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Abstract

In this paper we have described the Hartle-Hawking no boundary proposal concerning the Randall-
Sundrum cosmological scenario, nonlocal braneworld action in the two-brane Randall-Sundrum
model, Hartle-Hawking wave-function in the mini-superspace sector of physical superstring theory,
p-adic models in the Hartle-Hawking proposal and p-adic and adelic wave functions of the universe.
Furthermore, we have showed some possible mathematical connections between some equations of
these arguments and, in conclusion, we have also described some mathematical connections
between some equations of arguments above mentioned and some equations concerning the
Riemann zeta function, the Ramanujan’s modular equations and the Palumbo-Nardelli model.

In the section 1, we have described the Hartle-Hawking “no boundary” proposal applied to Randall-
Sundrum cosmological scenario. In the section 2, we have described nonlocal braneworld action in
the two-brane Randall-Sundrum model. In the section 3, we have described the compactifications
of type IIB strings on a Calabi-Yau three-fold and Hartle-Hawking wave-function in the mini-
superspace sector of physical superstring theory. In the section 4, we have described the p-Adic
models in the Hartle-Hawking proposal. In the section 5, we have described the p-Adic and Adelic
wave functions of the Universe. In the section 6, we have described some equations concerning the
Riemann zeta function, specifically, the Goldston-Montgomery Theorem, the study of the behaviour
of the argument of the Riemann function {(s) with the condition that s lies on the critical line

s = % +it, where ¢ is real, the P-N Model (Palumbo-Nardelli model) and the Ramanujan identities.

In conclusion, in the section 7, we have described some possible mathematical connections between
some equations of arguments above discussed and some equations concerning the Riemann zeta-
function, the Ramanujan’s modular equations and the Palumbo-Nardelli model.



1. Hartle-Hawking ‘“No Boundary” proposal applied to Randall-Sundrum cosmological
scenario. Randall-Sundrum from AdS/CFT, CFT in the Domain Wall. [1]

The AdS/CFT correspondence relates IIB supergravity theory in AdS, xS’ to a N=4U (N)
superconformal field theory. If g,,, is the coupling constant of this theory then the‘t Hooft
parameter is defined to be A=g;,N. The CFT parameters are related to the supergravity

parameters by
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where [ is the string length, / the AdS radius and G the five dimensional Newton constant. Note

that 4 and N must be large in order for stringy effects to be small. The CFT lives on the conformal
boundary of AdS;. The correspondence takes the following form:

Z[h] = Jd[g]exp(— S grav [g]) = Jd[¢] exp(— Scrr [¢9 h]) = exp(— Werr [h]) . (1.3)

here Z [h] denotes the supergravity partition function in AdS. This is given by a path integral over
all metrics in AdS, which induce a given conformal equivalence class of metrics h on the
conformal boundary of AdS;. A problem with equation (1.3) as it stands is that the usual

gravitational action in AdS is divergent, rendering the path integral ill-defined. A procedure for
solving this problem is the following: first one brings the boundary into a finite radius, next one
adds a finite number of counterterms to the action in order to render it finite as the boundary is
moved back off to infinity. These counterterms can be expressed solely in terms of the geometry of
the boundary. The total gravitational action for AdS,,, becomes

S =Sp +Sey +8,+8,+... (14)

grav

The first term is the usual Einstein-Hilbert action with a negative cosmological constant:

__ ! ——[d"'x \/_[md(‘f;l)} (1.5)
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the overall minus sign arises because we are considering a Euclidean theory. The second term in the
action is the Gibbons-Hawking boundary term, which is necessary for a well-defined variational
problem:

— 1 d
Sen _—%Id xvhK | (1.6)

where K is the trace of the extrinsic curvature of the boundary and / the determinant of the
induced metric. The first two counterterms are given by the following expressions:

jdd h, (17) S,= jddfo (1.8)
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where R now refers to the Ricci scalar of the boundary metric. The third counterterm is
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where R; is the Ricci tensor of the boundary metric and boundary indices i, j are raised and
lowered with the boundary metric 4; . This expression is ill-defined for d = 4, which is the case of

most interest to us. We can now use the AdS/CFT correspondence to explain the behaviour
discovered by Randall and Sundrum. The (Euclidean) RS model has the following action:

Ses =Sy +Sgy +28,+5, . (1.10)

Here 28, is the action of a domain wall with tension (d —1)/(47G1). The final term is the action for
any matter present on the domain wall. We want to study quantum fluctuations of the metric on the
domain wall. Let g, denote the five dimensional background metric we have just described and h,

the metric it induces on the wall. Let h denote a metric perturbation on the wall. If we wish to
calculate correlates of h on the domain wall then we are interested in a path integral of the form

(y (O, () = [ dlnlzlble, (om, (), (111
where
Zlhl=]_, aléghlolexp(- ;[ + dal)=expl-25, by +h])x
X 508, d[59]d[¢]exp(— Sen [go + 59]_ Sen [go + 59]_ S, [¢;h0 + h]) , (1.12)

og denotes a metric perturbation in the bulk that approaches h on the boundary and ¢ denotes the

matter fields on the domain wall. The integrals in the two balls are independent so we can replace
the path integral by

Zlh] = exp(- 25, Iy + h[ dlalexp(- S,.,[g + 58]~ 5.1, [g0 + S
x [ dlglexp(=$,[g:he +h]), (1.13)

where B denotes either ball. We now take d = 4 and use the AdS/CFT correspondence (1.3) to
replace the path integral over 0g by the generating functional for a conformal field theory:

JB d[&g]exp(— Sen [go + 59]_ Sen [go + 59]) =
exp(= W, [hy +h]+ S, [h, +h]+ S, [h, + h]+S.[h, +h]).  (1.14)
This is the RS (Randall-Sundrum) CFT since it arises as the dual of the RS geometry.
Now we will consider the RS analogue of Starobinsky’s model by putting a CFT on the domain
wall. Our five dimensional (Euclidean) action is the following:

S=8,, +S, +28, + W, (1.15)

We seek a solution in which two balls of AdS; are separated by a spherical domain wall. Inside
each ball, the metric can be written



ds® =1*(dy* +sinh? ydQ2), (1.16)
with 0< y <y,. The domain wall is at y = y, and has radius
R=Isinhy,. (1.17)

The effective tension of the domain wall is given by the Israel equations as

o, = cothy,. (1.18
o = g O Yo (119

The actual tension of the domain wall is
o= i . (1.19)
471Gl

We therefore need a contribution to the effective tension from the CFT. This is provided by the
conformal anomaly, which takes the value

3N?
<T>__871'TR4' (1.20)

This contributes an effective tension — <T>/ 4 . We can now obtain an equation for the radius of the

R® |R? NG R*
—1/—+1:—+—. 1.21
P\ 2 8m® It (1.21)

It is easy to see that this has a unique positive solution for R .
The AdS/CFT correspondence can be used to give the generating functional of the CFT on the
perturbed sphere:

domain wall:

Weer =S +Seu +S,+8, +... (1.22)

We shall give the terms on the right hand side for d = 4. The Einstein-Hilbert action with

cosmological constant is
S,y =— WZG ——[a&’ x\/_(R+ j (1.23)

and perturbing this gives

I \/_(——+1h’”Vh +2%h‘”h j

S
bulk = 167ZG 4

3
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where Greek indices are five dimensional and we are raising and lowering with the unperturbed five
dimensional metric. n=1Idy is the unit normal to the boundary and V is the covariant derivative

defined with the unperturbed bulk metric. y; = RZQ/U is the unperturbed boundary metric.

Evaluating on shell gives



jd 7" dysmh4y——jd x\/_(‘”—ﬂz”a h. —C;_)—thh”h j (1.25)

where we are now raising and lowering with 7. The Gibbons-Hawking term is

I’ = . 1
Se =—ﬁj‘d4x\/7_{smh3 ¥y, cosh y, —thayhij). (1.26)

The first counter term is

3 31° (. 1.
S, :Tjd4x\/7_/=%jd4x\/;(31nh4 Yo —Wh’hi]). (1.27)
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The second counter term is

sinh” y, 41" sinh® y,

_ l_ 4 _ 1_3 4 ~ . 2 2 ij 1 iiy2
_%Id xﬁR—%jd x\/;(12s1nh Yo =gyt WV |

(1.28)
Thus with only two counter terms we would have

3NZQ R 1 3 I? 1, 1 -
Woop =—— T = h”a W +=h"h, I+— |+=—h"h, ———h"V°h,
o 8x? 16ﬂG { I [2 RZJ I’R* 7 8I’R’ ”J
(1.29)
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Q, is the area of a unit four-sphere and we have used the following equation: el = . The
V1
expansion of d Jh; at y =y, is obtained from
_ £,(%) (») 40 [Zpu (P)(
3,y = =S HY (x)[ d*x 7! ()H () (1.30)
p fp(y())
and
£, () I I I [ 4,505
=2+ +1)\p+2)+ +1)\p+2)\p+3 logll / R )+ +2
AT (p+1)p+2)+ plp+1Np+2)p+3) ogll /R) 8R4[p p
1°
—5p2—10p—2—p(p—l)(p+2)(p+3)(w(1)+w(2)—w(p/2+2)—w(p/2+5/2))]+0(ﬁlog(l/R)]
(1.31)

The psi function is defined by l//(z):F' (z)/T(z). Substituting into the action we find that the

divergences as [ — 0 cancel at order R*/[* and R*/I*. The term of order /*/R* in the above
expansion makes a contribution to the finite part of the action:



3N’Q R ,
Werr = =g loe T+ 256 TR Sl ate e a0

2p(p+1)p+2) p+3log(l'/ )+ p), (1.32)

where
¥(p)=plp+)p+2)p+3)wlp/2+5/2)+w(p/2+2)-w(2)-y )]+ p* +2p* -5p* —=10p -6

(1.33)

To cancel the logarithmic divergences as [ — 0, we have to introduce a length scale p defined by

[ = &0 and add a counter term proportional to log € to cancel the divergence as £ tends to zero.
The counter term is

A . !
S3 =— 472(_;10g8J.d4x\/;(}/k}/]lRinkl_ERZJ
__ 1 3_log€ [a'xy —12+i{2h’7h.. _3 i, +lh’7©4h.} (1.34)
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This term does indeed cancel the logarithmic divergence, leaving us with

3N’Q R , ,
Wern == > log—+ 256 prostn Z(Id“x S () @p(p+1Xp +2)p +3)log(p/ R)+ ¥ (p)).
(1.35)
Now, recall that our five dimensional action is

S=8 +Seuy +285,+W,. (1.36)

In order to calculated correlators of the metric, we need to evaluate the path integral

zln)=|, , dl&@lexp(-5)=

= exp(— 28, [ho + h]_ Werr [ho + h])(J.B d[é‘g]exp(— Sen [go + &]_ Sen [go + 59]))2 . (1.37)

Here g, and h, refer to the unperturbed background metrics in the bulk and on the wall

respectively and h denotes the metric perturbation on the wall. Replacing [ and G with / and G,
from equation (1.27) we obtain

3 (. 1
S.[h, +h]= %Id“x\/g(smh“ ¥y _WJ’ (1.38)

where y, is defined by R =Isinh y,. The path integral over dg is performed by splitting it into a
classical and quantum part:

og=h+h", (1.39)

where the boundary perturbation h is extended into the bulk using the linearized Einstein equations
and the requirement of finite Euclidean action. h' denotes a quantum fluctuation that vanishes at
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the domain wall. The gravitational action splits into separate contributions from the classical and
quantum parts:
Sen +Son = So[h]+ S'[h'], (1.40)

where S, can be read off from the equations (1.25) and (1.26) as

BZQ

S, = cosh® y, +

(414 173, +C°tlhy0 h”hijj. (1.41)

162G

We shall not need the explicit form for S' since the path integral over h' just contributes a factor of
some determinant Z, to Z [h] We obtain

Z[h]=z, exp(-25,[h, + h]-25,[h, + h]-W_..[h, +h]). (1.42)

The exponent is given by

3°Q, 3Q,R* 3NQ R
28, +28, + Wy =— ycosh® y+ 47z4Gl + = 4 log;
()
d*x'\Jyh* (x 02+ 4coth 6
l4 Z(J. x\/; )2{32%(;(10 ()’o) cotn y, —
N2

+ﬁ(2p(p+1)(p+2)(p+3)1og(p/R)+‘P(p))}. (1.43)
2567 sinh™ y,

The (Euclidean) graviton correlator can be read off from the action as
. 1287°R* & , _
<hz‘j () (x )> —ZWW-] X)F(p,y,)"  (1.44)

where we have eliminated /* /G using the equation (1.21). The function F(p, yo) is given by

F(p.y,)= ‘“Slnhyo(fpgy0;+4cothyo—6j+‘P(p), (1.45)
p\J0

and the bitensor Wl.j(l.’.’ j), (x,x") is defined as
Wi (xx)= S HPHD (), (1.46)

with the sum running over all the suppressed labels k,[,m,...of the tensor harmonics.
Now, we consider the radius R of the domain wall given by equation (1.21). It is convenient to
write this in terms of the rank N, of the RS CFT (givenby I’ /G =2N,,/ 7)

3 2 2 4
R—“/R—2+1=N—2+R—4. (1.47)
P\ 16N}, 1



If we assume N >> N, >>1 then the solution is

R__ N N2
1+ RS+ON IN*)|. (1.48)
2\/_NRS ( RS )

Note that this implies R >>1, i.e., the domain wall is large compared with the anti-de Sitter length
scale. Now let’s turn to a four dimensional description in which we are considering a four sphere
with no interior. The only matter present is the CFT. The metric is simply

ds* = Rff/ijdx"dxj , (1.49)

where R, remains to be determined. The action is the four dimensional Einstein-Hilbert action
(without cosmological constant) together with W,.,.. There is no Gibbons-Hawking term because
there is no boundary. Without a metric perturbation, the action is simply

_3Q4Rj 3N’Q, lgR4'

S =— =
T 4G, 8x’

1.50
167zG (10

where G, is the four dimensional Newton constant. Varying R, gives

2
Rj = NG, , (1.51)
iy 4

and N is large hence R, is much greater than the four dimensional Planck length.

