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                                                                       Abstract 
 
In this paper we have described in the Section 1, some equations concerning the stellar evolution 
and their stability. In the Section 2, we have described some equations concerning the perturbations 
of Schwarschild black-hole, the Reissner-Nordstrom solution and the Schwarzschild geometry in D 
= d + 1 dimensions. Furthermore, in these sections, we have showed the mathematical connections 
with some sectors of Number Theory, principally with the Ramanujan’s modular equations and the 
aurea ratio (or golden ratio)  
 
 
 

1. On some equations concerning the stellar evolution and their stability.  [1] 
 
The success of the quantum theory may be traced to two basic facts: first, the Bohr radius of the 
ground state of the hydrogen atom, namely, 
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where h  is Planck’s constant, m  is the mass of the electron and e is its charge, provides a correct 
measure of atomic dimensions; and second, the reciprocal of Sommerfeld’s fine-structure constant, 
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gives the maximum positive charge of the central nucleus that will allow a stable electron-orbit 
around it. 
With regard the stellar structure and stellar evolution, the following combination of the dimensions 
of a mass provides a correct measure of stellar masses: 
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where G  is the constant of gravitation and H  is the mass of the hydrogen atom.  
The radiation pressure in the equilibrium of a star, is given from the following equation: 
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There is a general theorem (Chandrasekhar, 1936) which states that the pressure, cP , at the centre of 

a star of a mass M  in hydrostatic equilibrium in which the density, ( )rρ , at a point at a radial 

distance, r , from the centre does not exceed the mean density, ( )rρ , interior to the same point r , 
must satisfy the inequality, 
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where ρ  denotes the mean density of the star and cρ  its density at the centre. 

The right-hand side of inequality (1.5) together with P  given by eq. (1.4), yields, for the stable 
existence of stars, the condition, 
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or, equivalently, 
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where in the foregoing inequalities, cβ  is a value of β  at the centre of the star. Now Stefan’s 

constant, a , by virtue of Planck’s law, has the value 
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Inserting this value a  in the equality (1.7) we obtain 
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We observe that the inequality (1.9) has isolated the combination (1.3) of natural constants of the 
dimensions of a mass; by inserting its numerical value given in eq. (1.3), we obtain the inequality, 
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This inequality provides an upper limit to ( )cβ−1  for a star of a given mass. Thus, 

 
                                                         ∗−≤− ββ 11 c ,    (1.11) 

 
where ( )∗− β1  is uniquely determined by the mass M  of the star and the mean molecular weight, 
µ , by the quartic equation, 
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We note that the following values: 
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are well connected with various fractional powers of Phi  ...61803399,1
2
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Appendix A) 
 
In a completely degenerate electron gas all the available parts of the phase space, with momenta 
less than a certain “threshold” value 0p  are occupied consistently with the Pauli exclusion-

principle. If  ( )dppn  denotes the number of electrons, per unit volume, between p  and dpp + , 
then the assumption of complete degeneracy is equivalent to the assertion 
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The value of the threshold momentum, 0p , is determined by the normalization condition 
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where n  denotes the total number of electrons per unit volume. For the distribution given by (1.13), 
the pressure p  and the kinetic energy kinE  of the electrons (per unit volume), are given by 

 

                                                     ∫= 0

0

3
33

8 p

pdpvp
h

P
π

    (1.15) 

and 

                                                   ∫= 0

0

2
3

8 p

pkin dpTp
h

E
π

,    (1.16) 

 
where pv  and pT  are the velocity and the kinetic energy of an electron having a momentum p . If 

we set 
                                          mpvp /=     and    mpTp 2/2= ,    (1.17) 

 
appropriate for non-relativistic mechanics, in eqs. (1.15) and (1.16), we find 
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and 
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Thence, we obtain the following expressions: 
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We note that the following values: 
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are well connected with various fractional powers of Phi  ...61803399,1
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Appendix A) 
 
According to the expression for the pressure given by eq. (1.18), we have the relation 
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where eµ  is the mean molecular weight per electron. We can rewrite the expression also as follows: 
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Thus, already for a degenerate star of solar mass (with 2=eµ ) the central density is  61019.4 ×  g 

cm3; and this density corresponds to a threshold momentum mcp 29.10 =  and a velocity which is 

c63.0 . Consequently, the equation of state must be modified to take into account the effects of 
special relativity. And this is easily done by inserting in eqs. (1.15) and (1.16) the relations, 
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in place of the non-relativistic relations (1.17). We find that the resulting equation of state can be 
expressed, parametrically, in the form 
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and 
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Thence, P  can be rewritten also as follows: 
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And similarly 
                                                              ( )xAgEkin = ,    (1.25) 
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Thence, the eq. (1.25) can be rewritten also as follows: 
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According to eqs. (1.22) and (1.23), the pressure approximates the relation (1.20) for low enough 
electron concentrations ( )1<<x ; but for increasing electron concentrations ( )1>>x , the pressure 
tends to  
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This limiting form of relation can be obtained very simply by setting cvp =  in eq. (1.15); then 
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and the elimination of 0p  with the aid of eq. (1.14) directly leads to eq. (1.27). The relation between 

P  and ρ  corresponding to the limiting form (1.28) is 
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Thence, the eq. (1.28) can be rewritten also as follows: 
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We note that the following values: 
 

12538820,0123093,0
3

8
1

3/1

≅=








π
    and    12461180,2094395,2

3

2 ≈=π
, 

 

are well connected with various fractional powers of Phi  ...61803399,1
2

15 =+=Φ   (see 

Appendix A) 
 
 
 
In this limit, the configuration is an Emden polytrope of index 3. And it is well known that when the 
polytropic index is 3, the mass of the resulting equilibrium configuration is uniquely determined by 
the constant of proportionality, 2K , in the pressure-density relation. We have accordingly,  
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We note that the value 5,76  is well connected with the mean of the following values:  5,562 

and 5,890 that is equal to  5,726 that is a fractional powers of Phi  ...61803399,1
2
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(see Appendix A) 
 
It is clear from general considerations that the exact mass-radius relation for the degenerate 
configurations must provide an upper limit to the mass of such configurations given by eq. (1.30); 
and further, that the mean density of the configuration must tend to infinity, while the radius tends 
to zero, and  limMM → . 

