The mathematical theory of black holes. Mathemtical connections with some sectors of
risg Theory and Number Theory

Michele Nardellt?

'Dipartimento di Scienze della Terra
Universita degli StudiNapoli Federico Il, Largo S. Marcellino, 10
80138 Napoli, Italy

2 Dipartimento di Matematica ed Applicazioni “R. Cagupoli”
Universita degli Studi di Napoli “Ferito 11" — Polo delle Scienze e delle Tecnologie
Monte S. Angeloa\Cintia (Fuorigrotta), 80126 Napoli, Italy

Abstract

In this paper we have described in Bection 1 some equations concerning the stellar evolution
and their stability. In th&ection 2 we have described some equations concerningettterpations

of Schwarschild black-hole, the Reissner-Nordstemtution and the Schwarzschild geometry in D
=d + 1 dimensions. Furthermore, in these sectimeshave showed the mathematical connections
with some sectors of Number Theory, principallyhwiihe Ramanujan’s modular equations and the
aurea ratio (or golden ratio)

1. On some equations concerning the stellar evoluticand their stability. [1]

The success of the quantum theory may be tracédddasic factsfirst, the Bohr radius of the
ground state of the hydrogen atom, namely,

h2

A 05x10%cm, (1.1)

where h is Planck’s constanty is the mass of the electron armds its charge, provides a correct
measure of atomic dimensions; a®tondthe reciprocal of Sommerfeld’s fine-structure stamt,

hc
27E°

=137, (1.2)

gives the maximum positive charge of the centralleus that will allow a stable electron-orbit
around it.

With regard the stellar structure and stellar etrofy the following combination of the dimensions
of a mass provides a correct measure of stellas@sas

3/2
[%C} %mgzo, (1.3)
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whereG is the constant of gravitation andl is the mass of the hydrogen atom.
The radiation pressure in the equilibrium of a gtagiven from the following equation:

—_ k ) 1 1/3 4/3 _ 4/3
P=|| — 3 P 0*2=c(B)o*?®. (1.4
H,UHJ a g } ( ) 4

There is a general theorem (Chandrasekhar, 1936hwlates that the pressufe, at the centre of
a star of a mas$ in hydrostatic equilibrium in which the densitg(r), at a point at a radial

distance,r , from the centre does not exceed the mean densfny), interior to the same point,
must satisfy the inequality,

1/3 1/3
%G(gﬂj ,54/3M 2/3 < F% S%G(gﬂj p:lSM 2/3, (15)

where p denotes the mean density of the star gndts density at the centre.

The right-hand side of inequality (1.5) togethethwP given by eq. (1.4), yields, for the stable
existence of stars, the condition,

(a2 o
) a B 6

ool T 2] e
T uH ) a B G

where in the foregoing inequalitiegd. is a value of 8 at the centre of the star. Now Stefan’s
constant,a, by virtue of Planck’s law, has the value

or, equivalently,

_ 8mk*

a—m. (1.8)

Inserting this value in the equality (1.7) we obtain

4 12 1/2 3/2 3/2

We observe that the inequality (1.9) has isolateddombination (1.3) of natural constants of the
dimensions of a mass; by inserting its numericalezgiven in eq. (1.3), we obtain the inequality,

, ﬂ: 1/2
U M(—l_ﬂ j >5480. (1.10)
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This inequality provides an upper limit (b— ﬁc) for a star of a given mass. Thus,

1-B8.<1-3., (1.11)

where (1—[?D) is uniquely determined by the makt of the star and the mean molecular weight,
U, by the quartic equation,

ey =5,4{1;T'BD] . (1.12)

4
O

We note that the following values:

1/3 1/2 [
(7—67) =0,80599= 0,80901699 (%j =1381976=1,39057647 21—]7335 =018736~ 0183689
. . . . B+l
are well connected with various fractional powers bPhi ®= , 1,61803399.. (see

Appendix A)

In a completely degenerate electron gas all thdadla parts of the phase space, with momenta
less than a certain “threshold” valup, are occupied consistently with the Pauli exclusion

principle. If n(p)dp denotes the number of electrons, per unit volunetweenp and p +dp,
then the assumption of complete degeneracy is alpnito the assertion

87
n(p)="5p* (psm)  np)=0 (p>p) (1.13)
The value of the threshold momentum,, is determined by the normalization condition

87 3 (114

n=],"n(p)dp=_ - 5

where n denotes the total number of electrons per unitmel. For the distribution given by (1.13),
the pressurgy and the kinetic energf,,, of the electrons (per unit volume), are given by

8n o
P=_7 O” piv,dp (1.15)

and
B = o2 [* pT,dp,  (L16)

wherev, andT, are the velocity and the kinetic energy of antetechaving a momentunp . If

we set
v,=p/m and T =p’/2m, (1.17)

appropriate for non-relativistic mechanics, in €4s15) and (1.16), we find



o8 . 1(3Y"Pm .,
I:)_15h3'm pO_ZO(nj m (1.18)

and
st . 3(3)Y°n .,
E =—" p’="|2| p%, (1.19
“n = 2 0nem PP 40(77) m (1.19)

Thence, we obtain the following expressions:

2/3 2
p_S5n Popsvpdpzﬂpgzi(ij %nm; (1.18Db)

3n do 15h°m 20\ 77
87 m 81 o 3(3Y"n .,
Ekin _F o p Tpdp _m Po _E(Z_Tj En . (119b)

We note that the following values:

872 1 3 2/3 3 3 2/3
— =8,37758= 834345, —(—j =0,04848610,04863 —(—j =0,07272910,07294;
3 20\ 7T 40\ i1

J5+1

are well connected with various fractional powers b Phi <D=T:],61803399.. (see

Appendix A)

According to the expression for the pressure glweerq. (1.18), we have the relation

P=K,0*® where K =i[§jmh—2 (1.20)
! Yooolzm) mgH)PPTOT

where £, is the mean molecular weight per electron. Wereanite the expression also as follows:

1 3 2/3 h2

Thus, already for a degenerate star of solar maisis (7, = 2) the central density is419x10° g
cm®; and this density corresponds to a threshold mamerp, = 129mc and a velocity which is

063c . Consequently, the equation of state must bdifrad to take into account the effects of
special relativity. And this is easily done by irtsgg in egs. (1.15) and (1.16) the relations,

YT miL+ p27m2C2)1/2 and T,= mC2|.(1+ p*/mic? | _11' (1.21)

in place of the non-relativistic relations (1.1We find that the resulting equation of state can be
expressed, parametrically, in the form



P=Af(x) and p=Bx, (1.22)

where

45
A= B

_ 8rm'cyH
3n®

(1.23)

and
£(x) = x(x2 +1*(2x? - 3) + 3sinh™x.  (1.24)

Thence,P can be rewritten also as follows:

4.5

p=" x(x? +1)'*(2x2 - 3)+ 3sinh ™ x.  (1.24b)

And similarly
Eq =Ag(x), (1.25)

o(x) =8¢+ -1~ £(x). (1.26)

Thence, the eq. (1.25) can be rewritten also st

mc®

Eon =5 8x?|[x? +1)"7 -1] - x(x +1*(2x ~3)+ 3sintx.  (1.26b)

According to egs. (1.22) and (1.23), the presspmaximates the relation (1.20) for low enough
electron concentrationfx <<1); but for increasing electron concentratiops>>1), the pressure

tends to
1/3
%GJ hen*®.  (1.27)

This limiting form of relation can be obtained vesiynply by settingv, =c in eq. (1.15); then

P=8_7I: Po 3 _271: 4.

