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Abstract

This paper is a review of some interesting redhts has been obtained in the study of the physical
interpretation of the Riemann zeta function as Z FBrane Partition Function associated with a
matrix/gravity correspondence and some aspectseoRigid Surface Operators in Gauge Theory.
Furthermore, we describe the mathematical connectioth some sectors of String Theory (p-adic
and adelic strings, p-adic cosmology) and Numbe&oi

In the Section 1we have described various mathematical aspectheofRiemann Hypothesis,
matrix/gravity correspondence and master matri¥#ZT brane partition functions. In ti&ection

2, we have described some mathematical aspect® oididl surface operators in gauge theory and
some mathematical connections with various seabbrNumber Theory, principally with the
Ramanujan’s modular equations (thence, prime nwnh®@ime natural numbers, Fibonacci's
numbers, partitions of numbers, Euler's functioes;...) and various numbers and equations
related to the Lie Groups. In ttgection 3 we have described some very recent mathematical
results concerning the adeles and ideles groupgedpp various formulae regarding the Riemann
zeta function and the Selberg trace formula (commaewith the Selberg zeta function), hence, we
have obtained some new connections applying tressdts to the adelic strings and zeta strings. In
the Section 4we have described some equations concerning psauhgs, p-adic and adelic zeta
functions, zeta strings and p-adic cosmology (wé&bard the p-adic cosmology, some equations
concerning a general class of cosmological modeisem by a nonlocal scalar field inspired by
string field theories). In conclusion, in tt&ection 5§ we have showed various and interesting
mathematical connections between some equatiorteinung theSection 1, 3and4.



1. On some equations concerningthe physical interpretation of the Riemann zeta
function as a FZZT Brane Partition Function associéed with a matrix/gravity
correspondence and the master matrix of the (2,1) immal and (3,1) minimal matrix
model. [1] [2] [3]

If one can find a special infinite Hermitian matfi&, such that:

=(z)=de(M,-2zI), (1.1)

—(N_ A 1 Z 1\ __va_cir2 _2_2_1
:(z)—Z[|z+§jI’(§+Zjﬂ s ( 5 8}' (1.2)

then the Riemann hypothesis would be true. Thiz@ause this function can be written in product
form as:

where

Lo, iz+1/2
:(z)—Em(l ; j (1.3)

n

Thence, we can rewritten the eq. (1.2) also ifdhewing form:

. 2
E |—| 1- iz+1/2 - Z(IZ +£jr(z+1jn—1/4ﬂ.—iz/2 _Z__E , (13b)
21 0. 2) 274 2 8

The eigenvalues of the Hermitian matift, are denoted byl, and are related to the Riemann
zeros viap, =iA, + 1/2 Then the product becomes:

E(z)zl 1__'2-"—1/2 _1 /]n__z . (1.9)
n iA,+12) 2VVA -i/2

This vanishes at the valuek just as the formal determinant expression. Hheare real if the
matrix M, is Hermitian and thus the Riemann Hypothesis wbeldrue.
For a general matrix model with potentia{M ) the master matrix can be written:

M,=S"'TS= S’l[a+ Ztna““JS (1.5)
n=0



where the similarity transformatio8 is defined so thaM, is Hermitian and the operatoessa”
obey [a,a*]zl . One can expand the master matrix as a functioth® Hermitian operator
X=a+a" as:

Mo(R)= gk +g,%% +... (1.6)

One can also define an associated complex function:
R S
M,(y) =2y, (@)
n=0

as well as a conjugate matri that satisfies:
[P.M]=1. (1.8)
The Master matrix can be determined from the equoati

(V'(My(%))+2R)0)=0. (1.9)

Here ‘O> is the vacuum state annihilated By The master matrix is closely connected with the

resolventR(z) and eigenvalue densitg(x) through:

R(z)= Tr(z—#l\/lj = dx% = —§g—2’|og(z— M,(w)). (1.10)

The associated functioN,(y) obeys the relation:

R(Mo(y))=M,(R(y))=y. (1.11)

The function yMO(y) Is the generating functional of connected Greewtions for the generalized

matrix model.
One observable of matrix models is the exponemtiatacroscopic loop or FZZT brane partition
function. This is given by:

B(z)=de{M -zI). (1.12)

This is the characteristic polynomial associatethwhe matrix M . It's argumentz can be

complex. In the context of the Riemann zeta fumctif(s) the variable is related to the usual
. 1 . . .

argument of the zeta function ls~= |z+§. Another observable is the macroscopic loop wisch

the transform of the Wheeler-DeWitt wave functioefided on the gravity side of the
correspondence

W(z) = -Trlog(M —zI)=Iirr(|){ %Tr(e‘/(‘z'”“)ﬂogg . (1.13)

£

where € is a UV cutoff. The resolvent observable mentioakdve is defined by:
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R(z)= 6V‘\3/Z(z) =Tr(M lej. (1.14)

Thence, from the egs. (1.10) and (1.13), we obtain:

R(Z):i{l.m( L R )+|og£ﬂ =—£%dwlog(z— MO(W)):Tr(M lej. (1.14b)

0z| -0 < /
If a special master matrikl, can be found then expectation values such as
(B(2)) =(defM - z1)) = [ DM def(M - z1)e'™) = defM, - zI) (1.15)

reduce to evaluating the observableMsj. In the context of théz(z) function the desired relation
is of the form:

=(2)=de{M, - z1)=(B(z)) = (de{M - z1)) = [DM defM - z1)e™™) . (1.16)
Some matrix potentials that have been considered ar
v(M)=Tr(M?) (1.17)
which describes 2d topological gravity or the (2ylipimal string theory. A quartic potential:
V(M)=Tr(-M?+gM*), (1.18)

is used to describe minimal superstring theory. gkarcomplicated matrix potentials is

Tr(M™),  (1.19)

V(M)=-Tr(M +log(l ~M))= 3"

1
m=2 M
which defines the Penner matrix model and is usedompute the Euler characteristic of the

moduli space of Riemann surfaces. Another matrix@hthat has been introduced is the Liouville
matrix model with potential given by:

V(M)=Tr(aM +1€"), (1.20)
with cosmological constant so that:

V(M) -

e =) —-aTrM e—,uTre . (1.21)

In this section we will encounter the matrix potahdletermined by:

_u - i( 2™ _ngmﬁm je_qzmr(em ) ' (1'22)

q=1



The partition function for this matrix model can $#en as a superposition of partition functions of
Liouville matrix models with cosmological constaofsthe form:

u=q’m, (1.23)

for integerq.
Now we describe the origin of this particular matmodel and it's relation to the zeta function. To
see how the matrix potential (1.22) arises it i$pte consider how the coefficients of the

characteristic polynomial observabmz) can be determined by expanding as a series. ilf the
function E(z) is interpreted as a characteristic polynomial thee can obtain these coefficients
from the expansion:

=(z)= iazn ((_2 :])) 7, (1.24)

where

= 4] df{f‘”“f (ﬁ)@logfj J (1.25)

and

f(r)= i‘,( jﬁ”ze‘“z"‘ . (1.26)

q=1

Inserting the coefficients,,, into =(z) and summing oven we can represeri(z) as an integral
transform:

E(Z) — 4T%£(|z+1/2 /22( 4202 _ ﬂfje_qzm — 4T%€(iz+l/2)/2£l/2f (E) (1.27)
1

1 g=1

Defining the variablez by /¢ =€’ we have:
=[] = j dwzwz(nzk“e“’ —gnkze’/’je"kze“’ . (1.28)
k=1

which is a well known integral expression for thendtion E(z). For the simple potential

V(M ) :Tr(M 2) the exponentiated macroscopic loop observable (HZAme) can be computed. It
is given by the Airy function:

jDMdet(M—zl el J'd 5. (1.29)

Because this function is associated with an Heamithatrix model it's zeros are real. This is the
analog of the Riemann hypothesis fo‘r/(M)=Tr(M2). The similarity between the integral

representations of (1.28) and (1.29) suggest alogynaetween the Airy and zeta functions.
The integral representation of the Airy function laasnatrix integral generalization. The matrix
potential is defined from:



i Tr(q>3)

ev®=e3 " (1.30)

The matrix generalized Airy function is given by:
IdCD g™ (zo) u(qa)' (1.31)

Thence, from the egs. (1.30) and (1.31), we carevatgo:

L (o3
= [doe™ @ e’ ) (1.31

In the above® and Z are nxn matrices. The interpretation of this matrix intdgeathat it
describesn FZZT brines. The matrixp in the Kontsevich integrand is an effective degoée
freedom describing open strings stretched betwedRZZT branes. One can try to interpret the
integrand of theE(z) function in a similar manner. In that case thel@gaf the potential defined

by:

00

gl = Z(nzk4ezma _gmzeﬂoje—zkzwe@ ,(1.32)

k=1

and the analog of the matrix integral describm@ZZT branes is:

E[Z] - J‘ D¢eiTr(Z¢)i(ﬂ2k462Tr® _gﬂ.(zewoje—m?ne@ . @33

k=1

The Airy function is the FZZT partition function foregh2,1) minimal matrix model. The FZZT
partition function for the generalize(qb,l) minimal matrix model with parametess is given by:

2 i)+ T s o)
1J'd¢a¢k” ALl 3

Unlike the (2,1) matrix model the definition of ttyeneralized(p,l) matrix model requires a two
matrix integral of the form:

—é(V(M +1)-AM)
Z(,5(9)= [ DMDAe . (1.35)

Comparison with the integral representation of H(e) function shows that a generalized matrix
model for largep can be constructed as an approximation. One writes

|og(i(n2k4e2¢’ —gnkze”’j 7k e‘”}

k=1

p+1 k+1
. (1.36
- Ico Zk1%k+1'<ﬂ (1.36)
In the above formula the function on the left ip@xded to ordemp+ 1n the variableg. We
denote this terminated expansion E)g(z). Another way to compute the coefficienss is to
differentiate the left hand side and set:



(1.37)

=0 "*

‘—(k+l) =]
5 =0k |og(2[n2k4e2¢' 7k2e¢’j fﬂj

k=1

From the integral representation one has:
Qz,(2)=%=,(2), Pz,(2)=-0.5,(2), (139

where:

Q= (P” + szij . (1.39)

Inserting this operator into the above equation lueeethe generalization of the Airy equation given
by:

(Pp +:Z:_:S(pkap(z)= = (2). (1.40)

To recover the equation for the fLI:EI(z) function one has to take to infinity which agrees with
the fact that the zeta function does not obey igefiorder differential equation. Note thatand ¢
are in some sense canonically conjugate. Denotd-theier transform of theE(z) function as

=(p) then:
= z):jd@iﬂi(go). (1.41)

The generalized Airy equation then becomes in Fospiace:
1\ _
(Wp * stffjip(fﬂ) =QZ,(p). 42
k=0
This can be written:

U'(@)-QE(@=0, (1.43)

where:

- Z(nzk“ez”’ —gnkze”’je"kzew . (1.44)

k=1

Equation (1.43) is very similar to the equationtfoe master matrix. Indeed if we set:
9=M(y), z=R(y), (1.45)

we see thaty can be thought of as coordinates of a parametizaf the Riemann surfackl ,

which is determined from the¢ and z constraint U'(¢)-z=0. If we make these variables into
operators through:

9= I\7I0(a,a+), 2= I%(a,a+), (1.46)



this classical surface is turned into a quantumnin surface similar to those studied using
noncommutative geometry. Once one has obtainedctledficients s, one can define matrix

potential associated with a finifd theory as:

V(M)—IlmTr( J(M )+pstvk( )j, (1.47)

p-e k=1

where:

vk(M):zp:i(Mi—l). (1.48)

i=1 )

Thence, we can write also:

V(M)=lim Tr(VP(M)+

p_.oo

p
s> (M- )j (1.48b)
A set of orthogonal polynomials with this matrixteotial through the integral equation:

n! —‘!i[n[ y+1 +pZ:ska y+1 ]+21y 1
B \z)=—¢e = dy. (1.49
n( ) 2H§ yn+1 y ( )

Or equivalently though the generating function wiéfn:

—'IJiTw[ (y+1) +pzzskvk (y+1 ]+22y )
e = =>"B,(z )—I. (1.50)

n=0

These are the generalizations of the integral amskrgéing function definitions of the Hermite
polynomials associated with the (2,1) minimal model

Most of this analysis has centred on the matrixe fl the matrix/gravity correspondence. The
gravity side is related through an integral transfoFor example the macroscopic loop observable
associated with the Riemann zeta function is glwen

logZ(iz+1/2) = T[iz‘m\N(ﬁ)dE . (1.51)

In terms of thed, this observable takes the form:

1 2coq/, log) 1
w(¢)= - n - . (152
() log/ Z Mloge  ¢(r?-1)loge (1.52)

Thence, the eq. (1.51) can be written also:

. T o 1 2cod, log) 1
| 1/2)= vz - n - . (152
091z +1/2) {E log? Zn: M?log/ E(éz—l)logﬁdg (1.520)



The indefinite integral of this Wheeler-DeWitt wafumction is connected to the prime numbegrs
through:

j'W(ﬁ')dﬁ' (z—+ > j (1.53)

2 p"<x ph</

The FZZT brane partition function can also be represkby prime numbers as:
log{(iz+1/2) = ZZ p(=12) (1 54)

Thence, the eq. (1.51) can be written also:

1 —n(iz+1/2) - oog-iZ-l/Z 1 _ ZCOiAn |Og€) _ 1 dg 1 54b
Zplzn:n P { log/ Z Mlogs (¢ -1)logs (1.54)

Both of the above formulas follow from the Euler ¢gwot formula of the zeta function. Much of the
physical intuition about the meaning of the FZZT brame the Wheeler-DeWitt wave function
occurs on the gravity side of the correspondenceisTthe connection of Number Theory and
Gravity in this context is quite intriguing.

The (2,1) minimal model is defined by the partitfanction:

j dMdpeYM)T(PM) (1 55)
with:

V(M):%Tr(M ), (1.56)

and g is the coupling constant. We define a master matssociated with the model as a matrix
whose characteristic polynomial is equal to therimattegral:

[dMdPdetM —zi)e™ ™) (1.57)

which is the FZZT partition function.
The master matrix for the (2,1) minimal model isegi\by:

0 V1 0 0
V1 0 W2 :
M = % 0o . - 0o | (158)
0 JN-2 0 JN-1
0 0 JN-1 0

Which for N =8 is given by:



O J1 0 0 0 0 0 O
J1 0 ¥2 0 0 0 0 O
0 V2 0 3 0 0 0 O
Joi2 0 0 +/3 0 +/4 0 0 o (1.50)
0 0 0 /4 0 /5 0 o0
0 0 0 0 5 0 6 0
0 0 0 0 0 6 0 47
0 0 0 0 0 0 7 O

The FZZT partition function for the (2,1) minimaloahel is:

(%jMHN(z/@). (1.60)

This coincides with the characteristic polynomigatitee master matrix. For the cade= tifs is:

105, 105,
19 2

z +1—g59224 -1492 +Z%. (1.61)

The master matrix (1.58) agrees with the masterixnat the Gaussian matrix model which is has
the same partition function as the (2,1) minimatelafter integration oveP .

