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                                                                         Abstract 
 
This paper is a review of some interesting results that has been obtained in the study of the physical 
interpretation of the Riemann zeta function as a FZZT Brane Partition Function associated with a 
matrix/gravity correspondence and some aspects of the Rigid Surface Operators in Gauge Theory. 
Furthermore, we describe the mathematical connections with some sectors of String Theory (p-adic 
and adelic strings, p-adic cosmology) and Number Theory. 
In the Section 1 we have described various mathematical aspects of the Riemann Hypothesis, 
matrix/gravity correspondence and master matrix for FZZT brane partition functions. In the Section 
2, we have described some mathematical aspects of the rigid surface operators in gauge theory and 
some mathematical connections with various sectors of Number Theory, principally with the 
Ramanujan’s modular equations (thence,  prime numbers, prime natural numbers, Fibonacci’s 
numbers, partitions of numbers, Euler’s functions, etc…) and various numbers and equations 
related to the Lie Groups. In the Section 3, we have described some very recent mathematical 
results concerning the adeles and ideles groups applied to various formulae regarding the Riemann 
zeta function and the Selberg trace formula (connected with the Selberg zeta function), hence, we 
have obtained some new connections applying these results to the adelic strings and zeta strings. In 
the Section 4 we have described some equations concerning p-adic strings, p-adic and adelic zeta 
functions, zeta strings and p-adic cosmology (with regard the p-adic cosmology, some equations 
concerning a general class of cosmological models driven by a nonlocal scalar field inspired by 
string field theories). In conclusion, in the Section 5, we have showed various and interesting 
mathematical connections between some equations concerning the Section 1, 3 and 4. 
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1. On some equations concerning the physical interpretation of the Riemann zeta 
function as a FZZT Brane Partition Function associated with a matrix/gravity 
correspondence and the master matrix of the (2,1) minimal and (3,1) minimal matrix 
model. [1] [2] [3]  

 
 
If one can find a special infinite Hermitian matrix 0M  such that: 
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then the Riemann hypothesis would be true. This is because this function can be written in product 
form as: 
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Thence, we can rewritten the eq. (1.2) also in the following form: 
 

                    ∏ 






 +−
n n

iz

ρ
2/1

1
2
1









−−







 +Γ






 += −−

8
1

24
1

22
1 2

2/4/1 zz
iz izππζ ,    (1.3b) 

 
The eigenvalues of the Hermitian matrix 0M  are denoted by nλ  and are related to the Riemann 

zeros via 2/1+= nn iλρ . Then the product becomes: 
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This vanishes at the values nλ  just as the formal determinant expression. The nλ  are real if the 

matrix 0M  is Hermitian and thus the Riemann Hypothesis would be true. 

For a general matrix model with potential ( )MV  the master matrix can be written: 
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where the similarity transformation S  is defined so that 0M  is Hermitian and the operators +aa,  

obey [ ] Iaa =+, . One can expand the master matrix as a function of the Hermitian operator 
++= aax̂  as: 
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210 ++= xgxgxM     (1.6) 

 
One can also define an associated complex function: 
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as well as a conjugate matrix 0P  that satisfies: 
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The Master matrix can be determined from the equation: 
 

                                                     ( )( )( ) 002ˆ' 00 =+ PxMV .    (1.9) 

 

Here 0  is the vacuum state annihilated by a . The master matrix is closely connected with the 

resolvent ( )zR  and eigenvalue density ( )xρ  through: 
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The associated function ( )yM 0  obeys the relation: 

 
                                                   ( )( ) ( )( ) yyRMyMR == 00 .    (1.11) 

 
The function ( )yyM0  is the generating functional of connected Green functions for the generalized 

matrix model. 
One observable of matrix models is the exponentiated macroscopic loop or FZZT brane partition 
function. This is given by: 
                                                         ( ) ( )zIMzB −= det .    (1.12) 
 
This is the characteristic polynomial associated with the matrix M . It’s argument z  can be 
complex. In the context of the Riemann zeta function ( )sζ  the variable is related to the usual 

argument of the zeta function by 
2
1+= izs . Another observable is the macroscopic loop which is 

the transform of the Wheeler-DeWitt wave function defined on the gravity side of the 
correspondence 
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where ε  is a UV cutoff. The resolvent observable mentioned above is defined by: 
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Thence, from the eqs. (1.10) and (1.13), we obtain: 
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If a special master matrix 0M  can be found then expectation values such as 
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reduce to evaluating the observable at 0M . In the context of the ( )zΞ  function the desired relation 

is of the form: 
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Some matrix potentials that have been considered are 
 
                                                          ( ) ( )2MTrMV =     (1.17) 
 
which describes 2d topological gravity or the (2,1) minimal string theory. A quartic potential: 
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is used to describe minimal superstring theory. A more complicated matrix potentials is 
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which defines the Penner matrix model and is used to compute the Euler characteristic of the 
moduli space of Riemann surfaces. Another matrix model that has been introduced is the Liouville 
matrix model with potential given by: 
 
                                                  ( ) ( )MeMTrMV µα += ,    (1.20) 
 
with cosmological constant µ  so that: 
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In this section we will encounter the matrix potential determined by: 
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The partition function for this matrix model can be seen as a superposition of partition functions of 
Liouville matrix models with cosmological constants of the form: 
 
                                                             πµ 2q= ,    (1.23) 
 
for integer q . 
Now we describe the origin of this particular matrix model and it’s relation to the zeta function. To 
see how the matrix potential (1.22) arises it is helpful consider how the coefficients of the 
characteristic polynomial observable ( )zB  can be determined by expanding as a series in z . If the 

function ( )zΞ  is interpreted as a characteristic polynomial then one can obtain these coefficients 
from the expansion: 
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Inserting the coefficients na2  into ( )zΞ  and summing over n  we can represent ( )zΞ  as an integral 

transform: 
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Defining the variable φ  by φe=l  we have: 
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which is a well known integral expression for the function ( )zΞ . For the simple potential 

( ) ( )2MTrMV =  the exponentiated macroscopic loop observable (FZZT brane) can be computed. It 
is given by the Airy function: 
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Because this function is associated with an Hermitian matrix model it’s zeros are real. This is the 
analog of the Riemann hypothesis for  ( ) ( )2MTrMV = .  The similarity between the integral 
representations of (1.28) and (1.29) suggest an analogy between the Airy and zeta functions.  
The integral representation of the Airy function has a matrix integral generalization. The matrix 
potential is defined from: 
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The matrix generalized Airy function is given by: 
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In the above Φ  and Z  are nn×  matrices. The interpretation of this matrix integral is that it 
describes n  FZZT brines. The matrix Φ  in the Kontsevich integrand is an effective degree of 
freedom describing open strings stretched between n  FZZT branes. One can try to interpret the 
integrand of the ( )zΞ  function in a similar manner. In that case the analog of the potential defined 
by: 
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and the analog of the matrix integral describing n  FZZT branes is: 
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The Airy function is the FZZT partition function for the (2,1) minimal matrix model. The FZZT 
partition function for the generalized ( )1,p  minimal matrix model with parameters ks  is given by: 
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Unlike the (2,1) matrix model the definition of the generalized ( )1,p  matrix model requires a two 
matrix integral of the form: 
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Comparison with the integral representation of the ( )zΞ  function shows that a generalized matrix 
model for large p  can be constructed as an approximation. One writes: 
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In the above formula the function on the left is expanded to order 1+p  in the variable φ . We 

denote this terminated expansion by ( )zpΞ . Another way to compute the coefficients ks  is to 

differentiate the left hand side and set: 
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From the integral representation one has: 
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Inserting this operator into the above equation one has the generalization of the Airy equation given 
by: 
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To recover the equation for the full ( )zΞ  function one has to take p  to infinity which agrees with 
the fact that the zeta function does not obey a finite order differential equation. Note that z  and φ  

are in some sense canonically conjugate. Denote the Fourier transform of the ( )zΞ  function as 

( )pΞ~  then: 
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The generalized Airy equation then becomes in Fourier space: 
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This can be written: 
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Equation (1.43) is very similar to the equation for the master matrix. Indeed if we set: 
 
                                                     ( )yM 0=φ ,    ( )yPz 0= ,    (1.45) 

 
we see that y  can be thought of as coordinates of a parametrization of the Riemann surface 1,pM  

which is determined from the φ  and z  constraint  ( ) 0' =− zU φ . If we make these variables into 
operators through: 
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this classical surface is turned into a quantum Riemann surface similar to those studied using 
noncommutative geometry. Once one has obtained the coefficients ks  one can define matrix 

potential associated with a finite N  theory as: 
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Thence, we can write also: 
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A set of orthogonal polynomials with this matrix potential through the integral equation: 
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Or equivalently though the generating function definition: 
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These are the generalizations of the integral and generating function definitions of the Hermite 
polynomials associated with the (2,1) minimal model. 
Most of this analysis has centred on the matrix side of the matrix/gravity correspondence. The 
gravity side is related through an integral transform. For example the macroscopic loop observable 
associated with the Riemann zeta function is given by: 
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Thence, the eq. (1.51) can be written also: 
 

                ( ) ∫
∞

−−=+
0

2/12/1log iziz lζ ( )
( ) l

lllll

l

l
d

n

n∑ −
−−

log1
1

log
logcos2

log
1

22/1

λ
.    (1.52b) 

 



 9 

The indefinite integral of this Wheeler-DeWitt wave function is connected to the prime numbers p  
through: 
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The FZZT brane partition function can also be represented by prime numbers as: 
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Thence, the eq. (1.51) can be written also: 
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Both of the above formulas follow from the Euler product formula of the zeta function. Much of the 
physical intuition about the meaning of the FZZT brane and the Wheeler-DeWitt wave function 
occurs on the gravity side of the correspondence. Thus the connection of Number Theory and 
Gravity in this context is quite intriguing. 
The (2,1) minimal model is defined by the partition function: 
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and g  is the coupling constant. We define a master matrix associated with the model as a matrix 
whose characteristic polynomial is equal to the matrix integral: 
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which is the FZZT partition function. 
The master matrix for the (2,1) minimal model is given by: 
 

                            























−
−−

=

0100

1020

00

201

0010

2

N

NN

g
M

L

M

OOO

MO

L

.    (1.58) 

 
Which for 8=N  is given by: 
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The FZZT partition function for the (2,1) minimal model is: 
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This coincides with the characteristic polynomial of the master matrix. For the case 8=N  this is: 
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The master matrix (1.58) agrees with the master matrix of the Gaussian matrix model which is has 
the same partition function as the (2,1) minimal model after integration over P . 
Because the master matrix is manifestly Hermitian it’s eigenvalues are real. The large N  limit of 
FZZT partition function corresponds to: 
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and leads to the Airy function ( )zAi . This function is given by the contour integral: 
 

                                                      ( ) ∫
−=Φ

0

3 3/

2C

ze
i

d
z ϕϕ

π
ϕ

,    (1.63) 

 
with contour 0C  starting at infinity with argument 3/π−  and ending at infinity with argument 

3/π . It has the series expansion: 
 

                            ( ) ( )( ) ( )( )( )∑
∞

=
++Γ=

0

3/1
3/2 33/12sin

!
3/1

3
1

n

n
zn

n

n
zAi π

π
.    (1.64) 

 
The Airy function obeys the differential equation: 
 
                                                     ( ) ( ) 0'' =− zzAizAi .    (1.65) 
 
The Airy function has all it’s zeros on the real axis and this is a manifestation of the Hermitian 
nature of the master matrix in (1.58). 
The (3,1) minimal model is defined by the partition function with matrix potential: 
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                                       ( ) ( ) 














 += 32

3
1

2
31

MTrMTr
g

MV .    (1.66) 

 
The master matrix of the (3,1) minimal model is the matrix M  with nonzero components: 
 
                               ( )( ) ( ) jijijiji giiiM ,11,2,, 1321 +++ +−+−−= δδδ ,    (1.67) 

 
which is of the form: 
 

                        

( )( ) ( )
( )( ) ( ) 






















−−−
−−−

=

013210

02332

02

03

000

NNN

gNNN

g

g

M

K

M

OOO

MO

K

.    (1.68) 

 
For 8=N  this is given by: 
 

                                          

































0214200000

018300000

001520000

000121200

0000960

0000062

0000003

0000000

g

g

g

g

g

g

g

.    (1.69) 

 
The characteristic polynomial of this master matrix for Ng /1=  is given by: 
 

                        8
65432

2
21

4
7

32
945

16
105

8
175

256
945

4096
8085

z
zzzzzz +−−++−− ,    (1.70) 

 
and this correspond to the FZZT partition function of the (3,1) minimal model. 
 

