ ,lim, nUU . 

 

To an element  ∞
←

∈= Uuu nlim  we can associate a power series  ( ) [ ]×ΒΒ ΤΟ∈Τ,uf  where ΒΟ  is the 

ring of integers of ΒF .  For Β  we will choose the prime above p  corresponding to our chosen 

embedding  pQQ a . This power series satisfies  ( )( )nun fu ωΒΒ = ,,   for all  ( )dnn 0,0 ≡>   where 

[ ]pLFd :Β=   and  { }nω  is chosen as an inverse system of  nπ  division points of ΒÊ . We define a 

homomorphism  Β∞ Ο→Uk :δ   by 

 

                                 ( ) ( )
( )

( ) 0,

ˆ

, log
'

1
: =ΤΒΒ Τ















ΤΤ
==

Β

u

k

E

kk f
d

d
uu

λ
δδ .    (20) 

 

Then 

                                        ( ) ( ) ( )uu k

k

k δτθδ τ =     (21)   for   ( )FFGal /∈τ   

       

where θ  denotes the action on  [ ]∞pE .  Now  pϕθ =   on  ( )FFGal / .  We want a homomorphism 

on ∞u  with a transformation property corresponding to ν  on all of  ( )LLGal / . We observe that 
2

pϕν =  on  ( )FFGal / .  

Let S  be a set of coset representatives for  ( ) ( )FLGalLLGal ///   and define 

 

                                           ( ) ( ) ( ) [ ]∑
∈

Β
− Ο∈=Φ

S

uu
σ

σ νδσν 2

1

2 .    (22) 

 

Each term is independent of the choice of coset representative by (17b) and it is easily checked that 
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                                                          ( ) ( ) ( )uu 22 Φ=Φ σνσ . 

 

It takes integral values in [ ]νΒΟ . Let ( )ν∞U  denote the product of the groups of local principal units 

at the primes above p  of the field ( )νL . Then 2Φ  factors through ( )ν∞U  and thus defines a 

continuous homomorphism 

                                                               ( )
pCU →Φ ∞ ν:2 . 

 

Let ∞C  be the group of projective limits of elliptic units in ( )νL . Then we have a crucial theorem of 

Rubin: 

 

THEOREM 8. 

 

There is an equality of characteristic ideals as ( )( )[ ][ ]LLGalZ p /ν=Λ -modules: 

 

                                       ( )( )( ) ( )( )∞∞∞ ∧=∧ CUcharLMGalchar // νν . 

 

Let λνν mod0 = . For any ( )( )[ ]LLGalZ p /0ν -module X  we write 
( )0ν

X  for the maximal quotient 

of Ο⊗
pZ

X  on which the action of  ( )( )LLGal /0ν   is via the Teichmuller lift of 0ν . Since 

( )( )LLGal /ν  decomposes into a direct product of a pro-p group and a group of order prime to p, 

 

                                   ( )( ) ( ) ( )( ) ( )( )LLGalLLGalLLGal /// 00 νννν ×≅ , 

 

we can also consider any ( )( )[ ][ ]LLGalZ p /ν -module also as a ( )( )[ ]LLGalZ p /0ν -module. In 

particular 
( )0ν

X  is a module over  ( )( )[ ]( )
Ο≅0/0

νν LLGalZ p .  Also  
( ) [ ][ ]ΤΟ≅Λ 0ν

. 

Now according to results of Iwasawa, ( )( )0νν∞U  is a free 
( )0νΛ -module of rank one. We extend 2Φ  

Ο -linearly to  ( ) Ο⊗∞ pZU ν   and it then factors through ( )( )0νν∞U . Suppose that  u  is a generator of 

( )( )0νν∞U  and β  an element of 
( )0ν

∞C . Then  ( ) βγ =− uf 1   for some  ( ) [ ][ ]ΤΟ∈Τf   and γ  a 

topological generator of  ( ) ( )( )0/ νν LLGal .  Computing 2Φ  on both u  and β  gives 

 

                                               ( )( ) ( ) ( )uf 22 /1 Φ=− βφγν .    (23) 

 

We have that ν  can be interpreted as the grossencharacter whose associated p-adic character , via 

the chosen embedding pQQ a , is ν , and ν  is the complex conjugate of ν . 

Furthermore, we can compute ( )u2Φ  by choosing a special local unit and showing that ( )u2Φ  is a 

p-adic unit. 

Now, if we have that  

                                           ( ) ( )( ) ∏
Σ∈

−
Σ ⋅ΩΟ≤

q

qfSe LYQQH lν,2/#,/#
0

21 , 

 

and                                                           ( )
{ }

∏
−Σ∈

⋅Ο
pq

qLh l/# ,    (24) 
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where   ( )( )( )( )∗
Ο⊕Ο= //,# 0

KKQH qq ψl   and Lh  is the class number of LΟ , combining these we 

obtain the following relation: 

 

                            ( ) ( )( ) ( ) ∏
Σ∈

−
Σ ⋅Ο⋅ΩΟ≤

q

qLfSe hLVQQH l/#,2/#,/#
0

21 ν ,    (25) 

 

where  ( )∗= VQH qq ,# 0
l  (for pq ≠ ),  ( )( )∗

= 00 ,# YQH ppl . (Also here, we remember that l  is p-

adic). 

Let 0ρ  be an irreducible representation as in (5). Suppose that f  is a newform of weight 2 and 

level N, λ  a prime of fΟ  above p and λρ ,f  a deformation of 0ρ . Let m  be the kernel of the 

homomorphism  ( ) λ/1 fN Ο→Τ   arising from f .  

We now give an explicit formula for η  developed by Hida by interpreting ,  in terms of the cup 

product pairing on the cohomology of ( )NX1 , and then in terms of the Petersson inner product of 

f  with itself. Let 

                                     ( ) ( )( ) ( )( )
fff NXHNXH Ο→Ο×Ο ,,:, 1

1

1

1     (26) 

 

be the cup product pairing with fΟ  as coefficients.  Let fp  be the minimal prime of  ( )
fON ⊗Τ1  

associated to f , and let 

                                                      ( )( )[ ]
fff pNXHL Ο= ,1

1 . 

 

If  ∑= n

nqaf   let  ∑= n

nqaf
ρ .  Then ρf  is again a newform and we define ρ

f
L  by replacing 

f  by ρf  in the definition of fL .  Then the pairing ( ),  induces another by restriction  

 

                                                         ( ) fff LL Ο→× ρ:, .    (27) 

 

Replacing Ο  by the localization of fΟ  at p (if necessary) we can assume that fL  and ρ
f

L  are free 

of rank 2 and direct summands as fΟ -modules of the respective cohomology groups. Let 21,δδ  be 

a basis of fL . Then also 21,δδ  is a basis of  ff
LL =ρ .  Here complex conjugation acts on 

( )( )
fNXH Ο,1

1   via its action on fΟ . We can then verify that 

 

                                                                 ( ) ( )
ji δδδδ ,det:, =  

 

is an element of fΟ  whose image in λ,fΟ  is given by ( )2ηπ  (unit). 

 

To give a more useful expression for ( )δδ ,  we observe that f  and ρf  can be viewed as elements 

of  ( )( ) ( )( )CNXHCNXH DR ,, 1

1

1

1 ≅   via  ( ) ,dzzff a   zdff ρρ
a .  Then { }ρff ,  form a basis for 

CL
ff Ο⊗ .  Similarly { }ρff ,  form a basis for CL

ff Ο⊗ρ .  Define the vectors ( ),,1

ρω ff=  

( )ρω ff ,2 =   and write δω C=1  and  δω C=2   with  ( )CMC 2∈ .  Then writing ρffff == 21 ,  

we set  

                                          ( ) ( )( ) ( ) ( )CCff ji det,,det:, δδωω == . 
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Now ( )ωω,  is given explicitly in terms of the (non-normalized) Petersson inner product ,  : 

( ) 2
,4, ff−=ωω    where   

( )∫ Γℑ
=

N
dxdyffff

1/
, .  Hence, we have the following equation: 

 

                                             ( )
( )

2

/ 1

4, 




−= ∫ Γℑ N

dxdyffωω .    (28) 

 

To compute ( )Cdet  we consider integrals over classes in ( )( )
fNXH Ο,11 . By Poincaré duality there 

exist classes 21,cc  in  ( )( )
fNXH Ο,11   such that  







∫

jc
iδdet  is a unit in  fΟ .  Hence Cdet  generates 

the same fΟ -module as is generated by 















∫

jc
ifdet  for all such choices of classes ( 21,cc ) and 

with { } { }ρffff ,, 21 = . Letting fu  be a generator of the fΟ -module 















∫

jc
ifdet  we have the 

following formula of Hida: 

                                                  ( ) ×= ff uuff /,
22ηπ (unit in λ,fΟ ). 

 

Now, we choose a (primitive) grossencharacter ϕ  on L together with an embedding pQQ a  

corresponding to the prime p  above p such that the induced p-adic character pϕ  has the properties: 

  (i)  0mod κϕ =pp  ( =p  maximal ideal of pQ ). 

 (ii)  pϕ  factors through an abelian extension isomorphic to TZ p ⊕  with T  of finite order prime to  

        p. 

(iii)  ( )( ) ααϕ =  for ( )f1≡α  for some integral ideal f  prime to p. 

 

Let ( )
ff Np Ο→Τ= 10 :kerψ  and let  ( ) ( )NJpNJAf 101 /=  be the abelian variety associated to f by 

Shimura. Over +F  there is an isogeny   ( )d

FFf
EA ++ ≈

//
 where [ ]ΖΟ= :fd . 

We have that the p-adic Galois representation associated to the Tate modules on each side are 

equivalent to ( )
pf

F

F KInd
p ,0 Ζ⊗

+

ϕ  where pfpf QK ⊗Ο=,  and where ( ) ×Ζ→ pp FFGal /:ϕ  is the p-

adic character associated to ϕ  and restricted to F .We now give an expression for ϕϕ ff ,  in terms 

of the L-function of ϕ . We note that ( ) ( ) ( )χϕνν ˆ,2,2,2 2

NNN LLL ==  and remember that ν is the p-

adic character, and ν  is the complex conjugate of ν , we have that:      

                           ( ) ( )ψχϕ
π

ϕ

ϕϕ ,1ˆ,2
1

1
16

1
, 22

3 NN

Nq

LL
q

Nff

Sq
























−= ∏

∉

,    (29) 

 

where χ  is the character of ϕf  and χ̂  its restriction to L ;  ψ  is the quadratic character 

associated to L ;  ( )NL  denotes that the Euler factors for primes dividing N  have been removed;  

ϕS  is the set of primes q N  such that q = 'qq  with q | cond ϕ  and ',qq  primes of L , not 

necessarily distinct. 

 

THEOREM 9. 
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Suppose that 0ρ  as in (5) is an irreducible representation of odd determinant such that 

00 κρ Q

LInd=  for a character 0κ  of an imaginary quadratic extension L  of Q  which is unramified 

at p. Assume also that: 

(i) ωρ =
pI0det ; 

(ii) 0ρ  is ordinary. 

Then for every ( )φ,,, ΟΣ⋅=D  such that 0ρ  is of type D  with =⋅  Se or ord,   

 

                                                                         DDR Τ≅  

 

and DΤ  is a complete intersection. 

 

COROLLARY. 

 

For any 0ρ  as in the theorem suppose that  

 

                                                          ( ) ( )Ο→ 2/: GLQQGalρ  

 

is a continuous representation with values in the ring of integers of a local field, unramified outside 

a finite set of primes, satisfying 0ρρ ≅  when viewed as representations to ( )
pFGL2 . Suppose 

further that: 

(i) 
pDρ  is ordinary; 

(ii) 1det −= k

I p
χερ  with χ  of finite order, 2≥k . 

Then ρ  is associated to a modular form of weight k . 

 

THEOREM 10. (Langlands-Tunnell) 

 

Suppose that  ( ) ( )CGLQQGal 2/: →ρ   is a continuous irreducible representation whose image is 

finite and solvable. Suppose further that ρdet  is odd. Then there exists a weight one newform f  

such that ( ) ( )ρ,, sLfsL =  up to finitely many Euler factors. 

 

Suppose then that 

                                                      ( ) ( )320 /: FGLQQGal →ρ  

is an irreducible representation of odd determinant. This representation is modular in the sense that 

over 3F , µρρ µ mod,0 g≈  for some pair ( )µ,g  with g  some newform of weight 2. There exists a 

representation 

                                       ( ) [ ]( ) ( ).2: 2232 CGLGLFGLi ⊂−Ζa  

 

By composing i  with an automorphism of ( )32 FGL  if necessary we can assume that i  induces the 

identity on reduction  ( )21mod −+ . So if we consider   ( ) ( )CGLQQGali 20 /: →ρo   we obtain an 

irreducible representation which is easily seen to be odd and whose image is solvable. 

Now pick a modular form E  of weight one such that ( )31≡E . For example, we can take χ,16EE =  

where χ,1E  is the Eisenstein series with Mellin transform given by  ( ) ( )χζζ ,ss   for χ  the quadratic 
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character associated to ( )3−Q . Then  3modffE ≡   and using the Deligne-Serre lemma we can 

find an eigenform 'g  of weight 2 with the same eigenvalues as f  modulo a prime 'µ  above 

( )21 −+ . There is a newform g  of weight 2 which has the same eigenvalues as 'g  for almost all 

lT ’s, and we replace ( )',' µg  by ( )µ,g  for some prime µ  above ( )21 −+ . Then the pair ( )µ,g  

satisfies our requirements for a suitable choice of µ  (compatible with 'µ ). 

We can apply this to an elliptic curve E  defined over Q , and we have the following fundamental 

theorems: 

 

THEOREM 11. 