37 Jo p p—ﬁpo. (1.28)

and the elimination ofp, with the aid of eq. (1.14) directly leads to eén2{). The relation between
P and p corresponding to the limiting form (1.28) is

13" hc

Thence, the eq. (1.28) can be rewritten also dsvist



oo 8T 0 2T 1(3)“3 he a5
7T

== =5t == —_— . (1.29
3h3 0 p p 3h3 pO 8 (/JeH)4/3 ( )

We note that the following values:

1/3
}(Ej =0,12309310,12538820 and 2?77 =2,094395= 21246118Q

8\ 7

are well connected with various fractional powers bPhi &= =161803399. (see

J5+1
2

Appendix A)

In this limit, the configuration is an Emden pobype of index 3. And it is well known that when the
polytropic index is 3, the mass of the resultingiblgrium configuration is uniquely determined by
the constant of proportionality, , in the pressure-density relation. We have acogiy

K 3/2 hC 3/2 1
M, = 4n(—2j (2018 = 0.197(—j == 576120, (1.30)
76 G) (uH)

We note that the value 5,76 is well connected witlhe mean of the following values: 5,562

J5+1

and 5,890 that is equal to 5,726 that is a fracti@l powers of Phi ® ZT =1,61803399.
(see Appendix A)

It is clear from general considerations that thecéxmass-radius relation for the degenerate
configurations must provide an upper limit to thas® of such configurations given by eq. (1.30);
and further, that the mean density of the configonamust tend to infinity, while the radius tends

to zero, andM - M, .

It is more convenient to express the electron piresis terms ofp and S, defined in the manner

pe=—k pT:—'Be EaT“, (1.31)

HUH 1-4.3

where p, now denotes the electron pressure. Then, analdgac (1.4), we can write

_ K 4§1_,3e - 4/3
pe_“ueHJ a A } o 332)

Comparing this with eq. (1.29), we conclude that if

4 1/3 13
k 31_,8 4/3 1(3) hC
d e >K,==|—| —=, (1.33
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the pressureg, given by the classical perfect-gas equation déstall be greater than that given by
the equation if degeneracy were to prevail, noy éoit the prescribegp and T, but for all p and

T having the samgs,. Inserting fora its value given in eq. (1.8), we find that thequoality (1.33)
reduces to

9601- 4,
T Pes1, (1.34)

T

e

or, equivalently
1-5.>00921=1-45,. (1.35)

We note that the valueg—60 =9,85534[19,88854382 and 0,0921C 0,09184494

7
J5+1

are well connected with various fractional powers b Phi <D=T:],61803399.. (see

Appendix A)

On the standard model, the fractigh(=gas pressure/total pressure) is a constantghratstar. On
this assumption, the star is a polytrope of indexs 3s apparent from eq. (1.4); and, in conseqyence

we have the relation
3/2
M = 4{M} (2018 (1.36)
G

where C(8) is defined in eq. (1.4). Equation (1.36) provideguartic equation fo3 analogous to
eq. (1.12) forg.. Equation (1.36) forf = 5, gives

(e 1 _
M = O.197,6’w3’2[—j —5=665u70=R. (1.37)
G) ()

We note that the value 0,197 is well connected Wit0,19513485 and that 6,65 is well
connected with the mean of the following values: ,47213 and 6,87538. It is equal to 6,6737

J5+1

that is a fractional powers of Phi ® = — =161803399. (see Appendix A)

By virtue of the inequality (1.5), the maximum aahfpressure attainable in a star must be less than
that provided by the degenerate equation of ssatégng as

1/3 1/3
le(ﬂnj M2’3<K2:5(§j _he (139
23 8\mm) (uH)

or, equivalently

3 (he)? 1 ,
< 2| = =1744720. (1.39
1677[Gj (L H) L7k (1.39)



Thence, we have the following connection betweer(88) and eq. (1.39):

1/3 1/3 3/2
EG(E,T) M 22 <K, :l(éj _he M <i(h—cj L =174420. (1.39b)
213 8lm) (uH) 167G ) (4 H)

We conclude that there can be no surprises in tbkion of stars of mass less than @1 8if
U, =2). The end stage in the evolution of such starsocey be that of the white dwarfs.

1/3
We note that the values(g ﬂj =161199001618 and 174[ 174535 are well connected with

J5+1

various fractional powers of Phi ® = - =161803399. (see Appendix A)

In the framework of the Newtonian theory of gratrda, the stability for radial perturbations
depends only on an average value of the adiabgbiorent, ", which is the ratio of the fractional

Lagrangian changes in the pressure and in thetgiengerienced by a fluid element following the
motion; thus,
AP/P=T,Aplp. (1.40)

And the Newtonian criterion for stability is

=" ne)PE)am()+ [ p(r)dm(r)>g. (1.41)

If T, <g, dynamical instability of a global character walhsue with an e-folding time measured

by the time taken by a sound wave to travel froemdéntre to the surface. When one examines the
same problem in the framework of the general thedmglativity, one finds that, again, the stailit
depends on an average valuelof but contrary to the Newtonian result, the st&piiow depends

on the radius of the star as well. Thus, one fihds no matter how high, may be, instability will
set in provided the radius is less than a certatardhinate multiple of the Schwarzschild radius,

R =2GM/c*. (1.42)

Thus, if for the sake of simplicity, we assume thatis a constant through the star and equal to
5/3, then the star will become dynamically unstdbleradial perturbations, iR < 24R;. And
further, if I, - o, instability will set in for allR <(9/8)R,. The radius(9/8)R, defines, in fact,

the minimum radius which any gravitating mass, ydrbstatic equilibrium, can have in the
framework of general relativity. It follows fromehequations governing radial oscillations of a,star
in a first post-Newtonian approximation to the gahéheory of relativity, that instability fro raali
perturbations will set in for all

K 2GM

rL-4/13 ¢

. (1.43)

where K is a constant which depends on the entire marclensity and pressure in the equilibrium
configuration in the Newtonian framework. It is ftinis reason that we describe the instability as
global. Thus, for a polytrope of index, the value of the constant is given by
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K:5_n{ 11 n J‘ﬁg( j{ng_l_l}’ (144)
(n+1)&e.]

where 6 is the Lane-Emden function in its standard normagion (@= 1at {=0), & is the
dimensionless radial coordinatg, defines the boundary of the polytrope (whére ) a@d &' is
the derivative ofg at ¢, . If we setn= 2in the eq. (1.44), we obtain:

1l 6 & (doY
K==|—2> ("9 99| s2q5+1|. (1.44b
G{é“lezlsj() H(dfjf ‘q} A

We note that 6 is %><24 and 24 is related to the physical vibrations of tb superstring by the

following Ramanujan’s modular equation:

© COSTEXW __ 2

e dx| a5
antilog™ conszhnx 1:\;2
e “ g (itw)

(5]

Thence, we have the following possible mathematicabnnection:

r COS7EXW oW iy
0 coshrx V142
712

e " (itw)

] A e

4

antilog

In the following Table, we have the values Kf for different polytropic indices. It should be
particularly noted thatK increases without limit forn - 5and the configuration becomes
increasingly centrally condensed.



n K

0 0.452381
.01 0.565382
51 0.645063
.02 0.751296
.52 0.900302
.03 1.12447
.23 1.28503
.53 1.49953
.04 2.25338
.54 4.5303
.94 22.906
.98 45.94

It has been possible to show that for- , tfe asymptotic behaviour & is given by
K - 2.3056/(5-n); (1.45)

and, further, that along the polytropic sequenice,driterion for instability (1.43) can be exprekse
alternatively in the form

1/3
(,0 2GM 1 e
R<0.2264 == Ip=10°). (1.46

pj ¢ I,-4/3 o1 ). @as)

We note that the value 0,2264 is well connected WiD,229 that is a fractional powers of Phi

¢ = %L =1,61803399.