It is more convenient to express the electron pressure in terms of ρ  and eβ  defined in the manner 
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where ep  now denotes the electron pressure. Then, analogous to eq. (1.4), we can write 

 

                                           3/4

3/14
13 ρ

β
β

µ 











 −








=

e

e

e
e aH

k
p .    (1.32) 

 
Comparing this with eq. (1.29), we conclude that if  
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the pressure ep  given by the classical perfect-gas equation of state will be greater than that given by 

the equation if degeneracy were to prevail, not only for the prescribed ρ  and T , but for all ρ  and 

T  having the same eβ . Inserting for a  its value given in eq. (1.8), we find that the inequality (1.33) 

reduces to 
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On the standard model, the fraction β  (=gas pressure/total pressure) is a constant through a star. On 
this assumption, the star is a polytrope of index 3 as is apparent from eq. (1.4); and, in consequence, 
we have the relation 
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where ( )βC  is defined in eq. (1.4). Equation (1.36) provides a quartic equation for β  analogous to 

eq. (1.12) for ∗β . Equation (1.36) for  ωββ =  gives 
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We note that the value 0,197  is well connected with 0,19513485  and that 6,65 is well 
connected with the mean of the following values:  6,47213  and  6,87538. It is equal to 6,6737 

that is a fractional powers of Phi  ...61803399,1
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By virtue of the inequality (1.5), the maximum central pressure attainable in a star must be less than 
that provided by the degenerate equation of state, so long as 
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or, equivalently 

                                      ( )
2

2

2/3

74,1
1

16
3 −=







< e

eHG

hc
M µ

µπ
☼.    (1.39) 

 



 8 

Thence, we have the following connection between eq. (1.38) and eq. (1.39): 
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We conclude that there can be no surprises in the evolution of stars of mass less than  0,43☼ (if  

2=eµ ). The end stage in the evolution of such stars can only be that of the white dwarfs. 
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In the framework of the Newtonian theory of gravitation, the stability for radial perturbations 
depends only on an average value of the adiabatic exponent, 1Γ , which is the ratio of the fractional 
Lagrangian changes in the pressure and in the density experienced by a fluid element following the 
motion; thus, 
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And the Newtonian criterion for stability is 
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If  
3

4
1 <Γ ,  dynamical instability of a global character will ensue with an e-folding time measured 

by the time taken by a sound wave to travel from the centre to the surface. When one examines the 
same problem in the framework of the general theory of relativity, one finds that, again, the stability 
depends on an average value of 1Γ ; but contrary to the Newtonian result, the stability now depends 

on the radius of the star as well. Thus, one finds that no matter how high 1Γ  may be, instability will 
set in provided the radius is less than a certain determinate multiple of the Schwarzschild radius, 
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Thus, if for the sake of simplicity, we assume that 1Γ  is a constant through the star and equal to 

3/5 , then the star will become dynamically unstable for radial perturbations, if SRR 4,21 < . And 

further, if ∞→Γ1 , instability will set in for all ( ) SRR 8/9< . The radius ( ) SR8/9  defines, in fact, 

the minimum radius which any gravitating mass, in hydrostatic equilibrium, can have in the 
framework of general relativity. It follows from the equations governing radial oscillations of a star, 
in a first post-Newtonian approximation to the general theory of relativity, that instability fro radial 
perturbations will set in for all 
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where K  is a constant which depends on the entire march of density and pressure in the equilibrium 
configuration in the Newtonian framework. It is for this reason that we describe the instability as 
global. Thus, for a polytrope of index n , the value of the constant is given by 
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where θ  is the Lane-Emden function in its standard normalization ( 1=θ  at 0=ξ ), ξ  is the 

dimensionless radial coordinate, 1ξ  defines the boundary of the polytrope (where 0=θ ) and 1'θ  is 

the derivative of θ  at 1ξ . If we set 2=n  in the eq. (1.44), we obtain: 
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1 ×  and 24 is related to the physical vibrations of the superstring by the 

following  Ramanujan’s modular equation: 
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Thence, we have the following possible mathematical connection: 
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In the following Table, we have the values of K  for different polytropic indices. It should be 
particularly noted that K  increases without limit for 5→n  and the configuration becomes 
increasingly centrally condensed.  
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                                                  n                                    K     
 
                                                  0                             0.452381 
                                                  1.0                          0.565382 
                                                  1.5                          0.645063 
                                                  2.0                          0.751296 
                                                  2.5                          0.900302 
                                                  3.0                          1.12447 
                                                  3.25                        1.28503 
                                                  3.5                          1.49953 
                                                  4.0                          2.25338 
                                                  4.5                          4.5303 
                                                  4.9                        22.906  
                                                  4.95                      45.94  
 
 
It has been possible to show that for 5→n , the asymptotic behaviour of K  is given by 
 
                                                    ( )nK −→ 5/3056.2 ;    (1.45) 
 
and, further, that along the polytropic sequence, the criterion for instability (1.43) can be expressed 
alternatively in the form 
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We note that the value 0,2264 is well connected with 0,229 that is a fractional powers of Phi  

...61803399,1
2
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Furthermore, the values of the precedent table, are well connected with the following 
fractional powers of Phi (see Appendix A): 
 
0,445824;   0,572949;   0,629514;   0,752329;   0,891649;   1,128493;   1,259029;   1,500000; 
2,250000;   4,500000;   22,180339;   41,1246 + 4,8541.  
 
In this section we have considered only the restrictions on the last stages of stellar evolution that 
follow from the existence of an upper limit to the mass of completely degenerate configurations and 
from the instabilities of relativistic origin. From these and related considerations, the conclusion is 
inescapable that black holes will form as one of the natural end products of stellar evolution of 
massive stars; and further that they must exist in large numbers in the present astronomical 
universe. 
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2. On some equations concerning the perturbations of Schwarzschild black-hole and the 

Reissner-Nordstrom solution.  [2]   
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to the single second-order the following equation 
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for ( )+Z , it is clear that the solution for ,, XL  and N  will require a further quadrature. Thus, 
rewriting the following equation 
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This equation yields the integral relation 
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Thence, we have the following expression: 
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+−

3
,    (2.11) 

 
we have the solution 

                                                       ( ) Φ+−= +
2

3

r

M
Z

r

n
L .    (2.12) 

 
With this solution for L , equation (2.7) gives 
 

                                                          ( )( )Φ+= +Z
r

n
X .    (2.13) 

 
As a consequence of these solutions for L  and X , 
 

                                                    ( )Φ+=+ Mnr
r

XL 3
1
2 .    (2.14) 

 
To obtain the solution for N , we take the following equation 
 

        ( ) ( ) ( )
( ) ( ) ( )XL

Mnr

MnMrnr
V

Mnrr

MrM
VMrZ

r

M
Z rrr +

+
−−+

+
−+−=







 −=+
∗ 2

22

,,,
3

33

3

23
2

2
1 ,    (2.15) 

 
and substitute for  ( )nXV rr /,, =   on the right-hand side from the following equation 

 

         ( ) ( ) ( ) ( ) L
Mr

n
XL

Mrr

rM

Mrr

M

Mr
N

Mrr

Mnr
X r 2

1

222
1

2
3

2

422

, −
+++









−
++

−
−

−
−

−
+−= σ

.    (2.16) 

 
In this manner, we obtain 
 

     ( ) ( ) ( ) ( ) ( ) +








−
+++×









−
++

−
−

−
−

−
+−−=∗ L

Mr

n
XL

Mrr

rM

Mrr

M

Mr
N

Mrr

Mnr
Mr

n
Z r 2

1

222

1

2

3
2

1
2

422

,

σ
 

                                
( )

( ) ( ) ( )XL
Mnr

MMnrnr
X

Mnrnr

MrM +
+

−−+
+
−+ 2

22

3

33

3

23
.    (2.17) 

 
Simplifying this last equation and substituting for L  and XL +  their solutions (2.12) and (2.13), 
we find: 
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    ( )

( ) ( ) ( )
2

4222

2, 2
13

6

33 rMr

rM
MZrnnMn

r

M

Mnr

n
Z

Mnr

nr
N r

Φ









−
+−+








+++

+
−

+
−= ++

∗
σ

.    (2.18) 

 
For the eq. (2.11), we obtain the following expression: 
 

( )

( ) ( ) ( )
( )