 

All semistable elliptic curves over Q  are modular. 

 

THEOREM 12. 

 

Suppose that E  is an elliptic curve defined over Q  with the following properties: 

(i) E  has good or multiplicative reduction at 3, 5, 

(ii) For p = 3, 5 and for any prime pq mod1−≡  either qpE D,ρ  is reducible over pF  or qpE I,ρ  is  

      irreducible over pF . 

Then E  is modular.  

 

 

 

 

 

 

 

 

                                                               Chapter 2. 

 

               Further mathematical aspects concerning the Fermat’s Last Theorem 

 

2.1 On the modular forms, Euler products, Shimura map and automorphic L-functions. 

 

A. Modular forms[2] 

 

We know that there is a direct relation with elliptic curves, via the concept of modularity of elliptic 

curves over Q . 

Let E  be an elliptic curve over Q , given by some Weierstrass equation. Such a Weierstrass 

equation can be chosen to have its coefficients in Z . A Weierstrass equation for E  with 

coefficients in Z  is called minimal if its discriminant is minimal among all Weierstrass equations 

for E  with coefficients in Z ; this discriminant then only depends on E  and will be denoted 

discr( E ). Thence, E  has a Weierstrass minimal model over Z , that will be denoted by ZE .  

For each prime number p, we let 
pFE  denote the curve over pF  given by reducing a minimal 

Weierstrass equation modulo p; it is the fibre of ZE over pF . The curve 
pFE  is smooth if and only if 

p does not divide discr( E ).  

The possible singular fibres have exactly one singular point: an ordinary double point with rational 

tangents, or with conjugate tangents, or an ordinary cusp. The three types of reduction are called 
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split multiplicative, non-split multiplicative and additive, respectively, after the type of group law 

that one gets on the complement of the singular point. For each p we then get an integer pa  by 

requiring the following identity: 

                                                        ( )
pp FEap #1 =−+ .    (1) 

 

This means that for all p, pa  is the trace of pF  on the degree one étale cohomology of 
pF

E , with 

coefficients in lF , or in ZlZ
n/  or in the l -adic numbers lZ . For p not dividing discr( E ) we know 

that 2/12 pap ≤ . If 
pFE  is multiplicative, then 1=pa  or   – 1 in the split and non-split case. If 

pFE  

is additive, then 0=pa . We also define, for each p an element ( )pε  in { }1,0  by setting ( ) 1=pε  for 

p not dividing discr( E ). The Hasse-Weil L-function of E  is then defined as: 

 

                       ( ) ( )sLsL
p

pEE ∏= , ,    ( ) ( )( ) 12

, 1
−−− +−= ss

ppE ppppasL ε ,    (2) 

 

for s  in C  with ( ) 2/3>sR . We note that for all p and for all pl ≠  we have the identity: 

 

                                          ( ) ( )( )letFpp QEHtFtpta ,,1det1
,

12 ∗−=+− ε .    (3) 

 

We use étale cohomology with coefficients in lQ , the field of l -adic numbers, and not in lF . 

The function EL  was conjectured to have a holomorphic continuation over all of C , and to satisfy a 

certain precisely given functional equation relating the values at s  and s−2 . In that functional 

equation appears a certain positive integer EN  called the conductor of E , composed of the primes p 

dividing discr( E ) with exponents that depend on the behaviour of E  at p, i.e., on 
pZE . This 

conjecture on continuation and functional equation was proved for semistable E  (i.e., E  such that 

there is no p where E  has additive reduction) by Wiles and Taylor-Wiles, and in the general case 

by Breuil, Conrad, Diamond and Taylor. In fact, the continuation and functional equation are direct 

consequences of the modularity of E  that was proved by Wiles, Taylor-Wiles, etc.  

The weak Birch and Swinnerton-Dyer conjecture says that the dimension of the Q -vector space 

( )QEQ ⊗  is equal to the order of vanishing of EL  at 1. Anyway, the function EL  gives us integers 

na  for all 1≥n  as follows: 

                                               ( ) ∑
≥

−=
1n

s

nE nasL ,    for  ( ) 2/3>sR .  (4) 

 

From these na  one can then consider the following function: 

 

                             ( ){ } CCHfE →>ℑ∈= 0: ττ ,    ∑
≥1

2

n

in

nea τπτ a .    (5) 

 

Equivalently, we have: 

                                     ∑
≥

=
1n

n

nE qaf ,    with  CHq →: ,    τπτ i
e

2
a .  (6) 

 

A more conceptual way to state the relation between EL  and Ef  is to say that EL  is obtained, up to 

elementary factors, as the Mellin transform of Ef :  
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                            ( ) ( ) ( ) ( )∫
∞ −

Γ=
0

2 sLs
t

dt
titf E

ss

E π ,    for  ( ) 2/3>sR .    (7) 

 

Hence, we can finally state what the modularity of E  means: 

Ef  is a modular form of weight two for the congruence subgroup ( )EN0Γ  of ( )ZSL2 . 

The last statement means that Ef  has an enormous amount of symmetry.  

A typical example of a modular form of weight higher than two is the discriminant modular form, 

usually denoted ∆ . One way to view ∆  is as the holomorphic function on the upper half plane H  

given by: 

                                                          ( )∏
≥

−=∆
1

24
1

n

nqq ,    (8) 

 

where q  is the function from H  to C  given by ( )izz π2expa . The coefficients in the power series 

expansion: 

                                                                 ( )∑
≥

=∆
1n

nqnτ     (9) 

 

define the famous Ramanujan τ -function. 

To say that ∆  is a modular form of weight 12 for the group ( )ZSL2  means that for all elements 










dc

ba
 of ( )ZSL2  the following identity holds for all z  in H : 

 

                                          ( ) ( )zdcz
dcz

baz
∆+=









+

+
∆

12
,    (10) 

 

which is equivalent to saying that the multi-differential form ( )( ) 6⊗
∆ dzz  is invariant under the 

action of ( )ZSL2 . As ( )ZSL2  is generated by the elements 








10

11
 and 







 −

01

10
, it suffices to 

check the identity in (10) for these two elements. The fact that ∆  is q  times a power series in q  

means that ∆  is a cusp form: it vanishes at “ 0=q ”. It is a fact that ∆  is the first example of a non-

zero cusp form for ( )ZSL2 : there is no non-zero cusp form for ( )ZSL2  of weight smaller than 12, 

i.e., there are no non-zero holomorphic functions on H  satisfying (10) with the exponent 12 

replaced by a smaller integer, whose Laurent series expansion in q  is q  times a power series. 

Moreover, the C -vector space of such functions of weight 12 is one-dimensional, and hence ∆  is a 

basis of it. 

The one-dimensionality of this space has as a consequence that ∆  is an eigenform for certain 

operators on this space, called Hecke operators, that arise from the action on H  of ( )+
QGL2 , the 

subgroup of ( )QGL2  of elements whose determinant is positive. This fact explains that the 

coefficients ( )nτ  satisfy certain relations which are summarised by the following identity of 

Dirichlet series: 

                             ( ) ( ) ( )( )∑ ∏
≥

−−−−
∆ +−==

1

12111:
n p

sss
ppppnnsL ττ .    (11) 

 

These relations: 

                                 ( ) ( ) ( )nmmn τττ =                            if  m  and n  are relatively prime; 
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                                 ( ) ( ) ( ) ( )2111 −− −= nnn ppppp ττττ     if p  is prime and 2≥n  

 

were conjectured by Ramanujan, and proved by Mordell. Using these identities, ( )nτ  can be 

expressed in terms of the ( )pτ  for p  dividing n . As ∆L  is the Mellin transform of ∆ , ∆L  is 

holomorphic on C , and satisfies the functional equation (Hecke): 

 

                           ( ) ( ) ( ) ( ) ( ) ( ) ( )sLssLs
ss

∆

−

∆

−−
Γ=−−Γ ππ 212122

12
.    (12) 

 

The famous Ramanujan conjecture states that for all primes p  one has the inequality:  

 

                                                           ( ) 2/112 pp <τ ,    (13) 

 

or, equivalently, that the complex roots of the polynomial  ( ) 112 pxpx +−τ   are complex conjugates 

of each other, and hence are of absolute value 2/11p . 

 

B. Euler products[3] 

 

We know that the infinite series 

                                                                   ∑
∞

=1

1

n
sn

,    (14) 

 

converges for ( ) 1>sR  and gives rise by analytic continuation to a meromorphic function ( )sζ  in 

C . For ( ) 1>sR  ( )sζ  admits the absolutely convergent infinite product expansion 

 

                                                                 ∏ −−p
s

p1

1
,    (15) 

 

taken over the set of primes. This “Euler product” may be regarded as an analytic formulation of the 

principle of unique factorization in the ring Z  of integers. It is, as well, the product taken over all 

the non-Archimedean completions of the rational field Q  (which completions pQ  are indexed by 

the set of primes) of the “Mellin transform” in pQ  

 

                                                          ( )
sp

p
s

−−
=

1

1
ξ ,    (16) 

   

(where the Mellin transform is, more or less, Fourier transform on the multiplicative group. 

Classically, the Mellin transform ϕ  of f  is given formally by ( ) ( ) ( )∫
∞

=
0

/ xdxxxfs
sϕ .    (17)) 

of the canonical “Gaussian density” ( ) =Φ xp    1  if  ∈x  closure of Z  in pQ ;  0  otherwise, which 

Gaussian density is equal to its own Fourier transform. For the Archimedean completion RQ =∞  of 

the rational field Q  one forms the classical Mellin transform 

 

                                                    ( ) ( ) ( )2/2/ ss s Γ= −
∞ πξ     (18) 

 

of the classical Gaussian density 
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                                                               ( )
2x

ex
π−

∞ =Φ ,    (19) 

 

(which also is equal to its own Fourier transform). Then the function 

 

                                          ( ) ( ) ( ) ( )∏
∞≤

∞ ==
p

p ssss ξζξξ     (20) 

 

is meromorphic in C , and satisfies the functional equation 

 

                                                              ( ) ( )ss ξξ =−1 .    (21) 

 

The connection of Riemann’s ζ -function with the subject of modular forms begins with the 

observation that ( )s2ζ  is essentially the Mellin transform of  ( ) ( ) 1−= ixxI θθ  , where θ , which is a 

modular form of weight 1/2 and level 8, is defined in the upper-half plane H  by the formula 

 

                                                   ( ) ( )∑
∈

=
Zm

mi 2exp τπτθ .    (22) 

 

In fact, one of the classical proofs of the functional equation (21) is given by applying the Poisson 

summation formula to the function  ( )2exp xix τπa , while observing that the substitution 

( ) ss −2/1a  for ( )s2ζ  corresponds in the upper-half plane to the substitution ττ /1−a  for the 

theta series. If f  is a cuspform for a congruence group Γ  containing  

 

                                                                  







=

10

11
T ,    (23) 

 

and so, consequently, ( ) ( )ττ ff =+1 , then one has the following Fourier expansion 

 

                                                       ( ) ∑
∞

=

=
1

2

m

im

mecf
τπτ .    (24) 

 

The Mellin transform ( )sϕ  of If  leads to the Dirichlet series 

 

                                                          ( ) ∑
∞

=

−=
1m

s

mmcsϕ ,    (25) 

 

which may be seen to have a positive abscissa of convergence.  

For the “modular group” ( )1Γ  the Dirichlet series associated to every cuspform of weight w  admits 

an analytic continuation with functional equation under the substitution sws −a . Since ( )1Γ  is 

generated by the two matrices T  and  

                                                              








−
=

01

10
W     (26) 

 

and since the functional equation of a modular form f  relative to T  is reflected in the formation of 

the Fourier series (24), the condition that an absolutely convergent series (24) is a modular form for 

( )1Γ  is the functional equation for a modular form relative solely to W . 
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Observing that the formula 

                                             
2

22
2

y

dydx
ds

+
=     for    Hiyx ∈+=τ ,    (27) 

 

gives a (the hyperbolic) ( )RSL2 -invariant metric in H  with associated invariant measure  

 

                                                                
2y

dxdy
d =µ ,    (28) 

 

one introduces the Petersson (Hermitian) inner product in the space of cuspform of weight w  for Γ  

with the definition: 

                                    ( ) ( ) ( ) ( )∫ Γ
ℑ=

/
,

H

w
dgfgf τµτττ .    (29)  (see also page 13 eq. (28)) 

 

(Integration over the quotient Γ/H  makes sense since the integrand   ( ) ( ) wygf ττ  (30)  is Γ -

invariant). 

For the modular group ( )1Γ  the th
n  Hecke operator ( ) ( )nTnT w=  is the linear endomorphism of the 

space of cuspforms of weight w  arising from the following considerations. Let nS  be the set of 

22 ×  matrices in Z  with determinant n . For 

 

                                                       nS
dc

ba
M ∈








=     (31) 

 

and for a function f  in H  one defines 

 

 

                                   ( )( ) ( ) ( ) ( )τττ fdcMfM
ww

w

−−
+=⋅

1
det ,    (32) 

 

and then, observing that ( )1Γ  under  w⋅  acts trivially on the modular forms of weight w , one may 

define the Hecke operator ( )nTw  by 

 

                                                           ( )( ) ( )( )
( )

∑
Γ∈

⋅=
1/nSM

ww fMfnT τ ,    (33) 

 

where the quotient ( )1/ ΓnS  refers to the action of ( )1Γ  by left multiplication on the set nS . One 

finds for nm,  coprime that 

                                                          ( ) ( ) ( )nTmTmnT = ,    (34) 

 

and furthermore one has  

                                               ( ) ( ) ( ) ( )111 −−+ −= ewee pTppTpTpT .    (35) 

 

Consequently, the operators ( )nT  commute with each other, and, therefore, generate a commutative 

algebra of endomorphisms of the space of cusp forms of weight w  for ( )1Γ . It is not difficult to see 

that the Hecke operators are self-adjoint for the Petersson inner product on the space of cuspforms. 