Because the master matrix is manifestly Hermittzmaigenvalues are real. The large limit of
FZZT partition function corresponds to:

1

L= 7z -1+ z, (1.62
9~y (1.62)

173
N

and leads to the Airy functioAi(z). This function is given by the contour integral:

®(z)= | 99 i3 (1 63)

3 2

with contour C, starting at infinity with argument 7 /&nd ending at infinity with argument
71/3. It has the series expansion:

Ai(z)=> r({n +!1)/ 3)sin(2(n+1)n/3)(3”3z)n. (1.64)

The Airy function obeys the differential equation:
Ai"(z)- zAi(z)=0. (1.65)

The Airy function has all it's zeros on the reaisaand this is a manifestation of the Hermitian
nature of the master matrix in (1.58).
The (3,1) minimal model is defined by the partitianction with matrix potential:

10



V(M)zé(gTr(M2+%Tr(M3)D. (1.66)

The master matrix of the (3,1) minimal model is tnatrix M with nonzero components:
M; ;= (i _1)(i - 2)O_i,j+2 +3(i _1)5i,j+1 + ga—i+1,j , (1.67)

1]

which is of the form:

0 g 0 .. 0

3 0 . .
M=|2 . . 0|. (1.68)

(N-2JN-3) 3(N-2) 0 g

0 (N-1(N-2) 3N-1) O

For N = 8this is given by:

0g 0 0 0 0 0 O
309 0 0 0 0 O
26 0 g 0 0 0 O
oegogooo'(mg)
001212 0 g 0 O
00 0 2015 0 g O
00 0 O 30 18 0 g
00 0 0 0 42210

The characteristic polynomial of this master matoixg =1/ N is given by:

8085 945z 1757 10572° 9457 777 212
- - + + - +z, (1.70)
409¢ 25€ 8 16 32 4 2

and this correspond to the FZZT patrtition functudrihe (3,1) minimal model.

for N =8. The expression fo@, (z) can be written using the residue theorem as:

Qu(2)=(- g)NN!Ziﬂ§ ;ﬁl eV (1.72)

After taking the largeN limit:

11



zZ- -1+ z, (1.73)

1
9N N

one obtains a generalized Airy functidl(z) defined by the integral:

The generalized Airy function obeys the differehéiquation:
o"(z)+z0(x)=0, (1.75)

with solutions:

s A o035 A 0535 {052

(1.76)
for constantsA B, and C where pFq is a generalized hypergeometric function. We niotehis

expression, thab4 =8 and that 8 is a Fibonacci’s number.
Modifying the contour to be along the imaginarysawe can define a modified generalized Airy
function W(z) by:
14
© @

W2)=["e*" “dp, (1.77)

with a series expansion given by:

Y(z) =i2§(('23k r[% +gjz2k . (1.78)

This modified generalized Airy function obeys th#eatential equation:
w(z)-z2w(x)=0, (1.79)

with solution:

o I ) oo

We note that also in this expressiéa=8° and that 8 is a Fibonacci’'s number.

The Riemanrcz function is defined by:
2
z(z):((iz+1jr(i5+1jn-“4n—i“2 ~Z 4wy
2 2 4 2 8

12



Also in this expression, we note easily that weehidne Fibonacci’'s number 8.

It is even and can be expressed as an integray #h@nimaginary axis as:
=(2)= j‘” eV@iegy  (1.82)
where:

k=1

U(gp)= —Iog(Z[nzk“ez”’ —gmze‘/’je"kZE”J . (1.83)
This function plays the same role for tEefunction as the Konsevich potential  fays for the

Airy function and¢/ /4for the ® function. For smallg one can develop an expansion:

U(p) = 9.363457 + 595896/ - 215104/ +O(¢#), (1.84)

which is probably why the (3,1) minimal model maekf FZZT partition function shares some of
the characteristics of theé function. The= function itself can be expanded as:

=(2)= iazn ((_2:]))“ 7", (1.85)

where

00

8, = 4| ow(z-”“f (ﬁ)(%logfj J (1.86)

1

and

f(0)= i(q“zﬂ —ngﬂjf”ze‘qz”’ . (1.87)

q=1

Thence, we can write the eq. (1.85) also:

- =T —1/4Oo 4 3 2 1/2 -q°1 1 a -1) 2n
=(2)=>4 dé{é Z(q ﬂzf—Eq njf e [Elogfj J((Zn)) z". (L.87H

=l !

Thus like the W function one can think of th&(z) function as an infinite order polynomial

expanded in even powers bf
Now we take the pure numbers of the expressiom]1\e obtain an interesting mathematical
connection with the aurea section and the auréa fatleed, we have that:

9.36345+5.95898.15104 = 13.1713 13.17%,

[JE +1J5 +[\/5 +1J2 _[gj =13.0901667013.09

2 2

13



Nevertheless keeping the first two terms in theagsmpon forU(go) one can derive the following
approximate equation for smal:

4(5.95896=(z)"-2(9.36349=(z)-=(2) = 0. (1.88)

Rescaling the argument &(z) we define:

=.(2)= E(\/E(5.958961/4) z. (1.89)
So that one has the following approximate equdtosmall z :
=(2)"-s=(z2)-=,(2)=0, (1.90)

where
_ 936345

%~ /595896

This appear related to the deformed (3,1) minimaldeh with deformation parametes;. The
solution to the equation fcE C is denoted by#(z,s) and is:

=3835753241 (1.91)

Ll +i
W(z,sl)sze“w 27 “do. (1.92)

We note that the value o is related with the following expressions

[\/E +1J3 B (\/5 -1j +1[\/§2' 1) = 3.824044681 382

2 2 3

19/7 29/7
(\/§2+1j +[*/_5T_1j — 3828101383

One can improve the approximate equation (1.88)inmyuding higher order terms in the
expansion ofU (qo) Keeping terms up t@ in (1.84) one obtains the approximate differential

equation:
6(2.15104="""(z) + 4(5.95898=(z)""-2(9.36349=(z)-z=(z)= 0. (1.93)
Now rescaling can put the equation in the form:

= () sE s E()=0, (194

with deformation parameters ands,. Finally we can define a functiotm(z,sl) as the solution to:

®(z5)"-5P(z5)+20(2)=0, (1.95)

14



which is real on the real axis and decays non-asaily for large positivey . We have thatD(z,s_)
is the FZZT partition function associated with thatrix potential:

N X 3 x Y 1 x ) X
V(X):1+Sl{3(_l+ Nll4j+5(_l+ N1/4j +§(_1+ N1/4j +%(_1+ N1/4ﬂ' (1.96)
JN

After rescaling and shifting the point of origin tfe potential one can define polynomials for the
matrix model deformed by the paramegethrough:

T3 )
— N N N 32,15, S j
S)=| ———| 0, - X+ =X+ =X =X~ wo- (1.97
Q(zs) N ex 1+Sl(x X 35X mx XZ | | |0 (1.97)
JN

The master matrix which has this as charactenmilgnomial is a simple rescaling of the coupling
constant of the master matrix of the (3,1) minimaldel and is given by:

|vli,j = (i _1)(i _2)5|,j+2 +3(i _1)5i,j+1 +%[1+%j5,+“ . (1.98)

This master matrix can develop complex eigenvataetarge enoughN and s . In particular for

N =34 (note that 34 is a Fibonacci’'s number) axndjiven by (1.91) the eigenvalues are complex.
However the functiorHJ(z,sl) obtained from changing the sign ofin the third term in (1.95) is
very different from CD(z,sl) in this respect. It would be of interest to detiexnthe master matrix
associated with#(z,s) and it's corrections for terms involving, and higher, which should in

principle converge to the Riemarin function.
With regard the eq. (1.93), we note that the purenlmer 2.15104 is related to the following
expressions:

\/E 1 11/7
+
(Tj = 2130140 21302.15104
4 2
(_\/52‘ 1) + (\/52‘ 1) + (*/E; 1) = 214580 21502.15104

Furthermore, from the eq. (1.93) we have also that:

J5+1

2617
(Tj (1597 [15.95896;

J5+1

4217
6(2.15104 + 4(5.95899 — 2(9.36349 =12.90624+ 23.83584-18.7269=18.01518[] (Tj 01794

3717 4617 4217
(J§2+1j =12.7201290; (—*/EZHJ =236202383; (@J =1794018.72

15



The = function can be expressed also as Meixner-Pollapagikomials. Thence, we have that:

2n+1)1., 3 .1 .3
p.(2)= !( n )I zFl[—n,ZHEz;E;Zj. (1.99)

(2n)!

These polynomials are the characteristic polynowfial matrix with nonzero components:

>

Mi,j=i(i+%j5.,j+1+5.+1,j- (1.100)

For N = 8 this matrix is given by:

o1 0 0 0 O 0 O
332 0 1. 0 0 0O 0 O
o5 0 1 0 0 0 O
0 0220 1 0 O O
. (1.100b)
O 0 0 18 0 1 0 O
0O 0 0 05520 1 O
O 0 0 0 0 3 0 1
O 0 0 0 O 0 1052 O

The characteristic polynomial of this matrix is:

363825 74247 _, 10493_,
- z"+ y4

-1542°+ 7%, (1.101)
16 2

which agrees with (1.99) foN = .8The expansion of th& function with an exponential factor
can be expanded in terms of the Meixner-Pollacodyomials as:

=(z)e ™" = ibn p.(2). (1.102)

Terminating this series al one can write this expansion as the charactenmsiignomial of a
N x N matrix. ForN = 8this is given by:

0 1 0 0 0 0 0 0
3/2 0 1 0 0 0 0 0
0 5 0 1 0 0 0 0
0 0 21/2 0 1 0 0 0
(1.103)
0 0 0 18 0 1 0 0
0 0 0 0 55/2 0 1 0
0 0 0 0 0 36 0 1
b/b, b/b b/b b/b bib hlb, 1052+b/b, b,/h
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When b, are taken to zero this reproduces the matrix (I).10he coefficientsh, are linearly
related to the integrals:

2
a{é+8j
_(” 2n+1
In —-J; -——2553357t;?i——')/ (j)/. (]..1()41)

With regard the pure numbers of the matrix (1.10@) (1.103) we note that:
3, 5, 21, 55 are Fibonacci’'s numbers, while 183=t15; 36 =2 + 34 and 105 =3 + 13 + 89,

thence are sum of Fibonacci’'s numbers.

1.1 On some equations concerning the partition fustions of the rigid string and membrane
at any temperature.

The first two terms in the loop expansion
=§+§+... (1.105)

of the effective action corresponding to the rigidng
=%Idzo—[p—1azxﬂazxﬂ +/]ab(aaxﬂabx# -pgab)]J,ﬂojdzo_p, (1.106)
0

where a, is the dimensionless, asymptotically free couplogstant,o the intrinsic metric,/,
the explicit string tension (important at low engrgand A*, ab=12 the usual Lagrange
multipliers, are given — in the world she@k " <L and0<o’< & —by

S = %[/111 + ¥+ ploag - ) @.107)

at tree level, and by
2, Arn® o | ATPA?
s_—LZj —dklnl(k e j ,0(/1 k +W (1.108)
at one-loop order, respectively. Of course, to makese, this last expression needs to be

regularized and its calculation is highly non-taivi We shall make use of the zeta function
procedure and thence, one can write the exprefsidf also:

Sl:—(d—Z)L%ZA(s/Z)L:O, Z.(s12)= j—dk(k2+y+) k2+y?2)*%, (1.109)

n_—w

where
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a
Y: =—

t

. T 1/2
n2+p;ai + ,0%‘(( 11_/]22)n2+%] } ' aE%. (1.110)

We may consider two basic approximations of oveuiag validity: one for low temperature,
B << u,, and the other for high temperaturg,” >> a,u,. Both these approximations can be
obtained from the expression above, which on it$ ¢an be written in the form

N

1 r(s-1v2)e  y . _Yy
12)= F(s/21/2;s1-n), ==—. (1111
S22 g Ly S2asin), =g (111D

This is an exact formula.
With regard the low temperature case, the term  ir0(1.111) is non-vanishing and must be
treated separately from the rest. It gives

n(sr2)= %T rl- S)r/é]/r 2()s -1/2)

(o), %< R(s)<1. (1.112)
This is again an exact expression, that yields
(12 =S oF (1119

and
d 2

— oAt (1.114)

Sgn=0)

For high temperature, the ordinary expansion ofdbefluent hypergeometric functioR of eq.
(2.111) is in order

F(s/2,1/2;s;1—/7):Z(S/Z)((;/Z) (L-5), (L.115)

k=0 k! k

(s), =s(s+1)..(s+k—1) being Pochhamer's symbol (the rising factorial).

Now we shall consider the case of the pure bosor@mbrane and corresponding-brane. The
tree level action similar to (1.107) is

SRE KLZ,G{(1+ o,)"*(1+a,)- e/]oao + Alalﬂ (1.116)

where A, and A, are Lagrange multipliers and, and o, are composite fields. The one-loop
contribution to the action can be written formadky follows

S_(bm) _\da-s)b” (d 3 |_2 i J.+°°dk1dk2{ (k1 k ) %} (1.117)

As in the string case (eq. 1.109), we choose thefmaction method. Calling’, the corresponding
zeta function, we have
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g = _(d=3) s €93 jmdkldkzmpl(kfmgﬁ% @)

After some calculations, we get

Z,(s)= 4ﬂ(sl I (4"22” {a(2s-2), (1.119)

where {5 is Riemann’s zeta function. We thus obtain

_2(d - 3)m, L2

¥ Zn(-2). (1.120)

qu) —

In the case of the bosonig-brane, the corresponding expressions are

Sép) — K|_p,6’t[(1+ 00)1/2(1_'_ Jl)p/z _%(/]00'0 + p/]lal)} (1.121)

and
o) - _(d-p-1)L° d
37 2 dsZ (S)|S:
hd +oodk1dk 2 ) 4]72/10 2773 VAR p/2 M(s—- p/2 4772A0 p/2-s
ZP(S): n:z_w.[_m (Zn)pp |n|:/11(k1 +...+ kp)+ ﬁztzn } —_bp ((Zn)plfgzr(s) )( ﬁth J ZR(ZS_ p)

(1.122)

whereV, is the “volume” of thep — idimensional unit sphere.