                                         ( ) ( ) 0
2

3

3

11 23

=








 −+−
∂= x

xzxx
gN

x
N

N egzQ ,    (1.71) 

 
for 8=N . The expression for ( )zQN  can be written using the residue theorem as: 

 

                                       ( ) ( ) ( )
∫

−−
+−= zV

N

N
N e

d

i
NgzQ ϕϕ

ϕ
ϕ

π 12
1

! .    (1.72) 

 
After taking the large N  limit: 
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N

g
1→ ,    z

N
z 4/1

1
1+−→ ,    (1.73) 

 
one obtains a generalized Airy function ( )zΦ  defined by the integral: 
 

                                                   ( ) ∫
−=Φ

0

4 4/

2C

ze
i

d
z ϕϕ

π
ϕ

.    (1.74) 

 
The generalized Airy function obeys the differential equation: 
 
                                                       ( ) ( ) 0''' =Φ+Φ xzz ,    (1.75) 
 
with solutions: 
 

  ( ) { } { } { }
































−







+

































−







+

















−







=Φ

64
,

4
5

,
4
3

,
64

,
2
3

,
4
5

,
64

,
4
3

,
2
1

,
4

20

4

20
2

4

20

z
FzC

z
FzB

z
FAz ,     

 
                                                                                                                                                 (1.76) 
for constants ,A ,B  and C  where pFq is a generalized hypergeometric function. We note, in this 

expression, that 2864=  and that 8 is a Fibonacci’s number. 
 Modifying the contour to be along the imaginary axis we can define a modified generalized Airy 
function ( )zΨ  by: 

                                                       ( ) ∫
∞

∞−

+−
=Ψ φ

φφ
dez

zi4

4

1

,    (1.77) 

 
with a series expansion given by: 
 

                                             ( ) ( )
( )∑

∞

=







 +Γ−=Ψ
0

2

24
1

!2
2

2

1

k

k
k

z
k

k
z .    (1.78) 

 
This modified generalized Airy function obeys the differential equation: 
 
                                                        ( ) ( ) 0''' =Ψ−Ψ xzz ,    (1.79) 
 
with solution: 
 

               ( ) { } { } 

































Γ−























Γ=Ψ
64

,
2
3

,
4
5

,
4
3

64
,

4
3

,
2
1

,
4
1

2

1 4

20
2

4

20

z
Fz

z
Fz .    (1.80) 

 
We note that also in this expression 2864=  and that 8 is a Fibonacci’s number. 
 
The Riemann Ξ  function is defined by: 
 

                            ( ) 







−−







 +Γ






 +=Ξ −−

8
1

24
1

22
1 2

2/4/1 zz
iizz izππζ .    (1.81) 
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Also in this expression, we note easily that we have the Fibonacci’s number 8. 
 
It is even and can be expressed as an integral along the imaginary axis as: 
 

                                                   ( ) ( )
∫

∞

∞−

+−=Ξ φφφ dez ziU ,    (1.82) 

 
where: 

                                 ( ) 














 −−= ∑
∞

=

−

1

2242 2

2
3

log
k

ekeekekU
φπφφ ππφ .    (1.83) 

 
This function plays the same role for the Ξ  function as the Konsevich potential 3/3φ  plays for the 

Airy function and 4/4φ  for the Φ  function. For small φ  one can develop an expansion: 
 
                              ( ) ( )8642 15104.295896.536345.9 φφφφφ OU +−+= ,    (1.84) 
 
which is probably why the (3,1) minimal model modified FZZT partition function shares some of 
the characteristics of the Ξ  function. The Ξ  function itself can be expanded as: 
 

                                                    ( ) ( )
( )

n
n

n
n z

n
az 2

0
2 !2

1−=Ξ ∑
∞

=

,    (1.85) 

 
where 

                                            ( )∫
∞

−





















=
1

2
4/1

2 log
2
1

4
n

n fda llll     (1.86) 

 
and 

                                         ( ) ∑
∞

=

−







 −=
1

2/1224 2

2
3

q

qeqqf l
lll

πππ .    (1.87) 

 
Thence, we can write the eq. (1.85) also: 
 

             ( ) ( )
( )

n
n

n q

n
q z

n
eqqdz 2

0 1 1

2
2/12244/1

!2
1

log
2
1

2
3

4
2 −





























 −=Ξ ∑ ∫ ∑
∞

=

∞ ∞

=

−−
lllll

lπππ .    (1.87b) 

 
Thus like the Ψ  function one can think of the ( )zΞ  function as an infinite order polynomial 
expanded in even powers of z . 
Now we take the pure numbers of the expression (1.84). We obtain an interesting mathematical 
connection with the aurea section and the aurea ratio. Indeed, we have that: 
 
                                   9.36345+5.95896 – 2.15104 = 13.17137 ≅ 13.17; 
 

                             ≅=







 −−








 ++








 +
0901667.13

2
15

2
15

2
15

25

13.09 
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Nevertheless keeping the first two terms in the expansion for ( )φU  one can derive the following 
approximate equation for small z : 
 
                                 ( ) ( ) ( ) ( ) ( ) 0'36345.92'''95896.54 ≈Ξ−Ξ−Ξ zzzz .    (1.88) 
 
Rescaling the argument of ( )zΞ  we define: 
 

                                                 ( ) ( )( ) zz 4/195896.52Ξ=Ξ∗ .    (1.89) 
 
So that one has the following approximate equation for small z : 
 
                                                 ( ) ( ) ( ) 0'''' 1 ≈Ξ−Ξ−Ξ ∗∗∗ zzzsz ,    (1.90) 
 
where 

                                               835753241.3
95896.5

36345.9
1 ==s .    (1.91) 

 
This appear related to the deformed (3,1) minimal model with deformation parameter 1s . The 

solution to the equation for ∗Ξ  is denoted by ( )1,szΨ  and is: 
 

                                                ( ) ∫
∞

∞−

+−−
=Ψ φ

φφφ
desz

zis 2
1

4

2

1

4

1

1, .    (1.92) 

 
We note that the value of 1s  is related with the following expressions: 
 

                                 82.382404468.3
2

15
3
1

2
15

2
15

3

≅=







 −+







 −−








 +
 

                                            83.38281.3
2

15
2

15
7/297/19

≅=








 −+








 +
 

 
One can improve the approximate equation (1.88) by including higher order terms in the φ  

expansion of ( )φU . Keeping terms up to 6φ  in (1.84) one obtains the approximate differential 
equation: 
                  ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0'36345.92'''95896.54'''''15104.26 ≈Ξ−Ξ−Ξ+Ξ zzzzz .    (1.93) 
 
Now rescaling can put the equation in the form: 
 
                                     ( ) ( ) ( ) ( ) 0''''''''' 13 ≈Ξ−Ξ−Ξ+Ξ ∗∗∗∗∗∗∗∗ zzzszsz ,    (1.94) 

 
with deformation parameters 1s  and 3s . Finally we can define a function ( )1,szΦ  as the solution to: 

 
                                           ( ) ( ) ( ) 0,',''', 1111 =Φ+Φ−Φ szzszssz ,    (1.95) 
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which is real on the real axis and decays non-oscillatory for large positive y . We have that ( )1,szΦ  
is the FZZT partition function associated with the matrix potential: 
 

  ( )


















 +−+






 +−+






 +−+






 +−
+

= 4/1
1

3

4/1

2

4/14/1
1

11
3
1

1
2
3

13
1 N

x

N

s

N

x

N

x

N

x

N

s
N

xV .    (1.96) 

 
After rescaling and shifting the point of origin of the potential one can define polynomials for the 
matrix model deformed by the parameter 1s  through: 
 

        ( ) 0
132

1

1

1 3
1

2
3

3
1

exp
1

, =












































 −+++
+

−∂
















 +
= x

N
x

N

N xzx
N

s
xxx

N

s
N

N
N

s

szQ .    (1.97) 

 
The master matrix which has this as characteristic polynomial is a simple rescaling of the coupling 
constant of the master matrix of the (3,1) minimal model and is given by: 
 

                        ( )( ) ( ) jijijiji
N

s

N
iiiM ,1

1
1,2,, 1

1
1321 +++ 







 ++−+−−= δδδ .    (1.98) 

 
This master matrix can develop complex eigenvalues for large enough N  and 1s . In particular for 

34≥N  (note that 34 is a Fibonacci’s number) and 1s  given by (1.91) the eigenvalues are complex. 

However the function ( )1,szΨ  obtained from changing the sign of z  in the third term in (1.95) is 

very different from ( )1,szΦ  in this respect. It would be of interest to determine the master matrix 

associated with ( )1,szΨ  and it’s corrections for terms involving 3s  and higher, which should in 

principle converge to the Riemann Ξ  function.  
With regard the eq. (1.93), we note that the pure number 2.15104 is related to the following 
expressions: 

                                                15104.213.213014.2
2

15
7/11

≅≅=








 +
;     

                                15104.215.21458.2
2

15
2

15
2

15
24

≅≅=







 ++








 −+








 −
  

 
Furthermore, from the eq. (1.93) we have also that: 
 

                                                     95896.597.5
2

15
7/26

≅≅








 +
; 

( ) ( ) ( ) 94.17
2

15
01518.187269.1883584.2390624.1236345.9295896.5415104.26

7/42

≅








 +≅=−+=−+

     90.1272.12
2

15
7/37

≅=








 +
;   83.2362.23

2
15

7/46

≅=








 +
;   72.1894.17

2
15

7/42

≅=








 +
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The Ξ function can be expressed also as Meixner-Pollaczek polynomials. Thence, we have that: 
 

                                   ( ) ( )
( ) 







 +−+= 2;
2
3

;
2
1

4
3

,
!!2

!!12
! 12 zinFi

n

n
nzp n

n .    (1.99)  

 
These polynomials are the characteristic polynomial of a matrix with nonzero components: 
 

                                               jijiji iiM ,11,, 2
1

++ +






 += δδ .    (1.100) 

 
For 8=N  this matrix is given by: 
 

                                 

































02/105000000

103600000

0102/550000

001018000

000102/2100

00001050

00000102/3

00000010

.    (1.100b) 

 
The characteristic polynomial of this matrix is: 
 

                                8642 154
2

10493
2

74247
16

363825
zzzz +−+− ,    (1.101) 

 
which agrees with (1.99) for 8=N . The expansion of the Ξ  function with an exponential factor 
can be expanded in terms of the Meixner-Pollaczek polynomials as: 
 

                                                  ( ) ( )∑
∞

=

− =Ξ
0

4/

n
nn

z zpbez π .    (1.102) 

 
Terminating this series at N  one can write this expansion as the characteristic polynomial of a 

NN ×  matrix. For 8=N  this is given by: 
 

             

































+ 8786858483828180 //2/105//////

103600000

0102/550000

001018000

000102/2100

00001050

00000102/3

00000010

bbbbbbbbbbbbbbbb

.    (1.103) 
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When nb  are taken to zero this reproduces the matrix (1.100). The coefficients nb  are linearly 

related to the integrals: 

                                                 ∫
∞ +

+









+

=
0

12

2

2

1

82
sin

dyy
e

y

I n

yn π

π

.    (1.104) 

 
With regard the pure numbers of the matrix (1.100) and (1.103) we note that: 
 
3, 5, 21, 55 are Fibonacci’s numbers, while  18 = 13 + 5;  36 = 2 + 34  and  105 = 3 + 13 + 89, 
thence are sum of Fibonacci’s numbers. 
 
 
1.1  On some equations concerning the partition functions of the rigid string and membrane  
       at any temperature. 
 
The first two terms in the loop expansion  
 
                                                        ...10 ++= SSSeff     (1.105) 

 
of the effective action corresponding to the rigid string  
 

                 ( )[ ]∫ ∫+−∂∂+∂∂= − σρµρδλρσ
α µ

µ
µ

µ 2
0

2212

02
1

dXXXXdS abba
ab ,    (1.106) 

 
where 0α  is the dimensionless, asymptotically free coupling constant, ρ  the intrinsic metric, 0µ  

the explicit string tension (important at low energy) and ,abλ   ,2,1, =ba  the usual Lagrange 

multipliers, are given – in the world sheet L≤≤ 10 σ  and tβσ ≤≤ 20   – by 
 

                                     ( )[ ]aat
tL

S λµαρλλ
α
β −++= −

00
22211

0
0 2

2
    (1.107) 

 
at tree level, and by 
 

               ∑ ∫
∞

−∞=

∞+

∞− 





















++








+−=

n t

n
k

t

n
kdkL

d
S 22

2222
211

2

22

22
2

1

44
ln

2
1

2
2

β
λπλρ

β
π

π
    (1.108) 

 
at one-loop order, respectively. Of course, to make sense, this last expression needs to be 
regularized and its calculation is highly non-trivial. We shall make use of the zeta function 
procedure and thence, one can write the expression for 1S  also: 
 

     ( ) ( ) 01 2/2 =−−= sA s
ds

d
LdS ζ ,    ( ) ( ) ( )∑ ∫

∞

−∞=

∞+

∞−

−
−

−
+ ++=

n

ss

A ykykdks
2/222/22

2
1

2/
π

ζ ,    (1.109) 

 
where 
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              ( )
2/12/1

2

112
22211

2

112
2

42

2




























+−±+=± a

t
n

a

t

a

t
n

t

a
y

λρλλρλρ
,    

β
π2≡a .    (1.110) 

 
We may consider two basic approximations of overlapping validity: one for low temperature, 

0
2 µβ <<− , and the other for high temperature, 00

2 µαβ >>− . Both these approximations can be 

obtained from the expression above, which on its turn can be written in the form 
 

               ( ) ( )
( ) ( ) ( )∑

∞

−∞= −+

− −
Γ
−Γ=

n
sA ssF

yy

y

s

s
s η

π
ζ 1;;2/1,2/

2/1

2

1
2/ ,    2

2

+

−≡
y

yη .    (1.111) 

 
This is an exact formula. 
With regard the low temperature case, the term 0=n   in (1.111) is non-vanishing and must be 
treated separately from the rest. It gives 
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This is again an exact expression, that yields 
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and 
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For high temperature, the ordinary expansion of the confluent hypergeometric function F  of eq. 
(1.111) is in order 
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( ) ( ) ( )1...1 −++= kssss k  being Pochhamer’s symbol (the rising factorial). 

Now we shall consider the case of the pure bosonic membrane and corresponding p -brane. The 
tree level action similar to (1.107) is 
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where 0λ  and 1λ  are Lagrange multipliers and 0σ  and 1σ  are composite fields. The one-loop 

contribution to the action can be written formally as follows 
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As in the string case (eq. 1.109), we choose the zeta function method. Calling 2ζ  the corresponding 
zeta function, we have 
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After some calculations, we get 
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where Rζ  is Riemann’s zeta function. We thus obtain 
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In the case of the bosonic p -brane, the corresponding expressions are 
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and 
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                                                                                                                                                 (1.122) 
 
where pV  is the “volume” of the 1−p -dimensional unit sphere. 