Consequently, the space of cuspforms of weight w  admits a basis of simultaneous eigenforms for 
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the Hecke algebra. A “Hecke eigencuspform” is said to be normalized if its Fourier coefficient 

11 =c . If f  is a normalized Hecke eigencuspform, then: 

 

(i) The Fourier coefficient mc  of f  is the eigenvalue of f  for ( )mT . 

(ii) The Fourier coefficients ( ) mcmc =  of f  satisfy  

                         ( ) ( ) ( )ncmcmnc =   for  nm,  coprime, and  

                      ( ) ( ) ( ) ( )111 −−+ −= ewee pcppcpcpc   for p  prime. 

 

Consequently, the Dirichlet series associated with a simultaneous Hecke eigencuspform of level 1 

and weight w  admits an Euler product 

 

                                              ( ) ∏ −−− +−
=

p
sws

p ppc
s

211

1
ϕ .    (36) 

 

For example, when f  is the unique normalized cuspform ∆  of level 1 and weight 12, one has 

 

          ( )
( )∏ −− +−

=
p

ss
ppp

s
2111

1

τ
ϕ ,    (37)        (in fact, if 12=w , then ssw 21121 −=−− ) 

 

where  ( )pcp τ=   is the function τ  of Ramanujan.  

 

 

 

 

 

 

 

C. Shimura map[3] 

 

Shimura showed for a given NW -compatible Hecke eigencuspform f  of weight 2 for the group 

( )N0Γ  with rational Fourier coefficients how to construct an elliptic curve fE  defined over Q  such 

that the Dirichlet series ( )sϕ  associated with f  is the same as the L -function ( )sEL f , . 

Let Γ  be a congruence subgroup of ( )ZSL2 , and let ( )ΓX  denote the compact Riemann surface 

Γ∗ /H . The inclusion of Γ  in ( )1Γ  induces a “branched covering” 

 

                                                     ( ) ( ) 11 PXX ≅→Γ .    (38) 

 

One may use the elementary Riemann-Hurwitz formula from combinatorial topology to determine 

the Euler number, and consequently the genus, of ( )ΓX . The genus is the dimension of the space of 

cuspforms of weight 2. Even when the genus is zero one obtains embeddings of ( )ΓX  in projective 

spaces rP  through holomorphic maps 

 

                                          ( ) ( ) ( )( )ττττ rfff ,...,, 10a ,    (39) 

 

where rfff ,...,, 10  is a basis of the space of modular forms of weight w  with w  sufficiently large. 
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Using the corresponding projective embedding one finds a model for  ( ) ( )( )NXNX 00 Γ=   over Q , 

i.e., an algebraic curve defined over Q  in projective space that is isomorphic as a compact Riemann 

surface to ( )NX 0 .  

Associated with any “complete non-singular” algebraic curve X  of genus g  is a complex torus, the 

“Jacobian” ( )XJ  of X , that is the quotient of g -dimensional complex vector space g
C  by the 

lattice Ω  generated by the “period matrix”, which is the gg 2×  matrix in C  obtained by 

integrating each of the g  members iω  of a basis of the space of holomorphic differentials over each 

of the g2  loops in X  representing the members of a homology basis in dimension 1. Furthermore, 

if one picks a base point 0z  in X , then for any z  in X , the path integral from 0z  to z  of each of 

the g  holomorphic differentials is well-defined modulo the periods of the differential. One obtains 

a holomorphic map ( )XJX →  from the formula 

 

                                          Ω




 ∫ ∫ mod,...,

0 0
1

z

z

z

z
gz ωωa .    (40) 

 

This map is universal for pointed holomorphic maps from X  to complex tori. Furthermore, the 

Jacobian ( )XJ  is an algebraic variety that admits definition over any field of definition for X  and 

0z , and the universal map also admits definition over any such field. The complex tori that admit 

embeddings in projective space are the abelian group objects in the category of projective varieties. 

They are called abelian varieties. Every abelian variety is isogenous to the product of “simple” 

abelian varieties: abelian varieties having no abelian subvarieties. Shimura showed that one of the 

simple isogeny factors of ( )( )NXJ 0  is an elliptic curve fE  defined over Q  characterized by the 

fact that its one-dimensional space of holomorphic differentials induces on ( )NX 0 , via the 

composition of the universal map with projection on fE , the one-dimensional space of differentials 

on ( )NX 0  determined by the cuspform f .  

He showed further that ( )sEL f ,  is the Dirichlet series ( )sϕ  with Euler product given by f . An 

elliptic curve E  defined over Q  is said to be modular if it is isogenous to fE  for some NW -

compatible Hecke eigencuspform of weight 2 for ( )N0Γ . Equivalently E  is modular if and only if 

( )sEL ,  is the Dirichlet series given by such a cuspform. The Shimura-Taniyama-Weil Conjecture 

states that every elliptic curve defined over Q  is modular. Shimura showed that this conjecture is 

true in the special case where the Z -module rank of the ring of endomorphisms of E  is grater than 

one. In this case the point τ  of the upper-half plane corresponding to ( )CE  is a quadratic imaginary 

number, and ( )sEL ,  is a number-theoretic L -function associated with the corresponding imaginary 

quadratic number field. 

 

D. Automorphic L -functions[4] 

 

Talking about zeta functions in general one inevitably is led to start with the Riemann zeta function 

( )sζ . It is defined as a Dirichlet series: 

 

                                                                      ( ) ∑
∞

=

−=
1n

s
nsζ ,    (41) 
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which converges for each complex number s  of real part greater than one. In the same region it 

possesses a representation as a Mellin integral: 

 

                                                     ( )
( ) t

dt
t

es
s s

t∫
∞

−Γ
=

0 1

11
ζ .    (42) 

 

Let f  be a cusp form of weight k2  for some natural number k , i.e., the function f  is holomorphic 

on the upper half plane H  in C , and has a certain invariance property under the action of the 

modular group ( )ZSL2  on H . Then f  admits a Fourier expansion 

 

                                                                ( ) ∑
∞

=

=
1

2

n

izn

neazf
π .    (43) 

 

Define its L -function for ( ) 1Re >s  by 

                                                                   ( ) ∑
∞

=

=
1

,
n

s

n

n

a
sfL .    (44) 

 

The easily established integral representation 

 

                                      ( ) ( ) ( ) ( ) ( )∫
∞−

=Γ=
0

,2,ˆ
t

dt
titfsfLssfL

ssπ ,    (45) 

 

implies that ( )sfL ,  extends to an entire function satisfying the functional equation 

( ) ( ) ( )skfLsfL
k

−−= 2,ˆ1,ˆ . With ( ) ( )ksfLsf 2,ˆ, =Λ  this becomes 

 

 

                                                   ( ) ( ) ( )sfsf
k

−Λ−=Λ 1,1, .    (46) 

 

This construction can be extended to cusp forms for suitable subgroups of the modular group. These 

L -functions look like purely analytical objects. Thus it was particularly daring of A. Weil, G. 

Shimura, and Y. Taniyama in 1955 to propose the conjecture that the zeta function of any elliptic 

curve over Q  coincides with a ( )sf ,Λ  for a suitable cusp form f . This conjecture was proved in 

part by A. Wiles and R. Taylor providing a proof of Fermat’s Last Theorem as a consequence. 

The upper half plane is a homogeneous space of the group ( )RSL2 , and so cusp forms may be 

viewed as functions on this group, in particular, they are vectors in the natural unitary 

representation of ( )RSL2  on the space 

 

                                                           ( ) ( )( )RSLZSLL 22

2 \ .    (47) 

 

Going even further one can extend this quotient space to the quotient of the adele group ( )AGL2  

modulo its discrete subgroup ( )QGL2 , so cusp forms become vectors in 

 

                                                         ( ) ( )( )1

22

2 \ AGLQGLL ,    (48) 
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where ( )12 AGL  denotes the set of all matrices in ( )AGL2  whose determinant has absolute value one. 

Now 2GL  can be replaced by nGL  for Nn ∈  and one can imitate the methods of Tate’s thesis (the 

case n = 1) to arrive at a much more general definition of an automorphic L -function: this is an 

Euler product ( )sL ,π  attached to an automorphic representation π  of ( )1AGLn , i.e., an irreducible 

subrepresentation π  of ( ) ( )( )12 \ AGLQGLL nn . As in the 1GL -case it has an integral representation 

as a Mellin transform and it extends to a meromorphic representation, which is entire if π  is 

cuspidal and 1>n . Furthermore it satisfies a functional equation 

 

                                                 ( ) ( ) ( )sLssL −= 1,~,, ππεπ ,    (49) 

 

where π~  is the contragredient representation and ( )s,πε  is a constant multiplied by an exponential. 

We conclude remember that extending the Weil-Shimura-Taniyama conjecture, R.P. Langlands 

conjectured in the 1960s that any motivic L -function coincides with ( )sL ,π  for some cuspidal π . 

 

2.2 On some mathematical applications of the Mellin transform.[5] 

 

Harmonic sums are sums of the form 

 

                                                          ( ) ( )∑=
k

kk xgxG µλ ,    (50) 

 

where the kλ  are the amplitudes, the kµ  are the frequencies and ( )xg  is the base function. We 

consider harmonic sums because we wish to evaluate ( )xG  at a set of particular points ,..., 10 xx  or at 

all Rx ∈ . 

 

Definition of the harmonic sum and computation of the appropriate Mellin transform. 

 

Now, let kk /1=λ , kk /1=µ  and ( ) ( ) ( )xxxxg /11/11/ +=+= ; and we consider the harmonic sum 

 

                            ( ) ( )∑ ∑ ∑ 








+
−=

+
==

x

kk
kxkkx

kx

k
xgxh

11

/1

/1
µλ .    (51) 

 

This sum is of interest because 

 

                             ( ) ∑ ∑ ∑ ∑
+= =

==−=








+
−=

1 1

11111

nk

n

k

nH
kkkknk

nh ,    (52) 

 

the n th harmonic number. 

The principal operation in the evaluation of harmonic sums is the computation of the Mellin 

transform of the base function ( )yg  and the computation of the Dirichlet generating function ( )sΛ . 

We first compute the transform of the base function. We have  ( )[ ] ( )ssx ππ sin/;1/1 =+Μ   and 

hence 

                                                  
( )s

s
x

x

π

π

sin
;

1
−=






+
Μ .    (53) 

 

Now we compute the Dirichlet generating function ( )sΛ . We have 
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                                      ( ) ( )∑ ∑ −===Λ
−

s
k

k
k

s
s

s 1
11
1

ζ .    (54) 

 

We conclude that the Mellin transform of ( )xh  is  

 

                                                           
( )

( )s
s

−− 1
sin

ζ
π

π
.    (55) 

 

Inversion of the map. 

 

Now, by Mellin inversion we obtain: 

 

                                            
( )

( ) ( )xhxs
s

=







−−Μ− ;1

sin

1 ζ
π

π
.    (56) 

 

This is equivalent to the inversion integral 

 

                                      
( )

( ) ( )∫
∞+

∞−

− =







−−

ic

ic

s
xhdsxs

s
1

sin
ζ

π

π
.    (57) 

 

This integral representation permits the computation of ( )xh , because the integral can evaluated by 

the Cauchy Residue theorem, i.e., it is a sum of residues of ( ) sxsh −∗ . 

 

Computation of the poles of the transform function and the corresponding terms in the asymptotic 

expansion. 

 

We use the fact that 

                                    ( ) ( )( )
( )( )
∑

−∗∈

−∗ =−≈
HxshSing

s

s

sxshsxh
Iς

ς;Re ,    (58) 

 

where H  is the right half-plane, chosen for an expansion at infinity. We must compute the set of 

poles  ( )( ) HxshSing s
I

−∗   and map them back to the terms of the expansion of ( )xh . The poles of 

( )sh∗  in the right half-plane are at 0=s , where we have a double pole and 

 

                                                         ( ) ...
1

2
+−=∗

ss
sh

γ
    (59) 

 

and at +∈= Zkks , , where we have 

 

                                                  ( ) ( ) ( )
...

1
1 +

−

−
−−=∗

ks

k
sh

k ζ
.    (60) 

 

These poles map back to    γ−− xlog     (61)   and  
x2

1
−  for  1=k ,  

( )
k

k

k

xk

B 11−
−  for 2≥k .  (62) 

 

We conclude that Harmonic numbers satisfy the asymptotic expansion 
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( )

∑
≥

−
+++≈

2

11

2

1
log

k
k

k

k

n
nk

B

n
nH γ .    (63) 

 

This expansion is exact; it converges for 1≥n . 

The Mellin transform maps the space of functions that are integrable along the positive real line to 

that of complex functions that are analytic on a vertical strip of the complex plane. This strip may in 

many cases be extended to a larger domain. The map is given by the fundamental formula: 

 

                                    ( )[ ] ( ) ( )∫
+∞

−∗ ==Μ
0

1; dxxxfsfsxf
s .    (64) 

 

The Mellin-Perron formula is a specific instance of generalized Mellin summation. The traditional 

proof uses the “discontinuous factor” described by the following lemma: 
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π
φ  if  10 ≤< y ,               (65) 

 

where ++ ∈∈ ZmRy ,  and 1≥c . 

The above equality for the discontinuous factor ( )yφ  is easily verified with the Cauchy residue 

theorem. 

Hence, there are two cases. 

 

Case 1.   y≤1 . 