Now we shall consider the case of the bosonic mangwith rigid term and the correspondipg

brane. The tree level action is the same as bedoye(1.116). The one-loop order contribution for
the bosonic membrane is

§im = _@% 21(9) o
ZI dkldkgl (ki +K2 + 4;:212) +K(A1(kf+k§)+%ﬂ ., (1.123)

where the label meangigid. We can write

Gi()= 0 X [T oklire)*(ere)?, (112)

with
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2 212 1/2
c, = 4;” K'OZ/]1+\/_ ,0{(/1 )lo,4;2t” Kp4"} . (1.125)

Here, in analogy with the rigid string case, themtecorresponding ton= (Omust be treated
separately. It yields a beta function. Also asha tigid string case, the remaining series can be
written in terms of a confluent hypergeometric fiiore. The complete result is:

o pTEA)Er(-s)r(2s-1) | p*r(2s-1) & 1y o
Zi(s)= T + 277 (29 zlc F(s2s-12s1-c,/c). (1.126)

For the general case of the-brane with rigid term, the one-loop contributi@nthe action is

. d-p-1L° d ,,
s = _ME (p(s)|5:0

Zj o dk{lz(kf+...+k§+ﬂ] +K(/]l(kf+...+ks)+4772/]0”2]} _

= 2(’3210),3 i j:dkkplz—l(k + C+)_S(k + C_)_S, (1.127
7T} =

whereV, is again the “volume” of the p — 1-dimensionaltisphere and the, are again given by

(2.125). Considering then= @erm separately, we obtain the following genesdion of the
formula corresponding to the rigid membrane:

. _Vppp—Zs(K/‘l)pIZ—Zs I_(p/2_ S)r(ZS— p/2) VppZS
= oy R

r(ZS— p/Z)r(p/Z) N p/2-2s _ e _
r29) Z::c_ F(s2s- p/22si-c,/c)). (1.128)

In the case of the rigid membrane we get the ragimepler result

d _ 1 8m'(-2) 1
L 08) o =KAo A (B )1 Yap P AoA) (a29)

The one loop action for the rigid membrane is rgamitained from (1.129)

KpZA[l In(Kp )] 4n(d 3 Z( 2)+%K,02(/11—/10)- (1.130)

(m) _ (d-3)L*
3= 8

Here, terms up t&k = 2n the expansion (1.115) of the hypergeometricfiom of (1.128) have
been taken into account. We note that all highdeoterms would be easy to obtain from (1.128)
and that a consistent loop expansion to any desirger can in fact performed. The conditions for

extremum of S™ =g" + 8™ eqs. (1.116) and (1.130), are obtained by takiregderivatives
with respect to the parametetg A,,0, and ;. The result is
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__d-3p"  _ _(d=30°[ ([ 21 (a)
o, = 4—7TE' O'l—W[l |n(K:0/11(/8[) )]'

A=0+o)i+o,)"?, A =@+0,)"*. (1.131)

We can easily identify here the transition thabdbkes place for the rigid string: for values loé t
temperature higher than the one coming from theesson

- a7t
=T (1.132
IBC (d _3)p2 ( )

the values of the parameters, and hence of theraamd of the winding soliton mass squared,
acquire an imaginary part. Guided by the fact thdhe rigid string case this temperature lies aov
the Hagedorn temperature, we conclude that in dhdérthe whole scheme of the string case can be

translated to the membrane situation we must denteigb®x be small.
For the Hagedorn temperature, defined as the Yatughich the winding soliton mass

S

L2

Ml(rm)

(1.133)

vanishes, we find
A - 'i—Zit
Hlm;e. (1.134)
pw/—KIniKp )

The values of the constants which determine thdirlgabehaviour of the effective action at high
temperature, namely the derivative of the zeta tfancat the point — 2 (in generak p,

respectively), have been calculated. In particvarhave that

7'(-1)=-016542115  ¢'(-2)=-0,03049103 (1.135)

Also here, we note the mathematical connection thiéhaurea section, i.e;u:—\/gz_l. Indeed, we
have that:
26/7 51/7
— (@7 = —[*/_ST_lj =-016740, -(pf"" = —(*/gT_lj =-0,030017. (1.136)

Now, we take the pure numbers of the egs. (1.61Y0§ and (1.101). We have the following
sequence:

2,4,7,8,14,16, 21, 32, 105, 154,156, 945, 4096, 8085, 10493, 74247, 363825.
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We note that:

2=2, 4=2% 7=7x1=7, 8=2° 14=2x7, 16=2'=2x8, 21=3x7=2],
32=2°=4x8, 105=3x5x7=21x5 154=2x7x11 175=5°x7, 256=2°®=4x8x8,
945=3F x5x7=3x5x21, 4096=22=8°x8%, 8085=3x5x7°x11=5x7x11x 21,
10493=7x1499, 74247=3x 24749 363825=3Fx5°x7?x11=3x5%x11x21*.

Here, 5, 7 and 11 are prime natural numbers ar8] 2, 8 and 21 are Fibonacci’'s numbers. The
number 8 is also connected with the “modes” thatespond to the physical vibrations of a
superstring by the following Ramanujan function:

r COS7EXW oW iy
antilog——COSIVK E %42
—iw‘ : tw
1 e * qitw)

S . (1.137)
Iog[ \/(10+11J§j . \/[10+47x/iﬂ

With regard the numbers 2, 3, 5, 7 and 11, thesalao factors of the numbers of dimension of the
Lie’'s Groups, connected to the string theory. Intjeee observe that:

L1=2x7; L2=2°x3 L13=2x3x13 L14=7x19 L5=2°x31 L6=2"x3Fx5x11
L7 = 2°x3x5x7x11x19; L8 =2"x3Fx5x7x11x 23 L9 =2*x3*x5°x83F, with
839=140x6-1 and 140=144-3- 1(that are Fibonacci’s numbers);

L10 = 2 x 3 x5 x 7° x 112 x13F x17x19% 23% 29x 31x 41x 47x59% 71.

We have also that:

460(34+55)/2; 20=21-1, 9=8+1, 6=5+1 2=2; 3=3; with2,3,5,8, 21, 34 and
55 that are Fibonacci’'s numbers.

With regard the prime natural numbers, we have that, 11, 13, 17, 19, 29, 31 and 47 are of the
form 6f +1with f = 1,235 and 8 that are Fibonacci’'s numbers. With regaednilimbers 59 and
71, we have that: 59=6x10- ,1 with 10 = 8 + 2 (8 and 2 are Fibonacci’'s numpevghile
71=6%x12-1, with 12 =13 -1 (1 and 13 are Fibonacci’s namsh

We note also that for the Lie’'s Grougs, F,, E;,E, and E;, that have dimensions 14, 52, 78, 133

and 248, we have that:

14=2x7, with 7=6x1+1, 52=4x13 with 13=6x2+1, 78=6x13, with13=6x2+1,
133=7x19, with 19=6x3+1, 248=8x31, with 31=6%x5+1 (1, 2, 3 and 5 are Fibonacci’'s
numbers, while 7, 13, 19 and 31 are prime natusahlvers. Furthermore, also here there is the
numbers 8 that is related to the physical vibratioha superstring by eq. (1.137)).

Furthermore, we have that:

22



10493=7x1499, with 1499 = (1499 + 1)/6 = 250 = 233 + 17 = 23821 + 13)/2]. Note that 13,
21 and 233 are Fibonacci’s numbers and 17 = 348 34 = Fibonacci’s number.

74247=3x 24749, with 24749 =6x4125- 1with 4125=3x5°x11= 4181~ 56, with

56 =55 + 1. Note that 1, 55 and 4181 are Fibaiswambers. We have also that

25087 — 24749 = 338338=6x55+ ,8&vith 8 and 55 that are Fibonacci’'s numbers. Faurttore,
25087 is a prime natural number. Inde28087=6x4181+ . 1

2. On some mathematical aspects concerning the rigidigace operators in gauge theory
[4]

Now, in this chapter, we describe some interestisigects of the rigid surface operators in gauge
theory for the connections with the Geometric Langk Program.

The familiar examples of non-local operators in ridimensional gauge theory include line
operators, such as Wilson and ‘t Hooft operatanpperted on a one-dimensional curkein the
space-time manifoldv . While a Wilson operator labelled by a represémtatR of the gauge
group G can be defined by modifying the measure in tha paegral, namely by inserting a factor

Wy (L) =Tr.Hol (A)=Tr.[Pexpf A),  (2.1)

an ‘t Hooft operator is defined by modifying theasp of fields over which one performs the path
integral. Similarly, a surface operator in four-@insional gauge theory is an operator supported on
a two-dimensional submanifold [0 M in the space-time manifolt .

Four-dimensional gauge theories admit surface ¢pessaand in the supersymmetric case, they
often admit supersymmetric surface operators, ithaturface operators that preserve some of the
supersymmetry. Now, we consider some mathematsgedas ofN = 4super Yang-Mills theory in
four dimensions, the maximally supersymmetric ca$es theory has many remarkable properties,
including electric-magnetic duality, and has beetemsively studied in the context of string
dualities, in particular in the AAS/CFT correspomcia

Hitchin’s equations are equations in tke— x* plane that can be written as follows:
F,-¢U0p=0, dp@=0, d,0p=0. (2.2)

To define a supersymmetric surface operator, onkspa solution of Hitchin’s equations with a
singularity alongD, and one requires that quantizationf= sdper Yang-Mills theory should
be carried out for fields with precisely this kind singularity. It is natural to look for surface

operators that are invariant under rotations of xhe x* plane. If we setx® +ix® =re'?, then the
most general possible rotation-invariant ansatz is

A=a(r)dg+ f (r)%, @= b(r)% —c(r)dg. (2.3)

Setting f(r) =0 by a gauge transformation and introducing a nenakbe s=-Inr , we can write
the supersymmetry equations (2.2) in the form difNa equations:

da _ db _ de _
E—[b,c], & [c,a], & [a,b]. (2.4)
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The most general conformally invariant solutioroidained by setting,b,c to constant elements
a,f,y of the Lie algebrag of G. The equations imply that,5 and y must commute, so we

can conjugate them to the Lie algelbraf a maximal torusl of G. The resulting singular solution
of Hitchin’s equations then takes the simple form

A=add, go:ﬁ%—;de. (2.5)

The definition of the surface operator is thatand ¢ have singularities proportional @, 8, y
modulo terms that are less singular tian . Generically, fora, 5,y - Qwe conclude thaA and
¢ are less singular thald'r . In fact, Hitchin’s equations do have a rotadiliyy symmetric solution
that is singular at = ®ut less singular thatyr . The Nahm equations (2.4) are solved with

—_ tl t2 t3

a=- , b=- , C=- (2.6)
s+1/f s+1/f s+1/f

wheret,,t,, andt, are elements of the Lie algebgg which satisfy the usuaetu(z) commutation
relations,[tl,tz]=t3, etc. Moreover,f is an arbitrary non-negative constant. Since veetaking
G=SU(2), the matricest,, if nonzero, correspond to the two-dimensionalreepntation of

SU(2). So the surface operator that we get from thetar(@s6), with f allowed to fluctuate, is
actually conformally invariant.
A convenient way to describe this surface opernatty say that the fields behave near a9

A bdl _tdr _tde

e (2.7)
Inr rinr Inr

where the ellipses refer to terms that are lesgusan (at most of ordet/rIn’r) atr = 0. The
complex-valued flat connectioA = A+ig¢ is invariant under part of the supersymmetry presck

by the surface operator. Hence the conjugacy digge monodromy
U=pex]-[A] (28

iS a supersymmetric observable. Hefeis a contour surrounding the singularity. Hitckin’
equations imply that the curvature Af, namelyF =dA+ A C A, is equal to zero. So if Hitchin’s
equations are obeyed, then the conjugacy cladd aé invariant under deformations df. Of

course,U is an element of5., the complexification ofG. For a generic surface operator with

parametersr, 8,y we seté =a —iy. ThenA =£&d8, and the monodromy is hence
U =exd-27%). (2.9)

Thence, from the eq. (2.8), we can write also:

U =Pexp- [A)=exp-272). (2.9b)

24



This is independent of the choice @f. On the other hand, for the solution (2.6), wedfin
A =-dé(t, —it,)/(s+1/ f). If we take/ to be the circles=s , the monodromy comes out to be

U'=exd-27(t, ~it,)/(s +1/ )] (2.10)

We note that) can also be diagonalized, with eigenvaleag(+ 27, ):

— exr'(_ 2772_0) 0
O[T ) €
As long asé, # 0Qthis matrix is conjugate to
— exd_ 27750) 0
R

SO it does not matter ivis zero or not.
Let €, be the conjugacy class in SL(2,C) that contaireselementU = exgd- 27), with generic

¢. Then € is of complex dimension two. Indeetl commutes only with a one-parameter

subgroup of diagonal matrices, so its orbit in theee-dimensional group SL(2,C) is two-
dimensional.
Unipotent elementd) of G, correspond naturally to nilpotent element®f the Lie algebrag. of

G, viaU =exp(). It is convenient to think in terms of the Lie etga. A natural source of
nilpotent elements o5, comes by picking an embedding of Lie aIgeb;assI(Z,C) - Oc-

Then the raising (or lowering) operator for thiskedding gives us a nilpotent elemerit g.. .
Conversely, the Jacobson-Morozov theorem statéteay nilpotent element U g, is the raising

operator for somesI(Z,C) embedding. In fact, up to conjugacy, every nilpptelement is the
raising operator of some unitary embedding

p:su2) - g (2.13)

of the real Lie algebra of SU(2) to that of the @@t form ofG .
Now it is clear how to make a surface operator @aged with any unipotent conjugacy class
€0 G.. We pick an SU(2) embedding: su(2) - g, and define the surface operator using eqn.

(2.6), wheret,,t,, andt, are now the images of the standard SU(2) generatoder the chosen

embedding.

Rigid unipotent conjugacy classes or rigid nilpotenbits also exist in exceptional groups. A
(noncentral) unipotent conjugacy class of minimatehsion in a complex semisimple Lie group is
always rigid, except forA. It is convenient to be able to compute the dinmensf a unipotent

conjugacy class i, , or equivalently of a nilpotent orbit ig. . So we pause to explain how to do
this. Letd be the complex dimension @, and lets be the complex dimension of the subgroup
G: O G, of elements that commute with a giveridg.. The dimension of the orbit afi (or of
exp)) is d —s. So it suffices to compute.
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The element is the raising operator for some embeddipg su2) ~ g. We decomposeg in
irreducible representation® of su(2):

g=0L%. (2.14)

The subspace of that commutes with the raising operatoris precisely the space of highest
weight vectors for the action afu(2). Each irreducible summan® has a one-dimensional space

of highest weight vectors. So the subspacg dhat commutes witn is of dimension equal te,

the number of summands in (2.14).

For example, one can use this method to computediimensions of the minimal unipotent
conjugacy classes in SO(N,C) or Sp(2N,C). For arotimportant example, we re-examine the
regular unipotent orbit of SL(N,C). This correspsrd an irreducible N-dimensional representation
of su(2), and the summands in (2.14) are of dimension 37,5,, 2N — 1. There are N — 1

summands. This shows that the subgroup of SL(Nh@) tommutes with a principal unipotent
element has dimension N — 1. The number N — 1 sqid dimension of the maximal torus,
showing that a principal unipotent orbit has thesalimension as a generic semisimple orbit.