Now we shall consider the case of the bosonic membrane with rigid term and the corresponding p -
brane. The tree level action is the same as before, eq. (1.116). The one-loop order contribution for 
the bosonic membrane is   
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where the label r  means rigid. We can write 
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with 
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Here, in analogy with the rigid string case, the term corresponding to 0=n  must be treated 
separately. It yields a beta function. Also as in the rigid string case, the remaining series can be 
written in terms of a confluent hypergeometric function. The complete result is: 
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For the general case of the p -brane with rigid term, the one-loop contribution to the action is 
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where pV  is again the “volume” of the p – 1-dimensional unit sphere and the ±c  are again given by 

(1.125). Considering the 0=n  term separately, we obtain the following generalization of the 
formula corresponding to the rigid membrane: 
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In the case of the rigid membrane we get the rather simpler result 
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The one loop action for the rigid membrane is readily obtained from (1.129) 
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Here, terms up to 2=k  in the expansion (1.115) of the hypergeometric function of (1.128) have 
been taken into account. We note that all higher-order terms would be easy to obtain from (1.128) 
and that a consistent loop expansion to any desired order can in fact performed. The conditions for 
extremum of ( ) ( ) ( )rmmrm SSS 10 += , eqs. (1.116) and (1.130), are obtained by taking the derivatives 

with respect to the parameters 010 ,, σλλ  and 1σ . The result is 
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We can easily identify here the transition that also takes place for the rigid string: for values of the 
temperature higher than the one coming from the expression 
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the values of the parameters, and hence of the action and of the winding soliton mass squared, 
acquire an imaginary part. Guided by the fact that in the rigid string case this temperature lies above 
the Hagedorn temperature, we conclude that in order that the whole scheme of the string case can be 
translated to the membrane situation we must demand that µρ 2  be small.  
For the Hagedorn temperature, defined as the value for which the winding soliton mass 
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vanishes, we find 
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The values of the constants which determine the leading behaviour of the effective action at high 
temperature, namely the derivative of the zeta function at the point  – 2 (in general, p− , 
respectively), have been calculated. In particular, we have that 
 
                           ( ) 16542115,01' −=−ζ ,        ( ) 03049103,02' −=−ζ .    (1.135) 
 

Also here, we note the mathematical connection with the aurea section, i.e. 
2

15 −=φ . Indeed, we 

have that: 
 

      ( ) 16740,0
2

15
7/26

7/26 −=








 −−=− φ ;        ( ) 030017,0
2

15
7/51

7/51 −=








 −−=− φ .    (1.136) 

 
 
Now, we take the pure numbers of the eqs. (1.61), (1.70) and (1.101). We have the following 
sequence: 
 
           2, 4, 7, 8, 14, 16, 21, 32, 105, 154, 175, 256, 945, 4096, 8085, 10493, 74247, 363825. 
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We note that: 
 

22 = ,    224 = ,    7177 =×= ,    328 = ,    7214 ×= ,    82216 4 ×== ,    217321 =×= , 
84232 5 ×== ,    521753105 ×=××= ,    1172154 ××= ,    75175 2 ×= ,    8842256 8 ××== , 

2153753945 23 ××=××= ,    2212 8824096 ×== ,    211175117538085 2 ×××=×××= , 
1499710493 ×= ,    24749374247 ×= ,    22223 21115311753363825 ×××=×××= . 

 
Here, 5, 7 and 11 are prime natural numbers and 2, 3, 5, 8 and 21 are Fibonacci’s numbers. The 
number 8 is also connected with the “modes” that correspond to the physical vibrations of a 
superstring by the following Ramanujan function: 
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 With regard the numbers 2, 3, 5, 7 and 11, these are also factors of the numbers of dimension of the 
Lie’s Groups, connected to the string theory. Indeed, we observe that: 
 
L1 = 72× ;    L2 = 322 × ;    L3 = 1332 ×× ;    L4 = 197× ;    L5 = 3123 × ;    L6 = 11532 24 ××× ; 
L7 = 191175323 ××××× ;    L8 = 23117532 310 ××××× ;    L9 = 2264 839532 ××× , with  

16140839 −×=  and  13144140 −−=  (that are Fibonacci’s numbers); 
L10 = 71594741312923191713117532 32692046 ×××××××××××××× . 
  
We have also that: 
 

( ) 2/553446 +≅ ;    12120 −= ;    189 += ;    156 += ;    2 = 2;    3 = 3;  with 2, 3, 5, 8, 21, 34 and 
55 that are Fibonacci’s numbers. 
With regard the prime natural numbers, we have that: 5, 7, 11, 13, 17, 19, 29, 31 and 47 are of the 
form  16 ±f  with 5,3,2,1=f  and 8 that are Fibonacci’s numbers. With regard the numbers 59 and 
71, we have that:  110659 −×= ,  with 10 = 8 + 2 (8 and 2 are Fibonacci’s numbers), while 

112671 −×= ,  with  12 = 13 – 1 (1 and 13 are Fibonacci’s numbers). 
We note also that for the Lie’s Groups 7642 ,,, EEFG and 8E , that have dimensions 14, 52, 78, 133 

and 248, we have that: 
 

7214 ×= ,  with  1167 +×= ;    13452 ×= ,  with  12613 +×= ;    13678 ×= ,  with 12613 +×= ; 
197133 ×= ,  with  13619 +×= ;    318248 ×= ,  with  15631 +×= . (1, 2, 3 and 5 are Fibonacci’s 

numbers, while 7, 13, 19 and 31 are prime natural numbers. Furthermore, also here there is the 
numbers 8 that is related to the physical vibrations of a superstring by eq. (1.137)).                
 
Furthermore, we have that: 
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1499710493 ×= , with 1499 = (1499 + 1)/6 = 250 = 233 + 17 = 233 + [(21 + 13)/2]. Note that 13, 
21 and 233 are Fibonacci’s numbers and  17 = 34/2  with 34 = Fibonacci’s number. 

24749374247 ×= , with 24749 = 141256 −× , with 56418111534125 3 −=××= , with 
 56 = 55 + 1. Note that 1, 55 and 4181 are Fibonacci’s numbers. We have also that  
25087 – 24749 = 338; 8556338 +×= , with 8 and 55 that are Fibonacci’s numbers. Furthermore, 
25087 is a prime natural number. Indeed, 14181625087 +×= .  
 
 

2. On some mathematical aspects concerning the rigid surface operators in gauge theory  
[4] 

 
Now, in this chapter, we describe some interesting aspects of the rigid surface operators in gauge 
theory for the connections with the Geometric Langlands Program. 
The familiar examples of non-local operators in four-dimensional gauge theory include line 
operators, such as Wilson and ‘t Hooft operators, supported on a one-dimensional curve L  in the 
space-time manifold M . While a Wilson operator labelled by a representation R  of the gauge 
group G  can be defined by modifying the measure in the path integral, namely by inserting a factor 
 

                                       ( ) RR TrLW = Hol ( ) ( )∫=
LRL APTrA exp ,    (2.1) 

 
an ‘t Hooft operator is defined by modifying the space of fields over which one performs the path 
integral. Similarly, a surface operator in four-dimensional gauge theory is an operator supported on 
a two-dimensional submanifold MD ⊂  in the space-time manifold M . 
Four-dimensional gauge theories admit surface operators, and in the supersymmetric case, they 
often admit supersymmetric surface operators, that is, surface operators that preserve some of the 
supersymmetry. Now, we consider some mathematical aspects of 4=N  super Yang-Mills theory in 
four dimensions, the maximally supersymmetric case. This theory has many remarkable properties, 
including electric-magnetic duality, and has been extensively studied in the context of string 
dualities, in particular in the AdS/CFT correspondence. 
Hitchin’s equations are equations in the 32 xx −  plane that can be written as follows: 
 
                                      0=∧− φφAF ,    0=φAd ,    0=∗φAd .    (2.2) 
 
To define a supersymmetric surface operator, one picks a solution of Hitchin’s equations with a 
singularity along D , and one requires that quantization of 4=N  super Yang-Mills theory should 
be carried out for fields with precisely this kind of singularity. It is natural to look for surface 
operators that are invariant under rotations of the 32 xx −  plane. If we set  θireixx =+ 32 , then the 
most general possible rotation-invariant ansatz is 
 

                                   ( ) ( )
r

dr
rfdraA += θ ,    ( ) ( ) θφ drc

r

dr
rb −= .    (2.3) 

 
Setting ( ) 0=rf  by a gauge transformation and introducing a new variable  rs ln−=  , we can write 
the supersymmetry equations (2.2) in the form of Nahm’s equations: 
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ds
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,= ,    [ ]ac

ds

db
,= ,    [ ]ba

ds

dc
,= .    (2.4) 
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The most general conformally invariant solution is obtained by setting cba ,,  to constant elements 
γβα ,,  of the Lie algebra g  of G . The equations imply that ,,βα  and γ  must commute, so we 

can conjugate them to the Lie algebra t  of a maximal torus Τ of G . The resulting singular solution 
of Hitchin’s equations then takes the simple form 
 

                                                  θαdA = ,    θγβφ d
r

dr −= .    (2.5) 

 
The definition of the surface operator is that A  and φ  have singularities proportional to γβα ,,  
modulo terms that are less singular than r/1 . Generically, for 0,, →γβα , we conclude that A  and 
φ  are less singular than r/1 . In fact, Hitchin’s equations do have a rotationally symmetric solution 
that is singular at 0=r  but less singular than r/1 . The Nahm equations (2.4) are solved with 
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/1
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fs

t
c

/1
3

+
−=     (2.6) 

 
where ,, 21 tt  and 3t  are elements of the Lie algebra g , which satisfy the usual ( )2su  commutation 

relations, [ ] 321, ttt = , etc. Moreover, f  is an arbitrary non-negative constant. Since we are taking 

( )2SUG = , the matrices it , if nonzero, correspond to the two-dimensional representation of 

( )2SU . So the surface operator that we get from the ansatz (2.6), with f  allowed to fluctuate, is 
actually conformally invariant.  
A convenient way to describe this surface operator is to say that the fields behave near 0=r  as 
 

                                        ...
ln
1 +=

r

dt
A

θ
,    ...

lnln
32 +−=

r

dt

rr

drt θφ ,    (2.7) 

 
where the ellipses refer to terms that are less singular (at most of order rr 2ln/1 ) at 0=r . The 
complex-valued flat connection φiA+=Α  is invariant under part of the supersymmetry preserved 
by the surface operator. Hence the conjugacy class of the monodromy  
 

                                                          ( )∫Α−=
l

expPU     (2.8) 

 
is a supersymmetric observable. Here l  is a contour surrounding the singularity. Hitchin’s 
equations imply that the curvature of Α , namely Α∧Α+Α= dF , is equal to zero. So if Hitchin’s 
equations are obeyed, then the conjugacy class of U  is invariant under deformations of l . Of 
course, U  is an element of CG , the complexification of G . For a generic surface operator with 

parameters ,,, γβα we set γαξ i−= . Then θξd=Α , and the monodromy is hence 
 
                                                           ( )πξ2exp −=U .    (2.9) 
 
Thence, from the eq. (2.8), we can write also: 
 

                                              ( )∫Α−=
l

expPU ( )πξ2exp −= .    (2.9b) 
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This is independent of the choice of l . On the other hand, for the solution (2.6), we find 
( ) ( )fsittd /1/31 +−−=Α θ . If we take l  to be the circle 1ss = , the monodromy comes out to be  

 
                                             ( ) ( )[ ]fsittU /1/2exp' 131 +−−= π .    (2.10) 

 
We note that U  can also be diagonalized, with eigenvalues ( )02exp πξ± : 
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As long as 00 ≠ξ , this matrix is conjugate to 
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so it does not matter if w is zero or not. 
Let ξC  be the conjugacy class in SL(2,C) that contains the element ( )πξ2exp −=U , with generic 

ξ . Then ξC  is of complex dimension two. Indeed, U  commutes only with a one-parameter 

subgroup of diagonal matrices, so its orbit in the three-dimensional group SL(2,C) is two-
dimensional.  
Unipotent elements U  of CG  correspond naturally to nilpotent elements n  of the Lie algebra Cg  of 

CG , via )exp(nU = . It is convenient to think in terms of the Lie algebra. A natural source of    

nilpotent elements of CG  comes by picking an embedding of Lie algebras  ( ) CgCsl →,2:ρ . 

Then the raising (or lowering) operator for this embedding gives us a nilpotent element Cgn∈ . 

Conversely, the Jacobson-Morozov theorem states that every nilpotent element n Cg∈  is the raising 

operator for some ( )Csl ,2  embedding. In fact, up to conjugacy, every nilpotent element is the 
raising operator of some unitary embedding 
 
                                                            ( ) gsu →2:ρ     (2.13) 
 
of the real Lie algebra of SU(2) to that of the compact form of G . 
Now it is clear how to make a surface operator associated with any unipotent conjugacy class 

CG⊂C . We pick an SU(2) embedding ( ) gsu →2:ρ , and define the surface operator using eqn. 