 

The term                 
( ) ( )msss

y
s

++ ...1
    (66)     is meromorphic with residues 
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    (67) 

 

where mk ≤≤0 . Therefore the sum of these residues is 
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Now consider the left contour. The integral along the vertical segment at c  in the right-half plane 

approaches 

                                                
( ) ( )∫
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∞− ++
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    (69) 
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as T  goes to infinity. Along the two horizontal segments from iTT ±−  to iTc ± , the integrand is 

bounded by  
m

T

y
σ

 and because the term  
m

T

y
σ

σ

+

+

1

1

1
  with T−=σ , c=σ  vanishes as T  goes to 

infinity (recall that y≤1 ), the contribution from these two segments is zero. The integrand is 

bounded by  
( ) ( )mTTT

y
T

−−

−

...1
 on the vertical segment in the left half-plane; hence the integral is 

bounded by  
( ) ( )mTT

y
T

−−

−

...1

2
 and its contribution is zero also. 

 

Case 2.  10 ≤< y . 

 

Consider the contour in the right half-plane. Along the horizontal segments we may use the same 

bound as in the first case, with c=σ  and T=σ ; hence these integrals vanish ( )10 ≤< y . The 

integrand is bounded by  
( ) ( )mTTT

y
T

++ ...1
  on the vertical segment in the right half-plane; its 

contribution is zero because 10 ≤< y .  

The principal feature of the “discontinuous factor” is that it can be used to evaluate finite sums. 

Suppose we have a finite sum over the indices k  from 1 to 1−n . Evidently ( )yφ  is non-zero if y/1  

lies in ( )1,0  and zero otherwise. We need only find a map such that the set { }1,...1 −n  maps to a 

subrange of ( )1,0  and { }...1, +nn  to a subrange of [ )∞,1 . Clearly nky //1 =  is such a map. We 

obtain  
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By a formal argument we finally have 
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This is the Mellin-Perron formula. 

The Mellin-transform view adds two additional perspectives. One, that the Mellin-Perron formula is 

a specific instance of harmonic sum formulas, and hence, two, that its evaluation corresponds to 

Mellin inversion. 

We wish to evaluate the harmonic sum       ∑
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1λ     (72)      where +∈ Znm, . This is 

equivalent to         ∑
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
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
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k
gkλ     (73)    where  ( ) ( )m

xxg −= 1   if  10 ≤< x ;  ( ) 0=xg   otherwise. It 

is no difficult to see that            ( )[ ]
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Evidently the sum  ∑
∞


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





1 n

k
gkλ  is a harmonic sum ( )xG  of the form  ( )∑

∞

1

kxgkλ   with amplitudes 

kλ , frequencies kk =µ  and evaluated at nx /1= . Therefore the transform function ( )sG∗  is 
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By Mellin inversion we thus have 
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and in particular 
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This is the Mellin-Perron formula. 

 

                      The Mellin transform: Definitions, Theorems and Lemmas  
 

Definition 2.2.1 

 

The open strip of complex numbers βα ,  is the set { }βσασ <<+= its .  

 

Definition 2.2.2 

 

Let ( )xf  be locally Lebesgue integrable over ( )+∞,0 . The Mellin transform of ( )xf  is defined by  

 

                                     ( )[ ] ( ) ( )∫
+∞

−∗ ==Μ
0

1; dxxxfsfsxf
s .    (78) 

 

The fundamental strip is the largest open strip where the integral converges. 

 

Lemma 2.2.1 

 

The conditions                ( ) ( )u

x
xxf Ο∈+→0 ,    ( ) ( )v

x
xxf Ο∈+∞→ ,    (79) 

 

when vu > , guarantee that ( )xf ∗  exists in the strip vu −− , . 

 

Definition 2.2.3 

 

Let      ( ) 10 =xH   if  [ ]1,0∈x ;    ( ) 00 =xH   if 1>x     (80)    be defined on [ )+∞,0  and let  

 

                                  ( ) ( ) ( )xHxxH
m

m 01−=   when  +∈ Zm .    (81) 

 

Note that ( )xH0  has a discontinuity at 1=x ; we have ( ) 1lim 01 =−→ xHx  and  ( ) 0lim 01 =+→ xHx . 

Note also that  ( ) ( ) 0limlim 11 == +→−→ xHxH mxmx  when +∈ Zm ; ( )xHm  is continuous at 1=x . 

 

Lemma 2.2.2 
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The Mellin transform ( )xHm

∗  of ( )xHm , where Nm ∈ , exists in +∞,0  and is given by  
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We have ( ) ( )10 Ο∈+→xm xH  and ( ) ( )b

xm xxH
−

+∞→ Ο∈  for any 0>b  and for Nm ∈ , hence ( )xHm
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exists in +∞,0 . Note that 
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We also have  
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This gives                                           ( ) ( )xH
ms

m
xH mm

∗
−

∗

+
= 1     (85) 

 

Now, we will be concerned with the linearity and the rescaling property of the Mellin transform. 

 

Theorem 2.2.1 

 

Let Z⊂Κ  be a finite set of integers; let kµ , +∈ Rkλ . Let the fundamental strip of ( )[ ]sxf ;Μ  be 

βα , . We have 
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where βα ,∈s . 

Let xy kµ=  and dxdy kµ= . Note that 
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We were able to exchange the integral with the summation because Κ  is finite. It can be shown that 

this operation extends to infinite Κ  as long as ∑k

s

kk µλ /  converges absolutely. The extended 

property holds in the intersection of the half-plane of convergence of ∑k

s

kk µλ /  and the 

fundamental strip βα ,  of ( )xf . 

 

Definition 2.2.4 

 

1. (Lebesgue integration) 
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Let ( )xf  be integrable with fundamental strip βα , . If ( )βα ,∈c  and ( )itcf +∗  is integrable, then  
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    (88) 

 

almost everywhere. If ( )xf  is continuous, the equality holds everywhere on ( )+∞,0 .  

 

2. (Riemann integration.) 

 

Let ( )xf  be locally integrable with fundamental strip βα ,  and be of bounded variation in a 

neighbourhood of 0x . Then 
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for ( )βα ,∈c . Of course if  ( ) ( )xfxf
xxxx

−+ →→
=

00

limlim   then 
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Theorem 2.2.2 (Mellin-Perron formula) 

 

Let +∈ Rc  lie in the half-plane of absolute convergence of ∑k

s

k k/λ . Then we have 
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for +∈ Zm . We have  
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when 0=m . 

This theorem is a straightforward application of Mellin inversion. 

 

Proof. 

 

Let  ( ) ( )∑=
k kk xfxF µλ   and use the rescaling property to obtain  
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Consider Riemann-integrable ( )xf  and apply the Mellin inversion formula 

 



 32 

             
( ) ( ) ( )∫ ∑∑

+

−

−∗

∞→

−+









=

+ iTc

iTc

s

k
s

k

k

k
T

kk
k dsxsf

i

xfxf

µ

λ

π

µµ
λ

2

1
lim

2
.    (94) 

 

Let ( ) ( )xHxf m= , Nm ∈  and let kk =µ . Recall that the fundamental strip of ( )xHm  is ∞,0 ; let 

nx /1= . This gives  
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Note that 
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Continuing the substitution, we have 
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This concludes the proof. Because the fundamental strip of ( )xHm  is ∞,0 , the choice of  0>c  is 

determined by the half-plane of convergence of ∑k

s

k k/λ  only.  

Now we presents two Mellin-Perron formulae for the generalized ζ -function. We apply the Mellin 

inversion theorem to  ( ) ( )∑=
k kk xfxF µλ  with nrx /= , +∈ Znr, , akk +=µ , 1=kλ , Ra ∈ , 

( ]1,0∈a , ( ) ( ) ( ) ( )xHxxHxf 01 1−== . As we require +∈ Rkµ  we take Nk ∈ . We have 
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where 1>σ . We need to evaluate ( )xF .  ( )xH0  vanishes outside of [ )1,0 , hence we require 

( ) 1/0 <+≤ nrak   or  arnk −< / . Let ( ) { }NvuvuN ∈<=  where +∈ Ru . We have 
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With these settings the Mellin inversion formula yields the following theorem. 
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Theorem 2.2.3 

 

Let 1>c . 
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This theorem has several useful corollaries. The first of these is obtained by setting 1=r . Let 

( )0,1−∈α .  

 

Corollary 2.2.3 
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Let 1=c . The set of poles of ( ) ( )( )1/, +ssnas sζ  in c,α  is { }0,1 . We apply the shifting lemma 

with ( ) sns =Φ  and jT j = . Because σnns =  we can take c
nM = . 
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The second corollary results from taking 4=r . 

 

Corollary 2.2.4 

 

Let Nn ∈ . 
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We let 1=c  as before and consider the poles of ( ) ( )( )14/, +ssnas ssζ  in c,α , which are at 1 and 

0. We apply the shifting lemma with  ( ) ( )s
ns 4/=Φ , jT j =  and take ( )c

nM 4/= . 
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Suppose 14 mmn +=  where { }3,2,1,01 ∈m . We have  [ ] amnan −+=− 4/4/4/ 1 . If am <4/1 , the 

sum over ( )anN −4/  ranges from 0 to [ ] 14/ −n . If am ≥4/1  the sum includes [ ]4/n . We have two 

cases: 
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We note that [ ] ( ) 4/4/ 1mnn −=  and [ ] nmnn /1/44/ 1−= . Hence the two terms evaluate to 
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We conclude that 
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2.3 The zeta-function quantum field theory and the quantum L-functions.[6]  

 

The Riemann zeta-function is defined as  
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and there is an Euler adelic representation 
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Now, we have the Riemann ξ -function 
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which is an entire function. The zeros of the ξ -function are the same as the nontrivial zeros of the 

ζ -function. There is the functional equation 
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and the Hadamard representation for the ξ -function 
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Here ρ  are nontrivial zeros of the zeta-function and 
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where γ  is Euler’s constant. 

If ( )τF  is a function of a real variable τ  then we define a pseudo-differential operator F (�) by 

using the Fourier transform 
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Here � is the d’Alambertian operator 
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( )xφ  is a function from d
Rx ∈ ,  ( )kφ

~
 is the Fourier transform and  2

1
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2 ... −−−−= dkkkk . 

We assume that the integral (113) converges. 

One can introduce a natural field theory related with the real valued function ( ) 




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1
 

defined by means of the zeta-function. We consider the following Lagrangian 
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the integral 
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converges if ( )xφ  is a decreasing function since 
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1
 is bounded. 

The operator  ( i+2/1ξ �)  (or  ( i+2/1ζ �))  is the first quantization the Riemann zeta-function. 

From the Hadamard representation (111) we get 
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It is possible to write the formula (117) in the form 
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where 1±=ε  and a regularization is assumed. 

To quantize the zeta-function classical field ( )xφ  which satisfies the equation in the Minkowski 

space 

                                                                    F (�) ( ) 0=xφ     (119) 

 



 36 

where  F (�) ( i+= 2/1ξ �)  we can try to interpret ( )xφ  as an operator valued distribution in a 

Hilbert space Η  which satisfies the equation (119). We suppose that there is a representation of the 

Poincare group and an invariant vacuum vector 0  in Η . Then the Wightman function 

 

                                                              ( ) ( ) ( )00 yxyxW φφ=−  

 

is a solution of the equation 

                                                                 F (�) ( ) 0=xW .    (120) 

 

By using (118) we can write the formal Kallen-Lehmann representation 
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ε εδ 22 .    (121) 

 

One introduces also another useful function 
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Here ( )zΓ  is the gamma function. The function ( )τZ  is called the Riemann-Siegel (or Hardy) 

function. It is known that ( )τZ  is real for real τ  and there is a bound 

 

                                                           ( ) ( )ε
ττ OZ = ,   0>ε .    (123) 

 

One can introduce a natural field theory related with the real valued functions ( )τZ  defined by 

means of the zeta-function by considering the following Lagrangian 

 

                                                                         ZL φ= (�)φ . 

 

The integral (113) converges if ( )xφ  is a decreasing function since there is the bound (123).  

Thence, we have the following connection: 
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                                                    ⇒ F (�) ( ) ( ) ( )∫= dkkkFex ixk φφ
~2 ,   0>ε .    (124) 

 

For any character to modulus q  one defines the corresponding Dirichlet L-function by setting 

 

                                                 ( ) ( )
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∞

=

=
1

,
n

s
n

n
sL

χ
χ ,   ( )1>σ .    (125) 
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If χ  is primitive then ( )χ,sL  has an analytic continuation to the whole complex plane. The zeros 

lie in the critical strip and symmetrically distributed about the critical line 2/1=σ . 

If we quantize the L-function by considering the pseudo-differential operator 

 

                                                                 ( iL +σ �, χ )    (126) 

 

then we can try to avoid the appearance of tachyons and/or ghosts by choosing an appropriate 

character χ . 

The Taniyama-Weil conjecture relates elliptic curves and modular forms. It asserts that if E is an 

elliptic curve over Q , then there exists a weight-two cusp form f  which can be expressed as the 

Fourier series 

                                                           ( ) ∑= nz

neazf
π2     (127) 

 

with the coefficients na  depending on the curve E. Such a series is a modular form if and only if its 

Mellin transformation, i.e. the Dirichlet L-series 

 

                                                         ( ) ∑ −= s

nnafsL ,     (128) 

 

has a holomorphic extension to the full s-plane and satisfies a functional equation. For the elliptic 

curve E we obtain the L-series ( )EsL , . The Taniyama-Weil conjecture was proved by Wiles and 

Taylor for semistable elliptic curves and it implies Fermat’s Last Theorem. 

Quantization of the L-functions can be performed similarly to the quantization of the Riemann zeta-

function discussed above by considering the corresponding pseudo-differential operator  ( iL +σ �).          