Now we can to include the metric perturbation. The perturbed four dimensional Einstein-Hilbert
action is

(4) _ _i ij 1 ij
St == 1o jd x\/J_/(12R Wohy Vh, j (1.52)

4

Adding the perturbed CFT gives

(p +3p+6)

3N?Q 3NQ R ,
S == T 4+z(jd4xfhk’

2

)Z{m

+m(zp(p+1>(p+z)(p+3)1og(pm4)+w(,,))}, (153)

Setting p =R, we find that the graviton correlator for a four dimensional universe containing the
CFT is
(, (O, (x)) =8N G2Z D x)p>+3p+6+2(p)]' . (154

Hence, we have computed the grav1t0n correlator using the Hartle-Hawking “No Boundary”
proposal.



We shall show how the Euclidean correlator calculated above is analytically continued to give a
correlator for Lorentzian signature.

We begin by continuing the graviton correlator (equation 1.44) obtained via the five dimensional
calculation. The analytic continuation of the correlator for four dimensional gravity (equation 1.54)
is completely analogous. In terms of the new label p', the Euclidean correlator 1.44 between two

points on the wall is given by

1287°R* & . _
<hij (Q)hi'j'(g')> = TN ZW’}i{j')(ﬂ)G(p ) yo) 1 (1.55)
p=Til2
where

G(p',y,)=F(-ip—=3/2,y,)=e" sinh y, 8,() +4coth y, — 6
g,(3)

+(p*—4ip®+p° 12-5ip'=63/16+ (p+1/4) p2+9 /4w (=ip' 1 2+ 5/ 4) + (= ip'12+77 1 4)

~y(1)-y(2)).

(1.56)

with g p,(y) =Q’ o ,z(coth y). The function G(p', yo) is real and positive for all values of p' in the
sum and for arbitrary y, =2 0. We have the Euclidean correlator defined as an infinite sum.

Now we write the sum in equation (1.55) as an integral along a contour C, encircling the points
p'=7i129i/2,..ni/ 2, where n tends to infinity. This yields

—i647°R* 1
(1, (@, (@) = =215 [ dp'tanh p W2 ()G (p ) (15T)

When the contribution from the closing of the contour in the upper half p'-plane vanishes, the final
result for the Euclidean correlator reads

—i647°R* _
(hy (@, (@) = N—[ [~ dp'anh p w2 ()G (p'. y,)"
+2;zz tan A W\ (,u)ReS(G(p', Yo )_l;iAk)]. (1.58)

k=1

The analytic continuation from a four sphere into Lorentzian closed de Sitter space is given by
setting the polar angle Q =7 /2 —it. We may take 4=, and g then continues to 7 /2—it.
In conclusion, we note that the Lorentzian tensor Feynman (time-ordered) correlator is

(00, 60) =2 1 a4 Rl )

e 23 an AW Res( (v ) i, e 2 [ w6 v,)')

k=1

—;rZW,ﬁ,;AA (wRes(G(p', v,V :in, ). (159



In this integral the bitensor Wlﬁ,(j’,’ ')(,u(x, x')) may be written as the sum of the degenerate rank-two

tensor harmonics on closed de Sitter space with eigenvalue /1p, = (p'2+17/ 4) of the Laplacian.

We can understand the effect of the strongly coupled CFT on the microwave fluctuation spectrum
by comparing the result (1.59) with the transverse traceless part of the graviton propagator in four-
dimensional de Sitter spacetime. On the four-sphere, this is easily obtained by varying the Einstein-
Hilbert action with a cosmological constant. In terms of the bitensor, this yields

<hij(Q)hi'j'(Q')>=32ﬂG4R2 li w

b
p=Til2 /1,,- -2

(1.60)

which continues to

(y (), (x)) = 327G, R? J.0+M%W..L..(f")(ﬂ(x,x')). (1.61)

We note that this can be compared with equation (1.59).
2. Nonlocal braneworld action in the two-brane Randall-Sundrum model. [2]

In the following definition

expliS.; [9])= [ DD exp(is[®]oeys . 2D
the effective action by construction depends on the four-dimensional fields associated with
brane(s)'. The number of these fields equals the number of branes, geometrically each field being

carried by one of the branes in the system. In the generalized Randall-Sundrum setup, the
braneworld effective action is generated by the path integral of the type (2.1),

[ DG exp(is[G. 5. 9]). s, =explis, [g.0]). @10

where the integration over bulk metrics runs subject to fixed induced metrics on the branes — the
arguments of S [g,(/ﬁ]. Here S [G, g, ¢5] is the action of the five-dimensional gravitational field with

the metric G:GAB(x,y), A:(,u,S), 1 =0,1,23 propagating in the bulk spacetime

(xA = (x, y),x =x"x = y), and matter fields ¢ are confined to the branes X, - four-dimensional
timelike surfaces embedded in the bulk,

= 4 12 1
516.6.01= 101 T o' Lf00.0)- 0 + LIk, @2

1 5. ~1/2(5 _
o [a°xG"("R(G)-24,). (23)

5 M3

Ss [G]:

The branes are enumerated by the index I and carry induced metrics g =g, (x) and matter field

Lagrangians L (¢,8¢, g). The bulk part of the action contains the five-dimensional gravitational

! The scope of this formula is very large, because it arises in very different contexts. In particolar, its Euclidean version
(iS = =S i ) underlies the construction of the no-boundary wavefunction in quantum cosmology. (Hartle-
Hawking Phys. Rev. D 28, 2960 (1983))

10



and cosmological constants, G and A, while the brane parts have four-dimensional cosmological
constants o,. The bulk cosmological constant A, is negative and, therefore, is capable of
generating the AdS geometry, while the brane cosmological constants play the role of brane
tensions o, and, depending on the model, can be of either sign. The Einstein-Hilbert bulk action
(2.3) is accompanied by the brane “Gibbons-Hawking” terms containing the jump of the extrinsic
curvature trace [K ] associated with both sides of each brane. In the tree-level approximation the

path integral (2.1a) is dominated by the stationary point of the action (2.2). Its variation is given as a
sum of five- and four-dimensional integrals,

[

+ZI:.[:, d4xg1/2( 161G, /lVK:I_‘_%(TﬂV _ gﬂvo_)Jé‘gﬂv(x)’ (2.4)

&[G, g.0]=

1
R —ESRGAB + ASGABJé'GAB (x,y)

where [K W g"K ] denotes the jump of the extrinsic curvature terms across the brane, and 7" (x)
is the corresponding four-dimensional stress-energy tensor of matter fields on the branes,

T (x) =2 Sledl 5, S,ls.01=3 [, d'sL,(9.00.5). (26)

gl/2 §gﬂv(x)
hence
T (x)= ?,2 5g 5Zj d*xL, (9,00.g). (2.6a)

The action is stationary when the integrands of both integrals in (2.4) vanish, which gives rise to
Einstein equations in the bulk,

&[Gyg’¢] =_ 1 Gl/2(5RAB _lGABSR+A5GABj=O, (2'7)
G ,,(x,y) 167G, 2

which are subject to (generalized) Neumann type boundary conditions — the well-known Israel
junction conditions —

dg[G 8, ¢] 1 /2 1 1/2
= K" — g™ K|+—g"*(T* - ¢”c)=0, (2.8
%, (1) 167stg [ g ]+2g ( g 0) (2.8)

or to Dirichlet type boundary conditions corresponding to fixed (induced) metrics on the branes,
with g, =0 in the variation (2.4),

4
G,

=8, (). (29

The solution of the latter, Dirichlet, problem is obviously a functional of brane metrics,
G,y =Gy lg w (x)], and it enters the tree-level approximation for the path integral (2.1a). S, [g,¢]

in this approximation reduces to the original action (2.2)-(2.3) calculated on this solution
G,.p lg v (x)J, S [g,¢] =S [G[g], g, ¢]+ O(#). With this definition, the matter part of effective action

coincides with the original action Eq. (2.6)

11



Sy le.01=58,lg]l+5,[s.9], (2.10)

while all non-trivial dependence on g arising from the functional integration is contained in S, [g]
Given the action (2.10) as a result of solving the Dirichlet problem (2.7), (2.9), one can further
apply the variational procedure, with respect to the induced metric g, , to get the effective
equations

&geﬁ’[g5¢]: 53'4[8] +l

% () - %.0) 2g”2T’”’(x):0, (2.11)

which are equivalent to the Israel junction conditions — a part of the full system of the bulk-brane
equations of motion (2.7), (2.8).

The action of the two-brane Randall-Sundrum model is given by Eq. (2.2) in which the index I ==
enumerates two branes with tensions o, . The fifth dimension has the topology of a circle labelled

by the coordinate y, —d <y<d, with an orbifold Z,-identification of points y and —y. The
y_| =d . When they are

branes are located at antipodal fixed points of the orbifold, y=1y,, y, =0,
empty, L, (¢,8¢, g ,uv): 0, and their tensions are opposite in sign and fine-tuned to the values of A
and G,

6 3

A5:——’ O'+:—O'_:
471Gl

. (2.12)

this model admits a solution with an AdS metric in the bulk (/ is its curvature radius),
ds® =dy’ + e_z"‘"”nﬂvdx”dx" , (2.13)

0=y, < | y| < y_=d, and with a flat induced metric 77, on both branes. The metric on the negative

tension brane is rescaled by the warp factor exp(—2d /1) providing a possible solution for the

hierarchy problem. With the fine tuning (2.12) this solution exists for arbitrary brane separation d -
two flat branes stay in equilibrium. Their flatness is the result of compensation between the bulk
cosmological constant and brane tensions.

Now consider the Randall-Sundrum model with small matter sources for metric perturbations
h,p (x,y) on the background of this solution,

ds® = dy* + e dxtdx’ + iy (x, y)dxtdx®,  (2.14)

such that this five-dimensional metric induces on the branes two four-dimensional metrics of the
form

8 ()= alny,, + 1, (x). (2.15)
Here the scale factors a, = a(y,) can be expressed in terms of the interbrane distance

a =1, a =e*"=a, (2.16)
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and hjv (x) are the perturbations by which the brane metrics gfw (x) differ from the (conformally)

flat metrics of the Randall-Sundrum solution (2.13). The main result is the braneworld effective
action (2.10) calculated for the boundary conditions (2.9) of this perturbed form (2.15). The
braneworld effective action is invariant under the four-dimensional diffeomorphisms acting on the
branes. In the linearized approximation they reduce to the transformations of metric perturbations,

hy, = h, +f,+f, @17)

with two independent local vector field parameters f’ ﬂi =f ﬂi (x). Therefore, rather than in terms of

metric perturbations themselves, the action in question is expressible in terms of the tensor
invariants of these transformations — linearized Ricci tensors of 7, = h;v (x),

]
RV:E(—Dhﬂv+hl it —h,), (2.18)

4 v, Au u

on flat four-dimensional backgrounds of both branes. (Strictly speaking, R, is the linearized Ricci

v

tensor of the artificial metric 77,, + h,,, . It differs from the linearized Ricci curvature of the second

brane, R, (a277 + h_)z R,/ a’, by a factor of a*). Commas denote partial derivatives, raising and
lowering of braneworld indices here and everywhere is performed with the aid of the flat four-
dimensional metric 7,,, h} =n*°h,,, h=0""h,,, R=n""R,,, and Odenotes the flat spacetime
d’ Alambertian

0=7"9,,. (2.19)

Hence, we have to describe the variables which determine the embedding of branes into the bulk.
Due to metric perturbations the branes no longer stay at fixed values of the fifth coordinate. Up to
four-dimensional diffeomorphism (2.17), their embedding variables consist of two four-dimensional

scalar fields — the radions y™* (x)— and the braneworld action can depend on these scalars. Their
geometrically invariant meaning is revealed in a special coordinate system where the bulk metric
perturbations hAB(x,y) of Eq. (2.14) satsfy the so called Randall-Sundrum gauge conditions,

hys =0, h,, =h; =0.In this coordinate system the brane embeddings are defined by the equations

/-
Looy=y +—y(x), »,=0, y =d. (2.20)

In the approximation linear in perturbation fields and vector gauge parameters, these radion fields

are invariant under the action of diffeomorphism (2.17). The answer for the braneworld effective
action, is given in terms of the invariant fields, (R;V (x),p* (x)), by the following spacetime integral

of a 2x2 quadratic form,

sulei )i fat R R o L KO F O

167G, o’ 6 1’0’
T
—3(D\P+1Rj @(D\IWLR) .21
6 ) 'O 6
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Here G, is an effective four-dimensional gravitational coupling constant,
G, = % (2.22)

(R’“’,‘P) and (R’ ‘I‘T) are the two-dimensional columns

_| R x) [vrx)
R”’_[R-(XJ’ q’_{w* } (2.23)

uv

and rows

R, =[R, (R, ()], ¥ = (o (), 2249

of two sets of curvature perturbations and radion fields, associated with two branes (7" denotes the
matrix and vector transposition).