Now we will describe a gauge theory singularityréal codimension 2 associated with a rigid

semisimple element ofc. We take the singularity to be at®=x*= , Gnd we use polar
coordinatesx® +ix® =re'?. In the absence of any singularity, an adjointsedlfield on thex? — x°
plane can be represented by an adjoint-valuediame®(r,) that obeys ®(r,8 +277) = ®(r,8). If
S is any element of the gauge groGp we can modify this condition to

o(r,6+2m)=50(r,0)S*. (2.15)

Since G is a symmetry group oN = 4uper Yang-Mills theory, it makes sense to forrtaula
N =4 super Yang-Mills theory for fields that have tkwrt of behaviour, near a codimension two
surface D in spacetime. If we impose this condition, theangl D, we should divide only by
gauge transformations that commute w&h This recipe gives a surface operator that makeses

for any SOG. It varies smoothly as long as the centrali@rof S in G does not change. To get

a rigid surface operator, we must pigkto be rigid, meaning thas® jumps if S is changed at alll.
As in eqn. (2.5), we considered a gauge singularitthe form A=adf. One quantizeN = 4
super Yang-Mills theory for fields with this typé singularity, dividing by gauge transformations

that atz= Oare valued inG”, the centralizer ofr in G. Let us call this type of surface operator a
generic one. A generic surface operator behavelsawel is varied as long as the centralizeraof

is the same as the centralizer of the monodro8wy exp(— 2770/). We are precisely in the situation
in which this is not the case, for 8 is strongly rigid (and noncentral) then the cditea of S is
strictly larger than the centralizer of amy1g such thatS = exp(— 2m) :

To being with, any elemeri¥ G, can be written a3/ = SU, where S is semisimpleU is
unipotent, andS commutes withJ . Moreover, letGS be the centralizer 08 in G., soU OG¢.
Then the condition forV =SU to be rigid (or strongly rigid) irG. is that S must be rigid (or
strongly rigid) inG. andU must be rigid inGZ. To construct a surface operator with monodromy
V = SU, we combine the two constructions as follows.tRirs require that near= ,@ll fields of

N =4 super Yang-Mills theory obey <D(r,6?+277)= SCD(r,G)S‘l, as in (2.15). Second, we also
pick a homomorphismp: su(2) ~ g° (here g° is the Lie algebra o6°®) and we require that the
fields have a singularity near= t@at is given by the solution (2.7) of Nahm'’s efijuas:
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SL00, | p=tdr _LAGL 5 16
Inr rinr Inr

where the ellipses denote terms that are less lsingr = 0. Becausep commutes withS, this

condition on the fields is compatible with (2.1%5he combined condition defines a surface operator
with the monodromy

V=SU. (2.17)

There is no need here f&f to be rigid. For every conjugacy cla€g , a construction along these
lines gives a surface operator of monodrovhy
Now we describe rigid nilpotent orbits in exceptibnases. In such cases, the appropriate language
to classify nilpotent orbits is based on Bala-Qatieory. According to Bala and Carter, nilpotent
orbits in g. are in one-to-one correspondence with péli,rpl), wherel [0 g is a Levi subalgebra,
and p, is a distinguished parabolic subalgebra of theisiemple algebra[l ,I]. Such pairs can be
conveniently labelled as(N(a,.) where X, is the Cartan type of the semisimple part agindi is
the number of simple roots in any Levi subalgeldrgpa If i =0 one simply writesX,, and if a
simple component of a Levi subalgebranvolves short roots (wheg has two root lengths) then
one labels its Cartan type with a tilde. Using thagation, below we list rigid nilpotent orbits in
G,:
orbit dim(c)  7z(c)
A 6

~

A 8

We note that 6 =5+ 1 and that 8 =3 + 5 ,hvlif 3, 5 and 8 that are Fibonacci’'s numbers.
Furthermore, 8 is the number related to the phisibaations of the superstrings by the following
Ramanujan function:

© COSTEXW oW iy
antilog——COSIVK E %42
—iw‘ : t W
1 e * qitw)

-1 . (2.18)
Iog[ \/(10+11J§j . \/[10+47x/iﬂ

These are the only nilpotent orbits®@ which are not special.

We omit the trivial orbit, and in the last columm also list theG, -equivariant fundamental group
of ¢ (defined asr(c)=G.(c)/G,(c)°, where G_[(c) is the centralizer ofc in the simply-
connected form of5 ). The G,, -equivariant fundamental group, usually denotdd), is the same
as IZl(C) in typesG,, F, and E;. In the following table we list rigid nilpotentlats in F,:

orbitc  dim(c)  7(c)
A 16

~

A 22 S,
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AL""Z& 28
A +A 34
A +A 36

We have that: 16 =24-8=3+5+8; 22=21=13+8+1; 28=13+8+5+2;
34=13+21=5+8+21=24+8+2; 36=33=24+12.

We note that 1, 2, 3, 5, 8, 13, 21 and 34 are Rbais numbers. With regard the numbers 8 and 24
(and 12 = 24 / 2) they are related to the physrdaiations of the superstrings and of the bosonic
strings by the eq. (2.18) and by the following Raman function:

r COS7EXW oW iy
antilog ™ COSVK Dtgjf
e +"q (itw)

o 121325 07| 219

All of these orbits, except foszL and A + 76; are not special. In typg;, rigid nilpotent orbits are
the following:

orbitc  dim(c)  7z(c)

A 22 1
3A 40 1
2A+A 54 Z,

Here, we have that: 40=16+24=34+5+1=*381+5+6; 54=34+13+5+2=48 +6.
Also in this case we have that 1, 2, 5, 8, 13, 8d 84 are Fibonacci's numbers and that the
numbers 8, 16, 24 and 48 are related to the pHysiloeations of the superstrings (8) and of the
bosonic strings (24) and hence to the eqgs. (24A8)2.19).

In type E,, rigid nilpotent orbits are the following:

birc  dim(c)  7(c)
A 34 1
2A 52 1
(34) 64 1
4A 70 1
A+2A 82 1
2A+A 90 1
(A+A) 92 1

Here, we have that: 52 =34+13+5=12+ 168+ 264 =48 +16=55+8 + 1;
70=55+13+2=48+13+8+1; 82=55+MHM+1=48+21+8+5;
90=55+34+1=48+24+13+5;, 92=54+33=48+24+13+5+ 2.
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Also in this case we have that 1, 2, 5, 8, 13,3land 55 are Fibonacci’s numbers and that the
numbers 8, 16, 24 and 48 are related to the pHysilceations of the superstrings (8) and of the
bosonic strings (24 and 12 = 24/ 2) and henchaets. (2.18) and (2.19).

All of these orbits haveA(c) =1. Among these, the orbitd, ,2A, and A, + 2A are special. Finally,

in the following table we list rigid nilpotent otbiin E;:

biirc dim(c) 7z(c)

A 58 1
2A 92 1
3A 112 1
4A 128 1
A+A 136 s,
A +2A 146 1
A +3A 154 1
OA +A 162 1
A+A 164 1
A +2A 168 1
A +2A 172 1
D,(a)+A 176 S,
A+A+A 182 1
2A 188 1
A+ A 200 1
A+A 202 1
Di(a)+ A, 202 1

The only special orbits in this list arg 2A, A, + A, A +2A, D4(a1)+ A.

Here, we have that: 58 =21+ 34 +3 =48 + 8 +4B=+ 5+ 3 + 2;

112 = 14412x12) — 21 -8-3; 128=144-16=144—-8-5-B36 = 144 —8§;

146 =144 +2; 154=144+5+3+2; 16244% 13+5; 164=144+13+5+ 2;

168 =144 +21+3 =144+ 24; 172=144+ A +H2=144+24 +3 + 1,

176 =144 +21+8+3=144+24+8; 182=141+3+1=144+24+8+5+1;
188=144+34+8+2=144+24+16+3+200=144+48+8 =144 + 34 + 21 + 1;
202=144+48+8+2=144+34+21 + 3.

Also in this case we have that 1, 2, 5, 8, 13,321and 144 (89 + 55) are Fibonacci’'s numbers and
that the numbers 8, 16, 24, 48 and 144 (144&=12) are related to the physical vibrations of the
superstrings (8) and of the bosonic strings (28 £ 24 / 2) and hence to the egs. (2.18) and )2.19
Furthermore, related to the numbers of this W&t have the following forms:

6n -2 for n=3,4,5,6, 7,9, 10, 11, 12,19 and 23, we obtain the numbers: 16, 22328,
40, 52, 58, 64, 70, 82, 112, 136.

6n for n=1, 6, 9 and 15, we obtaim tlumbers: 6, 36, 54, 90.
6n + 2 for n=1, 15, 21 and 24, we obtamtkmbers: 8, 92, 128, 146.

8n-2 for n=1, 3, 7, 9 and 23, we obthmnumbers: 6, 22, 54, 70, 182.
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8n for n=1, 2,5, 8, 14, 16, 17, 22 and 25, we obtain the numbers: 8, 16, 40, 62, 1
128, 136, 168, 176, 200.

8n+2 for n=4,7, 10, 11, 18, 19, 20 ahdwWe obtain the numbers: 34, 58, 82, 90, 146, 154
162, 202.

We note that for 6n — 2 we have 12 numbers an@riowe have 10 numbers. The form 6n — 2, is
related to the fornbn+ 1hat is connected to the generation of the priomalrers. Furthermore, 6

is the number of dimensions compactified concertiregsuperstring theory. The form 8n, is related
to the Fibonacci’'s number 8 and to the physicatatibns of a superstring, hence to the Ramanujan
modular equation (2.18).

With regard the Lucas’s series, we have obtainedféHowing interesting connections, with the
forms 6n, 8n, 6n —2 arBh+ .2Indeed, we have:

6n for n=1:
8n for n=1, 2:

6n-2 for n=3,4,7 and 11:
6[(3-2= 16 6[4-2=22, 6[7-2=40, 6[11-2= 064
8n+2 for n=3,4,7,11 and 18:
8[(3-2= 22 8[4+2=34, 8[7-2=54, 8[11+2=90, 8[18+2=146
We note that 2, 1, 3, 4, 7, 11 and 18 are Lucassbers.

In conclusion of this chapter, we observe also thatnumbers 6, 8, 16, 22, 28, 36, 40, 52, 54, 58,
64, 70, 82 and 90 are values of the Eulero’s phetion ¢(n). We note that a Dirichlet series that

gives theg(n) is

iqﬁn?) ((S)), (2.20)

where ¢ is the Riemann zeta function.

3. On some equations concerning the study of the Riema zeta function and the Selberg
trace formula. [5]

Let k denote the field of rational numbers. For eveacplv, we denote byk,, O,, and P, the
completion ofk at v, the maximal compact subring &f, and the uniqgue maximal ideal &f,,
respectively. Theadele group A of k is the restricted direct product of the additiveups k,
relative to subgroup®,, and is denoted by . For every placev of k we denote by{ |v the
valuation ofk normalized so that| is the ordinary absolute value\ifis real, and|r| =1/ p if
O, /PR, containsp elements wherd, = 77,0, . In this chaptery and p always correspond to each
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other this way. Thedele group J of k is the restricted direct product of the multiptica groups
k.’ relative to subgroup®,’ of units ofk, .

Let J* be the set ofdeles a =(a,) such that|_||av|v =1. We denote byC for theidele class
group J/k". We define a map - A,(x) of k, into the set of reals modulo 1. Then

W, x — ™M (31)

is a character on the additive grokip It is trivial on O,, and is nontrivial orvz,"O, for v # oo
Let G be a locally compact abelian group with a nondtiproper continuous homomorphism

G-R, g-g (32
whose range is cocompact R. There exists a unique Haar measdrg on G such that

O~ ~
J"Q‘D[L/\]d g=logA (3.3)

when A - o, Let G, :{g DG:|g|:]}. We identify G/G, with the rangeN of the module.
Choose a measui@n on N such that (3.3) holds for the measuir@ given by

[ f(g)dg =INUGO f(ngo)dgo)dun, (3.4)
where the Haar measudg, is normalized so that
Jo,d% =1 (35)
In particular, forN = R the unique Haar measure @n satisfying (3.3) is

d'g=dndg, (3.6) with an:F

If N =q”, the unique Haar measure @ satisfying (3.3) is given by
[ f(g)dg= Iogq%z‘,f% tla'go g, . (3.7)

Let hOCZ(0,0) be a smooth complex-valued function with compagipsrt in (0,0). Then

; h(p)= J.: h(x)dx + J.: hH(x)dx - il\(n){h(n) +h(n)} - (log 77+ y)h(2) -
- { x) + h(x —ih( )} XX (3

X2 -1




where the sum o ranges over all complex zeros §fs) and wherey is Euler's constant.
Let g, be a real-valued function i’ (0,»0). We define

()= [ go(xy)ge(v)dy.  (3.9)

Then

ho(s) = go(s)go(l_ S)- (3.10)

Since g, has a compact support ( ,oo), there is a numbepn satisfying0< u < 1such that the
support ofg, is contained ir{\/ﬁ,,u‘”zj. It follows that

h(x)=0 (3.11)
for all xD[,u,,u‘lj.