(2.6), where ,, 21 tt  and 3t  are now the images of the standard SU(2) generators under the chosen 

embedding.  
Rigid unipotent conjugacy classes or rigid nilpotent orbits also exist in exceptional groups. A 
(noncentral) unipotent conjugacy class of minimal dimension in a complex semisimple Lie group is 
always rigid, except for NA . It is convenient to be able to compute the dimension of a unipotent 

conjugacy class in CG , or equivalently of a nilpotent orbit in Cg . So we pause to explain how to do 

this. Let d  be the complex dimension of CG , and let s be the complex dimension of the subgroup 

C
n
C GG ⊂  of elements that commute with a given n Cg∈ . The dimension of the orbit of n  (or of 

))exp(n  is sd − . So it suffices to compute s. 
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The element n  is the raising operator for some embedding  ( ) gsu →2:ρ . We decompose g  in 

irreducible representations iR  of ( )2su : 

 
                                                               i

s
ig R1=⊕= .    (2.14) 

 
The subspace of g  that commutes with the raising operator n  is precisely the space of highest 

weight vectors for the action of ( )2su . Each irreducible summand iR  has a one-dimensional space 

of highest weight vectors. So the subspace of g  that commutes with n  is of dimension equal to s, 
the number of summands in (2.14). 
For example, one can use this method to compute the dimensions of the minimal unipotent 
conjugacy classes in SO(N,C) or Sp(2N,C). For another important example, we re-examine the 
regular unipotent orbit of SL(N,C). This corresponds to an irreducible N-dimensional representation 
of ( )2su , and the summands in (2.14) are of dimension 3, 5, 7,…, 2N – 1. There are N – 1 
summands. This shows that the subgroup of SL(N,C) that commutes with a principal unipotent 
element has dimension N – 1. The number N – 1 equals the dimension of the maximal torus, 
showing that a principal unipotent orbit has the same dimension as a generic semisimple orbit. 
Now we will describe a gauge theory singularity in real codimension 2 associated with a rigid 
semisimple element of G . We take the singularity to be at 032 == xx , and we use polar 
coordinates θireixx =+ 32 . In the absence of any singularity, an adjoint-valued field on the 32 xx −  
plane can be represented by an adjoint-valued function ( )θ,rΦ  that obeys  ( ) ( )θπθ ,2, rr Φ=+Φ . If 
S  is any element of the gauge group G , we can modify this condition to 
 
                                                 ( ) ( ) 1,2, −Φ=+Φ SrSr θπθ .    (2.15) 
 
Since G  is a symmetry group of 4=N  super Yang-Mills theory, it makes sense to formulate 

4=N  super Yang-Mills theory for fields that have this sort of behaviour, near a codimension two 
surface D  in spacetime. If we impose this condition, then along D , we should divide only by 
gauge transformations that commute with S . This recipe gives a surface operator that makes sense 
for any GS∈ . It varies smoothly as long as the centralizer SG  of S  in G  does not change. To get 
a rigid surface operator, we must pick S  to be rigid, meaning that SG  jumps if S  is changed at all. 
As in eqn. (2.5), we considered a gauge singularity of the form θαdA = . One quantizes 4=N  
super Yang-Mills theory for fields with this type of singularity, dividing by gauge transformations 
that at 0=z  are valued in αG , the centralizer of α  in G . Let us call this type of surface operator a 
generic one. A generic surface operator behaves well as α  is varied as long as the centralizer of α  
is the same as the centralizer of the monodromy  ( )πα2exp −=S . We are precisely in the situation 
in which this is not the case, for if S  is strongly rigid (and noncentral) then the centralizer of S  is 
strictly larger than the centralizer of any g∈α  such that  ( )πα2exp −=S . 

To being with, any element CGV ∈  can be written as SUV = , where S  is semisimple, U  is 

unipotent, and S  commutes with U . Moreover, let S
CG  be the centralizer of S  in CG , so S

CGU ∈ . 

Then the condition for  SUV =  to be rigid (or strongly rigid) in CG  is that S  must be rigid (or 

strongly rigid) in CG  and U  must be rigid in S
CG . To construct a surface operator with monodromy 

SUV = , we combine the two constructions as follows. First we require that near 0=r , all fields of 
4=N  super Yang-Mills theory obey   ( ) ( ) 1,2, −Φ=+Φ SrSr θπθ ,  as in (2.15). Second, we also 

pick a homomorphism  ( ) Sgsu →2:ρ  (here Sg  is the Lie algebra of SG ) and we require that the 
fields have a singularity near 0=r  that is given by the solution (2.7) of Nahm’s equations: 
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                                      ...
ln
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r

dt
A

θ
,    ...

lnln
32 +−=

r

dt

rr

drt θφ ,    (2.16) 

 
where the ellipses denote terms that are less singular at 0=r . Because ρ  commutes with S , this 
condition on the fields is compatible with (2.15). The combined condition defines a surface operator 
with the monodromy 
                                                               SUV = .    (2.17) 
 
There is no need here for V  to be rigid. For every conjugacy class CG , a construction along these 

lines gives a surface operator of monodromy V .  
Now we describe rigid nilpotent orbits in exceptional cases. In such cases, the appropriate language 
to classify nilpotent orbits is based on Bala-Carter theory. According to Bala and Carter, nilpotent 
orbits in Cg  are in one-to-one correspondence with pairs ( )lpl , , where gl ⊂  is a Levi subalgebra, 

and lp  is a distinguished parabolic subalgebra of the semisimple algebra [ ]ll , . Such pairs can be 

conveniently labelled as ( )iN aX  where NX  is the Cartan type of the semisimple part of l  and i  is 

the number of simple roots in any Levi subalgebra of lp . If 0=i  one simply writes NX , and if a 

simple component of a Levi subalgebra l  involves short roots (when g  has two root lengths) then 
one labels its Cartan type with a tilde. Using this notation, below we list rigid nilpotent orbits in 

2G : 

                                              orbit c       ( )cdim       ( )c1π  

                                               1A                 6                1 

                                               1

~
A                 8                1 

 
We note that  6 = 5 + 1  and  that  8 = 3 + 5,  with 1, 3, 5 and 8 that are Fibonacci’s numbers. 
Furthermore, 8 is the number related to the physical vibrations of the superstrings by the following 
Ramanujan function: 
 

                                   
( )
























 ++







 +

⋅
















=

−

∞ −
∫

4
2710

4
21110

log

'
142

'

cosh
'cos

log4

3
1

8

2

'

'
4

0

'

2

2

wt
itwe

dxe
x

txw

anti

w

w
t

wx

φ

π
π

π

π

.    (2.18) 

 
These are the only nilpotent orbits in 2G  which are not special.  

We omit the trivial orbit, and in the last column we also list the scG -equivariant fundamental group 

of c  (defined as ( ) ( ) ( )o
scsc cGcGc /1 =π , where ( )cGsc  is the centralizer of c  in the simply-

connected form of G ). The adG -equivariant fundamental group, usually denoted ( )cA , is the same 

as ( )c1π  in types ,2G 4F  and 8E . In the following table we list rigid nilpotent orbits in 4F : 

 
                                                   orbit c         ( )cdim         ( )c1π                   

                                                   1A                   16               1 

                                                   1

~
A                   22              2S  
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                                                   11

~
AA +            28               1 

                                                   12

~
AA +            34               1 

                                                   12

~
AA +            36               1 

 
We have that:  16 = 24 – 8 = 3 + 5 + 8;    22 = 21 + 1 = 13 + 8 + 1;    28 = 13 + 8 + 5 + 2; 
34 = 13 + 21 = 5 + 8 + 21 = 24 + 8 + 2;    36 = 34 + 2 = 24 + 12.  
We note that 1, 2, 3, 5, 8, 13, 21 and 34 are Fibonacci’s numbers. With regard the numbers 8 and 24 
(and 12 = 24 / 2) they are related to the physical vibrations of the superstrings and of the bosonic 
strings by the eq. (2.18) and by the following Ramanujan function: 
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All of these orbits, except for 1
~
A  and 11

~
AA + , are not special. In type 6E , rigid nilpotent orbits are 

the following: 
 
                                                     orbit c         ( )cdim         ( )c1π           

                                                       1A                   22              1 

                                                      13A                  40              1 

                                                      122 AA +          54             3Z  

 
Here, we have that:  40 = 16 + 24 = 34 + 5 + 1 = 21 + 8 + 5 + 6;    54 = 34 + 13 + 5 + 2 = 48 + 6. 
Also in this case we have that 1, 2, 5, 8, 13, 21 and 34 are Fibonacci’s numbers and that the 
numbers 8, 16, 24 and 48 are related to the physical vibrations of the superstrings (8) and of the 
bosonic strings (24) and hence to the eqs. (2.18) and (2.19). 
In type 7E , rigid nilpotent orbits are the following: 

 
                                                 orbit c         ( )cdim         ( )c1π  

                                                     1A               34                1 

                                                   12A               52                1 

                                                  ( )'3 1A             64                1  

                                                    14A              70                1 

                                                 12 2AA +         82                1 

                                                 122 AA +         90                1 

                                                ( )'13 AA +         92                1 

 
 
Here, we have that:  52 = 34 + 13 + 5 = 12 + 16 + 24;    64 = 48 + 16 = 55 + 8 + 1;   
70 = 55 + 13 + 2 = 48 + 13 + 8 + 1;    82 = 55 + 21 + 5 + 1 = 48 + 21 + 8 + 5; 
90 = 55 + 34 + 1 = 48 + 24 + 13 + 5;    92 = 55 + 34 + 3 = 48 + 24 + 13 + 5 + 2. 
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Also in this case we have that 1, 2, 5, 8, 13, 21, 34 and 55 are Fibonacci’s numbers and that the 
numbers 8, 16, 24 and 48 are related to the physical vibrations of the superstrings (8) and of the 
bosonic strings (24 and 12 = 24 / 2) and hence to the eqs. (2.18) and (2.19). 
All of these orbits have ( ) 1=cA . Among these, the orbits ,2, 11 AA  and 12 2AA +  are special. Finally, 

in the following table we list rigid nilpotent orbits in 8E : 

 
                                                 orbit c             ( )cdim           ( )c1π  

                                                   1A                      58                 1 

                                                 12A                      92                 1 

                                                 13A                      112               1 

                                                 14A                      128               1 

                                                12 AA +                 136               2S  

                                                12 2AA +               146                1 

                                                12 3AA +               154                1 

                                                122 AA +               162                1 

                                                13 AA +                 164                1  

                                                12 22 AA +             168                1 

                                                13 2AA +               172                1  

                                                ( ) 114 AaD +           176                3S   

                                                123 AAA ++         182                 1 

                                                32A                      188                 1 

                                                34 AA +                200                  1 

                                                15 AA +                202                  1 

                                                ( ) 215 AaD +          202                  1 

 
The only special orbits in this list are ( ) 114121211 ,2,,2, AaDAAAAAA +++ . 
Here, we have that:  58 = 21+ 34 + 3 = 48 + 8 + 2 = 48 + 5 + 3 + 2;     
112 = 144( )1212×  –  21 – 8 – 3;    128 = 144 – 16 = 144 – 8 – 5 – 3;    136 = 144 – 8;  
146 = 144 + 2;    154 = 144 + 5 + 3 + 2;    162 = 144 + 13 + 5;    164 = 144 + 13 + 5 + 2; 
168 = 144 + 21 + 3 = 144 + 24;    172 = 144 + 21 + 5 + 2 = 144 + 24 + 3 + 1; 
176 = 144 + 21 + 8 + 3 = 144 + 24 + 8;    182 = 144 + 34 + 3 + 1 = 144 + 24 + 8 + 5 + 1; 
188 = 144 + 34 + 8 + 2 = 144 + 24 + 16 + 3 + 1;    200 = 144 + 48 + 8 = 144 + 34 + 21 + 1; 
202 = 144 + 48 + 8 + 2 = 144 + 34 + 21 + 3. 
Also in this case we have that 1, 2, 5, 8, 13, 21, 34 and 144 (89 + 55) are Fibonacci’s numbers and 
that the numbers 8, 16, 24, 48 and 144 (144 = 1212× ) are related to the physical vibrations of the 
superstrings (8) and of the bosonic strings (24)  (12 = 24 / 2) and hence to the eqs. (2.18) and (2.19). 
Furthermore,  related to the numbers of this list, we have the following forms: 
 
6n – 2      for  n = 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 19 and 23, we obtain the numbers:  16, 22, 28, 34,  
                40, 52, 58, 64, 70, 82, 112, 136. 
 
6n            for  n = 1, 6, 9 and 15, we obtain the numbers:  6, 36, 54, 90. 
 
6n + 2      for  n = 1, 15, 21 and 24, we obtain the numbers:  8, 92, 128, 146.  
 
8n – 2      for  n = 1, 3, 7, 9 and 23, we obtain the numbers:  6, 22, 54, 70, 182.  
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8n            for  n = 1, 2, 5, 8, 14, 16, 17, 21, 22 and 25, we obtain the numbers:  8, 16, 40, 64, 112, 
                128, 136, 168, 176, 200. 
 
8n + 2      for  n = 4, 7, 10, 11, 18, 19, 20 and 25, we obtain the numbers:  34, 58, 82, 90, 146, 154, 
                162, 202. 
 
We note that for 6n – 2 we have 12 numbers and for 8n we have 10 numbers. The form 6n – 2, is 
related to the form 16 ±n  that is connected to the generation of the prime numbers. Furthermore, 6 
is the number of dimensions compactified concerning the superstring theory. The form 8n, is related 
to the Fibonacci’s number 8 and to the physical vibrations of a superstring, hence to the Ramanujan 
modular equation (2.18). 
With regard the Lucas’s series, we have obtained the following interesting connections, with the 
forms 6n, 8n, 6n – 2  and 28 ±n . Indeed, we have: 
 
6n    for  n = 1:     
                                                                   616 =⋅ ; 
         
8n    for  n = 1, 2:     
                                                            818 =⋅ ,  1628 =⋅ ; 
 
6n – 2     for  n = 3, 4, 7 and 11: 
     
                          16236 =−⋅ ,    22246 =−⋅ ,    40276 =−⋅ ,    642116 =−⋅ ; 
 

28 ±n     for  n = 3, 4, 7, 11 and 18: 
     
               22238 =−⋅ ,    34248 =+⋅ ,    54278 =−⋅ ,    902118 =+⋅ ,    1462188 =+⋅ . 
 