The quadratic approximation for the action and its nonlocal formfactors obviously determines the
spectrum of excitations in the theory. Now we show that in the graviton sector this spectrum
corresponds to the tower of Kaluza-Klein modes well-known from a conventional Kaluza-Klein
setup. The graviton sector arises when one decomposes metric perturbations on both branes into
irreducible components — transverse-traceless tensor, vector and scalar parts,

Py =Yy ¥ O N + [ + fosin Ve =070 =0. (225

On substituting this decomposition in the linearized curvatures of (2.21) one finds that the vector
parts do not contribute to the action, and the latter reduces to the sum of the graviton and scalar
sectors,

Sulez, W 1= S iV [+ Sl vt 2226

The graviton part in entirely determined by the operator F(0) and reads

F(D)[Vi”

Sgravitan [ﬁv ] ! J d 4X% [7;‘/ 7/!:" ]

" 161G,

12 7‘”}’ (2.27)

while the scalar sector consists of the radion fields of Eq. (2.23) and the doublets of the trace (or
conformal) parts of the metric perturbations ¢*,

cp:{(/f(x)}, " =|p (x)p (x)). (2.28)

Their action diagonalizes in terms of the conformal modes and the (redefined) radion modes
2¥ -,

3
321G,

3
167G,

K(D)

lz

Sl v ]= Jd 4){— P g+ g0 ¢‘j - [a'x2¥ -0 == (2% - ).

a

(2.29)
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Now we consider in the low-energy approximation on the positive-tension brane the case of large
brane separation, when a <<1 and

WO <<1, @»1. (2.30)

a

This range of coordinate distances 1/ NG} corresponds to the long-distance approximation on the
Y, -brane. Now one should use the asymptotic expressions of large arguments of the Bessel

functions (JV_,YV_), v=12,

J, = %cos l\/__z_m/ , YV_’“J 5 sin l\/__z_ﬂv , (2.31)
Al a 4 2 7d|] a 4 2

and the small-argument expansions for (J b Yf). Then, in the leading order the operator F(0) reads

o
F(O)= 1311 JZ_J;_ 232
- o

2J5 J; a

In contrast to the case of small brane separation, the short-distance corrections to this matrix
operator contain a nonlocal 0? In[-term. We present it for the F_, (0)-element,

F.([0)= 2|]Jr(lz']) kz(EI)+0[(lzl])3], (2.33) k,(0)= i{ln%—zc+z%J. (2.34)

This is a manifestation of the well-known phenomenon of AdS/CFT-correspondence when typical
quantum field theoretical effects in four-dimensional theory can be generated from the classical
theory in the bulk.

If we take the usual viewpoint of the braneworld framework, that our visible world is one of the
branes embedded in a higher-dimensional bulk, then the fields living on other branes are not
directly observable. In this case the effective dynamics should be formulated in terms of fields on
the visible brane. In the two-brane Randall-Sundrum model this is equivalent to constructing the
reduced action — an action with on-shell reduction for the invisible fields in terms of the visible
ones. We perform the reduction of the action to the X, -fields separately in the graviton and scalar

sectors. In the graviton sector (2.27) the on-shell reduction — the exclusion of Y perturbations in
terms of }/;v =7, —corresponds to the replacement of the original action by the new one,

+ red

red
Sgraviton [7;—11/ ] : graviton [g/tv

Ea@ e (35

167G,

with the original kernel F(0) going over to the new one-component kernel F.,, (0) according to the
following simple prescription

15



FO)=F,,0)=F.,0)-F_0)—=F.0). 236

It is useful to rewrite (2.35) back to the covariant form in terms of (linearized) Ricci curvatures on a
single visible brane,

Fre(D) v 1 Fre(D)
(W <R ——R-LZR

s SR j (2.37)

red _
grmmm [gyv ]

871G,

A similar reduction in the scalar sector implies omitting in the first integral of (2.29) the negative-
tension term and replacing the 2x2 quadratic form in the second integral by the quadratic form in

w" with the reduced operator

Thence, we express the conformal mode in terms of the (linearized) Ricci scalar ¢* = —(1/ 3[I)R ,

and denote the radion by " =y . Then the combination of the reduced scalar sector together with
the graviton part (2.37) yields the reduced action in its covariant form

. S S 1 (1 2F,
Sred [g/tv’l// = |: uv 2|:|2d (Rﬂ 2 gﬂ RJ_ER(E ZZDZd jR
R\ 2K R
-6’0y +— |24 Oy +—||. (239
(W6)12D2(W6H =
In the regime of small or finite brane separation [ JO<<1, i << 1, the calculation of the reduced

operator (2.36) gives the following result,

£ 0="20-) D cvolig] can = Ln -w)- Lo |

2.41)
4Ina ( )
1—

Similarly, in view of detK(0)= i) 0[ 0 ], the reduced operator in the radion sector

(2.38) is at least quadratic in [,
m 2 ) 1. 1
K., 0)=x(a)0) + 0[(1 Dﬂ, 2.42) K,(a)= FLORENCRD
a

so that the low-energy radion turns out to be a dipole ghost.
The reduced braneworld action in the low-energy regime of finite interbrane distance is:

Sred [g/zv’ l//

1 RY I* ,
16ﬂG x| (1- a)R—?RDR 61%ka )(Elz//+gj +oK ()cﬂmﬂ} (2.44)

16



Furthermore, the following reparametrization from ¥ to the new field ¢,

p= | Hl—iRJ—z M(nwézeﬂ (2.45)

471G, 60 -0

converts the action (2.44) to the local form

2

1 1 1 [
S ,ol=d* -—— 0" |R+— +——x(a)C?, . |. (2.46
nd[g/w (o] J. X\/E|:(l6ﬂ(;4 12¢ ] 2@(0 327ZG4 1(a) /zva,b’:| ( )

The field ¢ introduced here by the formal transformation (2.45) directly arose as a local

redefinition of the radion field relating the Randall-Sundrum coordinates to the Gaussian normal
coordinates associated with the positive tension brane.

Large interbrane distance and Hartle boundary conditions

In the limit ¢ — 0 the nonlocal and correspondingly non-minimal terms of (2.44) and (2.46) vanish
and the low-energy model seems to reproduce the Einstein theory. However, this limit corresponds
to another energy regime (2.30) in which one should use the expressions (2.32) — (2.34) in order to
obtain the reduced operator (2.36). Then the latter, up to quadratic in [ terms inclusive, reads as

2 21\ 2m 2 _
F,(,_,d(|])=ﬂ+(l—'])(mé—zc}m rh 4 | 4
2 8 10 2 \4J; 200U

As in (2.33) it involves the logarithmic nonlocality (2.34) in 0°-terms. Moreover, the last term here
simplifies to the ratio of the first order Bessel functions ¥, /J; , so that F,,(0) takes a form very
similar to that of the large interbrane separation (2.33),

/0 (°of

4 Y
F. (0= —+ T{m 520+ zf} + 0[(1211)3]. (2.48)

The calculation of the radion operator (2.38) with K(I:I) following from (2.32) for /’0/a’ >>1
results in

Kred (D): (lz[l)sz(D)’ (249)

where k,(0) is defined by (2.34). Thus, F,,(0) and K, (0) are given by the following two
nonlocal operators,
-
kv(n)zﬂln%—zcm%}, v=12, (2.50)

14

and the reduced (one-brane) action finally reads
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S red

{R+ C sk (D)Cﬂvaﬁ_612(Dw+§jkz(ﬂ)(ﬂy/+§ﬂ. (2.51)

16ﬂJG

Here terms quadratic in curvature represent short distance corrections with form factors whose
logarithmic parts have an interpretation in terms of the AdS/CFT-correspondence. With the usual
Wick rotation prescription 1 — 0+ ie these ratios tend to

Yo Lyir -2 50 a0, 252)
J a 4 2

14

and both form factors (2.50) for 0< 0 (Euclidean or spacelike momenta) become real and can be
expressed in terms of one Euclidean form factor as

k,(@D+ie) =k(|])zl{1nli—cj, (2.53) and hence k(D)+iCziln 4 (2.54)

=D D)

This Wick rotation after moving the second brane to the AdS horizon impose a special choice of
vacuum or special boundary conditions at the AdS horizon. The Hartle boundary conditions
corresponding to this type of analytic continuation imply that the basis function u_(z) is given by

the Hankel function, u_(z)zHél)(z\/ﬁ):Jz(z\/ﬁ)+iY2(z\/ﬁ), and thus corresponds to ingoing

waves at the horizon. This is equivalent to the replacement Y,Y, —=1,J,,J, — —i, in (2.50) and,
thus, justifies the Wick rotation of the above type. Hartle boundary conditions and the Euclidean
form factor (2.53) naturally arise when the Lorentzian AdS spacetime is viewed as the analytic
continuation from the Euclidean AdS (EAdS) via Wick rotation in the complex plane of time.

3. Compactifications of Type IIB Strings on a Calabi-Yau three-fold and Hartle-Hawking
wave-function in the mini-superspace sector of physical superstring theory.

A. Compactifications of Type IIB Strings on a Calabi-Yau three-fold. 3]

Although the self-duality of the five-form field strength in type IIB string theory implies that the
latter cannot be described by a supersymmetric 10-dimensional action, the bosonic fields can be
described by a non-self-dual action in which the equation of motion for the five-form field strength
is replaced by its Bianchi identity. This is consistent with self-duality, but does not imply it. When
self-duality is imposed as compactification condition, the non-self-dual action yields the correct
compactified theory. In the Einstein frame, the action is,

vp 12 yvpm

s=[d"s \/_{ R——Tr(a M8”M‘1)+§HT NI 422

1 [} 61/ j
b o £l phop /mﬁyﬁDﬂvpaHTmHﬁL} 3.1

The field definitions are
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A2 A
M= A TR oivie?, (32a)
ImA{-Red 1

(1)
Y | Tap |, gl _q5 pl)
Hpy = ( H’(lzfj’ H 55 = 01, Byy). (3.2b)
avp
Frpor = Do+ € B0, ,BY) 32
aipor = O1aDipor) T 7 € Blav0 p Bzl (3.2¢)
Also, &, , =+—g . It is in the final term of equation (3.1) that D =4 vectors (from D) interact

with the D =4 scalars from the three-form field strengths. It is convenient to rewrite this (up to an
overall constant) as

e'[FAHYABY . (33)
To compactify to four dimensions use
F=F Ao, -G, AB"+..., (34

where (O{A, L ),A= {0,1,...,h21} are some choice of symplectic basis for H*(CY), F ﬂAV are the 4-

dimensional vector field strengths and G are the magnetic field strengths and the dual

Auv

relationship between F/ ﬂAV and G,,, 1s due to self-duality of F ; the terms that have been left out of

Auv
equation (3.4) are those which will not contribute to the integral in equation (3.3). The 3-form field
strengths are given Calabi-Yau expectation values via

<HY>=vipr—viie,, 35 <HY>=vQpr-viPa,, (3.5b)

m m

where the v, are constants that have been prematurely identified as values of the magnetic

(electric) charges. Using equations (3.5), integration of equation (3.3) over the Calabi-Yau gives
e [(VOF* ABY —yG A BY). (3.6)

Writing F* and G, in terms of electric and magnetic vector potentials A;\ and AM , gives, after an

integration by parts, (again up to a constant)
el [d' =g WA H D~y A 1), (3.7)

where

B0 :égWaVng. (3.8)

The result is that to lowest order in the coupling constant, with, for simplicity, the fields
corresponding to the h,, data set to zero,
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2 itk 22£+LK

HY = 3¢ et 49,ImS, (392 HY= = et 19,ImC,; (3.9b)

U

also, the string coupling constant is
K K
e? =v2¢2 2. (3.9¢)

