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Abstract

In this paper, in the Section 1, we have described some equations and theorems concerning the
Lebesgue integral and the Lebesgue measure. In the Section 2, we have described the possible
mathematical applications, of Lebesgue integration, in some equations concerning various sectors
of Chern-Simons theory and Yang-Mills gauge theory, precisely the two dimensional quantum
Yang-Mills theory. In conclusion, in the Section 3, we have described also the possible
mathematical connections with some sectors of String Theory and Number Theory, principally with
some equations concerning the Ramanujan’s modular equations that are related to the physical
vibrations of the bosonic strings and of the superstrings, some Ramanujan’s identities concerning 7
and the zeta strings.

1. On the Lebesgue integral and the Lebesgue measure [1] [2] [3] [4]

In this paper we use Lebesgue measure to define the fRdf(I)dx of functions

f: RY—>CU {=2}, where R is the Euclidean space.

If f=cy1g + -+ ¢l isan unsigned simple function, the integral fR 4 f(x)dx is defined

by the formula



Simp [Lq f()dx = c;m(Ey) + -+ e,m(Ey), (1)
thus fRdf(x]dx will take values in [0, 4] .

Let k,k'=0 be natural numbers, Cl,...,C;:,Ci,...,C;:r €[0,4+0], and let

' d . .
Ey .. E.,E.. E e © R% pe Lebesgue measurable sets such that the identity

C11E1 + -+ lEk = Cilﬂi + -+ C;:’IE.:’{: (2)

holds identically on R%. Then one has
cym(Ey) + -+ opm(Ey) = eim(E]) + - + cm(Eg,). (3)

A complex-valued simple function [ :RY > C is said to be absolutely integrable of

fRdI f(x)|dx < oo. If f is absolutely integrable, the integral fR 4 f(x)dx is defined for real

signed f by the formula

Simp [ f ()dx = Simp [ 4 f, ()dx — Simp [, £ (x)dx (4

where [ (x) == mﬂl’(fixj,'j] and f_ (x) = mﬂl’(—f(I),U) (we note that these are
unsigned simple functions that are pointwise dominated by |f| and thus have finite integral), and

for complex-valued f by the formula
Simp fRdf(x)dx = Simp fRd Ref (x)dx + iSimp fRd Imf(x)dx. (5

Let f: R% — [0,+22] be an unsigned function (not necessarily measurable). We define the lower

unsigned Lebesgue integral fRd flx)dx

fRd f(?'[f]dl' = Supﬂzng:gsimp!ss‘imp fRd g(x]dx (6)

where g ranges over all unsigned simple functions g R% — [0, +c0] that are pointwise bounded

by f. One can also define the upper unsigned Lebesgue integral

fRdf(xjdx = infhzf:hsimples‘impf;gdh(x]dx (7)

but we will use this integral much more rarely. Note that both integrals take values in [0, +22], and

that the upper Lebesgue integral is always at least as large as the lower Lebesgue integral.



Let f: R% — [0,+20] be measurable. Then for any 0 << A < o0, one has

m({x € R%:f(x) = A} < [La f(X)dx, (7b)
that is the Markov’s inequality.

An almost everywhere defined measurable function f R% = C s said be absolutely integrable if

the unsigned integral
fllzt(re) = Jpal FGldx (8)

is finite. We refer to this quantity "f"zi{nd} as the L*(R%) norm of f, and use L*(R%) or

Ll(Rd — () to denote the space of absolutely integrable functions. If [ is real-valued and

absolutely integrable, we define the Lebesgue integral fR 4 f(x)dx by the formula

fRdf(x]dx = fRd fr(x)dx — fRd fLx)dx 9

where fy = max(f,0) and f- = max(—f,0) are the positive and negative components of |

If f is complex-valued and absolutely integrable, we define the Lebesgue integral fR g f(x)dx

by the formula

fRdf(x]dx = fRd Ref(x)dx + i de Imf(x)dx (10)

where the two integrals on the right are interpreted as real-valued absolutely integrable Lebesgue
integrals.

Let f € Lt (Rd — (). Then

|foa fOOAX| < [alFGax. 1)
This is the Triangle inequality.