Furthermore, the values of the precedent table, arewvell connected with the following
fractional powers of Phi (see Appendix A):

0,445824; 0,572949; 0,629514; 0,752329;91%89; 1,128493; 1,259029; 1,500000;
2,250000; 4,500000; 22,180339; 41,1246 +44.85

In this section we have considered only the rastris on the last stages of stellar evolution that
follow from the existence of an upper limit to tmass of completely degenerate configurations and
from the instabilities of relativistic origin. Frothese and related considerations, the conclusion i
inescapable thablack holeswill form as one of the natural end products @fllat evolution of
massive stars; and further that they must existaige numbers in the present astronomical
universe.

10



2. On some equations concerning the perturbations ofcBwarzschild black-hole and the
Reissner-Nordstrom solution. [2]

With the reduction of the third-order system of fbkowing equations

N, =aN+bL+cX, (2.1) L,r—(a—%+vjN+(b - jL+cX (2.2)

E
;
X,r=—(a—%+\(,jN—(b+%—2\( j (c+— j (2.3)

to the single second-order the following equation

3M(r-2Mm) —nr2 +4Mnr +6M 2 3Mn _
r(nr+3M) V, +3M 2(nr +3M ) V+(nr+3M)3[(2+n)r M](L+X)+
nr> —3Mnr —3M? 2

“r(r-2M)nr+3m Yy

Z,(r;?r = (r -2M )V,r,r +V,r +

r=5M)L+(r-3M)X], (2.4)

for ), it is clear that the solution for,X and N will require a further quadrature. Thus,
rewriting the following equation

L, +(%—v‘,jL :{X’r +(%—\(rij|, (2.5)

i(rze‘VL):—nr%(re‘v\/) (2.6)

in the form

and replacing/ by

v=" zZ0+ L 27

we obtain the equation

(1*%%(“6“):‘%%[e‘“(nr+3M)z<+>]- (2.8)

This equation yields the integral relation

nr

rieL = —jm% e (nr+3Mm )Z(+)]dr , (2.9)

or, after an integration by parts

11



V

z%dr. (2.10)
nr +3M

e'L=-nrevz® +3Mnj

Thence, we have the following expression:

(1+ljd -nre 'zt +amn[—=__zdr | = - % d[e (r+3m)z¢]. 2:100)
3M ) dr nr +3M

3M
Defining
e_v (+)
®=ne'[—"—dr, (2.11)
nr+3M
we have the solution
n 3M

L= —?z“) +50. (212)

With this solution forL , equation (2.7) gives

X :?(z“) +0). (2.13)

As a consequence of these solutionslfoand X ,

L+ X :riz(nr +3M )b . (2.14)

To obtain the solution foN , we take the following equation

_ _ _ 2
z(:)=[1—mjzr=(r—2M)\/r+3M(r 2|v|)V nr? - 3nMr —3M (L+X), (215)
o ro)o " r(or+3m) (nr+3Mm Y

and substitute for\(r(= X, /n) on the right-hand side from the following equatio

nr +3M M +M2+02r4

X :_r(r—ZM)N{r —12M Cr(r-2m) r(r—ZM)Z}(IﬂLX)+ rr—]Jrl

L. (216)

In this manner, we obtain

1 nr +3M 1 M M?+g%r? n+1
Zm:ﬁ(r_ZM){_r(r—zM)N{r—2|v| _r(r—2M)+r(r—2M)Z}<(L+x)+r—2M L}+

3M(r-2M)_ . nr*-3Mnr-3m?2
+ X +
nr(nr +3M) (nr+3m)?

(L+X). (2.17)

Simplifying this last equation and substituting forand L + X their solutions (2.12) and (2.13),
we find:

12



2 2 2.4
N=-——" _zb_- N oM +3Mn+n(n+2)r [z + m-Mror 2;. (2.18)
nr+3M " (nr+3M P r-2M Jr
For the eq. (2.11), we obtain the following express
2 2 2.4 -v— (+)
N=-——1 70 ” 2 oM +3Mn+n(n+2)r [z + m-Mror iz nevj °Z _r
nr +3M (nr+3M P r r-2m Jr nr +3M
(2.18b)

This completes the formal solution of the basicatiguns.

Quasi-normal modes are defined as solutions op#raurbation equations, belonging to complex
characteristics-frequencies and satisfying the daonnconditions appropriate for purely outgoing
waves at infinity and purely ingoing waves at tlogifon. The problem, then, is to seek solutions of

the equations governina(*) which will satisfy the boundary conditions
z® L AD(g)e™ (r, » +w); z® L A¥(g)et ™ (1, - —w). (2.19)

We observe that the characteristic frequenaesre the same foz?) and z"; for, if o is a
characteristic frequency and"”) (o) is the solution belonging to it, then the solutiah’ (o)

derived fromz) (o) in accordance with the following relations

1212 + 2)+120M |2 = _ 1212 +2)+ 72M ZF(;ﬁrAW) z0 +12mz0)

;. (2.20a)

—

122 +2)-12i0m |20 = _;ﬂ(yz +2)+72M ZF(;ﬂrAW)—ZH ~12Mz);  (2.20b)

will satisfy the boundary conditions (2.19) with

M) = A(o) W +2)-12 oM
AVla)=A (al,uz(,u2+2)+1ZOM'

(2.21)

It will suffice, then, to consider only the equatigoverningz(‘). Letting
70 = exp(i | rmgajrm) . (2.22)
we find that the equation we have to solve is
ig +o?-¢-v=0; (2.23)
and the appropriate boundary conditions are

¢ -0 asry—-+o and ¢ - +0 asr, - —o. (2.24)

13



Furthermore, we can rewrite the eq. (2.20a) as\idl

212 + 2)+120M |2 = {uz (12 +2)+72m ng(ﬂzfmﬂ(exp{i [ ”¢er]) +12Mz0). (2.24b)

Solutions of eq. (2.23), satisfying the boundargpditions (2.24), exist only wheg assumes one
of a discrete set of values. A useful identity, evhfollows from integrating equation (2.23) and
making use of the boundary conditions (2.24), is

—2ia+j_:°(az—;oz)olrmzj_:’:’v(-)olD 2i/| (,u +$j (2.25)

With regard the complex characteristic-frequencyo belonging to the quasi-normal modes of
the Schwarzschild black-hole ¢ is expressed in the unit(ZM )_1) for value of | =4, we have
the following result:

| =4, 2Mo =1,61835+018832. (2.26)