 

     

 

 

 

 

 

 

 

 

 

 

                                                                       Chapter 3. 

 

                      How primes and adeles are related to the Riemann zeta function[7] 

 

 

A. Connes has reduced the Riemann hypothesis for L-function on a global field k to the validity of a 

trace formula for the action of the idele class group on the noncommutative space quotient of the  

adeles of k by the multiplicative group of k. 

Connes has devised a Hermitian operator whose eigenvalues are the Riemann zeros on the critical 

line. Connes gets a discrete spectrum by making the operator act on an abstract space where the 

primes appearing in the Euler product for the Riemann zeta function are built in; the space is 

constructed from collections of p-adic numbers (adeles) and the associated units (ideles). 
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Hence, the geometric framework involves the space X of Adele classes, where two adeles which 

belong to the same orbit of the action of ( )kGL1  ( k  a global field), are considered equivalent. The 

group ( ) ( )kGLAGLCk 11 /=  of Idele classes (which is the class field theory counterpart of the Galois 

group) acts by multiplication on X. 

We have a trace formula (Theorem 3) for the action of the multiplicative group ∗K  of a local field 

K  on the Hilbert space ( )KL2 , and (Theorem 4) a trace formula for the action of the multiplicative 

group sC  of Idele classes associated to a finite set S  of places of a global field k , on the Hilbert 

space of square integrable functions ( )SXL
2 , where SX  is the quotient of ∏ ∈Sv vk  by the action of 

the group ∗
SO  of S-units of k . The validity of the trace formula for any finite set of places follows 

from Theorem 4, but in the global case is left open and shown (Theorem 5) to be equivalent to the 

validity of the Riemann Hypothesis for all L  functions with Grossencharakter. 

 

 

H. Montgomery has proved (assuming RH) a weakening of the following conjecture (with 

0, >βα ), 
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This law, i.e. the equation (1), is precisely the same as the correlation between eigenvalues of 

hermitian matrices of the gaussian unitary ensemble. Moreover, numerical tests due to A. Odlyzko 

have confirmed with great precision the behaviour (1) as well as the analogous behaviour for more 

than two zeros. N. Katz and P. Sarnak has proved an analogue of the Montgomery-Odlyzko law for 

zeta and L-functions of function fields over curves. 

It is thus an excellent motivation to try and find a natural pair ( )D,Η  where naturality should mean 

for instance that one should not even have to define the zeta function, let alone its analytic 

continuation, in order to obtain the pair (in order for instance to avoid the joke of defining Η  as the 
2
l  space built on the zeros of zeta). 

 

Theorem 1. 

 

Let K  be a local field with basic character α . Let ( )∗∈ KSh  have compact support. Then ( )hURΛ  

is a trace class operator and when ∞→Λ , one has 
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where 
[ ]∫ ΛΛ∈∈

∗

−∗
=Λ

,, 1
log'2

λλ
λ

K
d , and the principal value ∫

'

is uniquely determined by the pairing 

with the unique distribution on K  which agrees with 
u

du

−1
 for 1≠u  and whose Fourier transform 

vanishes at 1. 

 

Proof. 

 

We normalize the additive Haar measure to be the selfdual one on K . Let the constant 0>ρ  be 

determined by the equality, 
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                                                ∫ Λ≤≤
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    when   ∞→Λ ,    (3) 

 

so that   
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λ
ρλ

d
d

1−∗ = .  Let L  be the unique distribution, extension of  
u

du

−
−

1

1ρ   whose Fourier 

transform vanishes at 1, ( ) 01ˆ =L . One then has by definition, 
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where  
( )

0
1

=
−

u

uh
  for 1−

u  outside the support of h .  Let ( )hUT = . We can write the Schwartz 

kernel of T  as, 

                                             ( ) ( ) ( )∫
∗− −= λλδλ dxyhyxk 1, .    (5) 

 

Given any such kernel k  we introduce its symbol, 

 

                                              ( ) ( ) ( )duuuxxkx ξαξσ ∫ += ,,     (6) 

 

as its partial Fourier transform. The Schwartz kernel ( )yxr t ,Λ  of the transpose tRΛ  is given by, 

 

                                                 ( ) ( )( )( )yxxyxr t −= ΛΛΛ ρρ ˆ, .    (7) 

 

Thus, the symbol Λσ  of tRΛ  is simply, 

 

                                                        ( ) ( ) ( )ξρρξσ ΛΛΛ = xx, .    (8) 

 

The operator ΛR  is of trace class and one has, 

 

                                     Trace ( ) ( ) ( )∫ ΛΛ = dxdyyxryxkTR t ,, .    (9) 

 

Using the Parseval formula we thus get, 

 

                                       Trace ( ) ( )∫ Λ≤Λ≤
Λ =

ξ
ξξσ

,
,

x
dxdxTR .    (10) 

 

Now the symbol σ  of T is given by, 

 

                                 ( ) ( ) ( ) ( )( )∫ ∫
∗− −+= λξαλδλξσ dduuxuxhx 1, .    (11) 

 

One has, 

                                  ( ) ( ) ( )( )∫ −=−+ ξλαξαλδ xduuxux 1 ,    (12) 

 

thus (11) gives, 
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                                               ( ) ( ) ( )∫
−=

K
dxgx λξλαλρξσ 1,     (13) 

 

where, 

                                                       ( ) ( )( ) 11
11

−−
++= λλλ hg .    (14) 

 

Since h  is smooth with compact support on ∗K  the function g  belongs to ( )KCc

∞ . Thus 

( ) ( )ξρξσ xgx ˆ, 1−=   and 

                                           Trace ( ) ( )∫ Λ≤Λ≤
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With ξxu =  one has  
x

dx
dudxd =ξ   and, for  2Λ≤u , 
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Thus we can rewrite (15) as, 

 

                                   Trace ( ) ( )( )∫ Λ≤
Λ −Λ=

2
loglog'2ˆ

u
duuugTR .    (17) 
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∞∈  one has, 
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and similarly for ( ) uug logˆ . Thus 

 

                          Trace ( ) ( ) ( ) ( )∫ +−Λ=Λ 1logˆlog'02 oduuuggTR .    (19) 

 

Now for any local field K  and basic character α , if we take for the Haar measure da  the selfdual 

one, the Fourier transform of the distribution  ( ) uu log−=ϕ   is given outside 0 by 
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a

a
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ˆ 1−= ρϕ ,    (20) 

  

with ρ  determined by (3). To see this one lets P  be the distribution on K  given by, 
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One has  ( ) ( ) ( )0log fafPfP a −=   which is enough to show that the function ( )xP̂  is equal to 

+− xlog cst,  and ϕ̂  differs from P  by a multiple of 0δ . Thus the Parseval formula gives, with the 

convention of Theorem 3,  
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                                                ( ) ( )∫ ∫=−
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Replacing a  by 1−λ  and applying (14) gives the desired result. 

 

Now, let k  be a global field and S  a finite set of places of k  containing all infinite places. The 

group ∗
SO  of S -units is defined as the subgroup of ∗

k ,  { }SvqkqO vS ∉=∈= ∗∗ ,1,  . It is co-compact 

in 1

SJ  where,   ∏
∈

∗=
Sv

vS kJ   and,   { }1,1 =∈= jJjJ SS . Thus the quotient group ∗= SSS OJC /  plays 

the same role as kC , and acts on the quotient SX  of ∏ ∈
=

Sv vS kA  by ∗
SO . 

 

Theorem 2. 

 

Let SA  be as above, with basic character ∏= vαα . Let ( )SCSh ∈  have compact support. Then 

when ∞→Λ , one has  
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where  
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∗
vk  is embedded in SC  by the map ( )1,...,,...,1,1 uu →  and 

the principal value ∫
'

is uniquely determined by the pairing with the unique distribution on vk  

which agrees with  
u

du

−1
  for  1≠u  and whose Fourier transform relative to vα  vanishes at 1. 

 

Proof. 

 

We normalize the additive Haar measure dx  to be the selfdual one on the abelian group SA . Let the 

constant 0>ρ  be determined by the equality, 
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1−∗ = .  We let f  be a smooth compactly supported function on SJ  such that  
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The existence of such an f  follows from the discreteness of ∗
SO  in SJ . We then have the equality 

( ) ( )hUfU = , where  

                                                      ( ) ( ) ( )∫
∗= λλλ dUffU .    (25) 
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Now, for an operator T, acting on functions on SA , which commutes with the action of ∗
SO  and is 

represented by an integral kernel, 

 

                                                       ( ) ( ) ( )∫= dyyyxkT ξξ , ,    (26) 

 

the trace of its action on ( )SXL
2  is given by, 
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where D  is a fundamental domain for the action of ∗
SO  on the subset SJ  of SA , whose complement 

is negligible. Let ( )fUT = . We can write the Schwartz kernel of T  as, 
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∗− −= λλδλ dxyfyxk 1, ,    (28) 

 

by construction one has, 

                                            ( ) ( )yxkqyqxk ,, =       ∗∈ SOq .    (29) 

 

For any ∗∈ SOq , we shall evaluate the integral, 
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where the Schwartz kernel ( )yxr t ,Λ  for the transpose tRΛ  is given by, 

 

                                              ( ) ( )( )( )yxxyxr t −= ΛΛΛ ρρ ˆ, .    (31) 

 

To evaluate the above integral, we let axy +=  and perform a Fourier transform in a . For the 

Fourier transform in a  of ( )axxr t +Λ , , one gets, 

 

                                                     ( ) ( ) ( )ξρρξσ ΛΛΛ = xx, .    (32) 

 

For the Fourier transform in a  of ( )axqxk +, , one gets, 
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Since f  is smooth with compact support on ∗
SA  the function qg  belongs to ( )Sc AC

∞ .  

Thus  ( ) ( )ξρξσ xgx q
ˆ, 1−=   and, using the Parseval formula we get, 
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With ξxu =  one has  
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dudxd =ξ   and, for  2Λ≤u , 
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Thus we can rewrite (38) as, 
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In fact all the sums in q  will have only finitely many non zero terms. It will then remain to control 

the error term, namely to show that, 
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for any N , where we used the notation 0=+
x  if  0≤x  and xx =+  if  0>x . 

Now recall that for (36),   ( ) ( )( ) 11
11

−−
++= uuqfugq ,  so that  ( ) ( ) ( )qfgduug qq ==∫ 0ˆ .  Since f  

has compact support in ∗
SA , the intersection of ∗

SO  with the support of f  is finite and by (24) we 

get the equality (41). To prove (42), we consider the natural projection vpr  from ∏ ∈

∗

Sl lk  to  

∏ ≠

∗

vl lk . The image ( )∗
Sv Opr  is still a discrete subgroup of ∏ ≠

∗

vl lk , thus there are only finitely 

many ∗∈ SOq  such that ∗
vk  meets the support of qf , where ( ) ( )qafafq =  for all a .  
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For each ∗∈ SOq  one has, 
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and this vanishes except for finitely many sq' , so that by (24) we get the equality (42).  

 

Theorem 3. 

 

Let k  be a global field of positive characteristic and ΛQ  be the orthogonal projection on the 

subspace of ( )XL2  spanned by the ( )ASf ∈  such that ( )xf  and ( )xf̂  vanish for Λ>x . Let 

( )kCSh ∈  have compact support. Then the following conditions are equivalent, 

 

a) When ∞→Λ , one has 
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b) All L functions with Grossencharakter on k satisfy the Riemann Hypothesis. 

 

 

To prove that (a) implies (b), we shall prove (assuming (a)) the positivity of the Weil distribution, 
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We have that for 0=δ , the map E , 
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defines a surjective isometry from ( )0

2
XL  to ( )kCL

2  such that, 
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where the left regular representation V  of kC  on ( )kCL
2  is given by,  

 

                                             ( )( )( ) ( )gagaV 1−= ξξ      kCag ∈∀ , .    (49) 

 

Let ΛS  be the subspace of ( )kCL
2  given by, 

  

                                         ( ) ( ) [ ]{ }ΛΛ∉∀=∈= −
Λ ,,,0; 12

gggCLS k ξξ .    (50) 

 

We shall denote by the same letter the corresponding orthogonal projection. 
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Let 0,ΛB  be the subspace of ( )0

2
XL  spanned by the ( )0ASf ∈  such that ( )xf  and ( )xf̂  vanish for 

Λ>x  and 0,ΛQ  be the corresponding orthogonal projection. Let ( )0ASf ∈  be such that ( )xf  and 

( )xf̂  vanish for Λ>x , then ( )( )gfE  vanishes for Λ>g , and the equality 
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shows that ( )( )gfE  vanishes for 1−Λ<g . 

This shows that ( ) ΛΛ ⊂ SBE 0, , so that if we let 1

0,

'

0,

−
ΛΛ = EEQQ , we get the inequality, 
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and for any Λ  the following distribution on kC  is of positive type, 
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i.e. one has, 
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Λ ff ,    (54) 

 

where ( ) ( )1−∗ = gfgf  for all kCg ∈ . 

Let then  ( ) ( )12/1 −−
= ghggf ,  so that by (48) one has  ( ) ( )EfVhEU

~
=  where ( ) ( )1~ −= gfgf   for all 

kCg ∈ . Then, we have: 
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One has  Trace ( )( ) ( ) Λ=Λ log'12 ffVS ,  thus using (a) we see that the limit of Λ∆  when ∞→Λ  is 

the Weil distribution ∆ . The term D  in the latter comes from the nuance between the subspaces ΛB  

and 0,ΛB . This shows using (53), that the distribution ∆  is of positive type so that (b) holds. 

Let us now show that (b) implies (a). We shall compute from the zeros of L -functions and 

independently of any hypothesis the limit of the distributions Λ∆  when ∞→Λ . 