Theorem 1

Let h, be given as in (3.9). Then

Zho( )=h,(0) + () ZLD |1(1 )dEU (3.12)
where the sum op is over all nontrivial zeros of (s), the sum orv is over all places of k, and
the principal value.[‘ is uniquely determined by the unique distributionky which agrees with

1 le:V| for u#1 and whose Fourier transform vanishes at 1

If v is afinite place ok, then

L?M )dDU I §(u)logu| du  (3.13)

where

o lurd?)
olu)=" T

If v is the infinite place ok, then

(L il )leJ”b()loqs . (3.14)

-uze |1 ul

La ) ) = (y+log(27m))hy (1) + lim

£-0)
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(Proof of Theorem 1). We have the following exgliormula:

)= () jho Jax= > A(m [ ( j+ho(m)}—(y+logn)ho(1)

m<1/ u

-If[m(x)+1m(j 2ho()} Xd_xl (3.15)

X

where the sum o is over all complex zeros (zT(s). We assume that is not a rational number.
If v is a finite place, then

1OVJ

) e
IkE 1-u, du= ho(1)J-k5|1—u

Let A={uDk, :ju+1 =1, andput 1,(x)=1, xOA;  1,(x)=0, xOA.
Then

| du +zﬂrf’k_k)j . di +iho(|0k)ju du. (3.16)

- L\l//v (- xu)du=g, (x)iov](x). (3.17)

Since
i=1, —%1”10 . (3.18)

we have

Thence, the eq. (3.17) can be written also:
)= [l dau=,(f 00 21,0 09 2190

By definition of the principal value integréi , we have that:

du= J' u)logul, du——jw Jlogul, du+—j y,(u)loglu| du=

e

1- u|
=— Iogp ( J loglu du——w ( )Io 3 np"=0 3.20
5 [ logul, e gp2 " =0. (3.20)

Since p is a rational prime for each finite plaseof k, by the normalization (3.7) for the Haar
measure ork;

Jo, - du=logp= Alp¥) @21

for all nonzero integerk . Therefore, by (3.11) we have
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}ZJ 0 )dDu (3.22)

V£

P CENEYRY

We assume that is the infinite place ok . By definition of the principal value integréll ,

IRJEQUIU|)d% V+Iog(2ﬂ))rb()+|5|n%(jl_u>d |10 |u|l)dﬂu+m(1)log 5}. 323

We have

'J”%(I - )O'Du’fho()long=

-uzs [1-u|

=i { f(l h“(ﬁj + ho(u)u""j (u+2™ JZ’ -2, —%ho(l)} . (3.24)

5-0 u

Since

Q%Lﬂﬂ ho(u)(u_‘j _1) (u+2)°™ ‘2* (-1~ du= Lmj'l”_l ho(u)(u“’ _1)(11_—21)5_1 du=0 (3.25)

. °1 (U2 + -2 1) e 1 . A
nm(zluz . du 5]‘11 —uz(u+1)du+m(r(5)r(2 ) 5)‘ log2, (3.26)

we have

o1 ) S E AT\ I

|5|mo(jl_u i d%+m()|ogJJ_L{arb[aj+m(u) > Lz_ldu h()log2. (3.27)
Therefore,

[ L o) FlEn(2)en-Zn0 22 cae

1-u| u
The stated identity then follows from (3.15) and2@3.

Theorem 2

Let h be a smooth even function of compact supxpdﬁ(RD) and let g(/)= ( )/l . Then
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IR H.,9(u)cog27m)logujdu = —h(1)log 277 yh(1)

o h(1) ma{ya 1/A}
i) J e NZRR O

dA + h(l)loge‘]. (3.29)

Corollary 1.

Let h(u) = hy(u]). Then

Ilm{L e h\(/%l ma)g:"_’l]jﬁ}d/] + h(l)logg] =

=-n@ogz+ [ 9+ - Zn)

X
dx. 3.30
-1 X ( )

Theorem 3

Let h(u)=hy(u) and g(A)=h{3")A". Then

IH (U, (u)logudu = J' hjﬂ )dDu (3.31)

where the principal valuef‘ is uniquely determined by the unique distributionky which agrees

with dEUV for u#1 and whose Fourier transform vanishes at 1

-y,
Lemma 1
Let
| =R*"x[]0O"”. (3.32
Do - (3.32)
Then
J=Ja, (333
&0k

a disjoint union
Let
W(x)=ex) B34

\

for xOA , wherey, is given in (3.1). Forf =[] f,O L%(A), we define
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i(0)=, 1 @v(-aplia =[], tlaw-apbia, (39

for ,8=(,8V)DA ; that is
Hf (8)=TH.f.(8). (3:36)

\

Lemma 2

Let f= |_|va be a continuous function ik*(A) satisfying Hf OL*(A). Then the inversion

formula
f(-a)=HHf (@) (3.37)

holds for alla OA, and
[H 2y = Tl - (3:38)

Lemma 3.

If f(x) satisfies the conditions

1) f(x) is continuous in*(A),

2) Y flalx+&)) converges for all idelesr and adelesx, uniformly for x0 D where
D =[01)x[],,.0.  and

3) Y, Hf (a€) converges for all idelea , then

Zf(af):|—ZHf(E/a). (3.39)

1
oK a| sox

The Schwartz spac8(R) is the space of all smooth functiorfs, all of whose derivatives are of
rapid decay; that is
o f

= (x)= o((1+|x|)‘”) (3.40)

for all integersk > Oand N > 0. Let S(A) be the Schwartz-Bruhat space An whose functions
are finite linear combinations of functions of floem

fl@)=[f(a) 41

where

(1) f, isin the Schwartz spada(R) if v is the infinite place ok

(2) f, belongs toS(kv), the space of locally constant and compactly stipddunctions ork, if v
is finite; and

() f, =1, , the characteristic function @, , for almost allv.

Let d*t be the multiplicative measure &’ given by
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dt :%. (3.42)

We denote byd*a, the multiplicative measure dkj’ given by

da, = (- p ) 9% (3.43)

v
Viv

where p™* =|rz| . We choose the Haar measure

d*a = |_| da, (3.44)
on J. Then,d*a is also a Haar measure @hsatisfying (3.3).

Lemma 4.

A functiond satisfying 8(0)=0, HA(0)=1, E(HE) T 3(C)”, and E(9)1L(C) exists such that
(E(f) E(HE)) () = f (0)||E(H9)||i2(c) (3.45)

for all f 0S(A) with Hf (0)=0.

Now, we assume thatd is given as in Lemma 4. For any elemeritdS(A), let
f,= f —Hf(0)9- f(0O)HE. Then f,0L2(X) and

f=f,+Hf(0)8+ f(O)HOH. (3.46)

For any f OS(A), we define
I =1+ O+ OF JEHO - @7

Let L?(X) be the Hilbert space that is the completion of $isbwartz-Bruhat spacs(A) for the
norm given by (3.47). It follows that?(X) is a subspace of?(X), and that the orthogonal

complementl2(X)” of L2(X) in L?(X) is the subspace
{a@+bHO:a,bOC). (3.48)

We define[*(C) to be the Hilbert space that is the completioE®(A)) for the norm

”E(f )||E2(C) :||f||L2(X) (3.49)
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for f OS(A). By the followingcorollary:

It f0S(A) and Hf(0)=0, then [E(f)].

subspace of 2(C). The orthogonal complement &f(C) in L?(C) is the subspace

) =[]z We have that?*(C) is a codimension one

1?(c)” ={aE(g):a0C}. (3.50)

We defineh(u) = h(ul) for all u=(u,)0J . There exists a real-valued functigri] S(J) such that

h(A)= > g(é). (3.51)

oK™
An operatorU (h) acting on the spack?(X ) is defined by
U(h)f(x)= [ h{A)r(x)a 2 (3.52)

for f OL%(X), whered*A is given in (3.44). Iff (-a)=-f(a) forall # DA, thenU (h)f =0.
Theorem 4

E extends to a surjective isometry frdf{X ) to L?(C).

Let S be the subspace &f(X) that is spanned by all functiorfs0 S(A) satisfying E(f ) L2(C).
The left regular representatidh of C on LZ(C) is given by

(V(g)f)a)=flg7a) (3.53)

for g,a0C and f OL?(C). Let C*=J'/k". Since the restriction 0f to C' is unitary, we can
decomposd ?(C) as a direct sum of subspaces

12(c)={f 0L%(C): f(g7a)=x(0)f(¢)} (3.54) forallgOC* andaIC
for all charactersy of C'. These subspaces correspond to projections
P =|.x(gM(g)dg, (3.55)

whered*g is the restriction t«C" of the Haar measure dd.
Let ¢ be an element i’ (C). We can write

$(x) = x(x/x)e(x), (3.56)

where1/| is meant to be the ide(é/|xi ,],L;L) If ¢ is orthogonal to the range of the subsp8ce
under E, then
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[LE(F)ox (M] s(X)d*x=0 (3.57)

for all f 0S(A) satisfyingHf (0)=0. Let

£ (t)=SN207 (3 5g)

Then
f0)=[" 1,(x)e*™ax= {M[_n’n] . (359)

Ootherwise

Let

6,(x)=]" 1. (up(xe)du. (3.60)

We denoteg{u) = ¢¢"). Since

Jiqﬁ@xie” )e‘zmydu = |xli2”yql(y), (3.61)

by the Plancherel formula

.(4)=[" Ay dy. (3.62)
Since¢ 0% (C), ¢lu)0L*(R). Hence,g{y)IL*(R). It follows that

#(x)-0.(x)=],_ o)™y (3.63)

with [{=e™. Let [E(f)(@)<<|a|™ for any positive integem as|a| — . By Lemma 1,

LN -6 | < el

=[BT )X " ij‘m\dyj dy -0 (3.64)

2
)e-z’“yd% dt =

asn — o, where|x = €. Therefore,

L] b=t (| b a9

Since [E(f )(@) <<|a|™" for any positive integem as|a| » , we can interchange the order of
integration and obtain that
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LE(1)x [| J (W= qp(y[j ) (ﬁjwdy]dy (3.66)

for n=12,.... By (3.65) and (3.66), we obtain that

(1 b= AL 7.

Let
S AN R
|XI unramifiedy, ramifiedy,, v
with f, DS( ) If x, are unramified for all finite places, we choosef; so thatj (x)dx=0.

Then f,0S(A) satisfying Hf,(0)=0. Using

[LE(f)0x [M]Mmdx [LE(E)x (™ d"x  (3.69)

where f,(x) = x. (X)f,(x), we can write

1 . © -1/2+27it
[ (]2 = vz [ 1. e @70
where L(¥ 1/2+ 27it) is the analytic continuation of

N 1
L(X, S) - unral;liedll_)_((m)p_s (371)

for #s>1. By (3.67) and (3.70), we obtain that

[LE(f)0x [Mj K)dx=[" gft) ( —+2mjdtj U U, @6.72
By (3.57) and (3.72), we have

j At)L ( —+2mjdtj u " du=0. (3.73)

It follows that

. é’(t)L()?% + 27t jb(t)dt =0 (3.74)
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for all b(t)OL2(R), which satisfy jRB(u)e”’Zdu:o if y, is unramified for allv#c. Since

L()(,% + 2n'tj =0 for at most a discrete set of raalthe identity (3.74) implies that

dt)=0 (3.75)

for almost all reak because we can chooBeso that the integrand in (3.74) is non-negativecé&
#(x)=" Ay} dy, (3.76)

we have ¢Qx]):0 for all xOJC. By (3.56), ¢(x)=0 for all xOC. Therefore, the orthogonal
complement of the range & underE in Li((C) contains no non-zero element. It follows that

is a surjective isometry frons to LZ(C). By (3.50), E extends to a surjective isometry from
L2(X) to L2(C).
Let h(A) be given as in (3.51). An operatg(h) acting on the spack?(C) is defined by

V(NF() = [ A Flrixjaa  3.77)

for F OL?(C). The Haar measurd*1 on C is given in (3.44). If F(-x)=-F(x) for all xOC,
thenV(h)F = 0.
Let S, be the subspace ch_fz(C) given by

S, ={fO0(C): f(a)=0} (3.78) foralla with |a|>A.

The corresponding orthogonal projection is alsootih by S, . We denote byS, , the restriction
of S, to the subspack?(C) and the corresponding orthogonal projection.

Theorem 5

Let S, and V(h) be given as i{3.78) and (3.77) respectively. TherﬁS,\ —S,\'O)\/(h) is of trace
class, and its trace acting on the spaE:’e(C) is given by

tradgs, - S, o}V (h) =Ry ()+ R, (0) + 01)  (3.79)
whereo(l) tends to 0 ag\ — .

If T is a bounded linear operator of trace class onllzei spaceH , then the trace of is also
given by

[

trace(T)=>(Tf,,f,),  (3.80)

n=1
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where{f } is an orthonormal base &f .
Let P, be the orthogonal projection &f(X) onto the subspace

P ={f OL3(X): f(x)=0} (3.81) forX<A™.
Put

Z,=H'PH. (3.82)

Theorem G

Let h,V(h), S,, and Z, be given as in3.51), (3.77), (3.78)and (3.82) respectively. Then
(Ez\E™ -, V() is of trace class, and its trace acting on thecgp?(C) is given by the formula

radfEz,E* -, M (h}=-> jk'drl"i_%)d% (3.83)

where the principal valuef is uniquely determined by the unique distributionky which agrees

with |1dDuV| for u#1 and whose Fourier transform vanishes at 1
-u
\

We have that Z,U(h)-S,U(h) is of trace class om?(C). By (3.52), (3.82), and Lemma 2, we
have that

2,0 (n)t (x) = [_h{A) (a2 - W(&x)ae[ w(-au)du[ h{A*)f(au)aa  (3.84)

EOA J&|=<At

for f 0S(A). Hence, forx[OC we have

EZ,E™V(h)F(x)= [ F(A)y[x/ Ah(x/ A)d*2 - W(&x)de[ W(-u)duf_h(}x/ AulF (Au)a

3(89

EOA&<A?

forall F =E(f) with f OS(A).
We extendh to a function onA by defining h(A)=0 for A0J. Since fOS(A) and
h, JCZ(0,:0), we can change orders of integrations to obtaih th

) LDA'\ZM* (e, (= éu)duf h{A )X/ AdF (u)d™a =

=L FOND(]. . HOESAESE . .50

By (3.85), (3.78), and (3.77) we have
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(Ez,E* -5 MhF(X)=[ F(A ){ [x/ Alh(x/ A)e 5 (x) - M( LDAWM Hh(A 5)w(gx)dgj}dx)|
3.87

for all F=E(f) with f OS(A), where ¢,(x)=1 if |{>A and ,(x)=0 if [{<A. Since such
elementsF are dense in(%(C), (3.87) holds for allF OL*(C). It follows that the trace of
(EZ,\ E™- S,\)\/(h) acting on the spack?(C) is given by

tradfEZ, E* - S, M (h)} = jc{h(l)zA GO PR Hh(xf)q—'(xf)df}d* x =
=, { I‘U‘ZW Hh(u)w(u)du - h(1)r, (X)}dxx. (3.88)

Let 0 <A be a small positive number. We write

i L P W)
{quw Hi(u) (u)du~h(z)7, (X)}dxx. (3.89)

Since

[ { ;M s HB()¥(0)du-ho)r, (X)}dxx =- j{ s Hh(u)LIJ(U)du}d*x =

= j Iog||6 du (3.90)

and

j{ juwHh(u)w(u)du-h(l)rA(x)}dxF J s HR(I(0 JiogA L du- h1 )Iog% _

= [ Hh(u)w(u)logludu~ j W(u)Hh(u )Iogu; du, (.99
if we notice that Iog%zo for ju=" then

jc{ Ja s HR) (uldu = e, (x)}dxx = [ Hh{u)¥(u)logidu. (.92
By (3.88) and (3.92),
traf{€z, £ -5, ()} = | Hh(u)w(u)loguldu. (3.93)
Let g(4)=h(1)A[*, and let
g, (A)=h(lL..L L )AL (3.94)
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By Fourier inversion formula, Theorem 2, and Theowe get

[ Hg(u)w(u)logluldu = ZI H.g,(u, . (u,)logu/ du, + | H.g. (ul. (u)logul du=

= -hy(1)log277- yh (1) ;J’k]%_)d% [L N \%-1) maﬁﬂjﬁ}d/] + h)(l)loge]

3.99

where the principal valué' is uniquely determined by the unique distributionk)’ which agrees

with |dDuV| for u #1 and whose Fourier transform vanishes at 1. Since
-u

IR hOQUI|_l)0'DU=(J/+|Og(277))h)() lim

Cf-d ok O[L th o) ) DUW()logeJ, (3.96)

1-ul

by Corollary 1 and the proof of Theorem 1 we have

IA Hg(u)w(u)loglu/du = _ZJ];:?J_%;)C% . (3.97)

Therefore,

raffez, E*-s, V() =-> jk'vu%uj_;)d% . (3.98)

3.1 On some equations concerning the Selberg trace fourta. [6]

Let N>1 be an integer, which is not square free. DenotelN) the Hecke congruence
subgroup of levelN . Now let a be a cusp ofo(N). We denote its stabilizer bly, . An element

o, in PSLZ(R) exists such thato,w=a and o,;T o, =T, . If ¢ is an eigenfunction of the
Laplacian associated with a positive discrete eigkre A, then it has a Fourier expansion

wlo.2)=\yY p.(mK, (27Amy)e™  (3.99)

mz0

at every cusm of I'O(N), where k =+/A-1/4 and Kv(y) is given by the formula

(y) ZVF[HZJ = cogyt)
K,(y)=— ) _dt. (3.100)
vy (1 t2)v+
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We have also the following trace formula:
d(n)h(—i—zj + \/ﬁi h(/(j )[Uj j (z,z)}dz. (3.100b)
=
Every cusp oﬂ'O(N) is equivalent to one of the following inequivalensps
2 with uw>0, (uw)=1 wN. (3.101)

w

By the Riemann-Lebesgue theorem, we have also that

[~ 0ief 3] d ir'rjw or=m|” )8, (;—irjj“”{””(f‘“’d)}dr =m0, (2.