\/_ +1

We note that the value 1,61835 is very near to th& =———=1,61803398.., thence to the

value of the golden ratio.
The Reissner-Nordstrom solution

With regard the Reissner-Nordstrom solution, thduotion of the equations governing the polar
perturbations of the Schwarzschild black-hole talfs equation, it is clear that the reducibilitf
a system of equations of order five to the patheffollowing equations

a

/\2H§+)=r5[UH§)+W( 3MHL) +2QH )|, A2H! %[UH )+ W(+2Q M +3vHM),

must be the result of the system allowing a spesmhition. Xanthopoulos has discovered that the
present system of equations

1 2 "
Boszﬁ(rsza),r = st,r +?Bzal rie? e” By, _ZQD[ZT_l l +1)\/]_| I +1 Bss.
+
(rzeszos),r +r eZVB02 +0. ZVB23 — 2Q2 er L
and
1 2
N, =aN+bL+c(X-B,), L, —+v N+ b==-v, L+c(x—|323)—7823,

X, = (a——+vj ( +1ooy j (c+%—yrj(x—823)+803,



allows the special solution

N© = r‘ze{M —L(M 2-Q%+ er“)— 2Q—Dz} L® =r3e'(3Mmr -4Q?), X© =ner
= A 0 ) = 0/ - ’
BY =-2Qr %", and BY=2Q%%e(2Q?+r?-3Mr). (2.27)

The completion of the solution for the remainindighfunctions with the aid of the special solution
(2.27) is relatively straightforward. Xanthopoufosds

2V

N:N(°)¢+2n; H) - ;(nrH FQuHL ) [ (@-2nr -3m) - (n+][rH ) +QuH )
@2
L=L0 )cb—iz(nrH +QuHM), (2.29) X:X(°)¢+$H§+), (2.30)

2
B =BI0- 2N, 231) By, =BY0-Hl) 22 (Hl) 4 Quf), (232

2 r.2
where

= J'(nng*) + QE/,II-|1(+))%_VdI‘ . (2.33)

Thence, the egs. (2.31) and (2.32) can be writtemas follows:

B, = B[ (nH{) + QuY)E ar -1, 234)

By, = BY [ (nrH{' +QDuH1) Cdr - Qrg” fr 2rQw(nrH +QuHM). (2.35)

As in the case of the Schwarzschild perturbatitmes, potentlals\/ (i =12), associated with the
polar and the axial perturbations, are related imanner which guarantees the equality of the
reflexion and the transmission coefficients deteediby the equations governiligﬁi). Thus, it can

be verified, the potentials are, in fact, given by

=183 '+,8,f, +4f,  (2.36)

where

=u*i#+2), B=q;, and fFT(f) (hj=12i#]), (2.37)

thence, the eq. (2.36) can be rewritten also dawsl

15



2
d A A A
vE =4q — + ?~(—) + 122+ 2 . (2.37

The squtionsZiM and Zi(’) of the respective equations are, therefore, rliat¢he manner

. 29°A . daz® o
212 +2)+ 2o, |2 =| 12 (1? + 2) + j z¥ +2q i,j=12i#j). (2.38
[ +2)x 20 [2 =| 2 +2) S a)[F T ar (Lj=12i#]j). (239
It is the existence of this relation which guarasténe equality of the reflexion and the transroissi
coefficients determined by the wave equations gumgrz*) and z"),
In view of the relation (2.38) between the solusidselonging to axial and polar perturbations, the
characteristic frequencies will be the same Z&) and Zi(’). It should also be noticed that there is

no quasi-normal mode which is purely electromagneti purely gravitational: any quasi-normal
mode of oscillation will be accompanied by the esiws of both electromagnetic and gravitational
radiation in accordance with the following equation

H,=Z cosy -Z,siny,; H,=Z,cogy+Zsing, (2.39)

where the amplitudesi, and H, of the electromagnetic and gravitational (wave)illisturbances
(of some specified frequencies) are related tduhetion Z, and Z,.

With regard the complex characteristic frequencieso; and o, (belonging to Zl(i) and Zé*)) of
the quasi-normal modes for a range of values d@, and |, we obtain, for Z, and Q,= 09 and

J5-1
2

| =2, the value 0.61939 that is very near to the= =0,61803398.., thence to the value

of the golden section.

The considerations, relative to the stability ofe tfschwarzschild black-hole to external
perturbations apply, quite literally, to the Remshordstrom black-hole since the only fact
relevant to those considerations was that the patdrarriers, external to the event horizon, & r
and positive; and stability follows from this fact.

While the equations governingi(*) remain formally unaltered, the potential barrie‘o‘é?), are
negative in the intervall_ <r <r,, and in the associated rangergf namely + o >r,> - ; they
are in fact potential wells rather than potentiairlers. Thus, the equation now governiﬁigj) IS,
for example,

2 '(—) A 2
L roiz = —Q{(uz +2) -q, +4—Qﬂzﬁ (,1=12i%]) and (1 <1 <1, 40> 1,> ),
S r r
(2.40)
where
1 1 r.—r r.—r
rh=r+—Iglr, -r|———Igjr-r_| , (2.41 kK,=——=, and k. =—=. (2.42
O 2K+ g| + | 2K_ g| —| ( ) 2r+2 2 _2 ( )

In view of the relation (2.38) between the solusiphelonging to axial and polar perturbations, it
will, again, suffice to restrict our consideratitm equation (2.40); and for convenience, we shall
suppress the distinguishing superscript. An impartaonsequence of the fact that we are now

16



concerned with a short-range one-dimensional palentll, is that equation (2.40) will allow a
finite number of discrete, non-degenerate, bouatbst

o=tio, [j=12n=12..m]. (2.43)
The boundary conditions we must now impose are

Z(r) - Alo)e™™ +B(o)e"™ (r -~ r.+0;r, - +o)

NG (r -1, -0r, » —»). (2.44)

The coefficientsA(g) and B(o) in equation (2.44) are related to the reflexiod #re transmission
amplitudes,

Alo)= = B(o)= Rlo) _ Rl(-g) (2.45)

so that
|Al0) -B(e) =1. (2.46)

With regard theamplification factors |A(0)|2, appropriate for the potentie\}’l(i) and \/2(1) for

Q%= 075M?, we observe thth(a)f, and, therefore, aIs|cB(a)|2, tend to finite limits ass - 0

This fact has its origin in the existence of boustates of zero energy in the potential wellsand
V,. Furthermore, we note that for g = 030, for V, we have the value 1.6168, while fov, we
have the value 1.6286. It is easy note that thesealues are very near to the

J5+1
2

b=

=1,61803398., thence to the value of the golden ratio.