+








−
+−+








+++

+
−

+
−= ∫

+−
++

∗ dr
Mnr

Ze
ne

rMr

rM
MZrnnMn

r

M

Mnr

n
Z

Mnr

nr
N

v
v

r 3
1

2
13

6

33 2

4222

2,

σ

                                                                                                                                                                
                                                                                                                                            (2.18b) 
This completes the formal solution of the basic equations. 
Quasi-normal modes are defined as solutions of the perturbation equations, belonging to complex 
characteristics-frequencies and satisfying the boundary conditions appropriate for purely outgoing 
waves at infinity and purely ingoing waves at the horizon. The problem, then, is to seek solutions of 
the equations governing ( )±Z  which will satisfy the boundary conditions 
 
                ( ) ( )( ) rieAZ σσ −±± →   ( )+∞→∗r ;          ( ) ( )( ) ∗+±± → rieAZ σσ   ( )−∞→∗r .    (2.19) 
 
We observe that the characteristic frequencies σ  are the same for ( )−Z   and ( )+Z ; for, if σ  is a 
characteristic frequency and ( )−Z ( )σ  is the solution belonging to it, then the solution ( )+Z ( )σ  

derived from ( )−Z ( )σ  in accordance with the following relations 
 

         ( )[ ] ( ) ( ) ( )
( ) ( )−−+

∗
+









+
∆++=++ rMZZ

Mrr
MZMi ,23

22222 12
6

722122
µ

µµσµµ ;    (2.20a) 

 

         ( )[ ] ( ) ( ) ( )
( ) ( )++−

∗
−









+
∆++=−+ rMZZ

Mrr
MZMi ,23

22222 12
6

722122
µ

µµσµµ ;    (2.20b) 

 
will satisfy the boundary conditions (2.19) with 
 

                                        ( )( ) ( )( ) ( )
( ) Mi

Mi
AA

σµµ
σµµσσ

122
122

22

22

++
−+= −+ .    (2.21) 

 
It will suffice, then, to consider only the equation governing ( )−Z .  Letting 
 

                                                    ( )





= ∫

∗

∗
− r

driZ φexp ,    (2.22) 

 
we find that the equation we have to solve is 
 
                                                 ( ) 022

, =−−+ −
∗

Vi r φσφ ;    (2.23) 

 
and the appropriate boundary conditions are 
 
                               σφ −→   as  +∞→∗r     and    σφ +→   as  −∞→∗r .    (2.24) 
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Furthermore, we can rewrite the eq. (2.20a) as follows: 
 

 ( )[ ] ( ) ( ) ( )
( )−

∗
+

∗

∗ +





 
















+
∆++=++ ∫ r

r
MZdri

Mrr
MZMi ,23

22222 12exp
6

722122 φ
µ

µµσµµ .    (2.24b) 

 
Solutions of eq. (2.23), satisfying the boundary conditions (2.24), exist only when σ  assumes one 
of a discrete set of values. A useful identity, which follows from integrating equation (2.23) and 
making use of the boundary conditions (2.24), is 
 

                          ( ) ( )
∫ ∫

∞+

∞−

∞+

∞− ∗
−

∗ 






 +==−+−
2
1

2
1

2 222 µφσσ
M

drVdri .    (2.25) 

 
With regard the complex characteristic-frequency σ  belonging to the quasi-normal modes of 
the Schwarzschild black-hole (σ  is expressed in the unit ( ) 12 −M ) for value of 4=l , we have 
the following result: 
 
                                         4=l ;        iM 18832,061835,12 +=σ .    (2.26)     
 

We note that the value  1,61835 is very near to the ...61803398,1
2

15 =+=Φ , thence to the 

value of the golden ratio. 
 
 
The Reissner-Nordstrom solution 
 
 
With regard the Reissner-Nordstrom solution, the reduction of the equations governing the polar 
perturbations of the Schwarzschild black-hole to Zerilli’s equation, it is clear that the reducibility of 
a system of equations of order five to the pair of the following equations 
 

( ) ( ) ( ) ( )( )[ ]+
∗

+++ +−+∆=Λ 12252
2 23 HQMHWUH

r
H µ ,  ( ) ( ) ( ) ( )( )[ ]++

∗
++ +++∆=Λ 12151

2 32 MHHQWUH
r

H µ ,  

 
must be the result of the system allowing a special solution. Xanthopoulos has discovered that the 
present system of equations 
 

               ( ) 23,23,23
2

203

21
B

r
BBr

r
B rr +== ,        ( )[ ] ( ) 23

22
02

24 1122 BrllVllTQBer v +−+−= ∗ , 

                                     ( ) 2
2

23
222

02
22

,03
22 2

r

LN
QBerBerBer vv

r
v +=++ ∗

−σ , 

 
and  

         ( )23, BXcbLaNN r −++= ,        ( ) 2323,,,

211
B

r
BXcLv

r
bNv

r
aL rrr −−+







 −−+






 +−= , 

                       ( ) 0323,,,,

1
2

11
BBXv

r
cLv

r
bNv

r
aX rrrr +−







 −+−






 −+−






 +−−= , 
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allows the special solution 
 

         ( ) ( ) 







−+−

∆
−= ∗

∗
−

r

Q
rQM

r
MerN v

2
422220 2σ ,    ( ) ( )230 43 ∗

− −= QMrerL v ,    ( ) 10 −= rneX v , 

                        ( ) verQB 320
23 2 −

∗−= ,    and    ( ) ( )MrrQerQB v 322 22620
03 −+= ∗

−−
∗ .    (2.27) 

 
The completion of the solution for the remaining radial functions with the aid of the special solution 
(2.27) is relatively straightforward. Xanthopoulos finds 
 
 

( ) ( ) ( ) ( )( ) ( ) ( )[ ] ( ) ( )( )+
∗

++
∗

++ ++−−−++−+Φ= 12
2

2,12

2

2

2
0 132

1
2 HQnrHnMnre

r
HQnrH

e
H

e
nNN v

r

vv

µϖϖ
ϖ

µ
ϖϖ

                                                                                                                                                     (2.28) 

                   ( ) ( ) ( )( )+
∗

+ +−Φ= 122
0 1

HQnrH
r

LL µ ,    (2.29)        ( ) ( )++Φ= 2
0 H

r

n
XX ,    (2.30)         

    ( ) ( )+∗−Φ= 12
0

2323 H
r

Q
BB

µ
,    (2.31)       ( ) ( ) ( ) ( )( )+

∗
+∗+∗ +−−Φ= 124

2

,12
0

0303 2 HQnrH
r

Q
H

r

Q
BB r µ

ϖ
µ

,    (2.32) 

 
where 

                                             ( ) ( )( )∫
−

+
∗

+ +=Φ dr
r

e
HQnrH

v

ϖ
µ 12 .    (2.33) 

 
Thence, the eqs. (2.31) and (2.32) can be written also as follows: 
 

                                ( ) ( ) ( )( ) ( )
∫

+∗
−

+
∗

+ −+= 1212
0

2323 H
r

Q
dr

r

e
HQnrHBB

v µ
ϖ

µ ,    (2.34)             

 