(3.102)

Furthermore, we have that:

lii'l(c(w)v* ZC(P)YJ=\/ﬁ5nV(N)g(0)ln%+@h(o) JnV(N)+l§) dz ) ¢ﬂ(1j .

{P}.re={1,} j=1 ad=n,d>0,a 2
aj=w—‘1{ijﬁ\( 0
2
e In{(a—d)ZWN{; N}/CZ}
+20 > g(lnéj o N)\/_I 1+|r )dr +
2 WN,w>0ad=n,d>0,a#d b |a_d|

v(N) Jn e ay N 1 1 . Int
2Tl §) el g S s ( n jw— )

ad=n,d>0,azd

a,v:wii‘[wj- ,Wﬁi]\afd aF%’}[Wj VTN,]‘ a-d)
1 (V) 0 A2 1
FOx3(5) o) e

with C =(a—d)w-bwN, where =(C,bN) and the summation ol is taken over all numbets
such thatC,bN/wOZ,N|C and 0<b<|a-d|. Note that there are exactly—d| number of such

numbersb. Denote byc(oo) the right side of the identity (3.103). We conduthat the trace
formula (3.100b) can be written as

()( j+fzh( W T =)+ TR+ T elP)+cle)  (3.104)

{R} {Ph.re#{1,}

for Res> 1, where the summations on the right side of thatideare taken over the conjugacy
classes.

Now, we have
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g“(logu) = A(suz +o{u_ij, (3.105)

where A(s) is an analytic function ofs for Res> 0 and, for every complex numbex with
Res >0, there exists a finite constaB(s) depending only org such that

o

1
Moreover, for every fixed value af, the termos(u 2] also represents an analytic functionsof

1
2

< B(s)u (3.106)

for Res>0. Since
h(r)== ] g¥(nuudu (3.107)

r.4

for non-zeror , we have

o1 +0

S

1 i
) —— — () (3.108)
S—,Tir s +ir

. 1 . . . .
for Res>1 and for non-zera with |Im r| <§ - £. By analytic continuation, we obtain that

2A(s)(s - ;j o

. () (3.109)
r“li[s—ij +r2}

for Res>0 and for non-zerar with |Imr|<%—£. It follows that the left side of (3.104) is an

h(r) =

analytic function ofs for Res> 0 except for having simple poles st l%t ik;,]=212,.... Then

the right side of (3.104) can be interpreted asamaalytic function ofs in the same region by
analytic continuation. Sinck(t)=(1+t/4)°, we have that(R) is analytic forRes> Oexcept for
a simple pole as= 1/2There are only a finite number of elliptic corguy cIasse{R}. The term

c(l) is a constant. Sincg(0) = 2\/;1'(5—%jr(s)_l,

F(S—lj 1 %—sd
h(0)=2\/7_145?8)2 f(u +G+2j T“ (3.110)
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and

a =3 F(s—;j a d. _)°
g(lnaj=2\/7_r4 2 9 (d+5+2j ., (3.111)

the sum of first three terms and the last two teomghe right side of the identity (3.103) is anialy
for Res>0 except for a pole at= 1/By Stirling’s formula the identity

LI o) (3.112)

I'z)

holds uniformly when |argz| <m-0 for a small positive numbed . It follows from (3.102) and

(3.112) that the fourth term on the right side lad tdentity (3.103) is analytic foRes> @xcept
for a possible pole as= 1/2We know that, by theorem of Kubota, that eaclelistein series
E (z, s) has a meromorphic continuation to the whelplane, and the identity

v(N)
Z¢u~ (% + i.rj¢ij G - irj =1 (3.113)

i=1

hold for all realr and fori=12,...v(N). It follows that functionsg, (s), i, j =12,...v(N), are

analytic on the lineRes= 1/2Let Y be a fixed large positive number. By the Maasb&g
relation, we have

Rez¢u( +|rj (%_irj:2|nY+¢jj (:I./Z—ir')YZir _¢jj (1/2+ir)Y—2i,— .

2ir

1 . 1 .
=, Ej(z,E+|rjEj(z,§—|rjdz+o(1). (3.114)

Let a. =u /w be a cusp given in (3.101), and et 1/2+ir . We have that

| n -
E(Zﬂﬁ%yH%j ool + 2T el
(351
where
__ oW W, N/w ’ 127\ ¢ 2] —
¢a.m,o(f7)—¢((w’(N/)w»(( V\lli\lN )j Hl—;‘” !—|N(1_p )%2,7)1 (3.116)
and

(W,N/W)]” 1 e( md]
) =[N ) 1 -Me @17
¢a’ ' (,7) ( WN (c,N%v:i )=1C2’7 dmod(cv%;‘dycw))ﬂ cW ( )

cd=y; mod(vw N7 w

It follows from the functional identity of the Rieann zeta-function that
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By using Stirling’s formula
Mo +it)=2me ™" (3.119)
for any fixed real value o ast — o, we obtain that

3]

rn)

B, ol)y ™ << ﬁln20r| +1). (3.120)
By (3.100) and by partial integration, we find that

Kn_1,2(2|n1ny) _ o cos(zlrﬂnyt) dt << 1+ |r|3 . (8.12)

O e 0 BT

Then, it follows that the fifth term on the rightle of the identity (3.103) is analytic fdkes> 0
except for a possible pole at= 1/2

4. On some equations concerning p-adic strings, p-adiand adelic zeta functions, zeta
strings and zeta nonlocal scalar fieldd.7] [8] [9] [10] [11] [12]

Like in the ordinary string theory, the startingingoof p-adic strings is a construction of the
corresponding scattering amplitudes. Recall tha& dindinary crossing symmetric Veneziano
amplitude can be presented in the following forms:

o el -1, _ o [laJr(b b)r(c ciria)| _ ,{ll-a)l(l-b){l-c) _
A.(a.b)= o[ X=X dx=g {rr((a)z(b)hrr((b)z(c)) +I;((c):(a))}_ (Zl(a)) (Zl(b)) (Zl(c))_

= g*[ DX ex;{—ﬁjdzw”xﬂaax“jﬁjdzq expikIx#), (4.1-4.4)
B

where 7=1, T=1/n, and a=-a(s)=-1--, b=-a(t), c=-a(u) with the condition

s+t+u=-8,i.e.a+tb+c=1
The p-adic generalization of the above expression

A(a) =] b - ox
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A (a,b)=g? IQp|sz_l|l— X dx, (4.5)

Where|..|p denotes p-adic absolute value. In this casg stnhg world-sheet parameteris treated

as p-adic variable, and all other quantities h&e# tusual (real) valuation.
Now, we remember that the Gauss integrals satdg#iaproduct formula

J'R)(m(ax2 + bx)doox!;!J'Qp)(p(ax2 + bx)dpx=1, adQ*, bOQ, (4.6)
what follows from
1 b2
IQ )(V(ax2 + bx)dvx = Av(a)|2a|vzxv(—£) , V=02 ..p... (4.7)
These Gauss integrals apply in evaluation of theaf@n path integrals
S xt) j )(V( j qqt)dtj Ja, (4.8)

for kernels Kv(x“,t“;x',t') of the evolution operator in adelic quantum meatgfior quadratic
Lagrangians. In the case of Lagrangian

22

L(dﬂ)%(—q——/‘qﬂ)

4

for the de Sitter cosmological model one obtains

K. (x",T; x',0)|_! K (x"T;x'0)=1, x"x,A0Q,TOQ", (4.9)

where

Kv(x",T;x',o)z)lv(—sT)|4T|;§X{_ 3+[/1(x"+x 2] + XSTX) J (4.10)

Also here we have the number 24 that correspondetdramanujan function that has 24 “modes”,
e., the physical vibrations of a bosonic strikence, we obtain the following mathematical
connection:

AT +[A(x+x) - 2] LX) X)j:

e o)= A x| - o
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© COSTEXW __ 2, dx
0 coshrx \/142
712

antilog v

e " (itw)

= . (4.10b)
Iogl\/(lmilﬁJ +\/{1o+47\/§ﬂ

The adelic wave function for the simplest grourateshas the form

L(x),xOz

wA(x)=ww(x)r|;!>f20xlp)={olxm'Q\Z, (4.11)

where Q(}xlp):l if |><Ip <1 and Q(]xlp):o if |x|p >1. Since this wave function is non-zero only in

integer points it can be interpreted as discreterdsthe space due to p-adic effects in adelic
approach. The Gel'fand-Graev-Tate gamma and betifins are:

fi-a) [ 0=t wa2)

—-a

()= IRIXIZ_l)(w (). x

b) = [ X - X d.x =T (a)". (o). c), (413)
=I o dpx =1 () () ). (4.14)

where a,b,c0C with condition a+b+c= 1and ¢(a) is the Riemann zeta function. With a
regularization of the product of p-adic gamma fiored one has adelic products:

Fw(u)rlrp(u):1, Bw(a,b)an(a,b):l, uz 0L u=ahb,c, (4.15)

wherea+b+c= 1 We note thai, (a,b) and B (a,b) are the crossing symmetric standard and p-

adic Veneziano amplitudes for scattering of tworofchyon strings. Introducing real, p-adic and
adelic zeta functions as

= IRexd— mzlxﬁ_ldwx = n_zr(g) (4.16)
1 a-1 1
¢ @)=, A b = Reax 1 @)
- m(a)ryp(a)%(a)i(a). (4.18)

one obtains
1-a)=¢.(a), (4.19)

where ¢ ,(a) can be called adelic zeta function. We have 4lab t
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@4 =2 K a)= Jexd-me X x j ol{ 4 d,x. (4.190)

Let us note thaExd— mz) and Qﬂxlp) are analogous functions in real and p-adic ca&dslic

harmonic oscillator has connection with the Riemaata function. The simplest vacuum state of
the adelic harmonic oscillator is the following S8atz-Bruhat function:

L
=24¢ QQpr\p), (4.20)

whose the Fourier transform
I)(A ke, (X) rLQOk\ ) (4.21)

has the same form &, (x). The Mellin transform ofy, () is

a) = [@a ()X dix = [ . (}) X dx |‘11_ _1 0 X x= (gjn'iz(a) (4.22)

and the same fozy/A(k). Then according to the Tate formula one obtaink¢
The exact tree-level Lagrangian for effective scdield ¢ which describes open p-adic string
tachyon is

_1p’ "
L = 2 P21, (4.23
P g% p-1 { ¢p ¢+ p+l¢ } ( )

where p is any prime number;=-d> + [ is the D-dimensional d’Alambertian and we adopt

metric with signature(— +...+). Now, we want to show a model which incorporates p-adic
string Lagrangians in a restricted adelic way. ustake the following Lagrangian

L=Yce=Y"1te - {%wZn_szn%qu”} (4.24)

=1 n>1 n?

Recall that the Riemann zeta function is defined as

|_| , s=o+ir, o>1 (4.25)
1-p~°

nz1 n

Employing usual expansion for the logarithmic fumctand definition (4.25) we can rewrite (4.24)
in the form

E@@w o+ Infi- (o)} . (4.26)

=L

g
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where|g<1. ¢ (%) acts as pseudodifferential operator in the foltayivay:

O _ 1 ixk _k_2~ k2= K2 |2
o = e[ e, 0 gotozes, a2

where (k)= [e™)g(x)dx is the Fourier transform gix).

Dynamics of this fieldg is encoded in the (pseudo)differential form of Riemann zeta function.

When the d’Alambertian is an argument of the Rieman zeta function we shall call such
string a “zeta string”. Consequently, the abowe is an open scalar zeta string. The equation of

motion for the zeta string is

_ 1 |xk k? )~ _ 9
K B)dk=—2- @2
Z( jw ( ) J-k2 —k2>2+¢ Z( 2 Jw( ) 1_(0 ( &

which has an evident solutign= .0

For the case of time dependent spatially homogensolutions, we have the following equation of
motion

z(‘f jqb(t) = o] jko>me‘ik°‘z(ﬁjw(ko) = ‘”(2 @29

2

With regard the open and closed scalar zeta strihg equations of motion are

Z(Dj j'xkz( j()dk S g, @3

nz1

n(n-1)

e 4

=1 2(n

=+

and one can easily see trivial solutiprr 6= . 0

The exact tree-level Lagrangian of effective scdield ¢, which describes open p-adic string
tachyon, is:

2

D
_M p
p 2

p

= [ ~op 2“‘p¢+ ¢} (4.32)

9, P~
where p is any prime number,=-d> + [ is the D-dimensional d’Alambertian and we adopt
metric with signatureg- +...+), as above. Now, we want to introduce a model wiiicorporates
all the above string Lagrangians (4.32) wipphreplaced bynON . Thence, we take the sum of all
Lagrangiansg, in the form
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o R mr? n? 1 _2:12 1 +1
L=YcCL =SC L |-Zgn g+ g | (4.33
Zl L, Zl g _1{ S et (4.33)

whose explicit realization depends on particulasich of coefficientsC,, massesn, and coupling

constantsg, .