If f is real-valued, then | f | = fi+f. . When [ is complex-value one cannot argue quite so

simply; a naive mimicking of the real-valued argument would lose a factor of 2, giving the inferior
bound

|fndf(xjdx| =2 [lfC)ldx. (12)



To do better, we exploit the phase rotation invariance properties of the absolute value operation and

of the integral, as follows. Note that for any complex number Z, one can write |z]| as ze'® for

some real 8. In particular, we have
|fRdf(x]dx| =e [ f()dx = [ ;e f(x)dx, (13)
for some real 8. Taking real parts of both sides, we obtain
|-[Rd f(x]dxl = [LaRe (ei'gf[x)) dx. (14)
Since
Re (e () = |e®f ()| = If ()],

we obtain the eq. (11)

Let (X, B, i) be a measure space, and let f, g: X — [0, +] be measurable. Then

J, f+@du= [, fdu+ [, gdu @15)

It suffices to establish the sub-additivity property

J F+@du< [, fdu+ [, gdu (15b)

We establish this in stages. We first deal with the case when [ is a finite measure (which means
that ,u[X ) << o) and f, g are bounded. Pick an € > 0 and f; be f rounded down to the nearest

integer multiple of €, and [ be f rounded up to nearest integer multiple. Clearly, we have the

pointwise bound
F=f) =) e
and

ff)-fix) e a7

Since [ is bounded, fz and [ are simple. Similarly define g., §°. We then have the pointwise

bound
frg=f"+g"=f +g.+2¢ (19
hence, from the properties of the simple integral,

J, f+rgdu<|[ f.+g.+2edu=Simp/[, f.+g.+2edu=

4



=Simp [, fodp+Simp [, g.du+ 2eu(X). (19)
From the following equation
fx fdp = Supﬂﬂgﬂf:gsimp[es‘impfx gdpu, (19b)
we conclude that
J, fHgdp= [, fdu+ [ gdu+ 2eu(X). (20)

Letting € — 0 and using the assumption that (£ (X) is finite, we obtain the claim. Now we continue
to assume that i is a finite measure, but now do not assume that f, g are bounded. Then for any

natural number (also the primes) 1, we can use the previous case to deduce that

J, min(f,n) + min(g,n)dp < [, min(f,n)du + [, min(g,n)du. (1)
Since min(f + g,n) < min(f,n) + min(g,n), we conclude that
J, min(f +g,n) < [ min(f,n)du+ [, min(g,n)dp. (22)

Taking limits as 71 — ©2 using horizontal truncation, we obtain the claim.

Finally, we no longer assume that [t is of finite measure, and also do not require f,g to be

bounded. By Markov’s inequality, we see that for each natural number (also the primes) 11, the set

E, = {xEX:f(xj::ﬂU{x EX:Q(X)}ﬂ,

has finite measure. These sets are increasing in 72, and f, g, + @ are supported on Uy, =1 E,,, and

so by vertical truncation
J, (f + @du=1lim,_. [ (f+g)1g du (23)
From the previous case, we have
J, f+g)lgdu= [ flgdu+ [ glgdu (24

Let (X, B, 1t) be a measure space, and let 0 = f; = f5 = --- be a monotone non-decreasing

sequence of unsigned measurable functions on X. Then we have

lim,_.. [, fidu= [, lim,_ . fdu (29



write f = lim, . f, = Sup,—~..fy, then f:X — [0,4+0] is measurable. Since the f, are

non decreasing to [, we see from monotonicity that _[Y f,du are non decreasing and bounded

above by fX fdu, which gives the bound

lim,_.. [, fidu= [, fdu. (6
It remains to establish the reverse inequality

J, fdu<lim,_. [ f.du @7

By definition, it suffices to show that

whenever g is a simple function that is bounded pointwise by f. By horizontal truncation we may

assume without loss of generality that § also is finite everywhere, then we can write
=38 1, (29
g i=1Cila; (29)
for some 0 = ¢; << o and some disjoint B-measurable sets A4, ..., Ay, thus

.[5" gap =X cu(4). (30)