Here S and C, are the N =1 superfields which form the dilaton hypermultiplet; the four
dimensional dilaton has been generalized to

¢:%e_’(. (3.10)

3K K
Substituting equations (3.9) into equation (3.7) gives, after a Weyl rescaling g, — NGYERE g (to
go to the D =4 FEinstein metric),

ﬁjd“x,/— g {\/Eek“vflA)A/’l\a” ImC, —\/Ee’?*"vg“ﬁwa” ImC, -

FVOAY IS + X VONA, 94 ImS|. (3.11)

This can be recognized as the interaction terms of the vector potentials with charged fields e* and
¢“. Hence, completing the square with the kinetic terms for the hypermultiplets gives (with an
appropriate numerical rescaling of V{f’&) N

S = Jd“xﬁ{Se’hK (V(IA)AQ —vI"4,, +9, ImC, ) +2¢% (vﬁi)A;‘ —vPhA,, +0, ImsJ +}
(3.12)

From this equation, it is seen that ImC, carries electric (magnetic) charges VL(IA) (V,(nl)’\) and that

Im S carries electric (magnetic) charges vﬁi) (V,(,f)A )

With regard the compactification of I1IB on a Calabi-Yau, now, the attention is restricted to an
h, =1, h, =0 Calabi-Yau. The (uncomplexified) moduli space therefore is one-dimensional, and

corresponds to the choice of metric; specifically a conformal factor e . Furthermore, as RR fields
are suppressed in string perturbation theory, and because only the structure of the dilaton multiplet
1s of interest, it will be convenient to take

[=0; B.=0:; D,.=0. (3.13)

i avet

The equations of motion are usually written in terms of the fields

.2 ¢ R 0,V

p= A 12" 3 14 B, =" (3.14v)
1-il 1+e? I-yy

. Imlgd s MV, s

Qﬂ m(‘/f l/f)’ (314C) Gﬁﬁﬁ:ﬂvp—'//fvp; Hﬂ\?ﬁ H +lH,uvp (314(1)
I=vy (1-yy)
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The equation of motion that will be most interesting is
(v,-i0, )64 = B,G. (3.15)

Equation (3.15) is satisfied trivially on the Calabi-Yau. After performing a 4-dimensional Weyl
rescaling g, — e g v » €quation (3.15) becomes (on the spacetime)

V,+ y oy W L Gl = ﬂl{ e’G,. (3.16)
2(-y'y) vy

Subtracting i times the complex conjugate of equation (3.16), from equation (3.16), gives

1 G* —wG™*
(-y'ylv, e“”’J—WG”f . (3.17)

(1-py)
which is satisfied by introducing a complex scalar field D such that
a D — 630 Gﬂ B WG;

u 1°

1-yyh

(3.18)

where, as in equation (3.8)
G, =¢,°G_. (3.19)

uvp up o
The other equation of motion that is used is

5 B B A 6t Ax 3 . AvetAs
RﬂVA:ZP(ﬂPl,)+ZG(ﬂ Gﬁ)&f—l—ng Gys: - (3.20)

By substituting the Calabi-Yau part of this equation into the space-time part of the equation, the
four-dimensional action

S= jd“xﬁ{%RﬂPﬂf +3(0,0F +%|Gﬂ|2} (3.21)

can be deduced. Alternatively, this can be found, almost by inspection, via dimensional reduction of
the NSD action of equation (3.1). There is a space-time dependent conformal factor of ¢’ in the
Calabi-Yau metric; hence ﬁ = 6305 and so to remain in the Einstein frame required the
Weyl rescaling of the four dimensional metric g, — e g - This is the same Weyl rescaling

used in the derivation of equation (3.17) and the reason for it. To obtain the standard quaternionic
geometry, we make the field redefinitions,

1
Z=—ie" ', (3.22a) c0=i¥1mD; (3.22b)
1
p=¢ 2", (322c) ¢=ReD: (3.22d) and S=¢+ig. (3.22)
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Define also

i

(z-Z); 3.23¢)
32

K:—ln(—é(Z—Z)j; (3.232) K=-In[S+5]; 3.23b) N, =R, =

D,C,=9,Cy; (3.23d);and D,S=0,S. (3.23¢)
Then, the scalar part of the action of equation (3.21) becomes

§=[d'x/-g K ,,0,20“Z + R .D,SD*S + K D,SD"C, +
I?C(SD/!COD#E+I?COEOD,,C0D”EO}, (324)

where the subscripts on K, K denote differentiation. We note that C, is pure imaginary.

B. Hartle-Hawking Wave-function in the mini-superspace sector of physical
superstring theory. [4]

Suppose we consider the compactification of type IIB superstrings to two dimensions on a Calabi-

Yau threefold M times a 2-sphere M x S*. Turn on 5-form fluxes for the RR? 5-form field strength
to be

F.=F,rwm, (3.25)

where @ is a unit volume form on S?, and F, is a 3-form on M . Choosing an integral basis of

magnetic/electric H’(M ) as {a,, yid }1 1, We write

=0,...h°
F=Y(p'e,+q,8'). (326
I

It is possible to write down a superpotential whose extremization leads to the condition for (2, 2)
supersymmetry in d = 2:
W = IM: F.AQ, (3.27)

hence
w=[ >p'a+ap)rone, (327
1

where € is the holomorphic 3-form on the Calabi-Yau three-fold. To deduce this superpotential,
we note that this superpotential is consistent with the tension (BPS mass in 1 dimension) of the

domain wall D3 brane which wraps a 3-cycle in the Calabi-Yau and changes the F; flux.
The condition for extremization of W and preserving supersymmetry is

2 We remember that the RR (Ramond-Ramond) states in type I and type II superstring theories, are the bosonic closed
string states whose left- and right-moving parts are fermionic. These include p-form potentials C »» With p taking all

odd values in the IIA string and all even values in the IIB string.
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DW =0. (3.28)

The complex structure of the Calabi-Yau are field variables and we can look for extrema of W with
respect to their variation. We denote variation of Q in arbitrary direction of H>'(X) by &Q. The
supersymmetry condition (3.28) is equivalent to

jstza‘QAFs =jMénAF3 =0. (3.28b)

Since F, is also real, this implies that F, € H>" + H**. Using the fact that there is only one element

in H™’ represented by Q, and using the reality condition for F, we deduce that
F, =Re(CQ),
for some complex number C . In other words
1 1
p' =Re(CX'), g, =Re(CF,), (3.29)

where
X! :J.A Q, F :J.B"Q’

hence
w=[ Y [Relc], ok, +relc[ aJp'|ronq. 329b)

and (A,, B’ ) are 3-cycles on M that are dual to the 3-forms (a,, yin ) With the complex structure of
the Calabi-Yau satisfying (3.29), supersymmetry is preserved with a suitable choice of metric in 2
spacetime dimensions, i.e. the AdS, metric. For such a complex structure, the superpotential W is

not zero, but it is proportional to JMQ A Q. In addition, the size of S* is also determined by the

supersymmetry condition, and we find that
Area(s?)=2CC[QAQ. (330)
This is exactly the content of the attractor mechanism. To case it in the standard description of the

black hole attractor, we consider D3 branes wrapping ¢, times on A, and p’ times on B'. This
gives rise to a supersymmetric black hole in four dimensions, whose BPS® mass M zps 18 given by

M=K W[, (331

where the exponentiated Kahler potential K is given by

? We remember that the BPS (Bogomolny-Prasad-Sommerfield) state is a state that is invariant under a non-trivial
subalgebra of the full supersymmetry algebra. Such states always carry conserved charges, and the supersymmetry
algebra determines the mass of the state exactly in terms of its charges.
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K=iX'F -X'F)==2Imz,X'X’, (3.32)
and W is the superpotential (3.27), which can also be expressed as

W=q,] @-p'[,Q=q X ~p'F,. 33

Furthermore, the variation of the action

S :—%(K(X,Y)+2iW(X)—2iW(Y)):—%(J.Q/\§+J.(Q+§)/\F3), (3.34)

in arbitrary directions of H*(M ), reproduces the attractor equations (3.29).
Consider type 1IB superstring compactified on the Calabi-Yau 3-fold M times S>xS'. There is a
natural Euclidean solution to the classical equations of motion which develops from this spacelike
section. It is the geometry M xS*x H,/Z , where H, is the hyperbolic disk, i.e. the Euclideanized
AdS,, with the metric

ds* =dp* +e*dr*, (3.35)

and the Z quotient periodically identifies 7 =7+ . If we view p as an Euclideanized time, the
geometry M xS*>x H,/Z describes an Euclidean time evolution of type II string compactified on
M x §*x S". This is how we were originally led to the metric (3.35).

Let us consider a natural notion of a “mini-superspace” where we view p as an Euclideanized time.
Among relevant light modes are the complex moduli of the Calabi-Yau three-fold denoted by
4 (i =1,...h"" ), which are in vector multiplets in four dimensions. The gravity multiplet also
produces some scalar fields upon compactification on S*xS'. One is the radius R of S*. Another
scalar field is related to how the S' is fibered over S*. The radius R and the chemical potential ¢
naturally combine with the complex structure moduli z of the Calabi-Yau to make a “large moduli
space” with coordinates X' (I = 0,1,...,h2’1). More explicitly, choose any holomorphic section

X é (z) over the complex structure moduli space and define

— 1/2
N 40.0)) :
X' =i2Re (K(XO,YO)W(XO) X! (3.36)

Upon compactification on §', each gauge field becomes equivalent to a pair of massless scalar
fields — one is the Wilson line of the gauge field along the S', and the other is the dual magnetic

potential around the S',
o' =, A", G,=§ 4, 33D

where A, is the dual of A’ in four dimensions. One can also think of 5, as the dual of the massless

gauge field in three dimensions. By definition, they couple to the charges (p’ ,q 1) of the black hole
as

eizl(ql¢l+plal). (3.38)
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Combining with X' defined in (3.36), a set of four scalar fields (X X', ¢' ,5,) for each I gives
bosonic components of supermultiplets. The dependence of the wave-function on (gz)’ ,;/;,) is also
simple. Since ¢' is dual to A, and @, is dual to A’ in three dimensions, we have

d¢ "' 11d¢1 I _
" dp =[.Fi=a. jF ', (3.39)

where G,, is the metric in the kinetic term for the gauge fields, and F' =dA’, F, = aﬁ,. These
equations means that, when we quantize the theory along the p direction, (¢’ ,(,/7,) are canonically

conjugate to (g,, p") . Therefore, the wave-function depends on (¢,(Z ) as
o (x.X:0.5)=e T "y (x X), (3.40
ra 9.9 Lo\ X, X ), (3.40)

if it is an eigenstate of the fluxe quantum numbers (p,q). This (gz),a) dependence is also expected
from the fact that (¢, 5 ) are electric and magnetic static potentials for the black hole charges (3.38).

Now we consider the original Hartle-Hawking wave-function for a three-sphere S°. The saddle
point computation of the wave-function on S° can be viewed as filling it with a 4-dimensional ball
with the S° as its boundary, and this leads to the action S, in the Euclidean ball,

where A is the cosmological constant, and the mini-superspace wave-function behaves as

Y= exp(— %)

In the present context A <0, and —% = Area(S : ) =S so we may expect that

entropy °

[axax|¥, (x.X) =expls (3.41)

entropy ) ’

namely the wave-function is normalized by the exponential of the entropy. It is natural since the
string partition function on the full space M xS*x H,/Z should give the black hole entropy. Thus,

at least semi-classically we expect (3.41) to hold. In view of our discussion following (2.11) a
natural guess for the probability measure is

v, (X, Yf _ exp{—%K —%i(W —W)}, (3.42)

hence

[ axax exp{— % K- % iw-w )} =~ exXp(S,pp)> (3:41b)
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where W(X) depends on the flux determined by (p,¢) as in (3.33). Indeed, the right-hand side is
peaked at the attractor value and its value is given by the exponential of the entropy. To see this in

terms of the physical variables, the complex structure moduli z' and the radius R of the S°, we
can substitute (3.36) into (3.42) and find

W[ =expl- 7R - M, R). (3.43)

Extremizing this with respect to the complex structure moduli z' gives the attractor equation and
extremizing with respect to R gives

2

\lp

pPq

T
extremum exp(z M BPS j = eXp(S entropy ) 2

reproducing the expected result. The eq. (3.42) captures essential aspects of the wave-function.
This same wave function will give a semi-classical approximation to the topological string partition
function, which we will argue gives the exact answer for the Hartle-Hawking wave function
including all string loop corrections.