Now, we consider the following case
C = n-1

n= _2+h’
rl+

(4.34)

whereh is a real number. The corresponding Lagrangiadsrea
1 & —%—h +00 n—h
-y n™ g+Yy —g"| (435
240; @ ;nﬂqf (4.35)

and it depends on parameter According to the Euler product formula one caitevr

_Zm —
Sn |‘| —. (4.36)
1 p 2m

n1

Recall that standard definition of the Riemann fetetion is

Z(s):iizﬂ L , sS=o+ir, o>1, (4.37)

which has analytic continuation to the entire caempt plane, excluding the poirg= , Wvhere it
has a simple pole with residue 1. Employing debtnit(4.37) we can rewrite (4.35) in the form

mP| 1 0 &ont
L="(-1 +hlp+S D gl (438
=T A e B e

O
Here
Z( 2m’

j acts as a pseudodifferential operator

gt

where g(k)= [e7*g{x)dx is the Fourier transform a#(x) .

}p(k)dk, (4.39)

We consider Lagrangian (4.38) with analytic conditions of the zeta function and the power series

Zn-l-l(dwl -

+00 n—h
+ACY — |, (4.40
jw nzzln+1¢ } (4.40)
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where AC denotes analytic continuation.
Potential of the above zeta scalar field (4.4@qeal to—-L, at= 0, i.e.

(8 ) A
vie)=T2 F<0)-AcE T wan

where h# 1since (1)=w. The term with -function vanishes ah=-2-4,-6 ,..The equation
of motion in differential and integral form is

U — \- -h zn
Z(2m2+hj¢)_ ACY ng", (4.42)

n=1

e ol s s

respectively.

Now, we consider five values oh, which seem to be the most interesting, regarding
Lagrangian (4.400h= 0Oh=zx1 andh=x+2 For h=-2, the corresponding equation of motion
now read:

O _ 1 ixk k? - - ¢(¢ 1)
2 _2lp= - X 2 |p(Kk)dk = . @4
Z(Zmz jw (P .[Roe Z( P ]¢( ) (-of @.49
This equation has two trivial solutiong{x)=0 and ¢(x)=-1. Solution ¢(x)=-1 can be also

shown taking @(k) = -a(k)(277)° and ¢(-2)=0 in (4.44).
For h=-1, the corresponding equation of motion is:

Z[iz'lj‘”zﬁfwém{‘;nz-1j<5(k)dk= . @49

1

1

The equation of motion (4.45) has a constant frs@éution only forg(x)=0.
For h = 0, the equation of motion is

where ¢(-1)=-

S P S O B S o/ W
Z(Zmzj(o_ (Zﬂ)DIRDe Z( 2m2j¢(k)dk 1_¢- (4-4@

It has two solutionsg = @nd ¢ = 3 The solutiong = 3follows from the Taylor expansion of the
Riemann zeta function operator

Z[ - j:z(0)+25(n)_(0)[ D} (4.47)

2m’? 2m

as well as fromp(k) = (277)°35(k).
For h =1, the equation of motion is:
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1 ixk _k_2 - :_1 -0V

where(1)=o gives V,(¢)=c.
In conclusion, forh= 2we have the following equation of motion:

1 s K ~ __eIn(l-w)
2P [.e%¢ ( 2m2+2]¢1(k)dk— J-O—ZW dw. @4.49

Since holds equality

—Illn(l_w)dWZ::lifZ(Z)

0 W n

one has trivial solutiog = in (4.49).
2

: n
Now, we want to analyze the following casg; =

et In this case, from the Lagrangian (4.33),

_m°| 1 o O @
L—?{ 2¢{Z(2m2 1}+Z[2m2j}¢+1_¢] (4.50)

The corresponding potential is:

Vi=-T s @5

241~ ¢)

we obtain:

The equation of motion is:

[Z( = —1}+([ Dzﬂgoz d(¢_1)2+1|. (4.52)

2m’ 2m (p-17

Its weak field approximation is:

0 O _
{Z(Zmz —1)+Z(2m2j—2}go—0, (4.53)

which implies condition on the mass spectrum

M? M?
_1 +
From (4.54) it follows one solution fav1> > &t M? = 279m° and many tachyon solutions when
M? < -38n7.

With regard the extension by ordinary Lagrangiae, vave the Lagrangian, potential, equation of
2

motion and mass spectrum condition that, Wh‘@rxn—zl, are.
n

2. (4.54)
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sttt o) o

7(-1)+¢(0)+1-Ing? —_i} . (4.56)

<

S

|
@N‘ 3
N |'$b
1

m
M?) M?

-1|+{| — |=—. 4.58

2m? J Z(ZmZJ m? ( )

In addition to many tachyon solutions, equatiorb®4.has two solutions with positive mass:
M?= 267nm" and M? = 466m°.

m’

e
J\I
YR

N
3|0
N
|
N
+
"\l
YR
N
U

ZJ —+1}<0 ¢In¢2+¢+(¢ 52, (4.57)

J\l
—
<

Now, we describe the case &, = z(n)" 1 Here 1(n) is the Mobius function, which is defined

n? -’

for all positive integers and has values 1, 0,defiending on factorization af into prime numbers
p. Itis defined as follows:

0, n= pzm
p(n)=1 (-1, N=pp.PoP %P, (4.59)
1 n=1(k =0)

The corresponding Lagrangian is

+ 00

Lﬂ=COBO+rg 10 ()¢+Z/”’() | (4.60)

N1 on? =N+

Recall that the inverse Riemann zeta function eaddfined by

i () s=g+it, o>1 (4.61)

() = n

Now (4.60) can be rewritten as

{

m’| 1 1 @
L, :Cofo"'? ‘E(ﬂﬁ(ﬂ"‘fo M(p)de|, (4.62)

2m’?

where M(9)=>"" 1(n)g =9 - - F +F - + ¢ - ¢~ ... The corresponding potential,
equation of motion and mass spectrum formula, sy, are:
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v, (@)=-L,(0= )—%Z[%#(l-lnwz)-wz—jj’M(w)dw} (4.63)
1

O
——~ - M(p) - Cﬁqo—zcowlnwzo, (4.64)
Z(Zmzj

1
M 2
2m
where usual relativistic kinematic relatiok? = —k? +k? =-M? is used.
Now, we take the pure numbers concerning the @gs4) and (4.58). They are: 2.79, 2.67 and

J5+1
2

2
_COM

m2

+2C,-1=0, |g<<1, (4.65)

4.66. We note that all the numbers are related With

, thence with the aurea ratio, by the

following expressions:
2790(0)*7;  2670(d)*" +(@)*7;  4660(d)? +(0)*7. (4.66)
4.1 On some equations concerning a general class of owdogical models driven by a non-
local scalar field inspired by string field theories and p-adic cosmology[13] [14]

In this sub-section we consider a model of graeiwypling with a non-local scalar field which
induced by strings field theory

s=[d* x\/_{ o py g:[;(d:( g jgo /\H 467

where g is the metric, O, :ﬁaﬂ,/—gg‘%w M, is a mass PlanckM, is a characteristic

string scale related with the string tension, M_=1/+/a', ¢ is a dimensionless scalar field

(tachyon or dilaton),g, is a dimensionless four dimensional effective d¢mgpconstant related
4
with the ten dimensional string coupling constaptand the compactification scaIA.:ﬂ/\' is
0,4
an effective four dimensional cosmological constdiie form of the functiorF is inspired by a
nonlocal action appeared in string field theorlegarticular cases

F(z)=-&%z+1-ce?, (4.68)

¢ is areal parameter aralis a positive constant. Using dimensional space-tvariables and after
a rescaling we can rewrite (4.67) fBr given by (4.68) as follows

S:Id“XH[%m%ngwé(ﬁ—c¢2)-/\'} .69
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where ® =e*p and m? =g,M>/M?. Generally speaking the string scale does notcieénwith

the Planck mass. This gives a possibility to getadistic value ofA . The form of the tern{e  ¢)*

is analogous to the form of the interaction in #ation for the string field tachyon in non-flat
background, which is a generalization of the SHFir{§ Field Theory) tachyon interaction term in
a flat backgroundThis type of models does appear in SFT and in tadip string modelsThe case

of the open Cubic Superstring Field Theory (CSSFTachyon corresponds to

& =—1/{4In(%ﬂ = 09556 and c= 3 We consider in detail action (4.69) at , dhich is

invariant under translatiog — ¢ + const.
We take the metric in the form

ds? = ~dt® + 2(t)dx + dx¢ +dx)  (4.70)
and get the following equation of motion for the@sp homogeneous scalar fietd
F(-9)p=0, (4.71)
where
D=-02-3H(t)d,, H :g and a=da. (4.72)
The Friedmann equations have the following form

1
. el

m, m

3H2:ia, 3H?+2H=-—=29, (4.73)

TN

where the energy and the pressure are obtainedtfremction (4.67) using standard formula

T,=- 25 1 -dage.2.9,5. (4.74)

" Fear

For the case of given by (4.68) the energy and the pressure hdd#i@anal nonlocal termg,,,
and &,,. We have the following equations:

£= & (0g) - % (qf - c(e” qo)z)— cJ';(ae(“")” qo)(ae(l‘p)ﬂ’qo)dp +C I:(e(“p)ﬂ’ qo)(— D gldp + N,

7= £ (00 + 21 - cleaf - of e P oloePokio - of f6 P - 26 Pl
1)

Nonlocal terme,,, plays a role of an extra potential term angd a role of an extra kinetic term.

We use the Weierstrass product representatioméfunctionF in (4.67),
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F(z)=e'"[ (1—a—zzj . (4.76)

n n

wherea? are complex numbers, and represent the flat ardle467) as

St = Id xgF (- qo-—Z[gn e (D+a )‘ﬂn +c.c.], (4.77)

where 0 is the d’Alambertian in the flat space-time (heteis not thes of the equations (4.73)-

(4.75)).
Now, we use a representation of nonlocal dynamiesngoy action (4.67) in terms of local fields

Id“xﬁ(%’i R+ %Z [gn(//nef (_Eg)(mg rally, + /\'+c.c.]j . (4.78)

We perform a deformation of this model by sevetaps. First, we consider an approximation to
the model (4.78) in the form

fa x\/_( pR+Z[ Soy e bio, +atly, +/\+ch (4.78b)

Second, we restrict a number of local fields aholdt we add potentials of the orotHrmf) in which
N' is also included:

[a x\/_( pR+Z[ Soy b, +atly, +cc} (1,...,1,11”)}, @.79

such that solutions of the field equations in tbe-flat case are the same as the flat case. Finally
we find the corresponding scale facta(t) and study cosmological properties of approximated
solutions to our model. In the flat case the ac{®67) has the following form:

St =% jd xgF (-0)p.  (4.80)

Equation of motion on the space-homogeneous caafiiguns (4.71) is reduced to the following
linear equation:

Fl0?)p=0. (4.81)

A plane wave
p=¢e" (4.82)

is a solution of (4.81) ity is a root of the characteristic equation

Floa®)=0. (4.83)
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For a case of given by (4.68) equation (4.81) has the followiogn
~&0%p+ p-ce?p=0. (4.84)

This equation has an infinite number of derivatieesl can be treated as a pseudodifferential as
well as an integral equation. The correspondingatdiaristic equation:

F(az) =-&%q%+1-ce? =0 (4.85)

has the following solutions

2ce 2/¢

an=12—15\/4+2<‘3Wn(- 7 ] n=0x1%2,.. (4.86)

where W, is the n-s branch of the Lambert function satrgfyia relation W(z)eW(Z) =z. The
Lambert function is a multivalued function, so €¢4.85) has an infinite number of roots.
Parameters and c are real, therefore ifr, is a root of (4.85), then the adjoined numberis a

root as well. Note that itr, is a root of (4.85), thema, is a root too. In other words, equation
(4.85) has quadruples of complex roots

a,..=*Rea,)zilm(a,). (4.87)

If a®=a? is a multiple root, then at this poift{a?)=0 and F'(a?)=0. These equations give that
1
as;=—-—-, (4.88
0 5 (4.88)

hencea? is a real number and all multiple rootsl?-)faj)= 0 are either real or pure imaginary. The
multiple roots exist if and only if

& e
c=2—ee2’<‘. (4.89)

Real roots for anyé and c, excepté®= Oand c=o, are no more then double degenerated,
becauseF"(aj)# 0. Summing up we note that according as the valfiga@metersc and &°
there exist the following types of the general sedltion of (4.84):

52

. If c2 2—e2"‘2 andc# 1then the general real solution is

€
p=Y Re™ +Y(cemt +CiE), (4.90)

where R, andC, are arbitrary real and complex numbers respegtivel

2
o If C :E—ez"r2 >1, then to get the general real solution one hasltbto (4.90)
e
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@ =Rte™ +Rte™, m = % ‘% if £2<2, (4.91)
@ = Ct it +61Ete—iaot’ a, =i %_% if &>2. (4.92)

» If c=1 then to get the general real solution one haslda@ (4.90)

@=Ct+C,, if & =22, (4.93)
@=CL+Ct°+Ct+C,, if & =2 (4.94)

Now we consider a special values éf and c, which have been obtain in the SFT inspired
cosmological model. From the action for the tachiyothe CSSFT the following equation has been
obtained:

(-e2a? +1)=3e"", (4.95)

where
5 1

5 TN

Substitutinga = 2v2a , we obtain eq. (4.85) withf”? =8&> and c= 3 Note that the pure number

8 is related to the physical vibrations of the ggp@ngs, thence with the Ramanujan modular
equation (eqg. (2.18)) and that 3 is a Fibonaccisnber From (4.89) it is follows that all roots are
simple. We obtain thaf?,, > & > &2, , so there exist neither real roots not pure imagimoots.

Equation (4.84) has the conserved energy whicteimed by the formula that is a flat analog of
(4.75). The energy density is as follows:

~0.9556. (4.99

E = Ek + Ep + EnIl + Enl2! (497)

where

E =(0gf, E, =—1¢2+Eq>2 (4.98)
co =l olrbrole. e.nfbemalbboke. o

For the pressure
P=E -E,-E;;+E,,, (4.100)

we have the following explicit form
‘%( o + gf—%cbz—cjj{(e‘mzqa)(az(eﬂ’zqa))—(a(e‘pazqn) ol oM. (a.101)

Let us calculate the energy density and pressuraéofollowing solution
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N
p=>Ce™, (4.102)
n=1

where N is a natural numbelC, are some constant ammg are solutions to eq. (4.85). Fof= 1
and
p=Ce&" (4.103)

we obtain
Elce)=0, (4.104)  Plcet)=C?p,e*. (4.105)

We denote the energy density and pressure of imai{t) as the functionalsE(g) and P(¢),
respectively, and use the following notation

p, =a*(62-2+26%%). (4.106)

For N=2and
p=Ce" +C,e™, (4.107)

wherea, anda, are different roots of (4.85) we have
Elce™ +Ce™)=-2CC,p,, at a,=-a,, (4.108)

and
Elce™ +Ce™)=0, at a,#2-a,. (4.109)

The pressuré®(g) for solution (4.107) is
Plce™ +Cet)=(c?e™ +C2*)p,. (4.110)

In the general case we have

N N N
E[Z cne”ntj =-2> > C.C, Pe Oy o (4.111)
n=1

n=1k=n+1

where
=1, a,=-a,,
=0, a,z-a,. (4.112)

a,,—ay

a,,—ay

From formula (4.111) we see that the energy density sum of the crossing terms. At the same
time the pressure is a sum of “individual” pregsuand has no crossing term. In the case of an
arbitrary finite number of summands the pressuesifllows:

P(i Cne”"‘j 2 icjp(e”nt): icj p, €. (4.113)
n=1 n=1 n=1
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If the parameter§® and c are such that the characteristic equation (4.8%§ ldouble roots, then
eq. (4.84) has the following solution

%(t) = Bleaott + Cleﬂot + Bze—ﬂott + Cze—aot , (4114)

where B,, B,, C, and C, are constantsg, # @ defined by (4.88). Using formulas (4.97) and

(4.100) and substituting
J4- 267
a,=—————, (4.115
0 2¢ ( )

we obtain

E(a)= —%)[%182\/4— 267§ - 3C,B,\/4 - 26& +8B,B, (26 —1)]. (4.116)

The pressure is as follows

_ty4-2¢?