We choose an isomorphism 

                                                               NCC kk ×≅ 1, .    (56) 

 

where =N range ,∗
+⊂ R  ZN ≅  is the subgroup ∗

+⊂ RqZ .  For C∈ρ  we let ( )zd ρµ  be the 

harmonic measure of ρ  with respect to the line CiR ⊂ . It is a probability measure on the line iR  

and coincides with the Dirac mass at ρ  when ρ  is on the line. 

The implication (b)⇒ (a) follows immediately from the explicit formulas and the following lemma, 

 

Lemma 1. 

 

The limit of the distributions Λ∆ when ∞→Λ  is given by, 
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where B is the open strip ( ) ,
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zero, ( )zd ρµ  is the harmonic measure of ρ  with respect to the line CiR ⊂ , and the Fourier 

transform f̂  of f  is defined by 
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Let us first recall the Weil explicit formulas. One lets k  be a global field. One identifies the 

quotient 1,/ kk CC  with the range of the module, 

 

                                                            { } ∗
+⊂∈= RCggN k; .    (59) 

 

One endows N  with its normalized Haar measure xd
∗ . Given a function F on N  such that, for 

some 
2

1
>b , 

 

                                 ( ) ( )b
F νν 0=   0→ν ,   ( ) ( )b

F
−= νν 0 ,   ∞→ν ,    (60) 

 

one lets, 

                                                         ( ) ( )∫
∗−=Φ

N

s
dFs ννν 2/1 .    (61) 

 

Given a Grossencharakter χ , i.e. a character of kC  and any ρ  in the strip ( ) 1Re0 << ρ , one lets 

( )ρχ ,N  be the order of ( )sL ,χ  at ρ=s . One lets, 

 

                                                    ( ) ( ) ( )∑ Φ=
ρ

ρρχχ ,, NFS     (62) 

 

where the sum takes place over 'ρ s in the above open strip. One then defines a distribution ∆  on 

kC  by, 

                                                    ∑−+=∆ −

v

vDDd 1

1log δ ,    (63) 

 

where 1δ  is the Dirac mass at kC∈1 , where d  is a differential idele of k  so that 
1−

d  is up to sign 

the discriminant of k  when char ( ) 0=k  and is 22 −gq  when k  is a function field over a curve of 

genus g  with coefficients in the finite field qF .  The distribution D  is given by, 

 

                                                ( ) ( )( )∫
∗−

+=
kC

wdwwwffD
2/12/1

    (64)  
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where the Haar measure wd
∗  is normalized. The distributions vD  are parametrized by the places v  

of k  and are obtained as follows. For each v  one considers the natural proper homomorphism, 

 

                                             kv Ck →∗ ,   →x class of ( )...1,,...,1 x     (65) 

 

of the multiplicative group of the local field vk  in the idele class group kC . One then has, 

 

                                                        ( ) ( )
∫ ∗

∗

−
=

vk
v udu

u

uf
PfwfD

2/1

1
    (66) 

 

where the Haar measure ud
∗  is normalized, and where the Weil Principal value Pfw  of the integral 

is obtained as follows, for a local field vkK = , 

 

                                                                 0
1

1
1 =

−
∗

∫ ∗ ∗ ud
u

Pfw
v vk R

,    (67) 

 

if the local field vk  is non Archimedean, and otherwise: 

 

                                                  ( ) ( )∫ ∫∗ ∗
+

∗∗ =
vk R

dPFuduPfw ννψϕ 0 ,    (68) 

 

where  ( ) ( )∫ =
=

ν νϕνψ
u

udu   is obtained by integrating ϕ  over the fibers, while 

 

                      ( ) ( ) ( ) ( )( )∫∫ −−+= ∗

→∞

∗
tcdfcdPF

t

t
log21lim2log2 2

00 ννψπννψ ,    (69) 

 

where one assumes that 1

1

−− cfψ  is integrable on ∗
+R , and   ( ) ( )2/12/1

0 ,inf −= νννf   ∗
+∈∀ Rν ,  

0

1

01 fff −= − .  The Weil explicit formula is then, 

 

Theorem 4. 

 

With the above notations one has  ( ) ( ) ( )( )wwFFS χχ ∆=, . 

 

Let K  be non Archimedean, furthermore, let α  be a character of K  such that, 

 

                                                          1/ =Rα ,   1/ 1 ≠−
Rπα .    (70) 

 

Then, for the Fourier transform given by, 

 

                                                          ( )( ) ( ) ( )∫= dyyyfxFf α ,    (71) 

 

with dy  the selfdual Haar measure, one has 

                                                                               ( ) RRF 11 = .    (72) 

 

Lemma 2. 
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With the above choice of α  one has 

 

                                                 
( ) ( )

∫ ∫
∗

−
∗

−

−
=

−

'
11

11
ud

u

uh
Pfwud

u

uh
    (73) 

 

with the notations of theorem 1. 

 

By construction the two sides can only differ by a multiple of ( )1h . Let us recall from theorem 1 

that the left hand side is given by 

                                                                     
( )
u

uh
L

1

,
−

,    (74) 

 

where L  is the unique extension of 
u

du

−
−

1

1ρ  whose Fourier transform vanishes at 1, ( ) 01ˆ =L . 

Thus from (67) we just need to check that (74) vanishes for ∗=
R

h 1 , i.e. that 

 

                                                                     01, =∗
R

L .    (75) 

 

Equivalently, if we let { }11; =−∈= yKyY  we just need to show, using Parseval, that, 

 

                                                                01̂,log =Yu .    (76) 

 

One has  ( ) ( ) ( ) ( )∫ ∗==
Y RY xxdyxyx 1̂1̂ αα ,  and  PRR

111 −=∗ ,  
RRR

1111̂ −∗ −=
π

π ,  thus, with π=−1
q , 

 

                                                 ( ) ( ) ( )x
q

xx
RRY 







−= −11

1
11̂

π
α .    (77) 

 

We now need to compute  ( )∫ += BAdxxx Y1̂log , 

 

                                 ( )( )∫ ∗−
−=

R
dxqx

q
A

1
log

1

π
α ,   ∫








−=

R
dxx

q
B log

1
1 .    (78) 

 

Let us show that 0=+ BA . One has  ∫ =
R
dx 1 ,  and 

 

                    ( )( ) ( )( )∫ ∫ ∫∗
=−−=−= −−

R R P
q

q
dydyyqdyqyA log

1
loglog 11 παπα ,    (79)  

 

since   ( )∫ =−

R
dyy 01πα   as  1/ 1 ≠−

Rπα . 

 

To compute B , note that  







−=∫ ∗

−

q
qdy

R

n

n

1
1

π
  so that 
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              ∫







−=

R
dxx

q
B log

1
1 ( )∑

∞

=

−− −=−=−







−=

0

1

2

log
1

loglog
1

1
n

n
q

q
qqqqn

q
,    (80) 

 

and  0=+ BA .  

Let us now treat the case of Archimedean fields. We take RK =  first, and we normalize the Fourier 

transform as, 

                                                        ( )( ) ( )∫
−= dyeyfxFf ixyπ2     (81) 

 

so that the Haar measure dx  is selfdual. 

With the notations of (68) one has, 

 

                                              ( ) γπ +=
−

∗

∫ ∗
log

1

2/1

3

0 ud
u

u
ufPfw

R
    (82) 

 

where γ  is Euler’s constant, ( )1'Γ−=γ . Indeed integrating over the fibers gives  ( ) 14

0

4

0 1
−

−× ff ,  

and one gets, 

 

( ) ( ) ( ) ( )∫ ∫∗
+

∗
+

−+=




 





 −−−+=−× ∗−
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R R

t

t
tudfffudffPF 2log2loglog11lim2log1

14

0

4

0

2

0

14

0

4

00 γππ .  

                                                                                                                                     (83) 

Now let  ( ) uu log−=ϕ ,  it is a tempered distribution on R  and one has, 

 

                                                   2log
2

log
2

1
,

2

++=− γ
πϕ πu

e ,    (84) 

 

as one obtains from ∫ 














 −
Γ

∂

∂
=

∂

∂
−

−−

2

1
2

1
2 s

s
dueu

s

s

us
ππ  evaluated at 0=s , using 

2log2

2

1

2

1
'

−−=









Γ









Γ

γ .  Thus by the Parseval formula one has, 

 

                                                    2log
2

log
2

1
,ˆ

2

++=− γ
πϕ πx

e ,    (85) 

 

which gives, for any test function f , 

 

                                    ( ) ( ) ( ) ( )00loglim,ˆ
0

ffxdxff
x

λεϕ
εε

+




 += ∫ ≥

∗

→
    (86) 

 

where  ( ) γπλ += 2log .  In order to get (86) one uses the equality, 
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                            ( ) ( ) ( ) ( ) ( )





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



 + ∫∫

∗

→≥

∗

→
0

1
lim0loglim

00
fxdxxffxdxf

x ε
ε

ε

εεε
,    (87) 

 

which holds since both sides vanish for ( ) 1=xf  if  1≤x , ( ) 0=xf  otherwise. Thus from (86) one 

gets, 

                ( ) ( ) ( ) ( ) ( )∫ ∫ 







+
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− ≥−

∗

→

∗
'

10
1log

1
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1

1

R u
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u

uf
fud

u
uf ελ

εε
.    (88) 

 

Taking  ( ) ( )ufuuf
3

0

2/1
= ,  the right hand side of (88) gives  γπλ +=− log2log ,  thus we 

conclude using (82) that for any test function f , 

 

                                           ( ) ( )∫∫
∗∗

−
=

− RR
ud

u
ufPfwud

u
uf

1

1

1

1'

.    (89) 

 

Let us finally consider the case CK = .  We choose the basic character α  as 

 

                                                           ( ) ( )zziz += πα 2exp ,    (90) 

 

the selfdual Haar measure is  zddzzdzd ∧= ,  and the function ( ) 2
2exp zzf π−=  is selfdual. 

The normalized multiplicative Haar measure is 

 

                                                                     
2

2 z

zddz
zd

π

∧
=∗ .    (91) 

 

Let us compute the Fourier transform of the distribution 

 

                                                       ( ) zzz
C

log2log −=−=ϕ .    (92) 

 

One has 

                                                   γππϕ +=− 2log2exp,
2

z ,    (93) 

 

as is seen using    ( ) ( ) ( )[ ]επ
εε

εεπ
−Γ

∂

∂
=∧

∂

∂
∫

−−
12

22
2

zddzze
z

. 

 

Thus   γππϕ +=− 2log2exp,ˆ
2

u   and one gets, 

 

                                    ( ) ( ) ( )0'0loglim,ˆ
0

ffuduff
C

u
λεϕ

εε
+



 += ∫ ≥

∗

→
    (94) 

 

where ( )γπλ += 2log2' . 

 

To see this one uses the analogue of (87) for CK = , to compute the right hand side of (94) for  

( ) 2
2exp zzf π−= .  Thus, for any test function f , one has, 
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                    ( ) ( ) ( ) ( ) ( )∫ ∫





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Let us compare it with Pfw . When one integrates over the fibers of  ∗
+

∗ → RC
C

  the function  
1

1
−

−
C

z   

one gets, 

                          ∫
−

=
−

π

θ
θ

π

2

0 22
1

1

1

1

2

1

z
d

ze
i

 if  1<z ,  and  
1

1
2

−z
 if  1>z .    (96) 

 

Thus for any test function f  on ∗
+R  one has by (68) 

 

                                          ( ) ( )∫ ∫
∗∗

−
=

−
ν

ν
ν dfPFud

u
ufPfw

C

C 1

1

1

1
0     (97) 

 

with the notations of (69). With  ( ) ( )ννν 0
2

1

2 ff =   we thus get, using (69), 

 

                                  ( ) ( )∫ ∫ +==
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∗−∗ γπν 2log2
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1002 dffPFud
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ufPfw
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C
.    (98) 

 

We shall now show that, 
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0log
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2
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it will then follow that, using (95), 
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ud
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ufPfwud
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To prove (99) it is enough to investigate the integral, 

 

                                                ( )( )[ ] ( )∫ ≥−≤

−
=∧−−

ε
ε

zz
jzddzzz

1,1

1
11     (101) 

 

and show that  ( ) ( )1log oj += εαε   for  0→ε .  A similar statement then holds for 

 

                                                      ( )( )[ ]∫ ≥−≤

−

−
∧−−

ε11,1

1
11

zz
zddzzz . 

 

One has  ( ) ∫ ∧=
D

ZddZj ε ,  where  ( )zZ −= 1log  and the domain D  is contained in the rectangle, 

 

                                ( ) επ
π

ε RyxiyxZ =








≤≤−≤≤+= 2/
2

,2loglog;     (102) 
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and bounded by the curve  ( )yx cos2log=   which comes from the equation of the circle  1=z   in 

polar coordinates centred at 1=z .  One thus gets, 

 

                                                  ( ) ( )∫=
2log

log
2/cos4

ε
ε dxeArcj x ,    (103) 

 

when 0→ε  one has  ( ) ( )επε /1log2≈j ,  which is the area of the following rectangle (in the 

measure zddz ∧ ), 

                                          ( ){ }2/2/,0log; ππε ≤≤−≤≤+= yxiyxZ .    (104) 

 

One has  ( )εππε /1log22log2 =−R .  When  0→ε  the area of  DR \ε  converges to 

 

                          ( ) ( )∫ ∫∞−
=−=

2log 2/

0
2log2sinlog42/sin4

π
πduudxeArc

x ,    (105) 

 

so that  ( ) ( ) ( )1/1log2 oj += επε   when  0→ε . 

 

Thus we can assert that with the above choice of basic characters for local fields one has, for any 

test function f , 

                                       ( ) ( )∫ ∫
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−
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−
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1

1

1

K
ud

u
ufPfwud

u
uf .    (106) 

 

Now, we have the following 

 

Lemma 3. 