The wave-function ¥, (X X ) should satisfy the Wheeler-De Witt equation. In mini-superspace

the WDW equation corresponds to the quantization of the attractor flow for a black hole with
charges p’ and g, . Consider a ten-dimensional Euclidean metric of the form,

ds* =" dr’ + eV dp® +e7VdQ +dsl, .  (3.44)

where 7 is the Euclideanized time direction compactified on S', p is the radius coordinate, dQ*
is the metric on a two-sphere of unit radius, and ds;, is the metric on the internal Calabi-Yau three-

fold. Note that e is the radius of the S°, and the AdS, geometry is realized when U is constant.
Since we are interested in BPS configurations and since the supercharges preserved by the
background square to become the translation along the 7 direction, we assume that the scale factor

e’ and the complex moduli zi(i = 1,...,h2’1) of the Calabi-Yau three-fold are independent of 7. In
this case, we have a one-dimensional system along the p direction described by the effective action,

2 . -
1 dUu dz' dz’ _ s =
Seﬁ:a'[”dpep{(%*—lj +g"’_d_+eZU(Ml2?PS(Z’Z)+4gjaiMBPSajMBPS) ., (3.45)

where

(3.46)

We regard p as the Euclidean time of the system, which flows from p =4oc0 to —oo. Since the
effective action (3.45) can be written as

2 .
1 = dUu dz' S
Sy = EL" dpep{(%+l—€UM3PSJ + gi]’(%_ 2e%¢ amMBPS]
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—j .
(lei —2eY 270, M ,pg j:l + (total derivative), (3.46b)
o)

the BPS equations are

—=—1+e"M,,(2,7), Zip = 2el]é’igjjwzef's(z’Z)' (3.47)

The signs on the right-hand side of these equations are chosen so that they are compatible with the
initial condition at p — oo, which we regard as the infinite past in the Euclidean time.

The equations (3.47) can be combined into a single equation on the large moduli space. To write
down such an equation, we start with a holomorphic section X (f (z)([ =0,1,..., hz’l) over the moduli
space of complex structure. They make projective coordinates of the moduli space, and as such
there is a freedom to rescale these coordinates. We define the exponentiated Kahler potential K

and the superpotential W, for these coordinates as
K,=-=2Imz,X/X], W,=q¢,X,-p'F,(X,).

We then combine the scale factor e’ in the metric (3.44) and the complex moduli 7' into a single
set of coordinates X' defined by

1/2
X’:zie"][ Wy j X!. (3.48)
KOWO

Note that the right-hand side of (3.48) is invariant under rescaling of X . Moreover
K(X,X)==2Imr,X'X’ =2 )

is the diameter squared of the S”. Thus, the large moduli space parametrized by X’ combines the
complex moduli z' and the radius of the S°.
Using X', the attractor flow equations (3.47) can be written as a single equation

7 N7}
ax =X1+(Lj 3, W(X). (349
dp Imz

Let us show that (3.49) is equivalent to (3.47). If we multiply X’ Im7, to both sides of (3.49), the
left-hand side becomes

daz' =
aiMBPS _EaiMBPSJ .

_ dax’ Ly dU e (df
X'Img, W =

=2e
dp dp My \ dp

On the other hand, the right hand-side becomes
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X'Imz, X’ +iX'9,W(X,)= —%K(X,Y)HW(}?): 2 +2¢VM s .

Combining them together, we obtain

dp dp

du 1 (df dz'
U (_ aiMBPS -
dp  2M ypg

giMBPSJ =—1+e"M yy.

The real part of this equation is precisely the first of (3.47):

dU
%:_I‘FEUMBPS. (350)
The imaginary part gives
dz' d7’ =
%aiMBPS = %a;MBPS . (351)

Similarly multiplying 9, X Im7,, to both sides of (3.49) and using (3.50) and (3.51), we find

dz' o=
» =2¢"g"0:M . (3.52)

Moreover, (3.52) implies (3.51) since both sides of (3.51) are now equal to — 2eUg’§8iMBP555MBPS .

Therefore, (3.49) for X' defined by (3.48) is equivalent to the standard BPS equations (3.47).
In (3.49), a general BPS solution can be easily expressed. Taking the real and imaginary parts of
this equation, one finds

1
Re(X’—dj j:pf, Re(g_?j:q,.
p p

A general solution to this is then
ReX'=p'+c'e”, ReF,=q,+d,e”,

where (c’ ,d ,) are integration constants specified by the initial condition at the infinite past p =oo.

Whatever initial condition one chooses there, X' at the infinite future p — —oo are fixed to be at
the attractor value,
Re(X')—> p', Re(F)—gq,.

It is useful to write the BPS equation (3.49) as

Im(z, )———=-—=0,K+id,W . (3.53)
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Now, we will use this equation to obtain the supersymmetric version of the WDW equation.
The supersymmetric WDW equation is equivalent to the quantum version of the BPS equation
(3.49) and its complex conjugate. To understand the quantum version of the BPS equation, we note

that the metric in the X space implied by the effective action (3.45) is almost given by Im(z'u)

since
X'Im(z, )X’ =-2R*, D,X'Im(z, )X’ = X"Im(z,)D.X’ =0, D,X'Im(z,)D. X’ =2R%g;,
(3.54)

where

DX'=Kd,(K"'x"), D.X’=kKd.(k'X’),

and g; =0 155 In K . We note that Im7,, has one negative sign in the direction of H (9 whereas it
gives the standard positive definite metric in the H @ direction. Flipping the sign in the H (30)
direction gives what is denoted by Im N, in the supergravity literature, which is the metric derived

from the effective action (3.45). In the semi-classical approximation, flipping of the sign of the
metric can be done by a suitable contour deformation in a functional integral. Thus, we will use

Im7,, as our metric and the corresponding quantization rule is

ZIm(f )dijﬁ_i
4" ap oxX,

Given this rule, the quantum version of the BPS equation (3.49) is

9 T T —
(aXT,—%a,Kﬂ%a,Wj\PM:o, (3.55)

and similarly for the complex conjugate equation

2 T
(aX, —§8,K—128,WJ‘PM =0. (3.56)

We denote the operator appearing in the constraint (3.55) (T’, and the one in (3.56) by C,, so that in
lI‘M>=O and C,

both constraints is sufficient to determine the entire wave function. One finds in this way

terms of the state “PM> the constraints are C, ‘PM> =0 respectively. Imposing

\pp#(x,y):exp{gz((x,y)g(iw(x)_ivv(y))}.

One can use the BPS constraints also in a way that leads to a description of the covariant
supersymmetric gradient flow, also known as the attractor flow, in terms of a holomorphic wave

function ¥, q(X ). This wave function can be obtained by imposing first the constraint (3.55). This

reduces ‘P(X X ) essentially to a holomorphic function. The second condition (3.56) then fixes
Y, (X) to be given by

v ()= @)
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We note, in particular, that WO,O(X )=1. In the remaining part of this chapter we will provide

evidence that this wave function coincides with the semi-classical approximation obtained from the
topological string partition function, which we propose to be the exact Hartle-Hawking wave
function including all string loop corrections.

We abbreviate the operators appearing in the constraints (3.55) and (3.56) by C, and C,
respectively. We want to impose C, on the ket state |‘P> and its conjugate C, on the bra state <‘P| .

Notice that C, differs from C, in the sign of the derivative. The Dirac bracket is defined as
_ _ — 1 = —
XX e =X XY XL C fi=—=1|C,. X" |,
DR

where the denominator should be read as the inverse matrix. Here we only wrote commutators that
we know are non-vanishing. For the constraints one finds

c.Cil=-%9,9,6 =" iz,
while the commutators of the constraints with the coordinates give
|x'.c.|=6"«. [c.X']=05,".
Inserting this in to the definition for the Dirac bracket leads to the following commutation relations

for X! and X’
_ 2 1 1A
[X’,X’]D,-mf;(—mj . (35%)

The Hilbert space for (3.58) can be represented by holomorphic wave-functions w(X ! ) of X', with
the inner product defined by

(Wilw) = [ axdXe " 7,(X,(X).  (3.59)

The relation between the wave function in the real and complex polarization can be found at the
semi-classical level by applying standard canonical transformation techniques. In classical
mechanics canonical transformations can be described with the help of a generating function. In our
case this generating function should depend on one of the real and one of the complex coordinates.
Since we are interested in transforming wave functions (X ) to w(y) the appropriate choice is to

use a function S(X, y) of the real coordinate y’ and the complex coordinate X' . It is determined
by requiring that the following canonical transformation

7' =Re(x'),  n,=Re(F,), (3.59b)

takes the form

1 98(x, ) 7 2( 1 )” BS(X,;()‘

= o “iz\Imz) ox’
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After a little algebra one finds

N | =

S(X,z)=%(z’E(X)—%FO(X)+ Fo(zz—X)j. (3.60)

This leads to the equations

F2y-X), X' =24"-Xx",

+
N | =

which are equivalent to (3.59b). The relation between the semi-classical wave function
l//(X )= ¢*™) and the corresponding wave function l//(;{)= ¢’ in the real polarization is

w(x)=[dze”" p(z). 36D

where it is understood that the right-hand side is computed in the saddle point approximation.

Now we want propose an exact such wave function which agrees in the semi-classical limit with the
wave function discussed before. We will argue that the state with no flux can be identified with the
topological string wave function:

l//0,0>:‘l//top>‘

That this relation could hold presupposes that topological string partition function also corresponds
to a wave function associated to quantizing H>(M ). Moreover this is in agreement with the fact

that at least semi-classically the topological string partition function describes the Hartle-Hawking
wave function in the real polarization. We argue that the semi-classical result

Wp,q> = Op,q ‘W0»0>

also holds with the expected factor

iT
Op,q = exp|:— TWW] + C.C} (3.62)

interpreted as an operator acting on the topological string Hilbert space.

Semi-classically, the entropy of the BPS black hole obtained by wrapping D3 branes around cycles
of M is given by the area (3.30) of the horizon. The resulting quantum corrected entropy formula
can be concisely expressed as

Senlq.P)=F(p.0)+D 90", (3.63)

where

F(p.9)=F, (X)+F, (X), X =p+i7'z¢. (3.64)

and
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is the full topological string partition function.
Moreover the quantum corrected attractor equations also take the simple form:

J

35 F(p.9). (3.65)

q, =—

At the attractor point, the string perturbation expansion is an asymptotic expansion for large black
hole charges. Since (3.63) takes the Legendre transformation from ¢ to ¢, the number of states
Q( p,q) of the black hole with finite charges p’,q, is given by Laplace transformation of the
topological string partition function

2

i
F =
. m,,[ﬁ+”¢j

Q(p,Q): J.d¢e—q1¢'+7’(pvq) — Jd¢e—q;¢l (3.66)

More precisely, the conjecture states that Q(p,g) given by (3.66) is the Witten index for the

quantum Hilbert space of the black hole.
We note also that the expression (3.66) for the number of states can be written in a nice way as a
Wigner function. Namely, by taking the contour of the ¢ integral in (3.66) along the imaginary axis

as ¢ =—imy , one gets
Qp.q)=[dre™ g, (p-2W.,(p+2). (3.67)

where

Vi, (1)=e™" (3.68)

is the exact topological string partition function.
Now we can relate this result to the normalization of the Hartle-Hawking wave function.

Let ‘l// ”. q> denote the state we obtain upon doing the path-integral on the right in a fixed flux sector.

The above consideration leads to the statement that

Ap.a)=(v,.|w,.)-

Now let us write the expression (3.66) in invariant form

Q(p.q)= <v7m,,

eilr(tll—l”?)‘l//mp> ,

where } and 7 are to be regarded as operators, and the state ¥ is defined by the wave function

v (- %) . Here, the state on the left is not simply the complex conjugate but it contains a minus sign
due to the time reversal in the attractor flow equation. Next we note that the attractor relations
(3.59b) imply that ¢, ' — p'n, =ReW(X), and hence
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| Ziw(x)-w (X))
Q(p.q)= <l//m,, e’ Viup)
It follows that if we identify
T (w(x)-w (X))
V,g)=e ' Vi) (3.69)
or in the wave function form as
L LV
W (¢1 ): e—EfJN’ +Fmp[l7 +;¢ )
124 ’

then
l//p,q> - J.d¢1|l//p,q (¢I 12 (3.69b)

Q(p.q)= <W,,,q

exactly as expected. Moreover the form of the wave function (3.69) is exactly consistent with the
semi-classical reasoning which led to (3.62). The fact that the wave functions for both the IIA and
IIB side would lead to the same state is clear once we recall that the internal part of the Calabi-Yau
and thus the mini-superspace is identical for both cases where a D2 brane IIA instanton is playing
the role of D3 brane of IIB. We find this a highly non-trivial evidence for our conjecture for the
exact Hartle-Hawking wave function.