In analyzing the radiation arriving at the Caucloyiton atr_, we must distinguish the edgé&C

and EF in the Penrose diagram. For this reason, we medtwe time-dependence&”, of the
solutions; and remembering that in the interval<r <r,,

u=ry+t and v=ry—-t, (2.47)
we write, in place of equation (2.44),
Z(rt) - e +[Alo)-1)e’ + B(o)e"™™. (2.48)
If we now suppose that the flux of radiation emeggirom D'C 'is Z(v), then

Z(0)= %T [TZ()edv. (2.49)

This flux disperses in the domain between the twozibns and at the Cauchy horizon it is
determined by

Z(r,t) = X(V)+Y(u) (v - oju » ®), (2.50)

where
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X(v)=["z(o)Al0)-1"*da, (2.51)
and
Y(u)=["z(0)B(0)e"do. (252)
Thence, the eq. (2.50) can be rewritten also swsl
Z(r,t) - [ z(o)Ao)-1e"*do + [ Z(0)B(o)e do . (2.52b)

However, our interest is not iX (v) or Y(u), per se, but rather in quantities related to thafa.are

primarily interested in the radiation an obsenaxzeives at the instant of his (or her) crossing the
Cauchy horizon. To evaluate this quantity, we cdersa freely falling observer following a radial
geodesic. The four-velocity, of the observer is given by the following equasio

2 2 2
(drj +A(1+LJ:EZ; E:Er_; and %:L where A:rZ—ZMr+Q§,

dr r2 r2 dr A r2’

for L =0; thus,

r2 r2 A 1/2
U'=—E, U'ﬂz—(Ez——zj , and U?=U’= 0 (2.53)
A A r

where, consistently with the time-like charactertled coordinater in the intervalr_<r <r,, we

have chosen the positive square-root in the exjpressr U ™. Also, it should be noted that we are
allowed to assign negative values far since the coordinate is space-like in the same interval.
With the prevalent radiation-field expressed imterof Z(r.,t), a measure of the flux of radiation,
¥ , received by the freely falling observer is givmn

| r , A
9=U'z,j=z{|§zyt+ (E - jz} (2.54)

r?
We have seen that as we approach the Cauchy hdqoZzeqguations (2.50) — (2.52)),

Z(rt) - X(t-r)+Y(t+r). (2.55)

Accordingly,
Z, > X_,+Y, and Z - -X_, +Y,; (2.56)

and the expression (2.54) f¢r becomes
2
g %{X’_Vle— (EZ—%HWU{B [Ez—r—Azﬂ}. (2.57)
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On EF, v remains finite whileu - o ; therefore,

-+ ,u-2r - —ilg|r -r| as r~r on EF. (2.58)
K

Also for E > 0, the term inX _, remains finite while the term iM; has a divergent factor (namely,

1/A). Hence,

2
Fe > _rzr_r EY, " (u- o onEF). (2.59)

On EC', u remains finite whilev = o« ; therefore,

L—-t,v-2r, - —Kilg|r -r| asr-r on EC'. (2.60)

And for E< O, the term inY, remains finite while the term iX _, has the divergent factor.

Hence,

2r? v ,
" [E|X _.€ (v - 0 on EC). (2.61)

Fo -+

We conclude from the equations (2.59) and (2.64) tiine divergence, or otherwise, of the received
fluxes on the Cauchy horizon, BF and EC |, depend on

_ [ Rj__a i ou . —_ [ 1 —iov
Yu_j_w.a ( )Z(a)e do; (2.62) and X,—v-f_m'”{m‘l}z(a)e do, (2.63)

T (_ 0)

where we have substituted fé{c) and B(o) from equation (2.45). Furthermore, we can rewrite
the eq. (2.57) as follows:

S e e L N = R |

(2.63Db)

In particular, if we wish to evaluate the infinitketegrals, as is naturally suggested, by contour
integration, closing the contour appropriately lve upper half-plane and in the lower half-plane,
then we need to specify the domains of analytiotyA(o) and B(c), as defined in equations

(2.45). Returning then to the definitions Afo) and B(c), we can write

8(0)=RE) - 1 1¢ (o)t (ko) (269)

and

[N
=

[ fl(x’_a)’ fz (X’_J)] , (2.65)

2i

Q
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where for convenience, we have writtenin place ofr, and f,(x,+0), and f,(x,+o) are solutions
of the one-dimensional wave equations which sattsfyboundary conditions

Fiox

f(xt0) - €™ x - +0; and  f(xto) - €™ x - . (2.66)

Also f,(x,~0) satisfies the integral equation

( (x-0)=e"™ + jfmwv ()1, (x -o)dx.  (2.67)

The corresponding integral equation satisfiedft()x,ia) is

f (xF0) = o - L‘”Wv (¥)(¢ Fo)x. (2.68)

Adapting a more general investigation of Hartle &ikins to the simpler circumstances of our
present problem, we can determine the domains alyégity of the functions, f,(x,—g) and

fl(x,ta), in the complexo -plane, by solving the Volterra integral-equatig@<$7) and (2.68) by

successive iterations. Thus, considering equaodi7§, we may express its solution as a series in
the form

f,(x—o)=e"™+ i £ (x-0), (2.69)

where

-0)= [ ox SN ()9 o). 270

By this last recurrence relation,

£ (x,~0) I dxlj dx.. I“d ﬂ%v(x)e’mﬂ (2.71)

where x, = X; or, after some rearrangement,

Xo

f()x 0—

[ |‘l et -v(x)}. @272
Thence, the eq. (2.69) can be rewritten also swel

f,(x,—o)=e'*+ i

n=1

Lo [l -x ). @72m)

Since

V(x) - constante®* (x - -w), (2.73)
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it is manifest that each of the multiplicands in7@ tends to zero, exponentially, far— —co for
all
Imo>-k,. (2.74)

In view of the asymptotic behaviour (2.73) ﬂdr(x), we may, compatible with this behaviour,
expect a representation ¥(x) for x< 0, in the manner of a Laplace transform, by

V()= duw(ue”. (275)

where ¥(u) includes J -functions at various locations, i.e)(u) is a distribution in the technical
sense. With the foregoing representation k), the first iterate,f(x,—c), of the solution for
f,(x,—o), becomes

t0(x,-0) jdxl[ez'””l 1]j (e (276)
or, inverting the order of the integrations, we éav

£9(x,-o) LK dev(p)e | dx[e27t%) —qler ) (2.77)

ZIJ

After effecting the integration ovex, , we are left with

—iox o {l)
f9(x-0)=e 2K+dﬂﬁe‘“. (2.78)

From this last expression, it is evident tkfé]t)(x,—a) has singularities along the negative imaginary
axis beginning atimo = —«, . Thence, the eq. (2.76) can be rewritten alsolé®As:

f()(x_a)_ez_ dxl[ezlo—xxl 1” d,u‘U )e/’xl—e"’xj' d,u'u(lu(—’uz))e‘“. (2.78b)

Entropy of strings and black holes. Schwarzschild geometry in D = d + 1 dimensions [3]

The black hole metric found by solving Einsteintgiation in D dimensions is given by
RSD—S RSD—S 1
dr? = (1—Fjdt2 _(1_FJ dr? - rzd%_z. (279)

The horizon is defined by

_|167(D -3)GM =
RS_{ QD—z(D_Z) } (289
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and its D-2 dimensional “area” is given by
A=R?[dQ,, =R07*Q, ,. (2.81)

Furthermore, the entropy is given by

D-2
SZAZ(ZGM)D—sQD_Zl (2.82)
4G 4G

The entropy in equation (2.82) is what is requingdlack hole thermodynamics.
To extend a static spherically symmetric geomeatryD = d + 1 dimensions, the metric can be
assumed to be of the form

ds? = —°dt? + €?dr? + r2(d6? +sin? Gd6E +...+sin* 6,...sin? 6, ,d6%,). (2.83)

Using orthonormal coordinates, tIO}ff component of the Einstein tensor can be direclgutated
to be of the form