We note that 2, 1, 3, 4, 7, 11 and 18 are Lucas’s numbers. 
In conclusion of this chapter, we observe also that the numbers 6, 8, 16, 22, 28, 36, 40, 52, 54, 58, 
64, 70, 82 and 90 are values of the Eulero’s phi function ( )nϕ . We note that a Dirichlet series that 

gives the ( )nϕ  is: 

                                                        
( ) ( )

( )∑
∞

=

−=
0

1

n
s s

s

n

n

ζ
ζϕ

,    (2.20) 

 
where ζ  is the Riemann zeta function. 
 

3. On some equations concerning the study of the Riemann zeta function and the Selberg  
trace formula. [5]  

 
Let k  denote the field of rational numbers. For every place v , we denote by vk , vO , and vP  the 

completion of k  at v , the maximal compact subring of vk , and the unique maximal ideal of vO , 

respectively. The adele group Α  of k  is the restricted direct product of the additive groups vk  

relative to subgroups vO , and is denoted by Α . For every place v  of k  we denote by 
v
 the 

valuation of k  normalized so that 
v
 is the ordinary absolute value if v  is real, and  p

vv /1=π  if 

vv PO /  contains p  elements where vvv OP π= . In this chapter, v  and p  always correspond to each 
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other this way. The idele group J  of k  is the restricted direct product of the multiplicative groups 
∗
vk  relative to subgroups ∗vO  of units of vk .  

Let 1J  be the set of ideles ( )vαα =  such that 1=∏ vvα . We denote by C  for the idele class 

group ∗kJ / . We define a map ( )xx vλ→  of vk  into the set of reals modulo 1. Then 

 
                                                           ( )xi

v
vex λπψ 2: →     (3.1) 

 
is a character on the additive group vk . It is trivial on vO , and is nontrivial on vv O1−π  for ∞≠v . 

Let G  be a locally compact abelian group with a nontrivial proper continuous homomorphism  
 
                                                         ∗

+→ RG ,  gg →     (3.2) 

 
whose range is cocompact in ∗

+R . There exists a unique Haar measure gd∗  on G  such that 
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,1

log
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gd     (3.3) 

 
when ∞→Λ . Let { }1:0 =∈= gGgG . We identify 0/GG  with the range N  of the module. 

Choose a measure nd∗  on N  such that (3.3) holds for the measure gd∗  given by 
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where the Haar measure 0dg  is normalized so that 

 

                                                             ∫ =
0

10G
dg     (3.5) 

 
In particular, for ∗

+= RN  the unique Haar measure on G  satisfying (3.3) is 
 

                                          0ndgdgd ∗∗ =     (3.6)        with  
n

dn
nd =∗ . 

 
If ZqN = , the unique Haar measure on G  satisfying (3.3) is given by 
 

                                         ( ) ( )∫ ∑∫
∈

∗ =
G

Zn
G

n dggqfqgdgf
0

00log .    (3.7) 

 
Let ( )∞∈ ∞ ,00Ch  be a smooth complex-valued function with compact support in ( )∞,0 . Then 
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where the sum on ρ  ranges over all complex zeros of ( )sζ  and where γ  is Euler’s constant. 

Let 0g  be a real-valued function in ( )∞∞ ,00C . We define 

 

                                                  ( ) ( ) ( )∫
∞

=
0 000 dyygxygxh .    (3.9) 

 
Then 

                                                    ( ) ( ) ( )sgsgsh −= 1~~~
000 .    (3.10) 

 
Since 0g  has a compact support in ( )∞,0 , there is a number µ  satisfying 10 << µ  such that the 

support of 0g  is contained in [ ]2/1, −µµ . It follows that 

 
                                                               ( ) 00 =xh     (3.11) 

 
for all [ ]1, −∉ µµx . 
 
Theorem 1. 
 
Let 0h  be given as in (3.9). Then 
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where the sum on ρ  is over all nontrivial zeros of ( )sζ , the sum on v  is over all places of k , and 

the principal value ∫
'

is uniquely determined by the unique distribution on ∗
vk  which agrees with 

v
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 for 1≠u  and whose Fourier transform vanishes at 1.  

 
If v  is a finite place of k , then  
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If v  is the infinite place of k , then 
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(Proof of Theorem 1). We have the following explicit formula: 
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where the sum on ρ  is over all complex zeros of ( )sζ . We assume that µ  is not a rational number. 
If v  is a finite place, then 
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Let { }11: =+∈=

vv ukuA ,     and put    ( ) 11 =xA ,    Ax∈ ;        ( ) 01 =xA ,    Ax∉ . 

Then 
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Since  

                                                       
vvvv OOO p

11
1

11̂ −∗ −= π ,    (3.18) 

 
we have 

                                          ( ) ( ) ( ) ( )






 −= − x
p

xxx
vvv OOvA 11

1
11̂ πψ .    (3.19) 

 
Thence, the eq. (3.17) can be written also: 
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By definition of the principal value integral ∫
'

, we have that: 
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Since p  is a rational prime for each finite place v  of k , by the normalization (3.7) for the Haar 

measure on ∗vk  
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for all nonzero integers k . Therefore, by (3.11) we have 
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We assume that v  is the infinite place of k . By definition of the principal value integral ∫
'

, 
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We have 
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1

2
1111

lim hdu
uu

uuh
u

h
u δ

δδ
δ

δ
.    (3.24) 

 
Since 

       ( )( )( ) ( ) ( )( )( )
∫ ∫

− −

=−−=−++−
−

−

→

−−
−

→

1 1

1 1

1

0
0

11

0
0

0
2
1

1lim
2

11
1lim

µ µ δ
δ

δ

δδ
δ

δ
du

u
uuhdu

uu
uuh     (3.25) 

 
and 
 

( ) ( )
( ) ( ) ( )∫∫

∞

→

∞ −−

→
−=







 −−ΓΓ+
+

=




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


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1 021
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20
2log

1
2lim

1
11

2
111

2lim
δ

δδ
δ δ

δδ

δ
du

uu
du

uu

u
,    (3.26) 

 
we have 
 

   
( ) ( ) ( ) ( ) ( ) 2log1

1
1211

log1
1

lim 021 2
0

001 0

1

0

0
hdu

u

u

u

h
uh

u
h

u
hud

u

uh
u

−
−







 −+






=













+

− ∫∫
∞

≥−

∗
−

→ δδ
δ .    (3.27) 

 
Therefore, 
 

              
( ) ( ) ( ) ( ) ( )∫ ∫∗ −







 −+






++=
−

∞∗
−

'

21 02000

1

0

1
1

211
1log

1R u

udu
h

u
uh

u
h

u
hud

u

uh
πγ .    (3.28) 

 
The stated identity then follows from (3.15) and (3.22). 
 
Theorem 2. 
 
Let h  be a smooth even function of compact support in ( )∗RL2 , and let  ( ) ( ) 11 −−= λλλ hg . Then 
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                                   ( ) ( ) ( ) ( )∫ −−=∞R
hhduuuugH 12log1log2cos γππ  

                             
( ) { } ( )














+

−
− ∫ ≥−

−

→ ελε
ελ

λ
λλ

λ
λ

1 2

1

0
log1

1

/1,max
lim hd

h
.    (3.29) 

 
Corollary 1. 
 
Let ( ) ( )uhuh 0= . Then 

                                        
( ) { } ( ) =














+

−∫ ≥−

−

→ ελε
ελ

λ
λλ

λ
λ

1 2

1

0
log1

1

/1,max
lim hd

h
   

                            ( ) ( ) ( ) ( ) dx
x

x
h

x
xhxhh

1
1

2
2log1 21 02000 −








 −++−= ∫
∞ ∗ .    (3.30) 

 
Theorem 3. 
 

Let ( ) ( )uhuh 0=  and  ( ) ( ) 11 −−= λλλ hg . Then 

 

                                  ( ) ( ) ( )
∫ ∫ ∗

∗
−

−
−=

v vk k
v

vv ud
u

uh
duuuugH

'
1

0

1
logψ ,    (3.31) 

 

where the principal value ∫
'

is uniquely determined by the unique distribution on ∗
vk  which agrees 

with 
v

v

u

ud

−

∗

1
 for 1≠u  and whose Fourier transform vanishes at 1. 

 
Lemma 1. 
 
Let 
                                                            ∏

∞≠

∗+ ×=
v

vORI .    (3.32) 

 
Then 
                                                                U

∗∈

=
k

IJ
ξ

ξ ,    (3.33) 

 
a disjoint union. 
 
Let 
                                                            ( ) ( )∏=Ψ

v
vv xx ψ     (3.34) 

 
for Α∈x , where vψ  is given in (3.1). For  ( )∏ Α∈=

v v Lff 2 , we define 
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                         ( ) ( ) ( ) ( ) ( )∫ ∏ ∫ −=−Ψ=
A

v
k vvvvvv

v

dfdfHf αβαψαααβαβ     (3.35) 

 
for ( ) Α∈= vββ ; that is 

                                                     ( ) ( )∏=
v

vvv fHHf ββ .    (3.36) 

 
Lemma 2. 
 
Let  ∏=

v vff   be a continuous function in ( )Α1L  satisfying  ( )Α∈ 1LHf . Then the inversion 

formula 
                                                     ( ) ( )αα HHff =−     (3.37) 
 
holds for all Α∈α , and 
                                                    ( ) ( )ΑΑ

= 22 LL
fHf .    (3.38) 

 
 
Lemma 3. 
 
If ( )xf  satisfies the conditions:  

1) ( )xf  is continuous in ( )Α1L , 

2) ( )( )∑ ∈
+

k
xf

ξ
ξα  converges for all ideles α  and adeles x , uniformly for Dx∈  where 

[ ) ∏ ∞≠
×=

v vOD 1,0 , and  

3) ( )∑ ∈k
Hf

ξ
αξ  converges for all ideles α , then 

 

                                               ( ) ( )∑ ∑
∈ ∈

=
k k

Hff
ξ ξ

αξ
α

αξ /
1

.    (3.39)  

 
The Schwartz space ( )RS  is the space of all smooth functions f , all of whose derivatives are of 
rapid decay; that is 

                                                    ( ) ( )( )N

k

k

xOx
x

f −+=
∂
∂

1     (3.40) 

 
for all integers 0≥k  and 0>N . Let ( )ΑS  be the Schwartz-Bruhat space on Α , whose functions 
are finite linear combinations of functions of the form 
 
                                                       ( ) ( )∏=

v
vvff αα     (3.41) 

 
where 
(1) vf  is in the Schwartz space ( )RS  if v  is the infinite place of k ; 

(2) vf  belongs to ( )vkS , the space of locally constant and compactly supported functions on vk  if v  

is finite; and 
(3) 

vOvf 1= , the characteristic function of vO , for almost all v . 

Let td×  be the multiplicative measure on ∗R  given by  
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t

dt
td =× .    (3.42) 

 
We denote by vd α×  the multiplicative measure on ∗vk  given by 

 

                                                      ( )
vv

v
v

d
pd

α
αα 111

−−× −= ,    (3.43) 

 
where 

vvp π=−1 . We choose the Haar measure 

 
                                                            ∏ ×× =

v
vdd αα     (3.44) 

 
on J . Then, α×d  is also a Haar measure on C  satisfying (3.3). 
 
 
Lemma 4. 
 

A function θ  satisfying  ( ) 00 =θ , ( ) 10 =θH , ( ) ( )⊥∈ CLHE 2
0θ , and ( ) ( )CLE 2∉θ  exists such that 

 

                                        ( ) ( ) ( ) ( ) ( ) ( )
2

22 0,
CLCL

HEfHEfE θθ =     (3.45) 

 
for all ( )Α∈ Sf  with ( ) 00 =Hf . 
 
Now, we assume that θ  is given as in Lemma 4. For any element ( )Α∈ Sf , let  

( ) ( ) θθ HfHfff 000 −−= . Then ( )XLf 2
00 ∈  and 

 
                                                ( ) ( ) θθ HfHfff 000 ++= .    (3.46) 

 
For any ( )Α∈ Sf , we define 
 

                                ( ) ( ) ( ) ( )( ) ( ) ( )
2222

0

2
22

0
2 00

CLXLXL
HEHffff θ++= .    (3.47) 

 
Let ( )XL2  be the Hilbert space that is the completion of the Schwartz-Bruhat space ( )ΑS  for the 

norm given by (3.47). It follows that ( )XL2
0  is a subspace of ( )XL2 , and that the orthogonal 

complement ( )⊥XL2
0  of ( )XL2

0  in ( )XL2  is the subspace 

 
                                                     { }CbabHa ∈+ ,:θθ .    (3.48) 
 
We define ( )CL2  to be the Hilbert space that is the completion of ( )( )ΑSE  for the norm 
 
                                                      ( ) ( ) ( )XLCL

ffE 22 =     (3.49) 

 



 38 

for ( )Α∈ Sf . By the following corollary : 
 
If ( )Α∈ Sf  and ( ) 00 =Hf , then  ( ) ( ) ( )XLCL

ffE 22 = , we have that ( )CL2  is a codimension one 

subspace of ( )CL2 . The orthogonal complement of ( )CL2  in ( )CL2  is the subspace 
 

                                                   ( ) ( ){ }CaaECL ∈=⊥ :2 θ .    (3.50) 
 
We define ( ) ( )uhuh 0=  for all ( ) Juu v ∈= . There exists a real-valued function ( )JSg ∈  such that  

 
                                                          ( ) ( )∑

∗∈

=
k

gh
ξ

ξλλ .    (3.51) 

 
An operator ( )hU  acting on the space ( )XL2  is defined by 
 

                                               ( ) ( ) ( ) ( ) λλλ ×−
∫= dxfhxfhU
C

1     (3.52) 

 
for ( )XLf 2∈ , where λ×d  is given in (3.44). If ( ) ( )αα ff −=−  for all Α∈α , then ( ) 0=fhU . 
 
Theorem 4. 
 
E  extends to a surjective isometry from ( )XL2  to ( )CL2 . 
 