—

Let 0 << € << 1 be arbitrary (also 1-'52—1 = 0,61803398...). Then we have

fO) =sup,f, () > (1 =€), (31
for all x€A;. Thus, if we define the sets

A, =x €A f,(x) >0 —-6ec}t 32

then the A;y increase to A; and are measurable. By upwards monotonicity of measure, we

conclude that
lim,, .., u(4;.) = #(4;). (33)
On the other hand, observe the pointwise bound

foz 2,1 -6 Ly, 34

for any M; integrating this, we obtain



-[Y fudp = (1 - E)Zi‘zl Ci#(“flm) (35)

Taking limits as 11 — ©2, we obtain

lim, .. [, fodu= (1— )T, cu(4): (6)

sending € — 0 we then obtain the claim.

Let (X, B”u] be a measure space, and let fi, 5, ...:X = £ be a sequence of measurable
functions that converge pointwise f-almost everywhere to a measurable limit f: X — C. Suppose
that there is an unsigned absolutely integrable function G:X — [0,4+o0] such that |f;,| are

pointwise f{-almost everywhere bounded by ¢ for each 7. Then we have

lim,_.. [, fudpe= [, fdu. 37

By modifying f,, [ on a null set, we may assume without loss of generality that the f,, converge to
f pointwise everywhere rather than -almost everywhere, and similarly we can assume that | £ |
are bounded by G pointwise everywhere rather than [{-almost everywhere. By taking real and
imaginary parts we may assume without loss of generality that f,, f are real, thus —G = f, = G
pointwise. Of course, this implies that =& = f = ( pointwise also. If we apply Fatou’s lemma to

the unsigned functions f,, + &, we see that
J, f+Gdu <lim,_ inf [ f, +Gdu, (38)
which on subtracting the finite quantity fX Gdu gives

[, fdp <lim,_ inf [ f.du (39)

Similarly, if we apply that lemma to the unsigned functions & — f;,, we obtain
-[sr G — fdu < lim,, . inf -[5:' G — f,du; (40)
negating this inequality and then cancelling fX Gdp again we conclude that

lim,_..sup [, fodu< [ fdp. @1)

The claim then follows by combining these inequalities.



A probability space is a measure space (Q JF ,P) of total measurel: P(Q ) = 1. The measure P is

known as a probability measure. If {1 is a (possibility infinite) non-empty set with the discrete G-
algebra Zﬂ, and if ( P, )wDQ are a collection of real numbers in [0,1] with Z oo Po = 1, then the

probability measure P defined by P = Z 420 Pu04 , or in other words
PE)= Y p,
1P, @)

is indeed a probability measure, and (Q 20 ,P) is a probability space. The function @ — p, is
known as the (discrete) probability distribution of the state variable @ . Similarly, if Q is a
Lebesgue measurable subset of R of positive (and possibly infinite) measure, and f:Q - [0,+ ® ]
is a Lebesgue measurable function on Q (where of course we restrict the Lebesgue measure space

on R‘to Q in the usual fashion) with Iﬂ f(x)dx =1, then (Q ,BIRdJ b ,P) is a probability space,

where P = m, is the measure
PE) = [ 1p(x) f(x)ae= [ fla)ax . (43)

The function f is known as the (continuous) probability density of the state variable @ .
Theorem 1

(Connes’ Trace Theorem) Let M be a compact " -dimensional manifold, ¢ a complex vector
bundle on M , and P a pseudo-differential operator of order ~ 1 acting on sections of ¢ . Then the
corresponding operator P in H = Lz(M,f) belongs to £~ (H) and one has:

Tr,(P)= —Res(P) (44)

0]

I |~

forany @ .

Here Res is the restriction of the Adler-Manin-Wodzicki residue to pseudo-differential operators of

order -~ 7 . Let ¢ be the exterior bundle on a (closed) compact Riemannian manifold M , V01| the
1-density of M, f0 C” (M ), M, the operator given by [/ acting by multiplication on smooth
sections of { , A the Hodge Laplacian on smooth sections of ¢ , and P= M f(l tA )_"/2 , which is a
pseudo-differential operator of order - 7. Using Theorem 1, we have that

1

o, M, )= 77 (w7, ) Sl o H”+1HIMf(X)|VOl|(x), rocm) @
02 [0

where we set 7} := (1+ A )'"/2 0 £ . This has become the standard way to identify ¢, with the
Lebesgue integral for /0 C” (M )



Corollary 1

Let M be a n-dimensional (closed) compact Riemannian manifold with Hodge Laplacian b . Set
T, = (1+4)"70 £° (LZ(M)) Then

0, (M, = (M T, )= ¢ slxlvollx), 0poz(m) 6)

where ¢ > 0 is a constant independent of 0 U DL, .