            ( ) ( ) ( )( ) ( ) ( ) ( )( )+
∗

+∗+∗
−

+
∗

+ +−−+= ∫ 124

2

,1212
0

0303 2 HQnrH
r

Q
H

r

Q
dr

r

e
HQnrHBB r

v

µ
ϖ

µ
ϖ

µ .    (2.35) 

 
As in the case of the Schwarzschild perturbations, the potentials ( )±

iV  ( 2,1=i ), associated with the 

polar and the axial perturbations, are related in a manner which guarantees the equality of the 
reflexion and the transmission coefficients determined by the equations governing ( )±

iZ . Thus, it can 

be verified, the potentials are, in fact, given by 
 

                                                ( )
iii

i
ii ff
dr

df
V κββ ++±=

∗

± 22 ,    (2.36) 

 
where 

                  ( )222 += µµκ ,    ji q=β ,    and    ( )j
i qrr

f
+

∆= 23 µ
    ( )jiji ≠= ;2,1, ,    (2.37) 

 
thence, the eq. (2.36) can be rewritten also as follows 
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           ( )
( ) ( ) ( ) ( )jj

j
j

ji qrrqrr
q

qrrdr

d
qV

+
∆++













+
∆+

+
∆±=

∗

±
23

22

2

23
2

23
2

µ
µµ

µµ
.    (2.37b) 

 
The solutions, ( )+

iZ  and ( )−
iZ  of the respective equations are, therefore, related in the manner 

 

( )[ ] ( ) ( ) ( )
( )

( )

∗

± ±












+
∆

++=±+
dr

dZ
qZ

qrr

q
Zqi i

ji
j

j
ij

m

m 2
2

222 23

2
2222

µ
µµσµµ       ( )jiji ≠= ;2,1, .    (2.38) 

 
It is the existence of this relation which guarantees the equality of the reflexion and the transmission 
coefficients determined by the wave equations governing ( )+

iZ  and ( )−
iZ . 

In view of the relation (2.38) between the solutions belonging to axial and polar perturbations, the 
characteristic frequencies will be the same for ( )+

iZ  and ( )−
iZ . It should also be noticed that there is 

no quasi-normal mode which is purely electromagnetic or purely gravitational: any quasi-normal 
mode of oscillation will be accompanied by the emission of both electromagnetic and gravitational 
radiation in accordance with the following equation 
 
                            ψψ sincos 211 ZZH −= ;       ψψ sincos 122 ZZH += ,    (2.39) 
 
where the amplitudes 1H  and 2H  of the electromagnetic and gravitational (wave-like) disturbances 

(of some specified frequencies) are related to the function 1Z  and 2Z . 

With regard the complex characteristic frequencies 1σ  and 2σ  (belonging to ( )±
1Z  and ( )±

2Z ) of 
the quasi-normal modes for a range of values of ∗Q  and l , we obtain, for 1Z  and 9.0=∗Q  and 

2=l , the value 0.61939 that is very near to the ...61803398,0
2

15 =−=φ , thence to the value 

of the golden section. 
The considerations, relative to the stability of the Schwarzschild black-hole to external 
perturbations apply, quite literally, to the Reissner-Nordstrom black-hole since the only fact 
relevant to those considerations was that the potential barriers, external to the event horizon, are real 
and positive; and stability follows from this fact.  
While the equations governing ( )±

iZ  remain formally unaltered, the potential barriers, ( )±
iV , are 

negative in the interval, +− << rrr , and in the associated range of ∗r , namely −∞>>∞+ ∗r ; they 

are in fact potential wells rather than potential barriers. Thus, the equation now governing ( )−
iZ  is, 

for example, 
 

( )
( ) ( ) ( )−∗−

∗

−









+−+

∆
−=+ iji

i Z
r

Q
qr

r
Z

dr

Zd 2
2

5
2

2

2 4
2µσ     ( )jiji ≠= ;2,1,   and  ( )−∞>>+∞<< ∗+− rrrr , ,                  

                                                                                                                                           (2.40) 
where 

       −
−

+
+

∗ −−−+= rrrrrr lg
2
1

lg
2
1

κκ
 ,    (2.41)        22 +

−+
+

−=
r

rrκ ,   and   22 −

−+
−

−=
r

rrκ .    (2.42) 

 
In view of the relation (2.38) between the solutions, belonging to axial and polar perturbations, it 
will, again, suffice to restrict our consideration to equation (2.40); and for convenience, we shall 
suppress the distinguishing superscript. An important consequence of the fact that we are now 
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concerned with a short-range one-dimensional potential-well, is that equation (2.40) will allow a 
finite number of discrete, non-degenerate, bound states: 
 
                                          jiσσ ±=   [ ]mnj ...,2,1;2,1 == .    (2.43) 

 
The boundary conditions we must now impose are 
 
                                 ( ) ( ) ( ) ∗∗ +−

∗ +→ riri eBeArZ σσ σσ     ( )+∞→+→ ∗− rrr ;0  

                                          ∗−→ rie σ                                ( )−∞→−→ ∗+ rrr ;0 .    (2.44) 
 
The coefficients ( )σA  and ( )σB  in equation (2.44) are related to the reflexion and the transmission 
amplitudes, 

                               ( ) ( ) ( )σσ
σ

−
== ∗

1

11
TT

A ,    ( ) ( )
( )

( )
( )σ

σ
σ
σσ

−
−== ∗

∗

1

1

T

R

T

R
B ,    (2.45) 

 
so that 

                                                    ( ) ( ) 1
22 =− σσ BA .    (2.46) 

 

With regard the amplification factors, ( )2σA , appropriate for the potential ( )±
1V  and ( )±

2V  for  
22 75.0 MQ =∗ , we observe that ( )2σA , and, therefore, also ( )2σB , tend to finite limits as 0→σ . 

This fact has its origin in the existence of bound states of zero energy in the potential wells, 1V  and 

2V . Furthermore, we note that for 30.0=σ , for 1V  we have the value  1.6168, while for 2V  we 
have the value  1.6286. It is easy note that these values are very near to the 

...61803398,1
2

15 =+=Φ , thence to the value of the golden ratio. 

In analyzing the radiation arriving at the Cauchy horizon at −r , we must distinguish the edges 'EC  

and EF  in the Penrose diagram. For this reason, we restore the time-dependence, tieσ , of the 
solutions; and remembering that in the interval,  +− << rrr , 
 
                                                  tru += ∗     and    trv −= ∗ ,    (2.47) 
 
we write, in place of equation (2.44), 
 
                                      ( ) ( )[ ] ( ) uivivi eBeAetrZ σσσ σσ +−−

∗ +−+→ 1, .    (2.48) 
 

If we now suppose that the flux of radiation emerging from ''CD  is ( )vẐ , then 
 

                                                    ( ) ( )∫
∞+

∞−
= dvevZZ viσ

π
σ ˆ

2
1

.    (2.49) 

 
This flux disperses in the domain between the two horizons and at the Cauchy horizon it is 
determined by 
                                      ( ) ( ) ( )uYvXtrZ +→∗,     ( )∞→∞→ uv ; ,    (2.50) 
 
where 
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                                            ( ) ( ) ( )[ ] σσσ σ deAZvX vi−+∞

∞−∫ −= 1 ,    (2.51) 

 
and 

                                                 ( ) ( ) ( )∫
+∞

∞−
= σσσ σ deBZuY ui .    (2.52) 

 
Thence, the eq. (2.50) can be rewritten also as follows: 
 