 

Let K  be a local field, 0α  a normalized character as above and α , ( ) ( )xx λαα 0=  an arbitrary 

character of K . 

 

Hence, we obtain that: 

 

                               ( ) ( ) ( )∫ ∫
∗∗

−
+=

−

'

1

1
1log

1

1

K
ud

u
ufPfwfud

u
uf λ .    (107) 

 

 

 

 

                                                                        Chapter 4. 

 

                                                       On p-adic and adelic strings 

 

4.1 Open and closed p-adic strings.[8] 

 

Let us now discuss the question of the construction of a dynamical theory for open and closed p-

adic strings. It was proposed (Volovich, 1987) to consider p-adic generalization of the Veneziano 

string amplitude in two ways, according to two equivalent representations  
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                                           ( ) ( ) ( )
( )∫ +Γ

ΓΓ
=−=

−−
1

0

11
1,

ba

ba
dxxxbaA

ba
.    (1) 

 

The first way corresponds to an interpretation of the amplitude A(a, b) as a convolution of two 

characters and the second one to the p-adic interpolation of the gamma function. Using the first 

approach a complex-valued string amplitude over a finite Galois field has been constructed. 

Consideration of string amplitudes as a convolution of characters is a very general concept 

applicable to characters on number fields, groups and algebras. 

Now, we have the string amplitudes of the following form 

 

                                                       ( ) ( ) ( )∫ −=
K

baba dxxxA 1, γγγγ ,    (2) 

 

where K is a field F, i.e., K = F, ( )xaγ  is a multiplicative character on K, and dx  is a measure on K. 

Note that the range of integration in (2) is over the entire field F, and hence this p-adic 

generalization is rather one of the Virasoro-Shapiro amplitude 

 

                                                            ∫
−−

−=
C

ba
dzzzA

11
1 ,    (3) 

 

than of the Veneziano amplitude (1), where the integration is over the unit segment on the real axis. 

The equation (3) is just a particular case of (2) for K = C and  ( ) 1−
=

a

a zzγ . The ordinary Veneziano 

amplitude can be rewritten in the following way 

 

                                                      [ ]( )∫
−−

−=
R

ba
dxxxxA 1,0

11
1 θ ,    (4) 

 

where ( )xθ  is the characteristic function of the segment [ ]1,0 . In particular, it can be written in 

terms of the Heaviside function [ ]( ) ( ) ( )xxx −= 11,0 θθθ . Hence, in order to have a generalization of 

the expression (4) on an arbitrary field F one should have on F an analogue of the Heaviside 

function or the function sign x. 

We have a generalization of the amplitude (4), in the case of an arbitrary locally compact 

disconnected field F, in the following form 

 

                                             ( ) [ ]dxxxA
ba

F

ba

open

F 1,0

11

, 1, ττ θγγ
−−

−= ∫     (5) 

      

where [ ]( )x1,0τθ  is a p-adic generalization of the characteristic function of the segment [ ]1,0  on F 

related to a quadratic extension ( )τF . In particular one can take the function [ ]( )x1,0τθ  in the form 

( ) ( )xx −1ττ θθ  where ( )xτθ  is a p-adic analogue of the Heaviside function. 

In the ordinary case there is an important relation between amplitudes of the open and the closed 

strings. This relation give a connection on the tree level as follows 
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t
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π
,    (6) 

 

where s, t, u are the Mandelstam variables.  
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Let F in eq. (5) be a non-discrete totally disconnected and locally compact field and define also the 

generalized Heaviside function in the form 

 

                                                             ( )
2

1 ω
ωθ τ

τ

sign+
=     (7) 

 

which is an analogue of the ordinary one. 

Now we will consider the amplitude (5) with the characteristic function in one of the following 

forms: 

                                          [ ]( ) ( ) ( )xxx −= 11,0 τττ θθθ ,                                                   (8.1) 

                                          [ ]( ) ( )( )xSignxSignx −⋅+= 11
2

1
1,0 τττθ ,                               (8.2) 

                                          [ ]( ) ( )( )xSignxSignx −+= 1
2

1
1,0 τττθ ,                                  (8.3) 

                                          [ ]( ) ( ) ( )( )xSignSignxSignx −⋅−−= 11
2

1
1,0 ττττθ ,  ετ = ,    (8.4) 

                                          [ ]( ) ( ) ( )( )xSignxSignSignx −⋅⋅−−= 111
2

1
1,0 ττττθ .             (8.5) 

 

The corresponding amplitudes (5) can be calculated with the help of the general formula 
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ππ
ππ

Γ
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which connects the beta function 
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where ( )xπ  is a multiplicative character with the gamma function defined by an additive character 

χ  

                                                        ( ) ( ) ( )∫
−

=Γ
F

dxxxx
1

πχπ .    (11)   

 

Consider now the string amplitudes, constructed over the p-adic fields pQ  and their quadratic 

extension  ( )τpQ ,  from the point of view of the product formulae (6) which relates amplitudes of 

closed and open strings in a very simple form. With regard the case ετ = , the closed string 

amplitude defined on the quadratically extended field ( )εpQK = , has the form 
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where 2pq = . There are no such formulae as simple as (7) for the above constructed open string 

amplitudes. However, there exists a formula in the following form 
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where 
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is a p-adic analogue of the totally crossing symmetric Veneziano amplitude. 

Furthermore, the p-adic generalization of the N-point tree amplitude for vector particles in the 

bosonic case, can be proposed in the following form 
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where [ ]( )yyyn 1,31 ,...,,0 −
θ  is a p-adic generalization of the characteristic function of the simplex 

1...0 341 ≤≤≤≤≤ − yyyn  and ( )ykF ,,ζ  is the part of ( ) ( )∑ = 







−−−
ji jijijiji yykkyy //
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that is multilinear in all the polarization vectors iζ . 

 

4.2 On adelic strings.[9] 

 

The set of all adeles A may be given in the form 

 

                                           ( )SA
S

Α= U ,    ( ) ∏ ∏
∈ ∉

××=Α
Sp Sp

pp ZQRS .    (16) 

 

A has the structure of a topological ring. 

We recall that quantum amplitudes defined by means of path integral may be symbolically 

presented as 

                                               ( ) ( ) [ ]∫ 







−= DXXS

h
XAKA

1
χ ,    (17) 

 

where K  and X  denote classical momenta and configuration space, respectively. ( )aχ  is an 

additive character, [ ]XS  is a classical action and h  is the Planck constant. 

Now we consider simple p-adic and adelic bosonic string amplitudes based on the functional 

integral (17). The scattering of two real bosonic strings in 26-dimensional space-time at the tree 

level can be described in terms of the path integral in 2-dimensional quantum field theory 

formalism as follows: 
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where ( ) ( ) ( )τστστσ ,...,, 2510 DXDXDXDX = ,   jjj ddd τσσ =2  and   
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with 1,0=α  and  25,...,1,0=µ .  Using the usual procedure one can obtain the crossing symmetric 

Veneziano amplitude 
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and similarly the Virasoro-Shapiro one for closed bosonic strings.  

As p-adic Veneziano amplitude, it was postuled p-adic analogue of (20), i.e. 

 

                                            ( ) ∫ −=
pQ

kk

p

kk

ppp dxxxgkkA
3221

1,..., 2

41 ,    (21) 

 

where only the string world sheet (parametrized by x ) is p-adic. Expressions (20) and (21) are 

Gel’fand-Graev beta functions on R  and pQ , respectively.  

Now we take p-adic analogue of (18), i.e. 
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to be p-adic string amplitude, where ( ) { }( )
pp uiu πχ 2exp=  is p-adic additive character and { }

pu  is 

the fractional part of pQu ∈ . In (22), all space-time coordinates µX , momenta ik  and world sheet 

( )τσ ,  are p-adic. 

Evaluation of (22), in analogous way to the real case, leads to 
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Adelic string amplitude is product of real and all p-adic amplitudes, i.e. 
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In the case of the Veneziano amplitude and ( ) ( ) ( )SSji Α×Α∈τσ , , where ( )SΑ  is defined in (16), 

we have 
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There is the sense to take adelic coupling constant as 
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Hence, it follows that p-adic effects in the adelic Veneziano amplitude induce discreteness of string 

momenta and contribute to an effective coupling constant in the form 
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4.3 Solitonic q-branes of p-adic string theory.[10] 

 

Now we consider the expressions for various amplitudes in ordinary bosonic open string theory, 

written as integrals over the boundary of the world sheet which is the real line R. Now replace the 

integrals over R by integrals over the p-adic field pQ  with appropriate measure, and the norms of 

the functions in the integrand by the p-adic norms. Using p-adic analysis, it is possible to compute 

N tachyon amplitudes at tree-level for all N 3≥ . 

This leads to an exact action for the open string tachyon in d  dimensional p-adic string theory. This 

action is: 
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where � denotes the d  dimensional Laplacian, φ  is the tachyon field, g  is the open string 

coupling constant, and p  is an arbitrary prime number. 

The equation of motion derived from this action is, 
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The following configuration 
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describes a soliton solution with energy density localised around the hyperplane 0... 11 === −+ dq
xx . 

This follows from the identity: 
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We shall call (29), with f  as in (30), the solitonic q-brane solution. Let us denote by 

( )11,..., −+
⊥ = dq xxx  the coordinates transverse to the brane and by ( )q

xxx ,...,0

|| =  those tangential to 

it. The energy density per unit q-volume of this brane, which can be identified as its tension qT , is 

given by 
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where 
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Hence, we obtain the following equation 
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Let us now consider a configuration of the type  
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with ( )( )⊥
−− xF qd 1  as defined in (29), (30). For 1=ψ  this describes the solitonic q-brane. 

Fluctuations of ψ  around 1 denote fluctuations of φ  localised on the soliton; thus ( )||xψ  can be 

regarded as one of the fields on its world-volume. We shall call this the tachyon field on the 

solitonic q-brane world-volume. Substituting (34) into (28) and using (31) we get 
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where � || denotes the (q+1) dimensional Laplacian involving the world-volume coordinates ||x  of 

the q-brane. The action involving ψ  can be obtained by substituting (34) into (27): 
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where qg  has been defined in eq.(33). 

In conclusion, we shall now show the world-volume action on the Dirichlet q-brane. Let us consider 

the situation where we start with the action (27) with g  replaced by another coupling constant g , 

and compactify (d – q – 1) directions on circles of radii 2/1 . Let i
u  denote the compact 

coordinates and µz  the non-compacts ones, and consider an expansion of the field φ  of the form: 
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Substituting this into (27), with g  replaced by g , we get the action: 
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                                                                                                                                        (38) 

 

4.4 Open and closed scalar zeta strings.[11] 

 

The exact tree-level Lagrangian for effective scalar field ϕ  which describes open p-adic string 

tachyon is 
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where p  is any prime number, � = 22 ∇+∂− t  is the D-dimensional d’Alembertian and we adopt 

metric with signature (– + … +). 

Now we want to show a model which incorporates the p-adic string Lagrangians in a restricted 

adelic way. The eq. (39) take the form: 
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Recall that the Riemann zeta function is defined as 
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Employing usual expansion for the logarithmic function and definition (40) we can rewrite (39b) in 

the form 
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where 1<φ . ζ (�/2) acts as pseudo-differential operator in the following way: 
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where  ( ) ( ) ( )∫
−= dxxek ikx φφ

~
  is the Fourier transform of ( )xφ . 

Dynamics of this field φ  is encoded in the (pseudo)differential form of the Riemann zeta function. 

When the d’Alembertian is an argument of the Riemann zeta function we shall call such string a 

zeta string. Consequently, the above φ  is an open scalar zeta string. The equation of motion for the 

zeta string φ  is  
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which has an evident solution 0=φ .  

For the case of time dependent spatially homogeneous solutions, we have the following equation of 

motion 
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Finally, with regard the open and closed scalar zeta strings, the equations of motion are 
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and one can easily see trivial solution 0== θφ . 

 

                                                                     Chapter 5 

 

               On some correlations obtained between some solutions in string theory, 

                               Riemann zeta function and Palumbo-Nardelli Model. 

 

With regard the paper: “Brane Inflation, Solitons and Cosmological Solutions:I”, that dealt various 

cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes, and 

the paper: “General brane geometries from scalar potentials: gauged supergravities and accelerating 

universes”, that dealt time-dependent configurations describing accelerating universes, we have 

obtained interesting connections between some equations concerning cosmological solutions, some 

equations concerning the Riemann zeta function and the relationship of Palumbo-Nardelli model. 

 

5.1 Cosmological solutions from the D3/D7 system.[14] 

 

The full action in M-theory will consist of three pieces: a bulk term, bulkS , a quantum correction 

term, quantumS , and a membrane source term, 2MS . The action is then given as the sum of these three 

pieces: 

 

                                                           2Mquantumbulk SSSS ++= .  (1) 

The individual pieces are: 

 

                        ∫∫ ∧∧−





−−= GGCGRgxdSbulk 2

211

2 12

1

48

1

2

1

κκ
,  (2) 

 

where we have defined G = dC, with C being the usual three form of M-theory, and )11(2 8 NGπκ ≡ . 

This is the bosonic part of the classical eleven-dimensional supergravity action. The leading 

quantum correction to the action can be written as: 
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The coefficient 2T  is the membrane tension. For our case, 
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where MX  are the embedding coordinates of the membrane. The world-volume metric 

2,1,0,, =νµγ µν  is simply the pull-back of MNg , the space-time metric. The motion of this M2 

brane is obviously influenced by the background G-fluxes.  