Let S  be the subspace of ( )XL2  that is spanned by all functions ( )Α∈ Sf  satisfying ( ) ( )CLfE 2∈ . 

The left regular representation V  of C  on ( )CL2  is given by 
 
                                                  ( )( )( ) ( )αα 1−= gffgV     (3.53) 
 
for Cg ∈α,  and ( )CLf 2∈ . Let ∗= kJC /11 . Since the restriction of V  to 1C  is unitary, we can 

decompose ( )CL2  as a direct sum of subspaces 
 
                 ( ) ( ) ( ) ( ) ( ){ }αχαχ fggfCLfCL =∈= −122 :     (3.54)   for all 1Cg ∈  and C∈α  

 
for all characters χ  of 1C . These subspaces correspond to projections 
 

                                                 ( ) ( )∫
×=

1C
gdgVgP χχ ,    (3.55) 

 
where gd×  is the restriction to 1C  of the Haar measure on C . 

Let ϕ  be an element in ( )CL2
χ . We can write  

 
                                                      ( ) ( ) ( )xxxx ϕχϕ /= ,    (3.56) 

 
where x/1  is meant to be the idele ( )1,...,1,1,/1 x . If ϕ  is orthogonal to the range of the subspace S  

under E , then 
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                                              ( )( ) ( ) 0=








 ×
∫ xdx

x

x
xfE

C
ϕχ     (3.57) 

 
for all ( )Α∈ Sf  satisfying ( ) 00 =Hf . Let 
 

                                                         ( )
t

tn
tfn π

π2sin= .    (3.58) 

 
Then  

                                      ( ) ( )∫
∞

∞−

− == dxexftf itx
nn

π2ˆ   
[ ]



 −∈

otherwise

nnt

0

,1
 .    (3.59) 

 
Let 

                                                  ( ) ( ) ( )∫
∞

∞−
= duexufx u

nn ϕϕ .    (3.60) 

 
We denote ( ) ( )ueu ϕφ = . Since  
 

                                               ( ) ( )∫
∞

∞−

− = yxdueex
yiiuyu φϕ ππ ˆ22 ,    (3.61) 

 
by the Plancherel formula 

                                                     ( ) ( )∫−=
n

n

iy

n dyxyx
πφϕ 2ˆ .    (3.62) 

 

Since ( )CL2
χϕ ∈ , ( ) ( )RLu 2∈φ . Hence, ( ) ( )RLy 2ˆ ∈φ . It follows that 

 

                                              ( ) ( ) ( )∫ >

−=−
ny

ity
n dyeyxx πφϕϕ 2ˆ     (3.63) 

 

with tex −= .  Let  ( )( ) m
fE

−<< αα   for any positive integer m  as ∞→α . By Lemma 1, 

 

                ( )( ) ( ) ( )[ ] ( )( ) ( )∫ ∫ ∫∫ =≤−








 ∞

∞− >

−××

C ny

ity

C n dtdyeyxdxfExdxx
x

x
xfE

2
22

2

ˆ πφϕϕχ    

             ( )( ) ( )∫ ∫ >

× →=
C ny

dyyxdxfE 0ˆ 22 φ     (3.64) 

 
as ∞→n , where tex −= . Therefore, 

 

                         ( )( ) ( ) ( )( ) ( ) xdx
x

x
xfExdx

x

x
xfE nCnC

×

∞→

×
∫∫ 










=










ϕχϕχ lim .    (3.65) 

 

Since ( )( ) m
fE

−<< αα  for any positive integer m  as ∞→α , we can interchange the order of 

integration and obtain that 



 40 
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
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


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





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



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
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C

n

n C

iy

n dyxdx
x

x
xfEyxdx

x

x
xfE

πχφϕχ 2ˆ     (3.66) 

 
for ,....2,1=n  By (3.65) and (3.66), we obtain that  
 

                     ( )( ) ( ) ( ) ( )( )∫ ∫∫
∞

∞−

××










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









C

it

C
xdx

x

x
xfEdttxdx

x

x
xfE

πχφϕχ 2ˆ .    (3.67) 

 
Let 

                       ( ) ( ) ( )


















= ∏∞

∞∞∞
v

v
unramified

vO x
x

x
xfxf

χ
χ 10 ( ) ( )









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v

v
ramified

vOvv xx
χ

χ 1     (3.68) 

 

with ( )+
∞ ∈ RSf . If vχ  are unramified for all finite places v , we choose 0f  so that ( )∫ +

=∞R
dxxf 0. 

Then ( )Α∈ Sf0  satisfying ( ) 000 =Hf . Using  

 

                             ( )( ) ( )( ) ( )∫∫
×× =











C

itit

C
xdxxxfExdx

x

x
xfE

ππ χχ 2

1

2

0     (3.69) 

 
where ( ) ( ) ( )xfxxf 01 ∞= χ , we can write 

 

                     ( )( ) ( )∫∫
∞ +−

∞
×








 +=










0

22/12

0 2
2
1

, duuufitLxdx
x

x
xfE

it

C

it ππ πχχ     (3.70) 

 
where ( )itL πχ 22/1, +  is the analytic continuation of 
 

                                              ( ) ( )∏ −−
=

vunramified
s

v p
sL

πχ
χ

1

1
,     (3.71) 

 
for 1>sR . By (3.67) and (3.70), we obtain that 
 

                ( )( ) ( ) ( ) ( )∫ ∫ ∫
∞

∞−

∞ +−
∞

×







 +=










C

it
duuufdtitLtxdx

x

x
xfE

0

22/1

0 2
2
1

,ˆ ππχφϕχ .    (3.72) 

 
By (3.57) and (3.72), we have  
 

                                   ( ) ( )∫ ∫
∞

∞−

∞ +−
∞ =







 +
0

22/1
02

2
1

,ˆ duuufdtitLt
itππχφ .    (3.73) 

 
It follows that 

                                                 ( ) ( ) 02
2
1

,ˆ =






 +∫
∞

∞−
dttbitLt πχφ     (3.74) 
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for all ( ) ( ),2 RLtb ∈  which satisfy  ( )∫ =
R

u dueub 0ˆ 2/   if vχ  is unramified for all ∞≠v . Since 

02
2
1

, =






 + itL πχ  for at most a discrete set of real t , the identity (3.74) implies that 

 

                                                                 ( ) 0ˆ =tφ     (3.75) 
 
for almost all real t  because we can choose b  so that the integrand in (3.74) is non-negative. Since 
 

                                                     ( ) ( )∫
∞

∞−
= dyxyx

iyπφϕ 2ˆ ,    (3.76) 

 
we have ( ) 0=xϕ  for all Cx∈ . By (3.56), ( ) 0=xϕ  for all Cx∈ . Therefore, the orthogonal 

complement of the range of S  under E  in ( )CL2
χ  contains no non-zero element. It follows that E  

is a surjective isometry from S  to ( )CL2 . By (3.50), E  extends to a surjective isometry from 

( )XL2  to ( )CL2 . 

Let ( )λh  be given as in (3.51). An operator ( )hV  acting on the space ( )CL2  is defined by 
 

                                          ( ) ( ) ( ) ( )∫
×−=

C
dxFhxFhV λλλλ 12/1

    (3.77) 

 
for ( )CLF 2∈ . The Haar measure λ×d  on C  is given in (3.44). If  ( ) ( )xFxF −=−   for all Cx∈ , 

then ( ) 0=FhV . 

Let ΛS  be the subspace of ( )CL2  given by 
 
                              ( ) ( ){ }0:2 =∈=Λ αfCLfS     (3.78)     for all α  with  Λ>α . 

 
The corresponding orthogonal projection is also denoted by ΛS . We denote by 0,ΛS  the restriction 

of ΛS  to the subspace ( )CL2
0  and the corresponding orthogonal projection. 

 
Theorem 5. 
 
Let ΛS  and ( )hV  be given as in (3.78) and (3.77), respectively. Then ( ) ( )hVSS 0,ΛΛ −  is of trace 

class, and its trace acting on the space ( )CL2  is given by 
 

                                  trace { } ( )( ) ( ) ( ) ( )10
~

1
~

000, ohhhVSS ++=− ΛΛ     (3.79) 

 
where ( )1o  tends to 0 as ∞→Λ . 
 
If T  is a bounded linear operator of trace class on a Hilbert space H , then the trace of T  is also 
given by 

                                                    trace ( ) ∑
∞

=
=

1

,
n

Hnn fTfT     (3.80) 
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where { }nf  is an orthonormal base of H . 

Let ΛP  be the orthogonal projection of ( )XL2  onto the subspace  
 
                                        ( ) ( ){ }0:2 =∈=Λ xfXLfP     (3.81)   for 1−Λ<x . 

 
Put  
                                                           HPHZ t

ΛΛ = .    (3.82) 
 
 
Theorem 6. 
 
Let h , ( )hV , ΛS , and ΛZ  be given as in (3.51), (3.77), (3.78), and (3.82) respectively. Then 

( ) ( )hVSEEZ Λ
−

Λ −1  is of trace class, and its trace acting on the space ( )CL2  is given by the formula 
 

                                trace ( ) ( ){ } ( )
∑∫ ∗

∗
−

Λ
−

Λ −
−=−

v
k

v
v

ud
u

uh
hVSEEZ

' 1
01

1
    (3.83) 

 

where the principal value ∫
'

is uniquely determined by the unique distribution on ∗
vk  which agrees 

with 
v

v

u

ud

−

∗

1
 for 1≠u  and whose Fourier transform vanishes at 1. 

 
We have that  ( ) ( )hUShUZ ΛΛ −   is of trace class on ( )CL2 . By (3.52), (3.82), and Lemma 2, we 
have that 
 

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫−Λ<Α∈ Α

×−×−
Λ −ΨΨ−=

C C
dufhduudxdxfhxfhUZ

1,

11

ξξ
λλλξξξλλλ     (3.84) 

 
for ( )Α∈ Sf . Hence, for Cx∈  we have 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫∫ −Λ<Α∈ Α

×−×−
Λ −ΨΨ−=

1,

11 ///
ξξ

λλλλξξξλλλλ duFuxhduudxdxhxFxFhVEEZ
CC

                                                                                                                                    (3.85) 
for all ( )fEF =  with ( )Α∈ Sf . 

We extend h  to a function on Α  by defining ( ) 0=λh  for J∉λ . Since ( )Α∈ Sf  and 

( )∞∈ ∞ ,000 Ch , we can change orders of integrations to obtain that 

 

                          ( ) ( ) ( ) ( )∫ ∫ ∫−Λ<Α∈ Α

×− =−ΨΨ−
1,

1 /
ξξ

λλλλξξξ duFuxhduudx
C

  

                       ( ) ( ) ( ) λξξλξλλ
ξξ

×

Λ<Α∈∫ ∫ 





 Ψ−=

−
ddxHhxF

C 1,
.    (3.86) 

 
By (3.85), (3.78), and (3.77) we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫
×

Λ<Α∈ΛΛ
−

Λ














 Ψ−=−

−C
ddxHhxxxhxFxFhVSEEZ λξξλξλλλλ

ξξ 1,

1 // l  

                                                                                                                                                     (3.87) 
 
for all ( )fEF =  with ( )Α∈ Sf , where ( ) 1=Λ xl  if Λ>x  and ( ) 0=Λ xl  if Λ≤x . Since such 

elements F  are dense in ( )CL2 , (3.87) holds for all ( )CLF 2∈ . It follows that the trace of 

( ) ( )hVSEEZ Λ
−

Λ −1  acting on the space ( )CL2  is given by 
 

                 trace( ) ( ){ } ( ) ( ) ( ) ( )∫ ∫ =






 Ψ−=− ×

Λ<Α∈ΛΛ
−

Λ −C
xddxxHhxxhhVSEEZ

1,

1 1
ξξ

ξξξl  

                      ( ) ( ) ( ) ( )∫ ∫
×

Λ≥ Λ 





 −Ψ=

−C xu
xdxhduuuHh

1
1τ .    (3.88) 

 
Let Λ<δ  be a small positive number. We write 
 

                        ( ) ( ) ( ) ( )∫ ∫ ∫∫ 





 +=







 −Ψ

>∈ ≤∈

×
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if we notice that   0log =
Λ

δ
u

   for   1−Λ= δu    then 

 

                  ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ Α

×

Λ≥ Λ Ψ=






 −Ψ

−C xu
duuuuHhxdxhduuuHh log1

1
τ .    (3.92) 

 
By (3.88) and (3.92), 
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By Fourier inversion formula, Theorem 2, and Theorem 3 we get 
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where the principal value ∫
'

is uniquely determined by the unique distribution on ∗
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 for 1≠u  and whose Fourier transform vanishes at 1. Since 
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by Corollary 1 and the proof of Theorem 1 we have  
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3.1 On some equations concerning the Selberg trace formula. [6] 
 
 
Let 1>N  be an integer, which is not square free. Denote by ( )N0Γ  the Hecke congruence 

subgroup of level N . Now let a  be a cusp of ( )N0Γ . We denote its stabilizer by aΓ . An element 

aσ  in ( )RPSL2  exists such that  aa =∞σ   and  ∞
− Γ=Γ aaa σσ 1 . If ψ  is an eigenfunction of the 

Laplacian associated with a positive discrete eigenvalue λ , then it has a Fourier expansion 
 

                                       ( ) ( ) ( )∑
≠

=
0

22
m

ixm
i eymKmyz π
κ πρσψ aa     (3.99) 

 

at every cusp a  of ( )N0Γ , where  4/1−= λκ   and ( )yKν  is given by the formula 
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We have also the following trace formula: 
 

                          ( ) ( ) ( ) ( ){ }∑ ∫
∞

=

−=+






−
1

,,
2 j

Dnj dzzzHzzKTtrhn
i

hnd
jλκ .    (3.100b) 