                    ( ) →∗ trZ , ( ) ( )[ ] σσσ σ deAZ vi−+∞

∞−∫ −1 ( ) ( )∫
+∞

∞−
+ σσσ σ deBZ ui .         (2.52b) 

 
However, our interest is not in ( )vX  or ( )uY , per se, but rather in quantities related to them. We are 
primarily interested in the radiation an observer receives at the instant of his (or her) crossing the 
Cauchy horizon. To evaluate this quantity, we consider a freely falling observer following a radial 
geodesic. The four-velocity, U, of the observer is given by the following equations 
 

2
2

2

2

2

1 E
r

L

rd

dr =







+∆+









τ
;       

∆
=

2r
E

d

dt

τ
;        and        2r

L

d

d =
τ
ϕ

,     where        22 2 ∗+−=∆ QMrr , 

 
for 0=L ; thus, 
  

                     E
r

U t

∆
=

2

,        
2/1

2
2

2








 ∆−
∆

=∗

r
E

r
U r ,        and        0== ϕθ UU ,    (2.53) 

 
where, consistently with the time-like character of the coordinate r  in the interval +− << rrr , we 

have chosen the positive square-root in the expression for ∗rU . Also, it should be noted that we are 
allowed to assign negative values for E  since the coordinate t  is space-like in the same interval. 
With the prevalent radiation-field expressed in terms of ( )trZ ,∗ , a measure of the flux of radiation, 
F , received by the freely falling observer is given by 
 

                                    F  = 


















 ∆−+
∆

=
∗rtj

j Z
r

EEZ
r

ZU ,2
2

,

2

, .    (2.54) 

 
We have seen that as we approach the Cauchy horizon (cf.equations (2.50) – (2.52)), 
 
                                             ( ) ( ) ( )∗∗∗ ++−→ rtYrtXtrZ , .    (2.55) 
 
Accordingly, 
                                  uvt YXZ ,,, +→ −     and    uvr YXZ ,,, +−→ −∗

;    (2.56) 

 
and the expression (2.54) for F  becomes 
 

                         F






























 ∆−++


















 ∆−−
∆

→ − 2
2

,2
2

,

2

r
EEY

r
EEX

r
uv .    (2.57) 
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On EF , v  remains finite while ∞→u ; therefore, 
 

                          tr +→∗  , −
−

∗ −−→→ rrru lg
1

2
κ

   as   −→ rr   on  EF .    (2.58) 

 
Also for 0>E , the term in vX −,  remains finite while the term in uY,  has a divergent factor (namely, 

∆/1 ). Hence, 

                                     u
uEF eEY

rr

r
−

−+

−

−
−→ κ

,

22
F     ( ∞→u  on EF ).    (2.59) 

 
On 'EC , u  remains finite while ∞→v ; therefore, 
 

                          tr −→∗  , −
−

∗ −−→→ rrrv lg
1

2
κ

   as   −→ rr   on  'EC .    (2.60) 

 
And for 0<E , the term in uY,  remains finite while the term in vX −,  has the divergent factor. 

Hence,  

                                  v
vEC eXE

rr

r
−

−
−+

−

−
+→ κ

,

2

'

2
F     ( ∞→v  on 'EC ).    (2.61) 

 
We conclude from the equations (2.59) and (2.61) that the divergence, or otherwise, of the received 
fluxes on the Cauchy horizon, at EF  and 'EC , depend on 
 

     
( )
( ) ( )∫

∞+

∞− −
−= σσ

σ
σσ σ deZ

T

R
iY ui

u
1

1
, ;    (2.62)    and    ( ) ( )∫

∞+

∞−

−
− 








−

−
= σσ

σ
σ σ deZ

T
iX vi

v 1
1

1
, ,    (2.63) 

 
where we have substituted for ( )σA  and ( )σB  from equation (2.45). Furthermore, we can rewrite 
the eq. (2.57) as follows: 
 

( ) ( ) ( )
( ) ( )































 ∆−+
−
−+



















 ∆−−







−

−∆
→ ∫∫

∞+

∞−

−∞+

∞− 2
2

1

1
2

2

1

2

1
1

r
EEdeZ

T

R
i

r
EEdeZ

T
i

r uivi σσ
σ
σσσσ

σ
σ σσ

F

                                                                                                                                  (2.63b) 
 
In particular, if we wish to evaluate the infinite integrals, as is naturally suggested, by contour 
integration, closing the contour appropriately in the upper half-plane and in the lower half-plane, 
then we need to specify the domains of analyticity of ( )σA  and ( )σB , as defined in equations 

(2.45). Returning then to the definitions of ( )σA  and ( )σB , we can write 
 

                                 ( ) ( )
( ) ( ) ( )[ ]σσ

σσ
σσ +−=

−
−= ,,,

2
1

12
1

1 xfxf
iT

R
B     (2.64) 

and 

                                 ( ) ( ) ( ) ( )[ ]σσ
σσ

σ −−=
−

= ,,,
2
11

21
1

xfxf
iT

A ,    (2.65) 
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where for convenience, we have written x  in place of ∗r  and ( )σ±,1 xf , and ( )σ+,2 xf  are solutions 
of the one-dimensional wave equations which satisfy the boundary conditions 
 
                  ( ) xiexf σσ m→±,1    +∞→x ;        and        ( ) xiexf σσ ±→±,2    −∞→x .    (2.66) 
 
Also ( )σ−,2 xf  satisfies the integral equation 
 

                               ( ) ( ) ( ) ( )∫ ∞−

− −−+=−
xxi dxxfxV

xx
exf ',''

'sin
, 22 σ

σ
σσ σ .    (2.67) 

 
The corresponding integral equation satisfied by ( )σ±,1 xf  is 
 

                                ( ) ( ) ( ) ( )∫
∞± −−=
x

xi dxxfxV
xx

exf ',''
'sin

, 11 σ
σ

σσ σ
mm .    (2.68) 

 
Adapting a more general investigation of Hartle and Wilkins to the simpler circumstances of our 
present problem, we can determine the domains of analyticity of the functions, ( )σ−,2 xf  and 

( )σ±,1 xf , in the complex σ -plane, by solving the Volterra integral-equations (2.67) and (2.68) by 
successive iterations. Thus, considering equation (2.67), we may express its solution as a series in 
the form 

                                              ( ) ( )( )∑
∞

=

− −+=−
1

22 ,,
n

nxi xfexf σσ σ ,    (2.69) 

 
where 

                                ( )( ) ( ) ( ) ( )( )∫ ∞−

− −−=−
x nn xfxV

xx
dxxf σ

σ
σσ ,

sin
, 1

1
21

1
12 .    (2.70) 

 
By this last recurrence relation, 
 

                      ( )( ) ( ) ( )∫ ∫ ∏∫ ∞− ∞−
=

−−
∞−

− −=− 1 10

1

1
212

sin
...,

x x n

i

xi
i

ii
n

xn n
nexV

xx
dxdxdxxf σ

σ
σσ     (2.71) 

 
where xx =0 ; or, after some rearrangement, 

 

                         ( )( ) ( )
( )[ ] ( ){ }∫ ∫ ∏∞− ∞−

=

−
−

−
− −=− 0 1
1

1

2
12 1...