The relation between the wave function ¥, (X ) and the exact topological string partition function

V. ()
Ts(x.z)
l//top (X ) = J‘ dZ€ g ’ l//top W) (370)

is a semi-classical formula. It describes the loop corrections to the Hartle-Hawking wave function to
all orders in perturbation theory.
The partition function of topological string theory can be computed perturbatively around a given

background by writing X' =Z' +x’, and treating the perturbation x’ as coupling constants on the
worldsheet. The coordinates x’ used by the perturbative topological string are a linearization of the
“curved” X' coordinates. The relation with (y,7) is

7 =Re(z’+x')  np,=Re(F,(2)+7,x"), (3.71)

where 7, =0,0 JFO(Z ) is determined by the background. These are just the attractor equations

(3.59b) linearized around X' =Z'. In this way the topological string avoids the normal ordering
problems but at the cost of a background dependence. The partition function ¥, (x;Z Z ) is related

to the background independent wave function ¥,,, () via the Bargman transform

v, (x:Z,Z)=|detIm fﬁ [dxe" 7y, (), (3.72)

with
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S(x,;{;Z,Z):%fU(Z)Z’ZJ +71';{,(x1 +Z1)+%(x1 +Z’)(x, +Z,),

where indices are lowered with Im<7,, (z ) This expression is a linearization of the generating

function S(X,7) defined in (3.60). The topological partition function W(x;Z,Z ) thus gives in a
certain sense a linearized description of the Hartle-Hawking wave function y,, (x).

4. p-Adic Models in the Hartle-Hawking proposal. [5]
Ordinary and p-adic quantum mechanics can be unified in the form of adelic quantum mechanics
(L, (AW ()U@). @

L, (A) is the Hilbert-space on A, W(z) is a unitary representation of the Heisenberg-Weyl group
on L, (A) and U(t) is a unitary representation of the evolution operator on L, (A). The evolution
operator U (¢) is defined by

Uy ()= [ K, ylw(ddy =TT, K7 Gy (0 )y, . 4.2)

The eigenvalue problem for U (t) reads
U s (x)= 2E o (x). (4.3)

where Y, are adelic eigenfunctions, E, = (EM,EZ,...,E p,...) is the corresponding adelic energy,

indices @ and [ denote energy levels and their degeneration. Any adelic eigenfunction has the
form

‘Ps(x):‘Pm(xm)H‘Pp(xp)HQprh), xe A, 44

peS pES

where W e LZ(R), ¥ el (Qp) are ordinary and p-adic eigenfunctions, respectively. The Q-

function, that is defined from the following formula

A <1; qu\p)zo, i >1, (4.4b)

qu\p)zl,

is an element of the Hilbert space L, (Q ) ), and provides convergence of the infinite product (4.4).
A suitable way to calculate p-adic propagator K p(x”,t”;x',t‘) is to use Feynman’s path integral

method, i.e.

£

o 1 .
Kp(x",t";x',t'):LJl ;{p(—zi L(q,q,t)dtqu. 4.5)

For quadratic Lagrangians it has been evaluated in the same way for real and p-adic cases, and the
following exact general expression is obtained:
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With regard the Hartle-Hawking proposal for the wave function of the universe, the p-adic wave
function is given by the integral

v (q)= [, dNK , (¢, N:0,0), (4.7)

where, according to the adelic structure of N, G, =Z, (i.e. |N |p <1) for every or almost every p.

Models of the de Sitter type

Models of the de Sitter type are models with cosmological constant A and without matter fields.
We consider two minisuperspace models of this type, with D =4 and D = 3 space-time dimensions.
The corresponding real Einstein-Hilbert action is

_ 1 . B 1 ooa
S=r—|,4 xJ—g(R 2A)+8ﬂGjag hK, (4.8)

where R is the scalar curvature of D-dimensional manifold M, A is the cosmological constant,
and K is the trace of the extrinsic curvature K on the boundary oM . The metric for this model is
of the Robertson-Walker type

ds’ =02 N2dr? + a2 (1)a2 . 4.9)

In this expression dQ}, denotes the metric on the unit (D —1)-sphere,
o’ =81G/ [VD’l (D-1)(D- 2)] where V> is the volume of the unit (D —1)-sphere.

In the real D = 3 case, the model is related to the multiple-sphere configuration and wormhole
solutions. v -adic classical action for this model is

Tl A L 2a"a" a’+a'"
S.la ’N’a’o)_2ﬁ{Nﬂ+/{sinh(Nﬁ) tanh(Nﬁ)ﬂ' (10

Let us note that A, (/1 = AGZ), denotes the rescaled cosmological constant A . Using (4.6) for the
propagator of this model we have

A B

K, (a",N;a',0)=A g e | 2.5 (@ N;a'0). @.11)

v

The p-adic Hartle-Hawking wave function is

2,(- ZN)ZP[_E*' \/ZCOth(N\/Z)

N|1/2 2 2

p

le(a):j‘N‘ _dN a2J, 4.12)

which after p-adic integration becomes
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‘Pp(a): QQa|pl |/1|p <p?, p=#2,
v (a):%Q(]a

p

)AL s2t p=2. @13)

The de Sitter model in D = 4 space-time dimensions may be described by the metric

2
ds2:0'2{—N—dt2+q(t)dQ§J, 02:%, (4.14)

q(t)

ie dsz—z—G( v

= ———d* + q(t)dggj, (4.14b)
kY4

q(t)

' 52
and the corresponding action S [¢]= %J.t dtN (— 4?\]2 —Ag+ lj , where 1=2AG/(97).

For N =1, the equation of motion § =24 has solution ¢(r)=Ar* + (% —ﬂTjt +¢q', where

q"=4q("), ¢'=q(t') and T =r"—r'. Note that this classical solution resembles motion of a
particle in a constant field and defines an algebraic manifold. The choice of metric in the form
(4.14) yields quadratic v -adic classical action

- 18 T (q"—q)
5.(¢".T:q'0)= —[ﬂ(q‘+q")—2]——(q8—Tq). (4.15)

24 4
According to (4.6), the corresponding propagator is

A(-8T _
K‘,(q",qu',O):V(—m)ZV(— g1

'0)). .16
a7 q'0). (.16)

We obtain the p-adic Hartle-Hawking wave function by the integral

A (—8T) 273 T ¢°
¥ (q)=| dT-2 - +(Ag-2)—+1-|, @17
,(9) IH a z( M) @D
P

and as a result we get also QM,,) function with the condition A =4-3-1, [e Z ,- The above Q-

functions allow adelic wave functions of the form (4.4) for both D = 3 and D = 4 cases. Since
|/1|p <p~?in (4.13) forall p#2, it means that A cannot be a rational number and consequently

the above the de Sitter minisuperspace model in D = 3 space-time dimensions is not adelic one.
However D = 4 case is adelic, because 4 =4-3-/ is a rational number when le Z C Z,,.

5. p-Adic and Adelic wave functions of the Universe. [6]

In the Vladimirov-Volovich formulation, p-adic quantum mechanics is a triple
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L0, )W, (2).u, (). .1
where W, (z) corresponds to w, (afc, ﬂlg ) defined in the following equation
W, loz. k)= ( aﬂj Bt (ar). 1)

Adelic quantum mechanics is a natural generalization of the above formulation of ordinary and p-
adic quantum mechanics: (L2 (4), W, (z)U A (r)). In complex-valued adelic analysis it is worth
mentioning an additive character
L [1x, ). 62
P

a multiplicative character

:|xw|;H‘xp‘; , seC, (3.3
’

and elementary functions of the form

)[]e, HQ(M) (5.4)

PeP PeP

=3

where ¢_(x_) is an infinitely differentiable function on R and |xm|:(/)m (x.)—0 as |Xm|,, — oo for

any ne {0,1,2,..}, ®, (xp) are some locally constant functions with compact support, and

o

All finite linear combinations of elementary functions (5.4) make the set L£(A) of the Schwartz-
Bruhat adelic functions. The Fourier transform of ¢(x)e £(A), which maps L(A) onto L(A), is

QQx x| <1, qu ):0, ‘x

>1. (5.5)

P Plp P p ‘ P

(v)=[ )z, (xy)dx, (5.6)

where ;(A(xy) is defined by (5.2) and dx = dx_dx,dx,... is the Haar measure on A. A basis of
L, (A(j’)) may be given by the corresponding orthonormal eigenfunctions in a spectral problem of
the evolution operator U , (t), where re A. Such eigenfunctions have the form

Wy (x1)= Hz//p X, I,Hg(jx\ ), 7

where y_€e L, (R) and ¥, € L, (Qp) are eigenfunctions in ordinary and p-adic cases, respectively.
.qup‘ ) is an element of L, (Qp), defined by (5.5), which is invariant under transformation of an
V4

evolution operator U , (t p) and provides convergence of the infinite product (5.7).

p-Adic and adelic minisuperspace quantum cosmology is an application of p-adic and adelic
quantum mechanics to the cosmological models, respectively. In the path integral approach to
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standard quantum cosmology, the starting point is Feynman’s path integral method. The amplitude
to go from one state with intrinsic metric 4'; and matter configuration ¢' on an initial hypersurface
¥' to another state with metric A'"; and matter configuration ¢" on a final hypersurface X' is
given by the path integral

Kw(h"ij 7¢”72”;th ’¢v’2v): J.Zoo(_ Sw[gyv’q)])pwgyvaq) (58)

over all four-geometries g, and matter configurations @, which interpolate between the initial
and final configurations. In (5.8) S_ lg W,CIDJ is an Einstein-Hilbert action for the gravitational and

matter fields. To perform p-adic and adelic generalization we make first p-adic counterpart of the
action using form-invariance under change of real to the p-adic number fields. Then we generalize
(5.8) and introduce p-adic complex-valued cosmological amplitude

«,y. 002 0,.0.5)= 2,8, lg.. 20,8, D0 59

The standard minisuperspace ground-state wave function in the Hartle-Hawking (no-boundary)
proposal is defined by functional integration in the Euclidean version of

v lil=[ 2.8 g2 8, D@, 510)

over all compact four-geometries g, which induce h; at the compact three-manifold. This three-

manifold is the only boundary of the all four-manifolds. Extending Hartle-Hawking proposal to the
p-adic minisuperspace, an adelic Hartle-Hawking wave function is the infinite product

v =128 lgm-2Ps D@, 11

where path integration must be performed over both, Archimedean and non-Archimedean
geometries. If an evaluation of the corresponding functional integrals for a minisuperspace model
yields l//(qa) in the form (5.7), the such cosmological model is a Hartle-Hawking adelic one.

Now we consider the approach consists in the following p-adic proposal for the Hartle-Hawking
type of the wave function:

v @)=Y T1] %5, lgm-20D2. D2, (.12

am. p

where summation is over algebraic manifolds.
The de Sitter minisuperspace model in D = 4 space-time dimensions is the Hartle-Hawking adelic
one. Namely, according to the Hartle-Hawking proposal one has

v,(q)= [, (¢.T:0,0dT, v=e023,.,p... (513)

where

AT’ T q¢°
—2)=+21-| (5.14
24 +g )4+8T} ©14)

X, (q".T;9',0)= A, (- 8T)|4T|(? Z {—
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is the kernel of the v-adic evolution operator. The functions A, (a) have the properties

v v

4,(a), =1, 4(b%a)=4,(a), 4,(a)4,(b)=A,(a+b)A,(abla+D)). (5.15)

Employing the p-adic Gauss integral
Bl B
J.Qp X (ax2 + ﬂx)dx = ﬂp(a)|2a|p2;{p(— Ej’ a+0, (5.16)

one can rewrite p-adic version of (5.13) in the form

3 AT’ (Ag 1 5
- _[dex;[p(qx)'[ DT;({— o +(T—5—2x jT} (5.17)

Taking the region of integration to be |T|p <1 one obtains

2
de;(p gx) U@—l—z J A <1 sas)
P
An evaluation of the integral (5.18) yields
22
v,(g)=explizd!, 52 )alq ) [ <1, 519
P

where O” is the Kronecker symbol. With regard w_ (qm), the result depends on the contour of
integration and has an exact solution

v.(g.)= exp( /J Py Bt ﬂ‘éx ., (5.20)
3 (22)3

that can be rewritten also

(22)2/3 _L
A=) Mw)ln[wm (@.)]=57. (5:200)

where Ai(x) is the Airy function. Thence, we obtain an adelic wave function for the de Sitter
cosmological model in the form

2

B

<1. (5.21
24 ©.21)

p

via)=y. (@[] eXP(m% S, )Qqq,,
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The necessary condition that a system can be regarded as the adelic one is the existence of p-adic
ground state Q([qa‘p) (a =1,2,...,n) in the way

I\q-a\,,g %, (4., T:4,.0Mdq, = QQCJ;\,,) (5.22)

for all p but a finite set . For the case of de Sitter model one obtains

JIr
2)’

<1,

P

w,(g)=2lq

<1, p#2,

<1

v,(q)=2lq

., p=2, (523)

p
2

2
T|sl A
2727 124

what is in a good agreement with the result (5.21) obtained by the Hartle-Hawking proposal.

6. Number Theory: On Some Equations Concerning the Riemann Zeta Function.

A. The Goldston-Montgomery Theorem [7]

In the chapter “Goldbach’s numbers in short intervals” of Languasco’s paper “The Goldbach’s
conjecture”, is described the Goldston-Montgomery theorem.