Theorem 2

Let M,\,T, be as in Corollary 1. Then, <M/’>T; = TAS/szTAS/ZD E(LZ(M)) for all s> 1 if and

only if fl LI(M) . Moreover, setting
1
vl )= e omlv) B @)
forany ¢ 0 BL |

(v )= timo () Be e plbollx), 00 2(0) @)

TA
for a constant ¢ > 0 independent of { U BL .

Thus ¥ ; , as the residue of the zeta function T V(TAMM fTAS/z) at s = 1, is the value of the Lebesgue
integral of the integrable function f on M . This is the most general form of the identification

between the Lebesgue integral and an algebraic expression involving M ,, the compact operator

(1+ Az)'l and a trace.

Theorem 3

Let 0< G(D)0 £ and {0 BLn DL . Then

00T, ) = Trf(é)(TfG(D)):5E%IFf(x)dﬂ“1(x)E, 10 L(F..). 49)

Moreover, if lim;_, k_IIFh(x)le“k'l(x) exists for all h0 L’ (F,NLD0 ), then

0, (Tf) =1Tr, (TfG(D)) - ;Pmlj

kJF

fxae ((x), orog(Fa.) 0



andall w 0 DL, .

We note that it is possible to identify ¢, with the Lebesgue integral.

Now we consider an arbitrary manifold X with a fixed continuous non-negative finite Borel
measure 7 . The construction of the integral models of representations of the current groups G* is

based on the existence, in the space D(X ) of Schwartz distributions on X, of a certain measure £

which is an infinite-dimensional analogue of the Lebesgue measure. Furthermore, we have that ¢
runs over the points of the cone

[

U
INX)= ¢ = )
( ) %é Z:lrk Xp

ro> O,Z ro<o,x, [ XE,

on which the infinite-dimensional Lebesgue measure £ is concentrated. With each finite partition
of X into measurable sets,

we associate the cone & = R;' of piecewise constant positive functions of the form

1=y fnld, o,

n
+

where ), is the characteristic function of X, and we denote by @ , = (R )' the dual cone in the

space distributions. We define a measure £, on ¢ , by

X d,
d, (xsx,) = ]
k

y(A) . where 1,=m(X,) (51)

Let D+(X )D D(X ) be the set (cone) of non-negative Schwartz distributions on X, and let

l! (X ) 0 D, (X ) be the subset (cone) of discrete finite (non-negative) measures on X , that is,

)

A i

r > 0, rk<00,kaX%_

1(x)=

o — -

There is a natural projection D, (X))~ o, .
Theorem-definition

There is a U -finite (infinite) measure L on the cone D+(X ) that is finite on compact sets,
concentrated on the cone . (X ) , and such that for every partition 0 of the space X its projection

on the subspace 9, has the form (51). This measure is uniquely determined by its Laplace

transform

10



F(f)= j (X)expE- Z rkf(xk)%ﬁ(f IE exp(- leogf(x)dm(x)), (52)

I

where | is an arbitrary non-negative measurable function on (X ,M) which satisfies

[ Jog flx)dm{x) <o

Elements of lf(X ) will be briefly denoted by ¢ = {rk,xk}zz1 , or even just ¢ = {rk,xk} (sequences that

differ only by the order of elements are regarded as identical).