2
,

x x n

i
i

xxi
nn

xi
n n

ii xVedxdx
i

e
xf σ

σ

σ
σ .    (2.72) 

 
Thence, the eq. (2.69) can be rewritten also as follows: 
 

                ( ) ∑
∞

=

− +=−
1

2 ,
n

xiexf σσ ( )
( )[ ] ( ){ }∫ ∫ ∏∞− ∞−

=

−
−

−
− −0 1
1

1

2
1 1...

2

x x n

i
i

xxi
nn

xi
n

ii xVedxdx
i

e σ
σ

σ
.    (2.72b) 

 
Since  
                                           ( ) →xV  constant xe +κ2   ( )−∞→x ,    (2.73) 
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it is manifest that each of the multiplicands in (2.72) tends to zero, exponentially, for −∞→x  for 
all 
                                                            +−> κσIm .    (2.74) 
 
In view of the asymptotic behaviour (2.73) for ( )xV , we may, compatible with this behaviour, 

expect a representation of ( )xV  for 0<x , in the manner of a Laplace transform, by 
 

                                                    ( ) ( )∫
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=
κ

µµµ
2

xedxV V ,    (2.75) 

 
where ( )µV  includes δ -functions at various locations, i.e., ( )µV  is a distribution in the technical 

sense. With the foregoing representation for ( )xV , the first iterate, ( )( )σ−,1
2 xf , of the solution for 

( )σ−,2 xf , becomes 
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or, inverting the order of the integrations, we have 
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After effecting the integration over 1x , we are left with 
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From this last expression, it is evident that ( )( )σ−,1

2 xf  has singularities along the negative imaginary 

axis beginning at  +−= κσIm . Thence, the eq. (2.76) can be rewritten also as follows: 
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Entropy of strings and black holes: Schwarzschild geometry in D = d + 1 dimensions [3] 
 
The black hole metric found by solving Einstein’s equation in D dimensions is given by 
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The horizon is defined by 
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and its D-2 dimensional “area” is given by 
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Furthermore, the entropy is given by 
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The entropy in equation (2.82) is what is required by black hole thermodynamics. 
To extend a static spherically symmetric geometry to  D = d + 1  dimensions, the metric can be 
assumed to be of the form 
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Using orthonormal coordinates, the ttGˆ
ˆ  component of the Einstein tensor can be directly calculated 

to be of the form 
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Form Einstein’s equation for ideal pressureless matter, κρ=ttG ˆˆ . This means 
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which can be solved to give 
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where the solid angle is given by  
( )

( )( )2/1
2 2/1

2 −Γ
=Ω

−

− D

D

D

π
.  The r
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ˆ  component of the Einstein tensor 

satisfies 
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For pressureless matter in the exterior region ( )P== 0ρ , we can immediately conclude that 

∆−=Φ .  Defining the Schwarzschild radius  ( ) 2

3

2
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  we obtain the form of the 

metric 
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If we write ( ) Φ≡ 2erF , a useful shortcut for calculating the solution to Einstein’s equation (2.85) is 
to note its equivalence to the Newtonian Poisson equation in the exterior region 
 
                                        ( ) κρ−=∇ rF2 ,        ( ) NewtonrF φ21+= .    (2.89) 

 
The Hawking temperature can be calculated by determining the dimensional factor between the 
Rindler time and Schwarzschild time. Near the horizon, the proper distance to the horizon is given 
by 
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which gives the relation between Rindler time/temperature units and Schwarzschild 
time/temperature units 
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Thus, the Hawking temperature of the black hole is given by 
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Using the first law of thermodynamics, the entropy can be directly calculated to be of the form 
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Substituting the form  ( )GD 38 −= πκ  for the gravitational coupling gives the previous results in 

D-dimensions (see eq. (2.82)). Furthermore, if we substitute    ( )GD 38 −= πκ   in the eq. (2.86), we 
obtain the following expression: 
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We note that this expression can be related by the number 8, with the “modes” that 
correspond to the physical vibrations of a superstring by the following Ramanujan function: 
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Thence, we obtain the following mathematical connection: 
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The quantization of the string defines a 1 + 1 dimensional quantum field theory in which the (D – 2) 
transverse coordinates ( )σiX  play the role of free scalar fields. The spatial coordinate of this field 

theory is 1σ , and it runs from 0 to π2 .  
The entropy and energy of such a quantum field theory can be calculated by standard means. The 
leading contribution for large energy is (setting the string length 1=Sl ) 

 
                                          ( )22 −= DTE π ,        ( )22 −= DTS π .    (2.94) 
 

Using  
2

2m
E =  and eliminating the temperature yields  ( ) mDS π22 −=   or, restoring the units, 

i.e. the string length Sl : 

                                                     ( ) SmDS lπ22 −= .    (2.95) 

 
Subleading corrections can also be calculated to give 
 

                                              ( ) ( )SS mcmDS ll log22 −−= π     (2.96) 

 
where c  is a positive constant. The entropy is the log of the density of states. Therefore the number 
of states with mass m  is 
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S
m mD
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l
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= π .    (2.97) 

 
The formula (2.97) is correct for the simplest bosonic string, but similar formulae exist for the 
various versions of superstring theory. 

Now let us compare the entropy of the single string with that of n  strings, each carrying mass 
n

m
. 

Call this entropy ( )mSn . Then  

                                                          ( ) ( )nmnSmSn /=     (2.98) 

 
or 
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                                       ( ) ( ) 






−−=
n

m
ncmDmS S

Sn

l
l log22 π .    (2.99) 

 
Obviously for large n  the single string is favored. For a given total mass, the statistically most 
likely state in free string theory is a single excited string. Thus it is expected that when the string 
coupled goes to zero, most of the black hole states will evolve into a single excited string. 
These observations allow us to estimate the entropy of a black hole. The assumptions are the 
following: 

- A black hole evolves into a single string in the limit  0→g  
- Adiabatically sending g  to zero is an isentropic process; the entropy of the final string is the 

same as that of the black hole 
- The entropy of a highly excited string of mass m  is of order  SmS l≈     (2.100) 

- At some points as 0→g  the black hole will male a transition to a string. The point at which 
this happens is when the horizon radius is of the order of the string scale. 

 
The string and the Planck length scales are related by 
 
                                                          222 −− = D

p
D
Sg ll .    (2.101) 

 
At some value of the coupling that depends on the mass of the black hole, the string length will 
exceed the Schwarzschild radius of the black hole. This is the point at which the transition from 
black hole to string occurs. 
Let us begin with a black hole of mass 0M  in a string theory with coupling constant 0g . The 

Schwarzschild radius is of order 

                                                        ( ) 3
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0 −≈ DS GMR ,    (2.102) 

 
and using 
                                                            22 −≈ D

SgG l     (2.103) 

 
we find 
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Thus for fixed 0g  if the mass is large enough, the horizon radius will be much bigger than Sl . Now 

start to decrease g . In general the mass will vary during an adiabatic process. Let us call the g -

dependent mass ( )gM . Note  

                                                           ( ) 00 MgM = .    (2.105) 

 
The entropy of a Schwarzschild black hole (in any dimension) is a function of the dimensionless 
variable PMl . Thus, as long as the system remains a black hole, 
 
                                                    ( ) =PgM l  constant.    (2.106) 
 

Since 2

2

−≈ D
SP gll  we can write equation (2.106) as 
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Now as 0→g  the ratio of the g -dependent horizon radius to the string scale decreases. From 
equation (2.80) it becomes of order unity at 
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which can be written 
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Combining equations (2.107) and (2.109) we find 
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As we continue to decrease the coupling, the weakly coupled string mass will not change 
significantly. Thus we see that a black hole of mass 0M  will evolve into a free string satisfying 

equation (2.110). But now we can compute the entropy of the free string. From equation (2.100) we 
find 
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This is a very pleasing result in that it agrees with the Bekenstein-Hawking entropy in equation 
(2.82). In this calculation the entropy is calculated as the microscopic entropy of fundamental 
strings. 
 