Gi- —{(D e, (0-2(0-9)

( —e‘”)}. (2.84)
Form Einstein’s equation for ideal pressurelesgenab; = ko . This means

G =- (2Dr ;_?%h D‘S(l— e‘ZA)] =-kp (2.85)

which can be solved to give

_a20).D-3 2K et 1\ iD-2 — 2k M
(1 e )r D_Zjop(r)r dr b-2)a.. (2.86)

277(0—1)/2

—7———. TheG! component of the Einstein tensor
r(o-1/2)

where the solid angle is given bQ,_, =

satisfies

Gl = —{— (D -2)o e_:A (D= i)r(zD -3 a- e'ZA)} = {— (D -2)(@+A) e_rZA " Kp} . (2.87)

For pressureless matter in the exterior reg(qm=O: P), we can immediately conclude that
2kM

———— we obtain the form of the
(D_Z)QD—z

®=-A. Defining the Schwarzschild radiusRy™ =

metric
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If we write F(r)=e®, a useful shortcut for calculating the solutiorEiastein’s equation (2.85) is
to note its equivalence to the Newtonian Poissaragon in the exterior region

0%F(r)=-kp,  F(r)=1+2@,.. (2.89)

The Hawking temperature can be calculated by deténg the dimensional factor between the
Rindler time and Schwarzschild time. Near the hmrjzhe proper distance to the horizon is given

by
= 2R LH—l 2.90
P ogiln) e

which gives the relation between Rindler time/terapge units and Schwarzschild
time/temperature units

dw=L 34 (201)
2R,

Thus, the Hawking temperature of the black holgiven by

2 2Ry

Using the first law of thermodynamics, the entrapy be directly calculated to be of the form

S= (2.93)

2n(D -3)A
—
Substituting the form « :877(D —3)G for the gravitational coupling gives the previgesults in

D-dimensions (see eq. (2.82)). Furthermore, if ulesitute « :877(D —3)G in the eq. (2.86), we
obtain the following expression:

a\ o 2K _ 218n(D-3)G M
1- 20} D-3 — 1\, 1D-2 — . 2.
( e )r 5.3 0,o(r )r®=2dr b-2) a.. (2.93b)

We note that this expression can be related by theumber 8, with the “modes” that
correspond to the physical vibrations of a supersing by the following Ramanujan function:

© COSTEXW

e™"dx| s
4 antilog = COSVK Déjf
. e + aq(itw)

06 \/(10+4111\/§j+ \/[10+47J§J

Wl
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Thence, we obtain the following mathematical connéion:

) oa_ 2K (7 (Np-2a. 287(D-3)G M
[i-e2 )0 [ plr)re2dr=

" D-2 (D-2) 9.,
= COSTIXW __ ety g
antilog =~ COSIVX D':2L42
—n—w‘ : t W
1 e * g iw)

1 . (2.930)
3| !\/(10+11\/§J \/(10+7\/§]
e T Y

The quantization of the string defines a 1 + 1 disi@nal quantum field theory in which the (D — 2)
transverse coordinateX' (o) play the role of free scalar fields. The spat@brdinate of this field
theory isg,, and it runs from 0 t@7 .

The entropy and energy of such a quantum fieldrthean be calculated by standard means. The
leading contribution for large energy is (settihg string lengthy = 1L

E=m?D-2), S=2m(D-2). (2.94)

2

Using E =m7 and eliminating the temperature yield§:1/2fD -2)m or, restoring the units,

i.e. the string length :
S=y2(D-2)mig. (2.95)

Subleading corrections can also be calculatedve gi
S=,/2(D-2)mv, -clog(m/s) (2.96)

where c is a positive constant. The entropy is the lothefdensity of states. Therefore the number
of states with masm is

Nm{mlgsjexp(z 5=2m.). @.97)

The formula (2.97) is correct for the simplest busostring, but similar formulae exist for the
various versions of superstring theory.

. . . . m
Now let us compare the entropy of the single stuiity that of n strings, each carrying mass.
n

Call this entropyS, (m). Then
S,(m)=ngm/n) (2.98)

or
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s,(m)= 2D—2mn£s—nclog(mrfsj. (2.99)

Obviously for largen the single string is favored. For a given totalsmjahe statistically most
likely state in free string theory is a single e&distring. Thus it is expected that when the gtrin
coupled goes to zero, most of the black hole staiegvolve into a single excited string.
These observations allow us to estimate the entodipg black hole. The assumptions are the
following:

- A black hole evolves into a single string in thaiti g - 0

- Adiabatically sendingg to zero is an isentropic process; the entropheffinal string is the
same as that of the black hole
- The entropy of a highly excited string of massis of order S=m¢  (2.100)

- Atsome points ag — he black hole will male a transition to a strifipe point at which
this happens is when the horizon radius is of tideroof the string scale.

The string and the Planck length scales are related
g*e?=¢07%. (2.101)

At some value of the coupling that depends on tlasshof the black hole, the string length will
exceed the Schwarzschild radius of the black hbtes is the point at which the transition from
black hole to string occurs.

Let us begin with a black hole of mass, in a string theory with coupling constagt. The
Schwarzschild radius is of order

1
R,=(M,G)o-3, (2.102)
and using
G=g%2? (2.103)
we find

1
%: (1 sMog2)o.  (2.104)

S

Thus for fixedg, if the mass is large enough, the horizon radidsb&i much bigger thar . Now
start to decreasg. In general the mass will vary during an adiabptiocess. Let us call thg -
dependent mas™ (g). Note

M(g,)=M,. (2.105)

The entropy of a Schwarzschild black hole (in ampeshsion) is a function of the dimensionless
variable M/, . Thus, as long as the system remains a black hole,

M (g)ﬁP = constant (2.106)

2
Since/, = /¢,gP2 we can write equation (2.106) as
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M(g)= Mo(g—éJH . (2.107)

(@]

Now as g - Othe ratio of theg-dependent horizon radius to the string scale dsee From
eqguation (2.80) it becomes of order unity at

M(g)52=/¢22 (2.108)

which can be written
1
_2 .

M(g)/s = .

(2.109)

Combining equations (2.107) and (2.109) we find

D-2 1

M(g)ls=MP3GP3. (2.110)

As we continue to decrease the coupling, the weaklypled string mass will not change
significantly. Thus we see that a black hole of snk, will evolve into a free string satisfying
equation (2.110). But now we can compute the egtadgthe free string. From equation (2.100) we
find

D-2

D-2 1
S=MP3GP3. (2.111)

This is a very pleasing result in that it agreethwhe Bekenstein-Hawking entropy in equation
(2.82). In this calculation the entropy is calcathtas the microscopic entropy of fundamental
strings.