Let us apply the properties of the measure £ to computing the integral
I: IIJ(X)EuI¢(rk’xk)Ed£(E)’ (53)
where ¢ (r,x) is a function on R, x X satisfying the conditions

$(0,x)=1 and .[XI: (¢ (r,x) - e”)r‘ldrdm(x) <o . (54)

Theorem

The following equality holds:
[ ] s a2le) = xpf, [ [l - &) ). (55)

Proof. Under the projection D, (X ) - ® , (recall that ¢ , is the finite-dimensional space associated

with a partition ¢ : X = UZZIX ;) the left-hand side of (53) takes the form

I :ﬁlak, 1) =

. I'(/\ )J:%,k(”k)”/jk_ld”k , (56)
kil k

where 1, = m(Xk) and ¢u,k(rk) - MIJX 9 (”kax)dm(x) . Thence the eq. (56) can be rewritten also as

k

follows

I = I: A;‘]ka¢ (rk,x)dm(x)r,f“dl’k . (56b)

o
The original integral 7 is the inductive limit of the integrals /, over the set of partitions @ . Since
1

St - - ) . .
—JO e dr, = 1, the integral I can be written in the form

r(h)

j: (¢a,k(rk)_ e_rk)rlfk_ld’”k. (57)

11



It follows that
RSN (6, (n)- e )i + 0l12), (s8)
whence
1= el ) 9, (n)- e )rk'ldrkﬁ+ o).
The eq. (58) can be rewritten also as follows
e b, 4(n)= &+ 0fa2) = expl, (9, (n)- e )r,;‘drkﬁ+ ol12). (s8b)
Thus, up to terms of order greater than 1 with respect to 4, ,
L0 exp@il/\kj: (9, .(r)- e'r)r'ldr@.
Since
Y ol ul)- €)= [X(¢ (1) - & Jamx),
the expression obtained can be written in the following form
1, Dexpfl [, (6 (r.x) - e"‘)r'ldrdm(x)ﬁ. (59)

The proof is completed by taking the inductive limit over the set of partitions 0 .

Corollary
Ifé(rx)= Z :1:1014’ Ar.x), where ¢,> 0, Z ¢, = 1, and the functions §,(r.x) satisfy (54), then

n

J"””E'jld} (rk,xk)EdB(f ) = |-| expﬁciIXI: (¢ l.(r,x) - e")r'ldrdm(x)ﬁ, (60)

i=1

Let ¢ (r,x) = ¢ where ¢ 2 1 and Rea(x) > 0. In this case we obtain

Izl(x)ﬁﬁ_ e Edﬁ(f ) ] expﬁJ‘XI: (e_raa(X) ) e")r'ldrdm(x)ﬁ, 61

Let us integrate with respect to 7. We have

IO (e' ) - e")r'ldr = Ahr%ﬁlo (e' ) - e")rA 'ldrﬁ: }if%ﬁa T E;—@a” 0 (x) -T (A )% (62)

12



Since T (A)= A"+ as 1 -~ 0, where / is the Euler constant, it follows that

0

J’O (exp(- r“a(x))- exp|- r))r'ldr = -0 'logalx)+ (0 - 1)y :

Hence,

L:(X)El'lm expl- 7 a(xk))ﬁdﬁ(f )= expllo - Jexpl- o [, logallaml)]. (63)

k=1

In particular, for ¢ = 1 we recover the original formula for the Laplace transform of the measure £

L}(X)ljzleXp(- z rka(xk))d,e({ ) = exp(- JXloga(x)dm(x))_ (63b)

2. Mathematical applications in some equations concerning various sectors of Chern-
Simons theory and Yang-Mills gauge theory

2.1 Chern-Simons theory [5]

The typical functional integral arising in quantum field theory has the form
-1 pS
Z'[, sl D4 (69)

where S ([) is an action functional, § a physical constant (real or complex), f is some function of

the field 4 of interest, DA signifies “Lebesgue integration” on an infinite-dimensional space A of
field configurations, and Z a “normalizing constant”. Now we shall describe the Chern-Simons

theory over R’, with gauge group a compact matrix group G whose Lie algebra is denoted L(G) :
The formal Chern-Simons functional integral has the form

1 ,
[, 14 DA - (63)
where f is a function of interest on the linear space A of all L(G) -valued 1-forms 4 on R*, and

cs ([) is the Chern-Simons action given by

K 2
Cs(4)= HIRBTI”@AD dA+ 40 AD AE, (66)

involving a parameter K . We choose a gauge in which one component of 4= aydx, + adx, + a,dx,

vanishes, say a, = 0. This makes the triple wedge term 40 40 A4 disappear, and we end up with a

quadratic expression

13



cs(4) - 4K— [oTrlATdA)  for A= adx,+ ady,. (67)
e
Then the functional integral has the form

ol b )

where A, consists of all 4 for which a, = 0. As in the two dimensional case, the integration

element remains DA after gauge fixing. The map

Tr( 4D dA)