 
Appendix A 
 
 
 
 
FINAL TABLES  
 

In this tables we have the various fractional powers of Phi  ...61803399,1
2

15 =+=Φ   that we 

have obtained by the following expression: ( )×Φ∑ 7/n  fractions or numbers of the first line; for n  

included in the following numerical  interval:  [– 113; + 38] . For example:   
 

( ) ( )[ ] 6666667,2
3
4

2
3
4

)38196601,061803399,1(
3
4

6666667,2 7/147/7 =×=×+=×Φ+Φ= −  
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  *9/4 *4/9 *1/3 *1/2 *2/3 *3/4 
a0 0,20288237 0,04007553 0,03005665 0,04508497 0,06011330 0,06762746 
b0 0,21952671 0,04336330 0,03252248 0,04878371 0,06504495 0,07317557 
h0 0,23248251 0,04592247 0,03444185 0,05166278 0,06888371 0,07749417 
c1 0,25077641 0,04953608 0,03715206 0,05572809 0,07430412 0,08359214 
d1 0,26640125 0,05262247 0,03946685 0,05920028 0,07893370 0,08880042 
es1 0,28736419 0,05676330 0,04257247 0,06385871 0,08514495 0,09578806 
e1 0,30997668 0,06122996 0,04592247 0,06888371 0,09184494 0,10332556 
f1 0,32827058 0,06484357 0,04863268 0,07294902 0,09726536 0,10942353 

fis1 0,35520167 0,07016329 0,05262247 0,07893370 0,10524494 0,11840056 
gis1 0,37616461 0,07430412 0,05572809 0,08359214 0,11145618 0,12538820 
a1 0,40576475 0,08015106 0,06011330 0,09016994 0,12022659 0,13525492 
b1 0,43104628 0,08514495 0,06385871 0,09578806 0,12771742 0,14368209 
h1 0,46496503 0,09184494 0,06888371 0,10332556 0,13776741 0,15498834 
c2 0,50155281 0,09907216 0,07430412 0,11145618 0,14860824 0,16718427 
d2 0,53115295 0,10491910 0,07868933 0,11803399 0,15737865 0,17705098 
es2 0,57472838 0,11352659 0,08514495 0,12771742 0,17028989 0,19157613 
e2 0,60864712 0,12022659 0,09016994 0,13525492 0,18033989 0,20288237 
f2 0,65654115 0,12968714 0,09726536 0,14589803 0,19453071 0,21884705 

fis2 0,69744754 0,13776741 0,10332556 0,15498834 0,20665112 0,23248251 
gis2 0,75232922 0,14860824 0,11145618 0,16718427 0,22291236 0,25077641 
a2 0,81152949 0,16030212 0,12022659 0,18033989 0,24045318 0,27050983 
b2 0,85942353 0,16976267 0,12732200 0,19098301 0,25464401 0,28647451 
h2 0,92993005 0,18368989 0,13776741 0,20665112 0,27553483 0,30997668 
c3 0,98481173 0,19453071 0,14589803 0,21884705 0,29179607 0,32827058 
d3 1,06230590 0,20983820 0,15737865 0,23606798 0,31475730 0,35410197 
es3 1,12849382 0,22291236 0,16718427 0,25077641 0,33436854 0,37616461 
e3 1,21729424 0,24045318 0,18033989 0,27050983 0,36067977 0,40576475 
f3 1,31308230 0,25937428 0,19453071 0,29179607 0,38906142 0,43769410 

fis3 1,39057647 0,27468177 0,20601133 0,30901699 0,41202266 0,46352549 
gis3 1,50465843 0,29721648 0,22291236 0,33436854 0,44582472 0,50155281 
a3 1,59345885 0,31475730 0,23606798 0,35410197 0,47213595 0,53115295 
b3 1,71884705 0,33952534 0,25464401 0,38196601 0,50928802 0,57294902 
h3 1,82594136 0,36067977 0,27050983 0,40576475 0,54101966 0,60864712 
c4 1,96962346 0,38906142 0,29179607 0,43769410 0,58359214 0,65654115 
d4 2,12461180 0,41967640 0,31475730 0,47213595 0,62951461 0,70820393 
es4 2,25000000 0,44444444 0,33333333 0,50000000 0,66666667 0,75000000 
e4 2,43458848 0,48090637 0,36067977 0,54101966 0,72135955 0,81152949 
f4 2,57827058 0,50928802 0,38196601 0,57294902 0,76393202 0,85942353 

fis4 2,78115295 0,54936355 0,41202266 0,61803399 0,82404532 0,92705098 
gis4 2,95443518 0,58359214 0,43769410 0,65654115 0,87538820 0,98481173 
a4 3,18691770 0,62951461 0,47213595 0,70820393 0,94427191 1,06230590 
b4 3,43769410 0,67905069 0,50928802 0,76393202 1,01857603 1,14589803 
h4 3,64057647 0,71912622 0,53934466 0,80901699 1,07868933 1,21352549 
c5 3,93924691 0,77812285 0,58359214 0,87538820 1,16718427 1,31308230 
d5 4,17172942 0,82404532 0,61803399 0,92705098 1,23606798 1,39057647 



 28 

es5 4,50000000 0,88888889 0,66666667 1,00000000 1,33333333 1,50000000 
e5 4,78037654 0,94427191 0,70820393 1,06230590 1,41640786 1,59345885 
f5 5,15654115 1,01857603 0,76393202 1,14589803 1,52786405 1,71884705 

fis5 5,56230590 1,09872709 0,82404532 1,23606798 1,64809064 1,85410197 
gis5 5,89057647 1,16357066 0,87267800 1,30901699 1,74535599 1,96352549 
a5 6,37383539 1,25902921 0,94427191 1,41640786 1,88854382 2,12461180 
b5 6,75000000 1,33333333 1,00000000 1,50000000 2,00000000 2,25000000 
h5 7,28115295 1,43825243 1,07868933 1,61803399 2,15737865 2,42705098 
c6 7,73481173 1,52786405 1,14589803 1,71884705 2,29179607 2,57827058 
d6 8,34345885 1,64809064 1,23606798 1,85410197 2,47213595 2,78115295 
es6 9,00000000 1,77777778 1,33333333 2,00000000 2,66666667 3,00000000 
e6 9,53115295 1,88269688 1,41202266 2,11803399 2,82404532 3,17705098 
f6 10,31308230 2,03715206 1,52786405 2,29179607 3,05572809 3,43769410 