THEOREM 1

Assume the Riemann hypothesis. We have the following implications: (1) If 0< B, < B, <1 and
B

<T<X® 10g3X,then

F(X,T)= ZLT logT uniformly for
V4

3

log

—— =

W1+ 6)x)—w(x) = 8(x) dx = %&(2 10%, ©.1)

1
x5

uniformly for % <0<

() If1<A <A <o  and

— —y

(w((1+ 8)x)—w(x)— &) dx = %éX 2 log% uniformly for

1

1 1 .
mSTswlogX, then F(X,T)zETlogT uniformly for
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TH<X<T".
Now, for show this theorem, we must to obtain some preliminary results .
Preliminaries Lemma. (Goldston-Montgomery)

Lemma 1.

We have f(y)>0 VyeR andlet I(Y)= Je_z"‘"f(Y+ y)dy =1+¢&(Y). IfR(y)is a Riemann-

—oo

integrable function, we have:

b

jR(y>f<Y+y)dy:[TR(ywyj(ue'(y».

a

Furthermore, fixed R, |€'(Y)| is little if |8(y)| is uniformly small for Y+a—-1<y<Y+b+1.
Lemma 2.

Let f (t) >0 a continuous function defined on [O,+oo) such that f(r) << logz(t +2).
If

T

J()= [ f(e)dr = (1+ (D)) logT
then

T(Sinkujzf(u)du - (%w'(k))klog%,

o\ u
with |8'(k1 small for k — 0" if |€(T)| is uniformly small for

12 STSllogzk.
klog” k k

Lemma 3.

Let f(t) =0 acontinuous function defined on [O,+oo) such that f(t) <<log®(t+2).If

1(k) = Hsm k”j F(u)du = g + 8‘(k)}klog% . (6.2) then
0

u

J()=[ f()dr=(+&)TlogT , (6.3)

with |€'| small if |8(k)| < € uniformly for <k< %log2 T.
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Lemma 4.

Let F(X.T)= Y M Then (i) F(X,T)>0; (i) F(X,7)=F(1/X,T); (i) If
o<rp<r 4+ (r-7)

The Riemann hypothesis is preserved, then we have

F(X,T)=T izlogznlogx 1o [logloeT
X 2 logT

uniformly for 1< X <T.

Lemma 5.

(1+6) -1

N

Let 5 (0,1] and a(s) = If ¢(y)<1 Vy we have that

2

)

t—y)

j|a it 2dt ﬂZa(l/zﬂy)Hz(%

b= 7)

dt + 0(52 log’ gj + O(l log’ Zj
o 4

forZ>l.
o

For to show the Theorem 1, there are two parts. We go to prove (1).
We define

T

J(X,T):4IZX—W22

dt.
¥ 1+(t_7)

Montgomery has proved that J(X.,T)=27F(X,T)+ 0(log3 T) and thence the hypothesis
F(X,T)= %TlogT isequalto  J(X,T)=(1+0(1))T'logT . Putting k = %log(1+ 8), we have
V4

. 2
alir’ = 4(8“1"’j |

2
dt = (% + 0(1)jk log% = (% + 0(1)j510g%

For the Lemma 2, we obtain that

“a it

17

1+ t—}/)2

1

for I
Olog” =
&5

3,1
<T<=log"—.
&

For the Lemma 5 and the parity of the integrand, we have that
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2

| XU = [ Z o) Slogt @
[Zeton s a=(Frat e

if zzllog3l.
5§ 6

ir
From the S(r)= Za(p)ﬂ we note that the Fourier’s transformed verify that
<z =7

A

Su)=7 alp)x7e(- e 2

4

From the Plancherel identity, we have that

| a Te(— 26_4”"4‘ u= 2 o(1) |61o l
[t ete] e a=( 2ot ooe

For the substitution Y =logX, —2mu =y we obtain

2
+

sza(p)eiy(ﬂy)

e Play =(1+ 0(1))510%. (b)

Using the Lemma 1 with R(y)=¢® if 0<y<log2 and R(y)=0 otherwise, and putting

Y+y

x=e¢e " we have that

2X 2 3 1
S a(p)” dx=(§+o(l)jéleog3.

|71<z

X

Substituting X with X2/, summarizing on j, 1 < j < K, and using the explicit formula for y(x)
with Z = X log’ X we obtain

)j (000~ F e = L (-2 oo og -

X K

Furthermore, we put K = [log log X ] and we utilize, for the interval 1< x < X2, the estimate of
Lemma 4 (placing X 2% for X ). Thus, we obtain (1).
Now, we prove (2).
We fix an real number X,. Making an integration for parts between X, and X, = X, log
obtain, remembering that for hypothesis we have
X
1

[(0+0))-p0)- & e = o og 5.

2/3 Xl we
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X,

that [0+ 8)) ()-8 xate = G " 0(1)jax;2 oL ©

Utilizing the estimate, valid under the Riemann hypothesis

(W ((1+8)x) = p(x)— &) dx << X *log’ % ,

—— >

we obtain analogously as before that

]:(y/((1+ O)x)—w(x)— &)’ x*dx << X, log? % = o(é)(l2 log %) . ()

X,

Now, summarizing (c) and (d) and multiplying the sum for X we obtain

Imm(;_;,f_f}(w((u 500w la)- &) x e =1+ ooz .

Putting X, =X, Y =1logX, x=¢"" and using the explicit formula for w(x) with Z=Xlog® X ,
we obtain the equation (b).

B. On the study of the behaviour of the argument of the Riemann function {(s) with the

1
condition that s lies on the critical line s = 5 +it, where ¢ is real. [8]

We introduce the known functions S (t) , S (t)
Definition 1. For real ¢, not equal to the imaginary part of a zero of ¢ (s),

S(t):largg“(l+itj,
V4 2
where arg { (%+itj is obtained by continuous extension of arg((s) along the polygonal line
starting at the point s=2 (arg£(2)=0), going to the point s=2+ir and then to the point
s = % +it . If ¢ is the imaginary part of a zero of {(s) then

S(O)=tim_ {5l +5)+ (-8
Definition 2. For positive ¢ the function S, (t) is defined by

S, (t)= '[)S(u)du .

Definition 3. The following function is known as Selberg’s function:
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n,(s)=> Av™".

V<x

Furthermore, we have the following four theorems.

Theorem A. With H=T""*"*, 0<a <0.001, T >T,()>0, and 1/2< 0 <1 we have
N(o,T+H)-N(o,T—H)=0(HT"'"“**VogT),

where N (O',T) is the number of zeros of the Riemann zeta function in the rectangle Res > o,
0<Ims <T, and the constant in the symbol O depends only on o .

Theorem B. Suppose that H = T3 0<a<0.001, T > Tl(a) >0, and k is a natural number.
Then the following asymptotic formula holds:

* I
J~TT H|S(t)|2k dt = %H(Iog logT)k + O(H(log logT)k—l/Z),
LT

where the constant in the symbol O depends only on o and k.

Theorem C. Suppose that H =T?7"***, 0<a <0.001, T >T,(a)>0, and k is a natural number.
Then the following asymptotic formula holds:

'[”H 1S, ()" dt = ¢, H + O(H log ™' T),

T

where c, is a positive constant depending only on k, and the constant in the symbol O depends
onlyon & and k.

Theorem D. Let H=T""" 0<a<0.001. Then there are positive numbers T, =T,(a) and

A= Ala) such that for T > T, the function S (t) changes sign in the interval (T,T + H) no fewer
than K times,

K= lH(logT)“3 exp(—A loglogT)J.

Now suppose that ¢ >2, 2<x<¢* and p = S+iy run through the values of zeros of the Riemann
zeta function with the condition

3|8-0.5)|
-9 < al :
log x
Definition 4. We write
o, :l+2max ,B—l, 2 .
2 2| log x

Theorem 1. If t >2 and 2< x<t> we have
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ZAX(”)
TS n logn 2 | pn o

n<x

st A snloen) 5, )

o)

where
Ax(n): A(n) 1<n<x,

3 2
log” - 2log” il
Ax(n):A(n Zl > N x<n<x?,
og” x
logzx—3
A (n)=A o x*<n<x.
()= A <

Theorem 2. If t >2 and 2< x<t*> we have
l(t)z—l mlogé’(d dO'+l AX—(n) 1+ O'm—l logn |cos(tlogn)
5 T Y05 2

T Sin™ log’ n
2
+ OMO'“ - lj
T2

Z Ag(?’) } + OMGN - %)2 logtJ.

n<x’
Now we describe the estimates of the mean deviations of S(r) and S, (t) from the corresponding
original segments of the Dirichlet series.

To prove the following Theorems 3 and 4, on which the proofs of Theorem B and C are based, we
require the following Lemma 1 and 2.

Lemma 1. Suppose that H =T?"***, 0<a <0.001, T >T,(a)>0, x>2, k is a positive integer,
1<y<x®™, X’y> <T"%. Then for 0<v <8k we have:

2

1v)= i (0' - ljv y%%dt =0(H(log x)™),

where the constant within the symbol O depends only on & and k.

Proof. Using the definition of o,, we obtain

I1(v)<< H(logx)" +R(v), (6.4)

1
1Y (x3 yz)ﬁ*2
R(v)= (ﬂ——j ~———— thence
T—H<yZST+2H 2 log x

B>05
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1
_y Y ()c3y2 )ﬂ_i
10v)<< Hllogx)" + (,e-_) Wy f e
T—H;;/Zs:nzf] 2 log x

and summation in the last sum is taken over zeros of {(s) of the form p = +iy. We present the
terms in R(v) in a somewhat different form. Since

Y I G Ll

2]og x

3.2 4 1
S R
log x 172 log x 2

it follows that, by increasing somewhat the right-hand side of R(v), we obtain
3.2 v 1 v-1 1
OED Y m(” —lj (ey2f 2+ 2 (u —lj (') fau =
Tan<eren? | logx 2 log x 2

1 |logx’y® ( 1 jv 14 ( 1 jv_l 32
= —_— U —— + u—— X\x 2 Su du 5
1/2{ log x 2 log x 2 ( g ) T—21—1;T€2(1-71/ )

g(riu)=1, 1/2<u<p,
g(yu)=0, uzp.

where

Further, we have

> glpu)= S1=N@T+2H)-N(u,T-2H).

T-2H<y<T+2H T-2H<y<T+2H
B>u

By Theorem A

-0.2a| u—
N(u,T+2H)-N(u,T -2H)= O[HT [ 2) logTJ :
and by the hypothesis of the lemma,

(x3y2)l_% < To‘m[l_i), logx’y*> <logT.

Hence we arrive at an estimate for R(V) given by

R(v)<<| {logT(u—ljv + Y (u—ljv_l}HT_om[u%](logT)du. (6.5)

2| log x 2 2
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It is easy to estimate the last integral. In fact, on changing the variable of integration to

V= 0.10!(14 - %jlogT , we obtain

' 0la u—l alo v+l -y oo
J'l (u_lj 7 ( 2)5114 :IO‘OS lgrmﬁ,ﬂd\) < IOV“(alogT)_(M)I Ve dy =
172 2 0 (OllogT) 0

=+ 110" (alogT) ", (6.6)

From (6.5) and (6.6) we obtain

2
log~T H(logT)_(V“) N logT

H(logT )" << H(logx)",
log x log x

R(v)<<

thence

log x 2 2

R(v)<<| tz{logT (u —ljv + (u —ljv_l}HT_om[u_;)(log T )du <<

2
18T 10g 7)) + 18T H(10a )Y << H(log x)*. (6.6b)
log x log x

The lemma follows from (6.4) and the last inequality.

Lemma 2. Suppose that H,>1, 1<y<H}*, k is a natural number and, for prime p<y,

1 ,
‘aP‘Scl liii’ ‘aP‘Scz.
Then
_7_” 2k " 2k
j dt=0(H,); [">a,p"™| =0(H,).
p<y

Theorem 3. Suppose that H =T*"***, 0<a<0.001, T>T/(a)>0, k is a natural number,

T < x< H"*. Then
2k

S(t)+ ! ZM dt=0(H),

= \p

where the constant in the symbol O depends only on o and k.

Theorem 4. Suppose that H =T*"***, 0<a<0.001, T> Tl(a) >0, k is a natural number,
Ta/k <x<H1/k

Then
2k
+ 1 ¢ _
(504 L st L5 Ao ol

Vl<X
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where the constant in the symbol O depends only on & and k.