¢H<¢>CS:%J‘AU¢(A)J4HIR3 DA. (69)

whatever rigorously, would be a linear functional on a space of functions ¢ over A ;. Now for

A= aydxyt adx 0 A decaying fast enough at infinity, we have, on integrating by parts,
K
CS(aydx, + adx,) = - EIN Tr{a, f,)dx,dx,dx,  (70)

where
fi= azal . (71

So now the original functional integral is reformulated as an integral of the form

) * 5 ¢ olay. £)Da,Df; (72
where
<a,f> = -IR3 Tr(af)dvol, (73)
and Z always denotes the relevant formal normalizing constant. Taking ¢ to be of the special form
¢,~(ao»f1) = ool i) (74)

where J, and Jj, are, say, rapidly decreasing L(G) -valued smooth functions on R*, we find, from a
formal calculation
2n

(e 09

In the paper “Non-Abelian localization for Chern-Simons theory” of Beasley and Witten (2005), the
Chern-Simons partition function is

14



1 gk f 0k 2 0
Z(k) = VOI(Q)QMZQ I:DAepozEJ'XTr@AD dd+ A0 AT A@H. (76)

We note that, in this equation, DA signifies “Lebesgue integration” on an infinite-dimensional
space of field configurations. If X is assumed to carry the additional geometric structure of a
Seifert manifold, then the partition function of eq. (76) does admit a more conventional
interpretation in terms of the cohomology of some classical moduli space of connections. Using the
additional Seifert structure on X, decouple one of the components of a gauge field 4, and
introduce a new partition function

— 0 0
Z{k) = K[ 420 expDz’iEJ’ Trlan da+ 240 40 AH—I 2070 F,)+ [ K0 dx Tr(0 2)%5,

o4mgix [ 3 o Jx X 0
(77), then give a heuristic argument showing that the partition function computed using the
alternative description of eq. (77) should be the same as the Chern-Simons partition function of eq.
(76). In essence, it is possible to show that

Z(k)= Z(k), (78)

by gauge fixing ® = 0 using the shift symmetry. The ® dependence in the integral can be
eliminated by simply performing the Gaussian integral over ¢ in eq. (77) directly. We obtain the
alternative formulation

2(k) = Z[#) = qu@AeXpEi%EIXTr@AD dA + %AD AT A@—I

1
X O dk

Tr’(K 0F,)

O
%u, (79)
0

rQ/2

1 1 - ik :
: @ . thence, we can rewrite the eq. (79) also as follows:

Vol(Q) Vol(S)4n 2

where K':=

1G/2

1 1 - ik 0

Vol(@) Vol(S) 04m [

Z(k)= Z(k) =

0k 2
DJ @AexpDzTEJ’XTr@AD dA+ EAD Al A@—I

0 m

Tr’(K 0F,)

Yy Ok EE (79b)

We restrict to the gauge group U (1) so that the action is quadratic and hence the stationary phase
approximation is exact. A salient point is that the group U (1) is not simple, and therefore may have
non-trivial principal bundles associated with it. This makes the U (1) -theory very different from the
SU (2) -theory in that one must now incorporate a sum over bundle classes in a definition of the
U (1) -partition function. As an analogue of eq. (76), our basic definition of the partition function for
U (1) -Chern-Simons theory is now

ZU(I)(X’k) - 2 ZU(I)(X’p’k) (80)

pl TorsH?( X;Z)

15



where

1
Vol(G,)

Zy (X, p.k) = ji’)Ae"ikSX‘P(A) . (8D

P
Thence, the eq. (80) can be rewritten also as follows

I ,
Zyy | X k) = jJDe Srrld T 80b)

y2l Torst(X;Z) VOZ(@P
The main result is the following:

Proposition 1

Let (X 0,6 K ,g) be a closed, quasi-regular K -contact three manifold. If,

0o RS
n(-0D)+ 512IXR KDdK% (

Zyi X, pok) = kg el st

mi

1/2
L )

where R0 C” (X ) = the Tanaka-Webster scalar curvature of X , and

_ pmy TikSy p(4) mH@+iC‘S}:—glE a |2 (83)
ZU(I)(X’p’k) = ke e JM P(TRS)

then
ZU(I)(X’k) - Zu(l)(Xak)
as topological invariants.