 

5.2 Classification and stability of cosmological solutions.[14] 

 

The metric that we get in type IIB is of the following generic form: 
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where )(yff ii =  are some functions of the fourfold coordinates and βα ,  and γ  could be positive 

or negative number. For arbitrary )(yf i and arbitrary powers of t , the type IIB metric can in 

general come from an M-theory metric of the form  
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with three different warp factors A, B and C , given by: 
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To see what the possible choices are for such a background, we need to find the difference B – C . 

This is given by: 
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Since the space and time dependent parts of (8) can be isolated, (8) can only vanish if 
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with α  and )(1 yf  remaining completely arbitrary.  

We now study the following interesting case, where 2== βα , 0=γ   21 ff = . The internal six 

manifold is time independent. This example would correspond to an exact de-Sitter background, 

and therefore this would be an accelerating universe with the three warp factors given by: 
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We see that the internal fourfold has time dependent warp factors although the type IIB six 

dimensional space is completely time independent. Such a background has the advantage that the 

four dimensional dynamics that would depend on the internal space will now become time 

independent.  
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This case, assumes that the time-dependence has a peculiar form, namely the 6D internal manifold 

of the IIB theory is assumed constant, and the non-compact directions correspond to a 4D de-Sitter 

space. Using (10), the corresponding 11D metric in the M-theory picture, can then, in principle, be 

inserted in the equations of motion that follow from (1). Hence, for the Palumbo-Nardelli model, we 

have the following connection: 
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where the third term is the bosonic part of the classical eleven-dimensional super-gravity action. 

 

5.3 Solution applied to ten dimensional IIB supergravity (uplifted 10-dimensional solution).[14] 

 

This solution can be oxidized on a three sphere 3
S  to give a solution to ten dimensional IIB 

supergravity. This 10D theory contains a graviton, a scalar field, and the NSNS 3-form among other 

fields, and has a ten dimensional action given by 
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We have a ten dimensional configuration given by 
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This uplifted 10-dimensional solution describes NS-5 branes intersecting with fundamental strings 

in the time direction.  

Now we make the manipulation of the angular variables of the three sphere simpler by introducing 

the following left-invariant 1-forms of SU(2): 
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Next, we perform the following change of variables 
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It is straightforward to check that the 10-dimensional solution (13) becomes, after these changes 
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where we define  
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and, after re-scaling M, 
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We now transform the solution from the Einstein to the string frame. This leads to 
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We have a solution to 10-dimensional IIB supergravity with a nontrivial NSNS field. If we perform 

an S-duality transformation to this solution we again obtain a solution to type-IIB theory but with a 

nontrivial RR 3-form, 3F . The S-duality transformation acts only on the metric and on the dilaton, 

leaving invariant the three form. In this way we are led to the following configuration, which is S-

dual to the one derived above 
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                       33 HF = .          (21) 

 

With regard the T-duality, in the string frame we have 
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This gives a solution to IIA supergravity with excited RR 4-form, 4C . We proceed by performing a 

T-duality transformation, leading to a solution of IIB theory with nontrivial RR 3-form, 3C . The 

complete solution then becomes 
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We are led in this way to precisely the same 10D solution as we found earlier [see formula (21)]. 

With regard the Palumbo-Nardelli model, we have the following connection with the eq. (12): 
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5.4 Connections with some equations concerning the Riemann zeta function.[14] 

 

We have obtained interesting connections between some cosmological solutions of a D3/D7 system, 

some solutions concerning ten dimensional IIB supergravity and some equations concerning the 

Riemann zeta function, specifying the Goldston-Montgomery theorem.  

In the chapter “Goldbach’s numbers in short intervals” of Languasco’s paper “The Goldbach’s 

conjecture”, is described the Goldston-Montgomery theorem. 
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Now, for show this theorem, we must to obtain some preliminary results . 
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For to show the Theorem 1, there are two parts. We go to prove (1). 
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Substituting X  with jX −2 , summarizing on j, Kj ≤≤1 , and using the explicit formula for ( )xψ  

with XXZ 3log=  we obtain 
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Utilizing the estimate, valid under the Riemann hypothesis 
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we obtain the equation (b).  
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hence the connection between the cosmological solution and the equation related to the Riemann 

zeta function. 
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hence the connection between the 10-dimensional solutions (12) and some equations related to the 

Riemann zeta function.  

From this the possible connection between cosmological solutions concerning string theory and 

some mathematical sectors concerning the zeta function, whose the Goldston-Montgomery 

Theorem and the related Goldbach’s Conjecture.  

 

5.5 The P-N Model (Palumbo-Nardelli model) and the Ramanujan identities.[15] 

 

Palumbo (2001) ha proposed a simple model of the birth and of the evolution of the Universe. 

Palumbo and Nardelli (2005) have compared this model with the theory of the strings, and 

translated it in terms of the latter obtaining: 
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A general relationship that links bosonic and fermionic strings acting in all natural systems. 

It is well-known that the series of Fibonacci’s numbers exhibits a fractal character, where the forms 

repeat their similarity starting from the reduction factor φ/1  = 0,618033 = 
2

15 −
 (Peitgen et al. 

1986). Such a factor appears also in the famous fractal Ramanujan identity (Hardy 1927): 
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The introduction of (31) and (32) in (30) provides: 
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which is the translation of (30) in the terms of the Theory of the Numbers, specifically the possible 

connection between the Ramanujan identity and the relationship concerning the Palumbo-Nardelli 

model. 
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5.6 Interactions between intersecting D-branes.[12] 

 

Let us consider two Dp-branes in type II string theory, intersecting at n  angles inside the ten-

dimensional space. 

The interaction between the branes can be computed from the exchange of massless closed string 

modes. This can be computed from the one-loop vacuum amplitude for the open strings stretched 

between the two Dp-branes, that is given by 
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where H  is the open string Hamiltonian. For two Dp-branes making n  angles in ten dimensions 
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being the contributions coming from the NS  and R  sectors. Thence, the eq. (35) can be rewritten 

also 
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Also in (36) iΘ  are the usual Jacobi functions and η  is the Dedekin function. Furthermore, in (35) 

by Y we mean the distance between both branes, 2

kkYY Σ=  where k  labels the dimensions in 

which the branes are separated and kY  the distance between both branes along the k  direction. 

Now we take the small t  limit of (35), that is, the large distance limit ( )slY >> . This is the right 

limit that takes into account the contributions coming from the massless closed strings exchanged 

between the branes. 

Using the well known modular properties of the Θ  and η  functions we obtain, in the 0→t  limit, 

that the amplitude is just given by 
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where the function F  contains the dependence on the relative angles between the branes, and is 

extracted from the small t  limit of (36). The exact form of this function is given by 
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Hence, the eq. (37) can be rewritten also 
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The interaction potential between the branes can then be calculated by performing the integral (37). 

This integral is just given in terms of the Euler Γ -function, so the potential has the following form 
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Note that for 7=+ np  this expression is not valid as ( )0Γ  is not a well defined function. In fact in 

that case the integral (37) is divergent, so we need to introduce a lower cutoff to perform it. If we 

denote by cΛ  the cutoff, the integral becomes 
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When dealing with compact spaces the expression (37) is modified in the following way 
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where kω  represents the winding modes of the strings on the directions transverse to the branes. 

That means that the summation over k  in (41) has only one term in the D6-brane case and it will be 
( ) ( )2

9

1

99 xxY −= .  In the D5-brane case we will have two terms:  ( ) ( )2

8

1

88 xxY −=  and  ( ) ( )2

9

1

99 xxY −= .  

Also in both cases we will denote 2

kkYY Σ= .  Nevertheless, if the distance between the branes is 

small compared with the compactification radii ( )( )RY π2<< , the winding modes would be too 

massive and then will not contribute to the low energy regime. That is, it will cost a lot of energy to 

the strings to wind around the compact space. If we translate this assumption to (41), the dominant 

mode will be the zero mode, and the potential can be written as in (39), (40), taking into account 

that we focus on the case where the number of angles is 2=n . In this case the potential, when 

normalised over the non-compact directions, for branes of different dimensions is just given by 
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where the ( ) 5
2

−p
Rπ  factor arises from the dimensions in which the branes become parallel on the 

compact dimensions. Furthermore, remember that R  denotes the radius of the torus. 

Now we note that the eq. (37) can be rewritten substituting to π  the corresponding Ramanujan’s 

identity (32). Hence, we obtain 
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With regard the eq. (40), we note that can be related with the expression (29b) concerning the 

lemma 3 of Goldston-Montgomery Theorem and with the Palumbo-Nardelli Model. Hence, we can 

write the following interesting connections:     
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5.7 General action and equations of motion for a probe D3-brane moving through a type IIB  

      supergravity background.[44] 

 

Now we will show the general action and equations of motion for a probe D3-brane moving through 

a type IIB supergravity background describing a configuration of branes and fluxes. 

We start by specifying the ansatz for the background fields that we consider, and the form of the 

brane action. We are interested in compactifications of type IIB theory, in which the metric takes 

the following general form (in the Einstein frame) 

 

                                     nm

mn dydyghdxdxhds
2/12/12 += − νµ

µνη .    (44) 

 

We now embed a probe D3-brane in this background, with its four infinite dimensions parallel to 

the four large dimensions of the background solution. The motion of such a brane is described by 

the sum of the Dirac-Born-Infeld (DBI) action and the Wess-Zumino (WZ) action. The DBI action 

is given, in the string frame, by 
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where  ababab fBF '2πα+= , with 2B  the pullback of the 2-form field to the brane and 2f  the world-

volume gauge field. N

b

M

aMNab xxg ∂∂=γ , is the pullback of the ten-dimensional metric MNg  in the 

string frame. Finally 2' sl=α  is the string scale and aξ  are the brane world-volume coordinates. 

The WZ part is given by 
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where W  is the world-volume of the brane and 1=q  for a probe D3-brane and 1−=q  for a probe 

anti-brane. We are interested in exploring the effect of angular momentum on the motion of the 

brane, and therefore assume that there are no gauge fields living in the world-volume of the probe 

brane, 0=abf . For convenience we take the static gauge, that is, we use the non-compact 

coordinates as our brane coordinates: aa x == µξ . Since, in addition, we are interested in 

cosmological solutions for branes, we consider the case where the perpendicular positions of the 

brane, my , depend only on time. Thus 
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and 0=abB . Hence 
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in the Einstein frame. Thence, summing the DBI and WZ actions, we have the total action for the 

probe brane 
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This action is valid for arbitrarily high velocities. Furthermore, this equation correspond to the 

Born-Infeld action for the D-brane embedded in the 10-dimensional space of type IIB theory. 

The functions appearing in the following equations 
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are the solutions of the equations of motion for the IIB theory in 10-dimensions, defining the 

background. Thence, putting eqs. (50) and (51) in (49), we can determine the trajectory of the brane 

in ten dimensions. 

Here, ηη ~=  determines the UV scale at which the KT throat joins to the Calabi-Yau space. This 

solution has a naked singularity at the point where ( ) 00 =ηh , located at  b
e

/1

0
~ −=ηη . In this 

configuration, the supergravity approximation is valid when 1, >>NgMg ss : in this limit the 

curvatures are small, and we keep 1<sg . 

We note that also the eqs. (50) and (51), can be related with the expression (29b) and with the 

relationship concerning the Palumbo-Nardelli Model. Hence, we obtain the following connections: 
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Furthermore, the eq. (49) is also related with the relationship concerning the Palumbo-Nardelli 

Model applied to the D-branes. Hence, we have: 
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                                                                       Chapter 6 

 

                                                                     Connections. 

 

Now we take the eq. (20) of Chapter 1. We note that can be related with the Godston-Montgomery 

equation, the ten dimensional action (12) and the relationship of Palumbo-Nardelli model (30) of 

Chapter 5, hence we have the following connection: 
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Now we take the eq. (29) of Chapter 1. We note that can be related with the equation regarding the 

Palumbo-Nardelli model and with the Ramanujan’s identity concerning π . Hence, we have the 

following connections: 
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Now we take the eqs. (8) and (9) and (11) of the Chapter 2. We note that can be related with the 

Ramanujan’s modular equation (32b) and the Ramanujan’s identity concerning π  (32). Thence, we 

have the following connection: 
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Also for the eqs. (11) and (37), we obtain of the similar connections: 
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Also with regard the eqs. (101) and (106) of Chapter 2, we note that can be related with the 
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Now we take the eqs. (79), (82), (83), (98) and (105) of Chapter 3. We note that can be related 

with the Goldston-Montgomery equation (29b) and with the Palumbo-Nardelli relationship (30) of 

chapter 5. Hence, we obtain the following connections: 
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Now, we take the eqs. (15), (22), (25) and (27) of Chapter 4. We note that can be related with the 

Palumbo-Nardelli relationship. Thence, we have the following connections: 
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While, if we take the eqs. (18), (33b), (38), (43) and (46) of Chapter 4, we note that can be related 

with the Ramanujan’s identity concerning π  and with Palumbo-Nardelli model. Then, we obtain 

the following connections: 
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Furthermore, we can see easily that the equations described in the Chapter 5 and 6 can be 

connected also among them. 

 

                                                                    Conclusion 

 

Hence, in conclusion, also for some mathematical sectors concerning the Fermat’s Last Theorem, 

can be obtained interesting and new connections with other sectors of Number Theory and String 

Theory, principally the p-adic and adelic numbers, the Ramanujan’s modular equations, some 

formulae related to the Riemann zeta functions and p-adic and adelic strings. 
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Furthermore, also the fundamental relationship concerning the Palumbo-Nardelli model, a general 

relationship that links bosonic string action and superstring action (i.e. bosonic and fermionic 

strings acting in all natural systems), can be related with some equations regarding the p-adic 

(adelic) string sector. 
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