Appendix A

FINAL TABLES

=1,61803399. that we

In this tables we have the various fractional peseir Phi & = \/§2+1
have obtained by the following expressicﬁ: ((D””)x fractions or numbers of the first lintor n
included in the following numerical interval: }43; + 38] . For example:

=2x

2,6666667= [(cb)m + (q:)‘l“”]xg = (1,61803399+ 0,3819660) = 2,6666667

wlbh
wlps
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*9/4 *4/9 *1/3 *1/2 *2/3 *3/4
a0 | 0,20288237| 0,04007553 |0,03005665 | 0,04508497 | 0,06011330| 0,06762746
b0 | 0,21952671| 0,04336330 | 0,03252248 | 0,04878371| 0,06504495| 0,07317557
hO | 0,23248251| 0,04592247|0,03444185|0,05166278 | 0,06888371| 0,07749417
cl 0,25077641| 0,04953608 | 0,03715206 | 0,05572809 | 0,07430412| 0,08359214
dl | 0,26640125| 0,05262247 |0,03946685 | 0,05920028 | 0,07893370| 0,08880042
esl | 0,28736419| 0,05676330]|0,04257247 |0,06385871 | 0,08514495| 0,09578806
el 0,30997668 | 0,06122996 | 0,04592247 | 0,06888371 | 0,09184494| 0,10332556
f1 0,32827058 | 0,06484357|0,04863268 | 0,07294902 | 0,09726536| 0,10942353
fisl | 0,35520167| 0,07016329 |0,05262247|0,07893370| 0,10524494| 0,11840056
gisl| 0,37616461| 0,07430412|0,05572809 | 0,08359214| 0,11145618| 0,12538820
al 0,40576475| 0,08015106 | 0,060113300,09016994 | 0,12022659| 0,13525492
bl | 0,43104628| 0,085144950,06385871|0,09578806| 0,12771742| 0,14368209
hl | 0,46496503| 0,09184494|0,06888371|0,10332556| 0,13776741| 0,15498834
c2 0,50155281 | 0,09907216|0,07430412|0,11145618 | 0,14860824 | 0,16718427
d2 | 0,53115295| 0,104919100,07868933|0,11803399| 0,15737865| 0,17705098
es2 | 0,57472838| 0,11352659 |0,08514495|0,12771742| 0,17028989| 0,19157613
e2 0,60864712| 0,12022659 | 0,09016994 | 0,13525492 | 0,18033989| 0,20288237
f2 0,65654115| 0,12968714|0,09726536 | 0,14589803 | 0,19453071| 0,21884705
fis2 | 0,69744754| 0,13776741|0,10332556 | 0,15498834 | 0,20665112| 0,23248251
gis2 | 0,75232922| 0,14860824|0,11145618|0,16718427 | 0,22291236| 0,25077641
a2 0,81152949| 0,16030212|0,12022659 | 0,18033989 | 0,24045318| 0,27050983
b2 | 0,85942353| 0,16976267|0,12732200|0,19098301 | 0,25464401| 0,28647451
h2 | 0,92993005| 0,18368989|0,13776741|0,20665112 | 0,27553483 | 0,30997668
c3 0,98481173| 0,19453071|0,14589803 | 0,21884705| 0,29179607| 0,32827058
d3 1,06230590| 0,20983820|0,15737865|0,23606798 | 0,31475730| 0,35410197
es3 | 1,12849382| 0,22291236 |0,16718427|0,25077641 | 0,33436854 | 0,37616461
e3 1,21729424| 0,24045318 | 0,18033989 | 0,27050983 | 0,36067977| 0,40576475
3 1,31308230| 0,25937428|0,19453071|0,29179607 | 0,38906142| 0,43769410
fis3 | 1,39057647| 0,27468177|0,20601133|0,30901699 | 0,41202266| 0,46352549
gis3 | 1,50465843| 0,29721648|0,22291236|0,33436854 | 0,44582472| 0,50155281
a3 1,59345885| 0,31475730|0,23606798 | 0,35410197 | 0,47213595| 0,53115295
b3 1,71884705| 0,33952534 | 0,25464401 | 0,38196601 | 0,50928802| 0,57294902
h3 1,82594136| 0,36067977|0,27050983 | 0,40576475| 0,54101966| 0,60864712
c4 1,96962346| 0,38906142|0,29179607 | 0,43769410| 0,58359214| 0,65654115
d4 | 2,12461180| 0,41967640|0,31475730|0,47213595| 0,62951461| 0,70820393
es4 | 2,25000000| 0,44444444]0,33333333|0,50000000| 0,66666667 | 0,75000000
e4 2,43458848 | 0,48090637 |0,36067977|0,54101966 | 0,72135955| 0,81152949
f4 2,57827058 | 0,50928802 | 0,38196601 | 0,57294902 | 0,76393202| 0,85942353
fis4 | 2,78115295| 0,54936355 |0,41202266 |0,61803399 | 0,82404532| 0,92705098
gis4 | 2,95443518| 0,58359214|0,43769410|0,65654115| 0,87538820| 0,98481173
a4 | 3,18691770| 0,62951461|0,47213595 |0,70820393 | 0,94427191| 1,06230590
b4 | 3,43769410| 0,67905069 | 0,50928802 |0,76393202 | 1,01857603| 1,14589803
h4 | 3,64057647| 0,71912622|0,53934466 | 0,80901699 | 1,07868933| 1,21352549
c5 | 3,93924691| 0,77812285|0,58359214 |0,87538820| 1,16718427| 1,31308230
d5 | 4,17172942| 0,82404532|0,61803399 | 0,92705098 | 1,23606798| 1,39057647

27




es5 | 4,50000000| 0,88888889 | 0,66666667 | 1,00000000 | 1,33333333| 1,50000000
e5 | 4,78037654| 0,944271910,70820393 | 1,06230590 | 1,41640786| 1,59345885
f5 | 5,15654115| 1,01857603 |0,76393202 | 1,14589803 | 1,52786405| 1,71884705
fis5 | 556230590 | 1,09872709 | 0,82404532 | 1,23606798 | 1,64809064 | 1,85410197
gis5 | 5,89057647 | 1,16357066 | 0,87267800 | 1,30901699 | 1,74535599 | 1,96352549
a5 | 6,37383539| 1,25902921|0,94427191 |1,41640786 | 1,88854382| 2,12461180
b5 | 6,75000000| 1,33333333[1,00000000 | 1,50000000 | 2,00000000| 2,25000000
h5 | 7,28115295| 1,43825243|1,07868933|1,61803399 | 2,15737865| 2,42705098
c6 | 7,73481173| 1,52786405 | 1,14589803 | 1,71884705 | 2,29179607 | 2,57827058
d6 | 8,34345885| 1,64809064 |1,23606798 |1,85410197 | 2,47213595| 2,78115295
es6 | 9,00000000| 1,77777778]1,33333333 | 2,00000000 | 2,66666667 | 3,00000000
e6 | 9,53115295| 1,88269688 [ 1,41202266 |2,11803399 | 2,82404532| 3,17705098
f6 |10,31308230 | 2,03715206 | 1,52786405 | 2,29179607 | 3,05572809 | 3,43769410
fis6 | 10,92172942| 2,15737865 | 1,61803399 | 2,42705098 | 3,23606798| 3,64057647
IS