 
Every cusp of ( )N0Γ  is equivalent to one of the following inequivalent cusps 
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Furthermore, we have that: 
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with ( ) bwNwdaC −−= , where ( )bNC,=l  and the summation on b  is taken over all numbers b  

such that CNZwbNC ,/, ∈  and dab −<≤0 . Note that there are exactly da −  number of such 

numbers b . Denote by ( )∞c  the right side of the identity (3.103). We conclude that the trace 
formula (3.100b) can be written as 
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for Re 1>s , where the summations on the right side of the identity are taken over the conjugacy 
classes. 
Now, we have  
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where ( )sA  is an analytic function of s for Re 0>s  and, for every complex number s with 

0Re >s , there exists a finite constant ( )sB  depending only on s such that 
 

                                                      ( ) 2

1

2

1 −−
≤









usBuOs .    (3.106) 

 

Moreover, for every fixed value of u , the term 








 −
2

1

uOs  also represents an analytic function of s 

for 0Re >s . Since 

                                               ( ) ( )( )∫
∞ −=
0

14
4 ln

1
duuug

r
rh ir     (3.107) 

 
for non-zero r , we have 
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for 1Re >s  and for non-zero r  with ε−<
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Im r . By analytic continuation, we obtain that 
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for 0Re >s  and for non-zero r  with ε−<
2
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the right side of (3.104) can be interpreted as an analytic function of s in the same region by 
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and 
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the sum of first three terms and the last two terms on the right side of the identity (3.103) is analytic 
for 0Re >s  except for a pole at 2/1=s . By Stirling’s formula the identity 
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holds uniformly when  δπ −≤zarg   for a small positive number δ . It follows from (3.102) and 

(3.112) that the fourth term on the right side of the identity (3.103) is analytic for 0Re >s  except 
for a possible pole at 2/1=s . We know that, by theorem of Kubota, that each Eisenstein series 
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hold for all real r  and for ( )Ni ν,...,2,1= . It follows that functions ( )sijϕ , ( )Nji ν,...,2,1, = , are 

analytic on the line 2/1Re =s . Let Y  be a fixed large positive number. By the Maass-Selberg 
relation, we have 
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Let iii wu /=a  be a cusp given in (3.101), and let ir+= 2/1η . We have that 
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It follows from the functional identity of the Riemann zeta-function that 
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By using Stirling’s formula 
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for any fixed real value of σ  as ∞→t , we obtain that 
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By (3.100) and by partial integration, we find that 
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Then, it follows that the fifth term on the right side of the identity (3.103) is analytic for 0Re >s  
except for a possible pole at 2/1=s . 
 
 

4. On some equations concerning p-adic strings, p-adic and adelic zeta functions, zeta 
strings and zeta nonlocal scalar fields. [7] [8] [9] [10] [11] [12] 

 
Like in the ordinary string theory, the starting point of p-adic strings is a construction of the 
corresponding scattering amplitudes. Recall that the ordinary crossing symmetric Veneziano 
amplitude can be presented in the following forms: 
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where 1=h , π/1=T , and ( )
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1
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sa −−=−= α , ( )tb α−= , ( )uc α−=  with the condition 

8−=++ uts , i.e. 1=++ cba . 
The p-adic generalization of the above expression 
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is: 
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where 

p
...  denotes p-adic absolute value. In this case only string world-sheet parameter x  is treated 

as p-adic variable, and all other quantities have their usual (real) valuation. 
Now, we remember that the Gauss integrals satisfy adelic product formula 
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These Gauss integrals apply in evaluation of the Feynman path integrals 
 

                             ( ) ( )∫ ∫ 






−=
'',''

','

''

'
,,

1
',';'',''

tx

tx v

t

tvv qDdttqqL
h

txtxK &χ ,    (4.8) 

 
for kernels ( )',';'','' txtxKv  of the evolution operator in adelic quantum mechanics for quadratic 

Lagrangians. In the case of Lagrangian  
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for the de Sitter cosmological model one obtains 
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Also here we have the number 24 that correspond to the Ramanujan function that has 24 “modes”, 
i.e., the physical vibrations of a bosonic string. Hence, we obtain the following mathematical 
connection: 
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The adelic wave function for the simplest ground state has the form 
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where ( ) 1=Ω

p
x  if 1≤

p
x  and ( ) 0=Ω

p
x  if 1>

p
x . Since this wave function is non-zero only in 

integer points it can be interpreted as discreteness of the space due to p-adic effects in adelic 
approach. The Gel’fand-Graev-Tate gamma and beta functions are: 
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where Ccba ∈,,  with condition 1=++ cba  and ( )aζ  is the Riemann zeta function. With a 
regularization of the product of p-adic gamma functions one has adelic products: 
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where 1=++ cba . We note that ( )baB ,∞  and ( )baBp ,  are the crossing symmetric standard and p-

adic Veneziano amplitudes for scattering of two open tachyon strings. Introducing real, p-adic and 
adelic zeta functions as 
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one obtains 
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where ( )aAζ  can be called adelic zeta function. We have also that 
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Let us note that ( )2exp xπ−  and ( )

p
xΩ  are analogous functions in real and p-adic cases. Adelic 

harmonic oscillator has connection with the Riemann zeta function. The simplest vacuum state of 
the adelic harmonic oscillator is the following Schwartz-Bruhat function: 
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whose the Fourier transform 
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has the same form as ( )xAψ . The Mellin transform of ( )xAψ  is 
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and the same for ( )kAψ . Then according to the Tate formula one obtains (4.19). 
The exact tree-level Lagrangian for effective scalar field ϕ  which describes open p-adic string 
tachyon is  
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where p  is any prime number, 22 ∇+−∂= t�  is the D-dimensional d’Alambertian and we adopt 

metric with signature ( )++− ... . Now, we want to show a model which incorporates the p-adic 
string Lagrangians in a restricted adelic way. Let us take the following Lagrangian  
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Recall that the Riemann zeta function is defined as 
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Employing usual expansion for the logarithmic function and definition (4.25) we can rewrite (4.24) 
in the form 
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where 1<φ . 
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where   ( ) ( ) ( )dxxek ikx φφ ∫
−=~

   is the Fourier transform of ( )xφ . 

Dynamics of this field φ  is encoded in the (pseudo)differential form of the Riemann zeta function. 
When the d’Alambertian is an argument of the Riemann zeta function we shall call such 
string a “zeta string”. Consequently, the above φ  is an open scalar zeta string. The equation of 
motion for the zeta string φ  is 
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which has an evident solution 0=φ . 
For the case of time dependent spatially homogeneous solutions, we have the following equation of 
motion 
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With regard  the open and closed scalar zeta strings, the equations of motion are 
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and one can easily see trivial solution 0== θφ . 
 
The exact tree-level Lagrangian of effective scalar field ϕ , which describes open p-adic string 
tachyon, is: 
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where p  is any prime number, 22 ∇+−∂= t�  is the D-dimensional d’Alambertian and we adopt 

metric with signature ( )++− ... , as above. Now, we want to introduce a model which incorporates 
all the above string Lagrangians (4.32) with p  replaced by Nn∈ . Thence, we take the sum of all 

Lagrangians nL  in the form 
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whose explicit realization depends on particular choice of coefficients nC , masses nm  and coupling 

constants ng . 

Now, we consider the following case 
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where h  is a real number. The corresponding Lagrangian reads 
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and it depends on parameter h . According to the Euler product formula one can write 
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Recall that standard definition of the Riemann zeta function is 
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which has analytic continuation to the entire complex s plane, excluding the point 1=s , where it 
has a simple pole with residue 1. Employing definition (4.37) we can rewrite (4.35) in the form 
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�ζ  acts as a pseudodifferential operator 
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where  ( ) ( ) ( )dxxek ikx φφ ∫
−=~

   is the Fourier transform of ( )xφ . 

We consider Lagrangian (4.38) with analytic continuations of the zeta function and the power series 
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where AC  denotes analytic continuation. 
Potential of the above zeta scalar field (4.40) is equal to hL−  at 0=� , i.e. 
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where 1≠h  since ( ) ∞=1ζ . The term with ζ -function vanishes at ,...6,4,2 −−−=h . The equation 
of motion in differential and integral form is 
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respectively. 
Now, we consider five values of h , which seem to be the most interesting, regarding the 
Lagrangian (4.40): ,0=h  ,1±=h  and 2±=h .  For 2−=h , the corresponding equation of motion 
now read: 
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This equation has two trivial solutions: ( ) 0=xφ  and ( ) 1−=xφ . Solution ( ) 1−=xφ  can be also 

shown taking  ( ) ( )( )Dkk πδφ 2
~ −=  and  ( ) 02 =−ζ  in (4.44). 

For 1−=h , the corresponding equation of motion is: 
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where ( )
12

1
1 −=−ζ .  

The equation of motion (4.45) has a constant trivial solution only for ( ) 0=xφ . 
For 0=h , the equation of motion is 
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It has two solutions: 0=φ  and 3=φ . The solution 3=φ  follows from the Taylor expansion of the 
Riemann zeta function operator 
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as well as from ( ) ( ) ( )kk D δπφ 32
~ = . 

For 1=h , the equation of motion is: 
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where ( ) ∞=1ζ   gives   ( ) ∞=φ1V .  
In conclusion, for 2=h , we have the following equation of motion: 
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Since holds equality 
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one has trivial solution 1=φ  in (4.49). 

Now, we want to analyze the following case: 2
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we obtain: 

                           








−
+
















+






 −−=
φ

φφζζφ
12

1
22

1 2

222 mmg

m
L

D
��

.    (4.50) 

 
The corresponding potential is: 
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The equation of motion is: 
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Its weak field approximation is: 
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which implies condition on the mass spectrum 
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From (4.54) it follows one solution for 02 >M  at 22 79.2 mM ≈  and many tachyon solutions when 

22 38mM −< . 
With regard the extension by ordinary Lagrangian, we have the Lagrangian, potential, equation of 

motion and mass spectrum condition that, when 2
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In addition to many tachyon solutions, equation (4.58) has two solutions with positive mass: 

22 67.2 mM ≈  and 22 66.4 mM ≈ . 

Now, we describe the case of  ( ) 2
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n
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−= µ .  Here ( )nµ  is the Mobius function, which is defined 

for all positive integers and has values 1, 0, – 1 depending on factorization of n  into prime numbers 
p . It is defined as follows: 
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The corresponding Lagrangian is 
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Recall that the inverse Riemann zeta function can be defined by 
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Now (4.60) can be rewritten as 
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where ( ) ( )∑
+∞

=
−−+−+−−−==

1

111076532 ...
n

nn φφφφφφφφφµφM  The corresponding potential, 

equation of motion and mass spectrum formula, respectively, are: 
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where usual relativistic kinematic relation  222
0

2 Mkkk −=+−=
r

  is used. 

Now, we take the pure numbers concerning the eqs. (4.54) and (4.58). They are:  2.79, 2.67 and 

4.66. We note that all the numbers are related with 
2

15 +=Φ , thence with the aurea ratio, by the 

following expressions: 
 

                ( ) 7/1579,2 Φ≅ ;      ( ) ( ) 7/217/1367,2 −Φ+Φ≅ ;      ( ) ( ) 7/307/2266,4 −Φ+Φ≅ .    (4.66)  
 
 
4.1 On some equations concerning a general class of cosmological models driven by a non-   

local scalar field inspired by string field theories and p-adic cosmology. [13] [14] 
 
In this sub-section we consider a model of gravity coupling with a non-local scalar field which 
induced by strings field theory 
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where g  is the metric,  ν
µν

µ ∂−∂
−

= gg
g

g

1
� , pM  is a mass Planck, sM  is a characteristic 

string scale related with the string tension 'α , '/1 α=sM , φ  is a dimensionless scalar field 

(tachyon  or dilaton), 4g  is a dimensionless four dimensional effective coupling constant related 

with the ten dimensional string coupling constant 0g  and the compactification scale. '
4

4

Λ=Λ
g

M s  is 

an effective four dimensional cosmological constant. The form of the function F  is inspired by a 
nonlocal action appeared in string field theories. In particular cases 
 
                                                       ( ) zcezzF 22 1 −−+−= ξ ,    (4.68) 
 
ξ  is a real parameter and c  is a positive constant. Using dimensional space-time variables and after 
a rescaling we can rewrite (4.67) for F  given by (4.68) as follows 
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where φge�=Φ  and 22
4

2 / spp MMgm = . Generally speaking the string scale does not coincide with 

the Planck mass. This gives a possibility to get a realistic value of Λ . The form of the term 2)( φge�  
is analogous to the form of the interaction in the action for the string field tachyon in non-flat 
background, which is a generalization of the SFT (String Field Theory) tachyon interaction term in 
a flat background. This type of models does appear in SFT and in the p-adic string models. The case 
of the open Cubic Superstring Field Theory (CSSFT) tachyon corresponds to 

9556.0
33

4
ln4/12 ≈















−=ξ   and  3=c . We consider in detail action (4.69) at 1=c , which is 

invariant under translation const+→ φφ .  
We take the metric in the form 
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3
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2
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222 dxdxdxtadtds +++−=     (4.70) 

 
and get the following equation of motion for the space homogeneous scalar field φ : 
 
                                                             ( ) 0=− φDF ,    (4.71) 
 
where 

                                   ( ) tt tH ∂−−∂≡ 32D ,   
a

a
H

&
=    and   aa t∂≡& .    (4.72) 

 
The Friedmann equations have the following form 
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3
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where the energy and the pressure are obtained from the action (4.67) using standard formula 
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For the case of F  given by (4.68) the energy and the pressure have additional nonlocal terms 1nlε  

and 2nlε . We have the following equations: 
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                                                                                                                                                      (4.75) 
 
Nonlocal term 1nlε  plays a role of an extra potential term and 2nlε  a role of an extra kinetic term. 