P(%)=-£;;2 Be ¢ (B8 -a/a- 222 -a)-ac,e a-2F )

+Be ¢ (3(:1\/4—252&a(8£2+31/4—252£—4)). (4.117)

We can presenF (— D) in the action (4.67) as the Ostrogradski Represient To this purpose let
us construct the Weierstrass product for the foncf(z) of a complex variable . Let us recall

that a complex functiorR(z) such that its logarithmic derivativ®(z)/ R(z) is a meromorphic
function regular in the poinz= Ohas simple poles and satisfij&¥(z)/ R(z) < C,z0Or,,n=12,...,

can be presented as
R'(0

R(z) = R(0)eR®

—

Nt

T (1—2}&’4 . (4.118)

r,,n=12,... is a set of special closed contouts such that the point= G inall [, I, isin
M..,andS,/d <C, whereS, is a length of the contour,, andd, is its distance from zero. In

the case of a more week requireméRY(z)/ R(z) < M|4"zr,,n=12... we have

R(z)=e'"“[ (1—ije9k(z) . Q(2)= i%{éj . (4.119)

4 =1

where f(z) is an entire function. In the cage= F given by (4.68) the Weierstrass product can be
written in the form

Flo?)=e'“IM(o?-a2). (@120

n
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The function f (z) in our case is

f(z)= A+ Bz, (4.121)

where constant®dA and S are determined by and c. It is convenient to pick out real roots in
(4.120) and combine the complex conjugated roots:

F(az)= e+’ |_| (cr2 - mf)n (cr2 - a',f)(a'2 - anm), (4.122)

where m, denote real roots. In the case of simple rootd Hwrangian up to a total derivative can
be presented as a sum of an infinite number aldiel

az)qa: %Z[sn(//nef ("Z)(— 0%+ a,f)z//n + c.c.], (4.123)

where = means equivalence up to a total derivati¥g, are constants. It is the Ostrogradski
representation. Note that for complex rogts are complex.

According to a general procedure of constructiontlodé energy and pressure we write a
generalization of (4.123) to a non-flat case

£,=>Lw), -—\/_we Mo, +atly,,  (a.124)

and find
(2 -apler), (a.125)

&
2
R=2 R %( raiype'e). (a.126)

The E. O. M. fory, is
(0*-a2lp,=0 (4.127)

and its solutions are
W, =AM +Be ™. (4.128)

For solutions (4.128) we obtain
E, =2> als,ABE”, (4.129)
=Y g a2(Ae + Bl e (4.130)
On the other hand according to (4.111) and (4.W8have

E= —2ZA1 a?(e -2+ 28%a2), (4.131)
P= Z(Afez‘”+82 et |a2(&7 -2+ 28%7).  (4.132)
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Comparing (4.129), (4.130) and (4.131), (4.132) asidg equation (4.85) we obtain that

E=E, P=P

> (4.133)

if and only if
= —(Zce"z"f% + fzk_'gaﬁ , (4.134)

that is in accordance with general formula &r Note that we consider only simple roats.

Now we consider the nonlocal model (4.67) in thedimann Universe. To consider the dynamics
in such a system we need to solve nonlinear Friedmequations (4.73), which represent
hopelessly complicated problem. From (4.73) we ialitze following nonlinear integral equation in

H(t):

H=-_ T (9+€)=- - (‘(2( o) ~cf,(oe™ " g)oe~ w)dpj @.139

2mp

where D =-92 - 3H (t)o, .

We choose a special solution of eq. (4.84) and tiredcorresponding Ostrogradski approximation
in the flat space-time. After we deform the obtdingpproximate model to the case of the
Friedmann Universe, assuming that exact solutiortke Friedmann metric are coincide with exact
solutions in the flat space-time. Our starting posthe Lagrangian (4.123). The corresponding
action in the non-flat space-time is as follows:

Soey = J.d x\/_[ "R+Z[ Sny e (D +a’ )z// +cc} V... (//n)]. @4.139

In the fields ¢, depend only on time and the metric is a spati@dly Friedmann metric, then we
have the following equation fay

e[ @+a2ly, -e”y =0 - (2ce® + &2 D+atly, +4 =0, (4.137)

where ?jl, is a derivative ofV on ¢, . Note that form ofv( 1,...,40”) depends on choose of special
solutionsy,,...4#, . The energy and the pressure density in the Faadmmetric have the form

&0e=E,+V, (4138) 2,=P, -V, (4.139)

mod Y

where E, and P, are given by formulas (4.125) and (4.126) respebti This means that the extra

term V play a role of a potential term. The Friedmannadigus of motion are:

2= (E,+V), 3H?+2H =—mi(P ~). (4.140)

2\ ¢
m p

Therefore

65



H=——1(p,+E,). (4.141)

2
2mp

We choose sucl thaty, in the non-flat case are the same as in the @s¢.cUsing (4.129) and
(4.130) we get

‘Az +2A B, + BE).  (4.142)

Using (4.128) we can rewrite (4.142) as follows

L S eetigp=- 2; 5 z(zce‘z"nz +£2)¢§ . (4.143)
p n

= 2
2m, 3

Substituting values of,, (formula 4.134) and using formulas (4.111) and13), we obtain that

L€ o e[l ol ol

H =

L (El@)+Plo), @149

2
2m X

2
p

where

dt)=Y at)=3 (Ae™ +Be™). (4.145)

Therefore,

1 : —2a Br? a
H(t)= o (Zﬂ“zAth P, t —Zn:(—%e 2t 4 _—ng? "tjpanj+ H,, (4.146)

n 2an

where H, is an integration constant and we assume the @8 gver the complex conjugated
roots. It is convenient to rewrite (4.143) as folto

Pay

_ 2:”2 (({2 _ 2)244? + 252;%2@2) . (4.147)

Thus to obtain the crossing of cosmological cortsbamrier one should consider the caSe< 2
and the fieldg{t), which consists of at least two modes. It is eassee thatH (t) has no singular
point at finite time. For some values of parameteesobtain bouncing solutions, which satisfy the
conditionsH (0)=0 and H(0)>0.

An action for the tachyon in the CSSFT in the fiackground when fields up to zero mass are
taken into account is found to be

3

S = e JO{ 0= 500,00, )+ 27 4+ )| 149

where ¢(x) is the tachyon fieldy(x) is an auxiliary field,
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a'A0

p=e""p, (4.149)

and A =-log =0.2616 n is the flat Minkowskian metricj1=7*"9,0,. An auxiliary field

4
3V3

u(x) can be integrated out to yield

S = 0 - 200,60, )+ 570 - 5 S (). ca150)

A reasonable assumption that has no the tilde simplifies the last term in thtdion. Namely,

—2/

under this assumption and a rescalixg. 2v2AX,¢ — %e‘“qy, and g, - 124e™'g, the action

for the tachyon becomes

Je 4

Sach,approx = ij‘ d{_ %U"V@ﬂ(ﬂ(x)avqo(x) + %(02 (X) - l(egmqﬂj (X)J (4 151)

where &2 -1 0.9556
4

With regard the cosmological scenarios with ouvarse to be considered as a D3-brane embedded
in 10-dimensional space-time, the dynamics of thiane is given by the following covariant
version of action (4.151) in a non-flat space

e 4

s=] dﬁ(zsz +i(—%zgwaﬂqa(x)avqa(x)+%qo2(x)—£cb4(x)—/\B (4.152)

where

1
v=e"p, Dg:_i_gaw/—ggwav. (4.153)

Here g is the metric,x is a gravitational coupling constant and we chosseh units that it is
dimensionless/\ is a constant. We focus on the four dimensionalaree with the spatially flat

FRW metric which can be written as

g, =diag(-1a%a%,a?) (4.154)

with a=a(t) being a space homogeneous scale factor. In thiscylar caser is expressed
througha as

1, =-0% —3H0, +a—1za§i (4.155)

whereH =a/a is the Hubble parameter and the dot denotesntederivative.
The Friedmann equations for the space homogenaohgadn field have the form
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2[ g2 1 1 1 1
3H* =%{%¢2 -%qf +:11q>4 —é( I:d{e8@¢3jﬁ)e 5 + j:d{ate8@¢3]ate 8%] +A
0

(4.156)

with
1

®=e’p, D=-02-3H(t),. (4.158
et g, t - (4.158)

The equation of motion for the tachyon is

(£ +1)e_%®q> =0, (4.159)

The latter equation is in fact the continuity edquafor the cosmic fluid.
The equation of motion for space homogeneous cordigpns of the tachyon field is found to be

1
(- 202 +1)e” o(t) = o(tf?, (4.160)
_135
where® =e 8 ¢@.
The tachyon field starts from the origin, rolls dowo the minimum of the tachyon potential and
eventually stops in the minimum. The minima areated at ®, =+ 1For &*# 0 and §*< ¢, =

1.38 there are damping fluctuations near the minimuet. s note that in our casg <Ec2r. To
analyze the late time behaviour one can linearqeaton (4.160) asp =®, - P keeping only
liner in & terms. A substitution yields the following equatir o

Eaz
(-&%7 +2)e" ap =350, (4.161)
The most general real vanishing solution to equaiol61) is

&)= (Ae™ + Ae™).  (4.162)

k=0
The main contribution in (4.162) is given ly= a@d can be represented as

dft)=Ce™sin(t +$) where r=1.1365 v=1.7051 (4.163)

Note that for &2 = (this case corresponds to a p-adic string with B)=equation (4.161) is
simplified drastically and we have

m? = 4(log3+27ki) (4.164)
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where again different branches may be consideree pfincipal branch ik = @nd it corresponds
to the rolling solution.

Now we describe the mathematical connection witheséormulae concerning the aurea ratio and
some numerical results of this chapter. We have tha

V5+1

For ® = 5 that is the value of aurea ratio, we obtain:

0.95560()""" - ()" =1.6180339- 0.662014858 0.9560;
0.26160(d) " + () **'" = 0.19207504% 0.07336613% 0.2654;
1380(d)"" + ()" =1.316501956- 0.06849207=1.3849;
1.13650(d )" +(®) ™" =1.071162542 0.063941808- 1.1351;
1.70510()*" + () ?**" =1.510540115 0.19207504 7 1.7026.

5. Mamatical connections
In this section we want to show some interestingheraatical connections that we have obtained
between various equations regarding3$eetions 1, 3 and 4

We have the following mathematical connections ketweqs. (1.33), (1.87b) and (1.127) of
Section land various equations 8kction 4 Indeed, we obtain that

J.DCD ITr (2 i[ k482Tf¢’ 371-(2 T@j — 7k °Tre® — 1 j eiXkZ —k—2 é(k)dk :i
> 27 O

:(2—177) Jion 2+£e“k°‘5(%j¢(ko) 1420 B llT) [ 'XKZ( +h}a( )dk:ACzn‘hqﬁ
:>Id4xﬁ[m7f’R+%2¢uggp+%(¢z—cqaz)—/\'} (5.1)

4] dﬁ{[l"‘i[q“iﬂ— jﬁ”z - ”f |og£
n=0 1 g=1
L @
( ) .[kZ K2>2+¢ kZ( 7j¢(k)dk 1- =

ﬁ%hw“{@ %ﬂ%*ﬁ4
:Idx\/_[ %

}Z(k)dk = Aci n"g'
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!pz (kf +..+ k2 +—4;22tr2]2] +K(/]1(kf +..t ké)+—4ﬂz/]°nz ﬂ =

,thz
— p -S 1 i k2 -~ — (0
- 2(p2—ﬂ-) “ .[ dkk®" l(k tcC ) (k + C—) = W-[kg—lz2>2+£e kZ(_7j¢(k)dk - rw

- (2_1;7)Ik0> 2+se_ik0tz(%]é(k°)dk° T1- d;%t) (2 zlr)D b ew((_ 2::12 ' h}z(k)dk =ACY n'¢f
= Id“Xﬁ[%‘z’W%wgw%(ﬁ —cCDZ)—/\'J. (5.3)

In conclusion, with regard the very interesting heahatical connections between eqgs. (3.72),
(3.87), (3.95) and (3.121) &ection 3and some equations 8&ction 4 we obtain that

(
:(2—177) j\w 2+£e“k°‘5(%]¢~1k0 1"%) (2717)D RDeixkz(— K +th( )k = Aczn "o

= [d* x\/_[ % g¢+%(¢f—c¢2)—/\'} (5.4)

(EZ,\E-l_sA)\/(h)F(x):I F(A ){ Ix/ Aln(x/ A)e (%) - \/W(LDA&M (Af)w({x)dg)}dv]:

( ko k2>2+€e'xkz( k—;j dk——:>
= o= o =32y = Gl g k= s
= [a* x\/_[ %q@ (qa2 cP?)- /\'J; (5.5)
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J, Holu)¥(ulloguldu=3" | H,g,(ul,(u,)logu | du, + | H.g. (k. (u)iogul, du=

V# 0o

= -hy(1)log277- yh,(1) wzmj'kji__)duu [L N \%-1) maﬁ;l/z_/‘_;;/ﬁ}d)l + ho(l)loggJ:

i ixk _k_2 ~ :i
S A L T

:»(2—1”) J me-ikotz(%?jé(ko)d = 1f”(2t) = (2717)[, Jeo ei*kz(— Zkr; jé?(k)dk = Acg n"g
:>Id x\/_( —PR+ —¢D p+= (qo2 c¢2) /\'j; (5.6)

Ko@) _ 2rv2 ICOS(ZIHW) 4|
O R T N,

- ﬁjkz_mme”k( (‘%}z(k)dk = ﬁ _
:(2_1”)jk°> Z“G_W(%](p(k‘)) _14420 (zlr) o€ (

=

}a( )k = Acg o
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