We base the proofs of Theorems 3 and 4 on Theorems 1 and 2 and Lemmas 1 and 2. We give only

the proof of Theorem 3. In Theorem 1 we put x=7T%"°" and add to both sides of the equation in
this theorem the sum

sin(tlog p)

1
7T p \/; '

On proceeding to estimates on the right-hand side we then have

1 « sin(rlog p) (7 ]
SH)+=Y ——==0| >R, |, (6.7)
2 A%

where
Alp)-A,(p) Ap) ( ese ‘ ( 1) A, (p)
R = —p |, R, = X—l_p e R\: O 7% ;C- it |?
1 ; \/Elog » 2 ~ \/Elog » ( ) 3 2 1; »
e A2 e AP ey _( _lj A, (p?)
R, = ,,;5 plog p P, R= p§5 plog p (1 p )p » Ro=|0,, 5 p§5 20, +i2r |

1
R7:ZZ gL

rl2
2 p<® P

We transform each of the R i J= 2,5,6,7, to a uniform form (similar to the form of R, ). First of

all we have, obviously,

R, <<1<< (O'XJ —%J logT, R,<< (O'XJ - lj Z logp << (0},: - %) logT ,
p<x15 p

Ry<< )] l(1— p )<< (0'” —%) > logp . (a” —%) logT .
pexls P

We now consider R, . It is easy to see that

R, =

. v A, (p)
J.o.s ; pu+ff du| <

Further, for 1/2<u <o, we have

o oL
Z—Axugf) =l 2 wa <x" [ ZAX(P)igg(xp)dv'
p<x’ P “ s’ 0.5 o p
Therefore
U
R, << O'Xt—l X 2J' x2 ZAX(P)IO_g(xP)dV.
5 2 0.5 p<x3 pV‘HI
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From (6.7) and the estimates already obtained we obtain

s(r)+ 1 Zsm(ilo )

f2

(i’f j (6.8)

J=1

where
2k

dt, K, = J~T+H

T

2k

Alp)-A,(p) o dr

Jplogp
. 12k

logT o.,——| dt,
~(og7)" [ (0, 1]

2k 1
m?"(@,,-;) e

From Lemma 2 we have

Ax (pz) p—i2r
pos plogp

2k
d} dt.

T+H
1= I Z
T
p<x’

ZA ( )log(xp)

u+it

[)<)C3

from Lemma 1 follows that

K, = O[H(llfi ij} =0(H).

Applying Cauchy’s inequality to K,, we obtain

1/2
foelf 4] ]

By Lemma 1 the first integral in (6.9) is estimated by

172

d] dt} . (6.9)

z A ( )log(xp)

u-+it

p<x’

1, << H(logx)™. (6.10)

Further, using the Holder inequality, we obtain

1 ) 4k 1 4k-1 |
[ m _u‘ Z ugtg xp J S (J.:sz_u duj J.:S XE_M

4k
3 A (p)log(ap) -, -

p<x’ p

y A(pllogbp)
p<x3 u+it

L
_ (logx)_4k+l J'“’ X2

0.5

The second integral in (6.9) is therefore estimated by
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4k

dtdu =

5 A, (p)log(xp)

u+it

1
4+ (T+H oo —-u
I, << (log x)™* _[T Lsxz

~ log [ [ [

(we have again used Lemma 2, estimating the last integral with respect to ¢).

p<x’

> M}dr}du << H(logx)" (6.11)

u+it 2
e D log” x

Therefore from (6.9)-(6.11) we obtain
K,<<H.

From (6.8) and the estimates K J<<H, j= 1,2,3,4, it follows that

2k

s+ Ly sntlozp) o),

7 p<y \/;

where y=T%*". Now let T** < x < H"*. Going over to inequalities, using the relations already
proved and Lemma 2, we have

2k 2k
dt+_[TT+H Z s1n(t log p)

YEp<x \/;

2k
T+H
dt << .L

T+H 1 < sin(rlog p)
s()+Ly sinltlog p)
J; T ; \/;

which is was required to prove.

s(r)+ lz sin(t log p)

7T py \/;

dt << H

C. The P-N Model (Palumbo-Nardelli model) and the Ramanujan identities. [9]

Palumbo (2001) ha proposed a simple model of the birth and of the evolution of the Universe.
Nardelli (2005) has compared this model with the theory of the strings, and translated it in terms of
the latter obtaining:

_ R vo 1 y

J’ 26 \/_[_167zG_§gﬂpg Tr(Gﬂvag)f((ﬁ)_Egﬂ aﬂwm}:

_m 1 10 ~\/2 2@ u _l~ 2_’(_120 2

_£2Kfojd x-G)"e {R+4aﬂq>a @ 2\H3\ glonrVQF2| )} (6.12)

A general relationship that links bosonic and fermionic strings acting in all natural systems.
It is well-known that the series of Fibonacci’s numbers exhibits a fractal character, where the forms
J5-1

repeat their similarity starting from the reduction factor 1/¢ = 0,618033 = 5 (Peitgen et al.

1986). Such a factor appears also in the famous fractal Ramanujan identity (Hardy 1927):
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0,618033=1/¢=E=R(q)+ 45 : :
2 3445 Lr =0 dr
5 P S5 F By 1

(6.13)
1+

and 7z=2CI>—i R(g)+ Js , (6.14)
20 3445 1 (0 fP(=1) dt
1+ CXp) 7'[0 15\ L4/5
2 50 f(—t") e
where CID:\/E;_I.

Furthermore, we remember that 7z arises also from the following identity (Ramanujan’s modular
equations and approximations to 7 ):

o1 10g{(2+\/§)(3+\/ﬁ)} 6140 and ﬂ-Alog[\/(lmr“ﬁ}_\/(10+7\/§ﬂ'

V130 V2 142 4 4
(6.14b)

From (6.14b), we have that

7T\142

24 = . (6.14¢)

) )

We remember that the “Ramanujan function” (an elliptic modular function that satisfies the
“conformal symmetry”) has 24 “modes” that correspond to the physical vibrations of a bosonic
string.

The introduction of (6.13) and (6.14) in (6.12) provides:

R 1 1
—|d* - -—g"¢"Tr\G,,G +
Ja e - - £ 88" TG, G ) (9)

2p— > R(@)+ 5 -
20 3445 1 o f3(=t) dt
1+ CXp 7_'. 1/5) ,4/5
2 J5%0 fl=1" )¢
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J5

L, - R 3
—2¢™d =ML 20— Rig)+
g"9,0,¢ |=[ P 20| R@

2 345 (1 fin dr '
1+ 2 T 1/5) t4/5
2
[a x(-G)"e?*[R+40, 20" —%‘HS‘Z - at T,
20— | R(g )+ V5 2Rg

20 3+\/§exp(\/1_r (=) dtJ

5 0 F(—) 5
(£) 1. 6.15)

which is the translation of (6.12) in the terms of the Theory of the Numbers, specifically the
possible connection between the Ramanujan identity and the relationship concerning the Palumbo-
Nardelli model.

7. On some possible mathematical connections.
In this section we describe some possible mathematical connections between some equations of
arguments above discussed and some equations concerning the Riemann zeta-function, the

Ramanujan’s modular equations and the Palumbo-Nardelli model.

First of all, now we describe the following possible mathematical connections.
If we take the eq. (1.52) of section 1 and the eq. (2.51) of section 2, we note that

2 1
12R? ——h”h +——h"V?h,
“l6aG x‘/;( 4R J
R+ c k,(D)c# —612(Dy/+5jk2(u)(ny/+5j, (7.1)
16ﬂG gk 6 6

hence the possible mathematical connection.
Furthermore, we note that the egs. (3.70), (3.72) of section 3 and (5.10) of section 5, can be related,
and we obtain the following connections

jdleiS(X,z)me (Z) - |det Im Tﬁj’dZeiS(x,z;Z,Z)wwp (Z) -
= (2.5 s @)Pg, D0 (72)

Also the eqgs. (3.70), (3.72), of section 3, (4.17), of section 4, and (5.17) of section 5, can be
related, and we obtain the following interesting connections
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i : z
.[ dZe”S(X’Z)me ()= |[detImz]2 f dZEiS(X’Z;Z’Z)'»”wp (x)=

A (-8T) 278 T &
dT ————y | — +(Ag—-2)—+=—
:J\T\ﬁl 4] Z”( 24 & )4 87 )

p

:Lpdxlp(qx)jDT;(p[— /122 +(%—%—2x2jT] (7.3)

With regard the possible mathematical connections concerning the Ramanujan’s modular equations,
we note that the eqs. (4.17) of section 4 and (5.17) of section 5, can be related with the eq. (6.14c)
of section 6, obtaining the following connection

A (—8T) 278 T ¢
dT ———y | - +(Ag-2)—+1 |=
jm,,ﬂ 47| Z”( 24 U )4

p

= [, 4w, (ax)] DT, {— AT (@ 1 g JT} -

24 4 2
N(lo“lﬁj \/(10+7\/§ﬂ
In 4 + 1
:IQPdXZp(qX)IDT;gp -7 T +(%—%—2x2jT . (74

But, remember that the 24 “modes” correspond to the physical vibrations of a bosonic string, it is
possible to obtain the following interesting connection concerning the Palumbo-Nardelli model in
the terms of Number Theory

[kl (AT
! V24

, 2 4 2
[\/(10“1\/5} \/(10+7\/5H
In +
23 4 4 ﬂq 1 2
:>J.Ql)dx;{p(qx)J.DT;(p - 1T — +(T—5—2x JT N
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—J.d%x\/g - R : ! _;g g Tr(G,qupa)f(¢)+

16G
J5

3+f (lf £3(=1) dtJ

77) 475

3
20— | R
>0 (@) + .

1, -~ R 3 Vs
——g"9,0,0 |=[ =20 -—| R(g)+ :
28700, 1=, P 20 3445 (L [ dr
I+ 2 TJ. 1/5)1‘4T
2
[a x(-G)"e?*[R+40, 20" —%|1513|2 - K Tr,
2p— R(q)+ Js 2Rg;

20 3445 (1 fi(-1) dr
I+ ) eXp(\/—L f(—l1/5)14/5

(=[]

(7.5)

Now we describe the possible mathematical connections with some equations concerning the
Goldston-Montgomery theorem and the Riemann zeta-function.

We take the eqs. (1.29) of section 1, (6.3), (6.9) and (6.11) of section 6, then we obtain the
following connections

3N’Q R I? , 1 ... (3 I? 1, 1 e
8ﬂ2410ng=WCFT+m d%ﬁ[—rhja h +l_4hjh (2 1+FJ+I_2R2 /’ljh _8[2R2 h’V2hl.j
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4k
dJ dt <<

0.5
p<x’

= (1+€&)logT = LTf(t)df = LTH [rx;_“‘z%

4k

dtdu =

> A, (p)log(xp)

u+it

<< (log x)™*! JT+H Jm ﬂu

(g [ " [ [

With the egs. (1.50) of section 1, (6.3), (6.9) and (6.11) of section 6, we obtain the following
connections

[)<)C3

ZM}%JW << H(logx)". (7.6)
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3Q,R> 3N’Q R,
R+W., = _47z4G4+ ™ 4lg
4

167ZG

ZA .(p)log(xp)

u+it

4k 1/2
dJ dt} <<

= I fdt=1+&)TlogT = { IT”’ [ I;x;‘”

p<x’
<< (log x) 4k+1j o Jm - Z/\xp# dtdu =
p<X3
g [ [ g Aslogn)y Ly o prog . )
= ng OAS)C - p<x3 pu+it 10g X u ng . .

With the egs. (1.53) of section 1, (6.3), (6.9) and (6.11) of section 6, we obtain the following
connections

2
_31]\27[53 3];7522 log% (d4x' hkl
N2
+—
25671'2R4
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)2{647zG R

-

dtjdu << H(logx)". (7.8)
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= (1+&)logT = jf dt:{rﬂ(ﬁ "

4k

dtdu =

3 A, (p)log(xp)

u+it

<< (log x)™*! JT+H Jm -

(og [ " [ [

With the egs. (2.51), (2.54) of section 2, (6.3), (6.9) and (6.11) of section 6, we obtain the following
connections
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Furthermore, with the eqgs. (5.17), (5.20b) of section S, (6.3), (6.9) and (6.11) of section 6, we
obtain the following connections

AT (Aq 1 5
-[Q,, dx;(p(qx)_[DT;({— 24 +(T—E—2x jT}:
(21)2/3

I
AMJMM%% =

1/2

4k
d} dt <<

oo 7—14

A(M%ﬂ

u+it

= (1+&)ogT = '[f t)dt =

3
<X

R s Aldp log(xp) _
<< (log x) J J.O ] ‘ Z L dtdu =
l—u +

Conclusion

pu-Ht 10g2 X

p<x’

Zﬁﬁﬁéqﬂm«ﬂmyw.am

Hence, in conclusion, also for some mathematical sectors concerning the Hartle-Hawking no
boundary proposal concerning the Randall-Sundrum cosmological scenario, Hartle-Hawking wave-
function in the mini-superspace sector of physical superstring theory and p-adic Hartle-Hawking
wave function, can be obtained interesting and new possible connections between them, String
Theory and some sectors of Number Theory, principally the Ramanujan’s modular equations and
some formulae related to the Riemann zeta function.

Furthermore, also the fundamental relationship concerning the Palumbo-Nardelli model, can be
related with some equations (see eq. (7.5)) regarding p-adic models in the Hartle-Hawking proposal
and p-adic and adelic wave functions of the Universe.
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