fis6 10,92172942 2,15737865 1,61803399 2,42705098 3,23606798 3,64057647 
gis 
6 11,78115295 2,32714132 1,74535599 2,61803399 3,49071198 3,92705098 
a6 12,51518827 2,47213595 1,85410197 2,78115295 3,70820393 4,17172942 
b6 13,50000000 2,66666667 2,00000000 3,00000000 4,00000000 4,50000000 
h6 14,56230590 2,87650487 2,15737865 3,23606798 4,31475730 4,85410197 
c7 15,42172942 3,04626754 2,28470066 3,42705098 4,56940131 5,14057647 
d7 16,68691770 3,29618127 2,47213595 3,70820393 4,94427191 5,56230590 
es7 17,67172942 3,49071198 2,61803399 3,92705098 5,23606798 5,89057647 
e7 19,06230590 3,76539376 2,82404532 4,23606798 5,64809064 6,35410197 
f7 20,25000000 4,00000000 3,00000000 4,50000000 6,00000000 6,75000000 

fis7 21,84345885 4,31475730 3,23606798 4,85410197 6,47213595 7,28115295 
gis7 23,56230590 4,65428265 3,49071198 5,23606798 6,98142397 7,85410197 
a7 24,95288237 4,92896442 3,69672331 5,54508497 7,39344663 8,31762746 
b7 27,00000000 5,33333333 4,00000000 6,00000000 8,00000000 9,00000000 
h7 28,59345885 5,64809064 4,23606798 6,35410197 8,47213595 9,53115295 
c8 30,84345885 6,09253508 4,56940131 6,85410197 9,13880262 10,28115295 

 
 
 
 
 
 
 
 
 
 
 
 
 

*4/3 *3/2 *2 *3 Phi 
0,12022659 0,13525492 0,18033989 0,27050983 0,14589803 
0,13008990 0,14635114 0,19513485 0,29270228 0,15786741 
0,13776741 0,15498834 0,20665112 0,30997668 0,16718427 
0,14860824 0,16718427 0,22291236 0,33436854 0,18033989 
0,15786741 0,17760084 0,23680111 0,35520167 0,19157613 
0,17028989 0,19157613 0,25543484 0,38315225 0,20665112 
0,18368989 0,20665112 0,27553483 0,41330224 0,22291236 
0,19453071 0,21884705 0,29179607 0,43769410 0,23606798 
0,21048988 0,23680111 0,31573482 0,47360223 0,25543484 
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0,22291236 0,25077641 0,33436854 0,50155281 0,27050983 
0,24045318 0,27050983 0,36067977 0,54101966 0,29179607 
0,25543484 0,28736419 0,38315225 0,57472838 0,30997668 
0,27553483 0,30997668 0,41330224 0,61995337 0,33436854 
0,29721648 0,33436854 0,44582472 0,66873708 0,36067977 
0,31475730 0,35410197 0,47213595 0,70820393 0,38196601 
0,34057978 0,38315225 0,51086967 0,76630451 0,41330224 
0,36067977 0,40576475 0,54101966 0,81152949 0,43769410 
0,38906142 0,43769410 0,58359214 0,87538820 0,47213595 
0,41330224 0,46496503 0,61995337 0,92993005 0,50155281 
0,44582472 0,50155281 0,66873708 1,00310562 0,54101966 
0,48090637 0,54101966 0,72135955 1,08203932 0,58359214 
0,50928802 0,57294902 0,76393202 1,14589803 0,61803399 
0,55106966 0,61995337 0,82660449 1,23990673 0,66873708 
0,58359214 0,65654115 0,87538820 1,31308230 0,70820393 
0,62951461 0,70820393 0,94427191 1,41640786 0,76393202 
0,66873708 0,75232922 1,00310562 1,50465843 0,81152949 
0,72135955 0,81152949 1,08203932 1,62305899 0,87538820 
0,77812285 0,87538820 1,16718427 1,75077641 0,94427191 
0,82404532 0,92705098 1,23606798 1,85410197 1,00000000 
0,89164944 1,00310562 1,33747416 2,00621124 1,08203932 
0,94427191 1,06230590 1,41640786 2,12461180 1,14589803 
1,01857603 1,14589803 1,52786405 2,29179607 1,23606798 
1,08203932 1,21729424 1,62305899 2,43458848 1,31308230 
1,16718427 1,31308230 1,75077641 2,62616461 1,41640786 
1,25902921 1,41640786 1,88854382 2,83281573 1,52786405 
1,33333333 1,50000000 2,00000000 3,00000000 1,61803399 
1,44271910 1,62305899 2,16407865 3,24611797 1,75077641 
1,52786405 1,71884705 2,29179607 3,43769410 1,85410197 
1,64809064 1,85410197 2,47213595 3,70820393 2,00000000 
1,75077641 1,96962346 2,62616461 3,93924691 2,12461180 
1,88854382 2,12461180 2,83281573 4,24922359 2,29179607 
2,03715206 2,29179607 3,05572809 4,58359214 2,47213595 
2,15737865 2,42705098 3,23606798 4,85410197 2,61803399 
2,33436854 2,62616461 3,50155281 5,25232922 2,83281573 
2,47213595 2,78115295 3,70820393 5,56230590 3,00000000 
2,66666667 3,00000000 4,00000000 6,00000000 3,23606798 
2,83281573 3,18691770 4,24922359 6,37383539 3,43769410 
3,05572809 3,43769410 4,58359214 6,87538820 3,70820393 
3,29618127 3,70820393 4,94427191 7,41640786 4,00000000 
3,49071198 3,92705098 5,23606798 7,85410197 4,23606798 
3,77708764 4,24922359 5,66563146 8,49844719 4,58359214 
4,00000000 4,50000000 6,00000000 9,00000000 4,85410197 
4,31475730 4,85410197 6,47213595 9,70820393 5,23606798 
4,58359214 5,15654115 6,87538820 10,31308230 5,56230590 
4,94427191 5,56230590 7,41640786 11,12461180 6,00000000 
5,33333333 6,00000000 8,00000000 12,00000000 6,47213595 
5,64809064 6,35410197 8,47213595 12,70820393 6,85410197 
6,11145618 6,87538820 9,16718427 13,75077641 7,41640786 
6,47213595 7,28115295 9,70820393 14,56230590 7,85410197 
6,98142397 7,85410197 10,47213595 15,70820393 8,47213595 
7,41640786 8,34345885 11,12461180 16,68691770 9,00000000 
8,00000000 9,00000000 12,00000000 18,00000000 9,70820393 
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8,62951461 9,70820393 12,94427191 19,41640786 10,47213595 
9,13880262 10,28115295 13,70820393 20,56230590 11,09016994 
9,88854382 11,12461180 14,83281573 22,24922359 12,00000000 

10,47213595 11,78115295 15,70820393 23,56230590 12,70820393 
11,29618127 12,70820393 16,94427191 25,41640786 13,70820393 
12,00000000 13,50000000 18,00000000 27,00000000 14,56230590 
12,94427191 14,56230590 19,41640786 29,12461180 15,70820393 
13,96284794 15,70820393 20,94427191 31,41640786 16,94427191 
14,78689326 16,63525492 22,18033989 33,27050983 17,94427191 
16,00000000 18,00000000 24,00000000 36,00000000 19,41640786 
16,94427191 19,06230590 25,41640786 38,12461180 20,56230590 
18,27760524 20,56230590 27,41640786 41,12461180 22,18033989 
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