 
We use the Weierstrass product representation for the function F  in (4.67), 
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where 2

nα  are complex numbers, and represent the flat analog of (4.67) as 
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where �  is the d’Alambertian in the flat space-time (here nε  is not the ε  of the equations (4.73)-

(4.75)). 
Now, we use a representation of nonlocal dynamics given by action (4.67) in terms of local fields 
 

                     ( )( )[ ]








+Λ+++− ∑∫

− ..'
2
1

2
2

2
4 cceR

m
gxd nng

f
nn

p g ψαψε �
� .    (4.78) 

 
We perform a deformation of this model by several steps. First, we consider an approximation to 
the model (4.78) in the form 
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Second, we restrict a number of local fields and, third, we add potentials of the order 2/1 pm  in which 

'Λ  is also included: 
 

               ( )( ) ( )∫ ∑ 









−




 +++− nnng
f

n
np cceR

m
gxd n ψψψαψε α ,...,..

22 1
2

2
4 2

V� ,    (4.79) 

 
such that solutions of the field equations in the non-flat case are the same as the flat case. Finally, 
we find the corresponding scale factor ( )ta  and study cosmological properties of approximated 
solutions to our model. In the flat case the action (4.67) has the following form: 
 

                                                  ( )∫ −= φφ �FxdSflat
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.    (4.80) 

 
Equation of motion on the space-homogeneous configurations (4.71) is reduced to the following 
linear equation: 
                                                              ( ) 02 =∂ φF .    (4.81) 
 
A plane wave 
                                                                  teαφ =     (4.82) 
 
is a solution of (4.81) if α  is a root of the characteristic equation 
 
                                                               ( ) 02 =αF .    (4.83) 
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For a case of F  given by (4.68) equation (4.81) has the following form 
 

                                                  0
2222 =−+∂− ∂− φφφξ ce .    (4.84) 

 
This equation has an infinite number of derivatives and can be treated as a pseudodifferential as 
well as an integral equation. The corresponding characteristic equation: 
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has the following solutions 
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where nW  is the n-s branch of the Lambert function satisfying a relation  ( ) ( ) zezW zW = . The 

Lambert function is a multivalued function, so eq. (4.85) has an infinite number of roots. 
Parameters ξ  and c  are real, therefore if nα  is a root of (4.85), then the adjoined number ∗

nα  is a 

root as well. Note that if nα  is a root of (4.85), then nα−  is a root too. In other words, equation 

(4.85) has quadruples of complex roots 
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If 2

0
2 αα =  is a multiple root, then at this point ( ) 02

0 =αF  and ( ) 0' 2
0 =αF . These equations give that 
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hence 2

0α  is a real number and all multiple roots of ( ) 02
0 =αF  are either real or pure imaginary. The 

multiple roots exist if and only if 
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Real roots for any ξ  and c , except 02 =ξ  and ∞=c , are no more then double degenerated, 

because ( ) 0'' 2
0 ≠αF . Summing up we note that according as the values of parameters c  and 2ξ  

there exist the following types of the general real solution of (4.84): 
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where nR  and nC  are arbitrary real and complex numbers respectively. 

•  If 1
2

2/2
2

>= ξξ
e

e
c , then to get the general real solution one has to add to (4.90) 
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•  If 1=c  then to get the general real solution one has to add to (4.90) 
 
                                                           010 CtC +=φ ,    if    22 ≠ξ ,    (4.93) 

                                      01
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30 CtCtCtC +++=φ ,    if    22 =ξ .    (4.94) 

 
Now we consider a special values of 2ξ  and c , which have been obtain in the SFT inspired 
cosmological model. From the action for the tachyon in the CSSFT the following equation has been 
obtained: 
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where 
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Substituting αα 22~ = , we obtain eq. (4.85) with  2
0

2 8ξξ =   and  3=c . Note that the pure number 

8 is related to the physical vibrations of the superstrings, thence with the Ramanujan modular 
equation (eq. (2.18)) and that 3 is a Fibonacci’s number.  From (4.89) it is follows that all roots are 
simple. We obtain that 2

max
22

min ξξξ >> , so there exist neither real roots not pure imaginary roots.  

Equation (4.84) has the conserved energy which is defined by the formula that is a flat analog of 
(4.75). The energy density is as follows: 
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For the pressure 
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we have the following explicit form 
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Let us calculate the energy density and pressure for the following solution 
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where N  is a natural number, nC  are some constant and nα  are solutions to eq. (4.85). For 1=N  

and  
                                                               tCeαφ =     (4.103) 
 
we obtain 
                                 ( ) 0=tCeE α ,    (4.104)          ( ) tt epCCeP α

α
α 22= .    (4.105) 

 
We denote the energy density and pressure of function ( )tφ  as the functionals ( )φE  and ( )φP , 
respectively, and use the following notation 
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For 2=N  and 
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where 1α  and 2α  are different roots of (4.85) we have  
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The pressure ( )φP  for solution (4.107) is 
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In the general case we have  
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where 
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From formula (4.111) we see that the energy density is a sum of the crossing terms. At the same 
time the pressure is a sum of  “individual” pressures and has no crossing term. In the case of an 
arbitrary finite number of summands the pressure is as follows: 
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If the parameters 2ξ  and c  are such that the characteristic equation (4.85) have double roots, then 
eq. (4.84) has the following solution 
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where 1B , 2B , 1C  and 2C  are constants, 00 ≠α  is defined by (4.88). Using formulas (4.97) and 

(4.100) and substituting  
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The pressure is as follows 
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We can present ( )�−F  in the action (4.67) as the Ostrogradski Representation. To this purpose let 

us construct the Weierstrass product for the function ( )zF  of a complex variable z . Let us recall 

that a complex function ( )zR  such that its logarithmic derivative ( ) ( )zRzR /'  is a meromorphic 

function regular in the point 0=z , has simple poles and satisfies ( ) ( ) ,...,2,1,,/' =Γ∈< nzCzRzR n  

can be presented as 

                                          ( ) ( )
( )
( ) ∏ 








−= kzz

k

z
R

R

e
z

z
eRzR /0

0'

10 .    (4.118) 

 
,...2,1, =Γ nn  is a set of special closed contours nΓ  such that the point 0=z  is in all nΓ , nΓ  is in 

1+Γn , and CdS nn ≤/ , where nS  is a length of the contour nΓ , and nd  is its distance from zero. In 

the case of a more week requirement  ( ) ( ) ...2,1,/' =Γ∈< nzzMzRzR n

p
 we have  
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where ( )zf  is an entire function. In the case FR =  given by (4.68) the Weierstrass product can be 
written in the form 
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The function ( )zf  in our case is 
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where constants A  and β  are determined by ξ  and c . It is convenient to pick out real roots in 
(4.120) and combine the complex conjugated roots: 
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where km  denote real roots. In the case of simple roots the Lagrangian up to a total derivative can 

be presented as a sum of an infinite number of fields 
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where ≈  means equivalence up to a total derivative, nε  are constants. It is the Ostrogradski 

representation. Note that for complex roots nψ  are complex. 

According to a general procedure of construction of the energy and pressure we write a 
generalization of (4.123) to a non-flat case 
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and find 
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The E. O. M. for nψ  is 
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For solutions (4.128) we obtain 
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On the other hand according to (4.111) and (4.113) we have 
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Comparing (4.129), (4.130) and (4.131), (4.132) and using equation (4.85) we obtain that 
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if and only if 
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that is in accordance with general formula for nε . Note that we consider only simple roots nα . 

Now we consider the nonlocal model (4.67) in the Friedmann Universe. To consider the dynamics 
in such a system we need to solve nonlinear Friedmann equations (4.73), which represent 
hopelessly complicated problem. From (4.73) we obtain the following nonlinear integral equation in 

( )tH : 
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where ( ) tt tH ∂−−∂≡ 32D .  

We choose a special solution of eq. (4.84) and find the corresponding Ostrogradski approximation 
in the flat space-time. After we deform the obtained approximate model to the case of the 
Friedmann Universe, assuming that exact solutions in the Friedmann metric are coincide with exact 
solutions in the flat space-time. Our starting point is the Lagrangian (4.123). The corresponding 
action in the non-flat space-time is as follows: 
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In the fields nφ  depend only on time and the metric is a spatially flat Friedmann metric, then we 

have the following equation for nψ  
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where '

nψV  is a derivative of V  on nψ . Note that form of ( )nψψ ,...,1V  depends on choose of special 

solutions nψψ ,...,1 . The energy and the pressure density in the Friedmann metric have the form 

 
                                  VE += ψEmod ,    (4.138)          VP −= ψPmod ,    (4.139) 

 
where ψE  and ψP  are given by formulas (4.125) and (4.126) respectively. This means that the extra 

term V  play a role of a potential term. The Friedmann equations of motion are: 
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Therefore 
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We choose such V  that kψ  in the non-flat case are the same as in the flat case. Using (4.129) and 

(4.130) we get 
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Using (4.128) we can rewrite (4.142) as follows 
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Substituting values of nε  (formula 4.134) and using formulas (4.111) and (4.113), we obtain that 
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where 
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Therefore, 
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where 0H  is an integration constant and we assume the sum goes over the complex conjugated 

roots. It is convenient to rewrite (4.143) as follows 
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Thus to obtain the crossing of cosmological constant barrier one should consider the case 22 <ξ  

and the field ( )tφ , which consists of at least two modes. It is easy to see that ( )tH  has no singular 
point at finite time. For some values of parameters we obtain bouncing solutions, which satisfy the 
conditions ( ) 00 =H  and ( ) 00 >H& . 
An action for the tachyon in the CSSFT in the flat background when fields up to zero mass are 
taken into account is found to be 
 

             ( ) ( ) ( ) ( ) ( ) ( )∫ 







++∂∂−= xux

e
xxxxudx

g
SSFT

~~

34
1

2
'

'
1 2

2
22

22
0

φφφφηα
α

λ

νµ
µν     (4.148) 

 
where ( )xφ  is the tachyon field, ( )xu  is an auxiliary field, 
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and ≈−=
33

4
logλ 0.2616. η  is the flat Minkowskian metric, νµ

µνη ∂∂=� . An auxiliary field 

( )xu  can be integrated out to yield 
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A reasonable assumption that u  has no the tilde simplifies the last term in this action. Namely, 

under this assumption and a rescaling φφλ λ2

2
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2
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for the tachyon becomes 
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where ≈=
λ

ξ
4
12 0.9556. 

With regard the cosmological scenarios with our universe to be considered as a D3-brane embedded 
in 10-dimensional space-time, the dynamics of this brane is given by the following covariant 
version of action (4.151) in a non-flat space 
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Here g  is the metric, κ  is a gravitational coupling constant and we choose such units that it is 
dimensionless, Λ  is a constant. We focus on the four dimensional universe with the spatially flat 
FRW metric which can be written as 
 
                                                      ( )222 ,,,1 aaadiagg −=µν     (4.154) 

 
with ( )taa =  being a space homogeneous scale factor. In this particular case �  is expressed 
through a  as 
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where aaH /&≡  is the Hubble parameter and the dot denotes the time derivative. 
The Friedmann equations for the space homogeneous tachyon field have the form 
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with 
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The equation of motion for the tachyon is 
 

                                                       ( ) 34

1
2 1 Φ=Φ+

− D

D eξ .    (4.159) 
 
The latter equation is in fact the continuity equation for the cosmic fluid. 
The equation of motion for space homogeneous configurations of the tachyon field is found to be 
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The tachyon field starts from the origin, rolls down to the minimum of the tachyon potential and 
eventually stops in the minimum. The minima are located at  10 ±=Φ . For 02 ≠ξ  and ≈< crξξ 2   

1.38 there are damping fluctuations near the minimum. Let us note that in our case 22
crξξ < . To 

analyze the late time behaviour one can linearize equation (4.160) as Φ−Φ=Φ δ0  keeping only 

liner in Φδ  terms. A substitution yields the following equation for Φδ  
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The most general real vanishing solution to equation (4.161) is 
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The main contribution in (4.162) is given by 0=k  and can be represented as 
 
                        ( ) ( )ϕνδφ += − tCet rt sin   where   ≈r 1.1365,  ≈ν 1.7051    (4.163) 
 
Note that for 02 =ξ (this case corresponds to a p-adic string with  p = 3) equation (4.161) is 
simplified drastically and we have 
 
                                                      ( )kimk π23log42 +=     (4.164) 
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where again different branches may be considered. The principal branch is 0=k  and it corresponds 
to the rolling solution. 
Now we describe the mathematical connection with some formulae concerning the aurea ratio and 
some numerical results of this chapter. We have that 
 

For  
2

15 +=Φ ,  that is the value of aurea ratio, we obtain:  

                        ( ) ( ) 9560.0662014858.06180339.19556.0 7/67/7 =−=Φ−Φ≅ − ;                        

                        ( ) ( ) 2654.0073366139.0192075047.02616.0 7/387/24 =+=Φ+Φ≅ −− ; 

                             ( ) ( ) 3849.106849207.0316501956.138.1 7/397/4 =+=Φ+Φ≅ − ; 

                         ( ) ( ) 1351.1063941808.0071162542.11365.1 7/407/1 =+=Φ+Φ≅ − ; 

                         ( ) ( ) 7026.1192075047.0510540115.17051.1 7/247/6 =+=Φ+Φ≅ − . 
 
 

                                              5. Mathematical connections 
 
In this section we want to show some interesting mathematical connections that we have obtained 
between various equations regarding the Sections 1, 3 and 4. 
We have the following mathematical connections between eqs. (1.33), (1.87b) and (1.127) of 
Section 1 and various equations of Section 4. Indeed, we obtain that 
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In conclusion, with regard the very interesting mathematical connections between eqs. (3.72), 
(3.87), (3.95) and (3.121) of Section 3 and some equations of Section 4, we obtain that 
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