% 11,78115295 | 2,32714132 | 1,74535599 | 2,61803399 | 3,49071198| 3,92705098
ab |12,51518827 | 247213595 | 1,85410197 | 2,78115295 | 3,70820393| 4,17172942
b6 | 13,50000000| 2,66666667 | 2,00000000 | 3,00000000 | 4,00000000| 4,50000000
h6 |14,56230590| 2,87650487 |2,15737865 |3,23606798 | 4,31475730| 4,85410197
c7 | 1542172942 | 3,04626754 | 2,28470066 | 3,42705098 | 4,56940131| 5,14057647
d7 |16,68691770| 3,29618127 | 2,47213595 | 3,70820393 | 4,94427191| 5,56230590
es7 |17,67172942| 3,49071198 [ 2,61803399 | 3,92705098 | 5,23606798 | 5,89057647
e7 |19,06230590 | 3,76539376 | 2,82404532 | 4,23606798 | 5,64809064 | 6,35410197
f7 | 20,25000000 | 4,00000000 | 3,00000000 | 4,50000000 | 6,00000000| 6,75000000
fis7 | 21,84345885 | 4,31475730 | 3,23606798 | 4,85410197 | 6,47213595| 7,28115295
gis7 | 23,56230590 | 4,65428265 | 3,49071198 | 5,23606798 | 6,98142397 | 7,85410197
a7 | 24,95288237| 4,92896442 | 3,69672331 | 5,54508497 | 7,39344663 | 8,31762746
b7 |27,00000000| 5,33333333 [ 4,00000000 | 6,00000000 | 8,00000000| 9,00000000
h7 |28,59345885| 5,64809064 |4,23606798 |6,35410197 | 8,47213595| 9,53115295
c8 |30,84345885| 6,09253508 | 4,56940131 | 6,85410197 | 9,13880262 | 10,28115295

*4/3 *3/2 *2 *3 Phi

0,12022659 | 0,13525492 | 0,18033989|  0,27050983 0,14589803

0,13008990 | 0,14635114 | 0,19513485|  0,29270228 0,15786741

0,13776741| 0,15498834| 0,20665112|  0,30997668 0,16718427

0,14860824 | 0,16718427 | 0,22291236|  0,33436854 0,18033989

0,15786741| 0,17760084| 0,23680111|  0,35520167 0,19157613

0,17028989 | 0,19157613 | 0,25543484|  0,38315225 0,20665112

0,18368989 | 0,20665112 | 0,27553483|  0,41330224 0,22291236

0,19453071| 0,21884705| 0,29179607 |  0,43769410 0,23606798

0,21048988 | 0,23680111| 0,31573482|  0,47360223 0,25543484

28




0,22291236| 0,25077641| 0,33436854 0,50155281 0,27050983
0,24045318 | 0,27050983| 0,36067977 0,54101966 0,29179607
0,25543484 | 0,28736419| 0,38315225 0,57472838 0,30997668
0,27553483 | 0,30997668| 0,41330224 0,61995337 0,33436854
0,29721648 | 0,33436854 | 0,44582472 0,66873708 0,36067977
0,31475730| 0,35410197| 0,47213595 0,70820393 0,38196601
0,34057978 | 0,38315225| 0,51086967 0,76630451 0,41330224
0,36067977| 0,40576475| 0,54101966 0,81152949 0,43769410
0,38906142 | 0,43769410| 0,58359214 0,87538820 0,47213595
0,41330224 | 0,46496503| 0,61995337 0,92993005 0,50155281
0,44582472| 0,50155281| 0,66873708 1,00310562 0,54101966
0,48090637 | 0,54101966| 0,72135955 1,08203932 0,58359214
0,50928802 | 0,57294902| 0,76393202 1,14589803 0,61803399
0,55106966 | 0,61995337| 0,82660449 1,23990673 0,66873708
0,58359214 | 0,65654115| 0,87538820 1,31308230 0,70820393
0,62951461 | 0,70820393| 0,94427191 1,41640786 0,76393202
0,66873708 | 0,75232922| 1,00310562 1,50465843 0,81152949
0,72135955| 0,81152949| 1,08203932 1,62305899 0,87538820
0,77812285| 0,87538820| 1,16718427 1,75077641 0,94427191
0,82404532 | 0,92705098| 1,23606798 1,85410197 1,00000000
0,89164944 | 1,00310562| 1,33747416 2,00621124 1,08203932
0,94427191| 1,06230590| 1,41640786 2,12461180 1,14589803
1,01857603 | 1,14589803| 1,52786405 2,29179607 1,23606798
1,08203932| 1,21729424| 1,62305899 2,43458848 1,31308230
1,16718427| 1,31308230| 1,75077641 2,62616461 1,41640786
1,25902921| 1,41640786| 1,88854382 2,83281573 1,52786405
1,33333333| 1,50000000| 2,00000000 3,00000000 1,61803399
1,44271910| 1,62305899| 2,16407865 3,24611797 1,75077641
1,52786405| 1,71884705| 2,29179607 3,43769410 1,85410197
1,64809064 | 1,85410197| 2,47213595 3,70820393 2,00000000
1,75077641| 1,96962346| 2,62616461 3,93924691 2,12461180
1,88854382 | 2,12461180| 2,83281573 4,24922359 2,29179607
2,03715206 | 2,29179607| 3,05572809 4,58359214 2,47213595
2,15737865| 2,42705098 | 3,23606798 4,85410197 2,61803399
2,33436854 | 2,62616461| 3,50155281 5,25232922 2,83281573
2,47213595| 2,78115295| 3,70820393 5,56230590 3,00000000
2,66666667 | 3,00000000| 4,00000000 6,00000000 3,23606798
2,83281573| 3,18691770| 4,24922359 6,37383539 3,43769410
3,05572809 | 3,43769410| 4,58359214 6,87538820 3,70820393
3,29618127 | 3,70820393 | 4,94427191 7,41640786 4,00000000
3,49071198 | 3,92705098 | 5,23606798 7,85410197 4,23606798
3,77708764 | 4,24922359| 5,66563146 8,49844719 4,58359214
4,00000000| 4,50000000| 6,00000000 9,00000000 4,85410197
4,31475730| 4,85410197| 6,47213595 9,70820393 5,23606798
4,58359214 | 5,15654115| 6,87538820| 10,31308230 5,56230590
4,94427191 | 5,56230590| 7,41640786| 11,12461180 6,00000000
5,33333333| 6,00000000| 8,00000000| 12,00000000 6,47213595
5,64809064 | 6,35410197| 8,47213595| 12,70820393 6,85410197
6,11145618 | 6,87538820| 9,16718427| 13,75077641 7,41640786
6,47213595| 7,28115295| 9,70820393| 14,56230590 7,85410197
6,98142397| 7,85410197|10,47213595| 15,70820393 8,47213595
7,41640786| 8,34345885|11,12461180| 16,68691770 9,00000000
8,00000000| 9,00000000]12,00000000| 18,00000000 9,70820393
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8,62951461

9,70820393

12,94427191

19,41640786

10,47213595

9,13880262

10,28115295

13,70820393

20,56230590

11,09016994

9,88854382

11,12461180

14,83281573

22,24922359

12,00000000

10,47213595

11,78115295

15,70820393

23,56230590

12,70820393

11,29618127

12,70820393

16,94427191

25,41640786

13,70820393

12,00000000

13,50000000

18,00000000

27,00000000

14,56230590

12,94427191

14,56230590

19,41640786

29,12461180

15,70820393

13,96284794

15,70820393

20,94427191

31,41640786

16,94427191

14,78689326

16,63525492

22,18033989

33,27050983

17,94427191

16,00000000 | 18,00000000 | 24,00000000| 36,00000000 19,41640786
16,94427191 | 19,06230590 | 25,41640786 | 38,12461180 20,56230590
18,27760524 | 20,56230590 | 27,41640786 | 41,12461180 22,18033989
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