Now our starting point is the analogue of eq. (79) for the U (1) -Chern-Simons partition function:

”ikSX.P(AO)

— U;
ZU(I)(X,p,k) = e—IA PDAexpDiHjXAD dA - J'

_ (k 0 q4)* [0
Vol(S|Vol(G,) R4n E

X ¢ O dk E (84)

where S X,p(Ao) is the Chern-Simons invariant associated to P for 4, a flat connection on P . Also
here, DA signifies “Lebesgue integration” on an infinite-dimensional space A ,of field
configurations. The eq. (84) is obtained by expanding the U (1) analogue of eq. (79) around a
critical point 4, of the action. Note that the critical points of this action, up to the action of the shift

symmetry, are precisely the flat connections. In our notation, A0 7, A ;. Let us define the notation

(k 0da)?

85
X k[0 dk (85)

S(4) = [,ADdd- |

for the new action that appears in the partition function. Also define
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so that we may write
S(4)= cS(4)- 5(4). (87
Thence, we can rewrite the eq. (87) also as follows:

(k0 a4)
[ ADdA- [ £ =

2

(k 0 d4)’
I, THADdA+§AD ADAH [l

87b
X x Odk (870)

The primary virtue of eq. (84) above is that it is exactly equal to the original Chern-Simons partition

function of eq. (81) and yet it is expressed in such a way that the action S (A) is invariant under the
shift symmetry. This means that S(4+ 0k )= S(4) for all tangent vectors 40 T 4 (A,)00'(X) and

cQ O(X ) We may naturally view A0 Q 1(H ) , the sub-bundle of Q 1(X ) restricted to the contact
distribution H O TX. Equivalently, if ¢ denotes the Reeb vector field of K , then

0'(H)-= {w 00'(x )v (W= 0]. The remaining contributions to the partition function come from the

orbits of § in A ,, which turn out to give a contributing factor of Vol(S). We thus reduce our

integral to an integral over A ,:= A ,/S and obtain:

nikS y p( Ay [ ik (K 0 dA)2 i
Z, il X DA —L[ ADdA- [ ——0=
U(l)( 9p:k) OI(C}P) J GXPB e EI d. ,[X 0 de EE
enikSXJ,(AO] i

) — 0ik
- WIAPDACXPHES(A)H’ (83)

where DA denotes an appropriate quotient measure on A ,, i.e. the “Lebesgue integration” on an

infinite-dimensional space A , of field configurations.

We now have

TikS (4o ) 0 ik s(4)" Vl( ) 1ikS ¢ p4o) i(
7 (X pk) =" [ Dde™ H_nge iy Hd'ddl/z'
ol X.H Vol(C}p)I ‘ VollH) Vol(G,) Jrvi6,© act(da || "
enikSX’P (4) Dk

%4,.[ H ! 0 1/2
= Sl e [det(d e 89)

where # is the induced measure on the quotient space A ,/G, and det' denotes a regularized

determinant. Since S(A) = <A,- 0, D'A>l is quadratic in 4, we may apply the method of stationary

phase to evaluate the oscillatory integral (89) exactly. We obtain,
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el fpwbur] etlaa ],
Vol(H) I det(- k0, D'|["

ZU(l)(va»k) - (90)

We will use the following to define the regularized determinant of - k0, D':

ldet(s2+ 777"
ldet(77°)"

det(- k1, D') = C(k,J) 1 (90b)

where 5%+ 77" = (D)0 D' + (d,d; ). 777 = #[a,a) and
o 507751 om

is a function of RU C” (X ) , the Tanaka-Webster scalar curvature of X', which in turn depends only

on a choice of a compatible complex structure J [ End(H ) . The operator
d = (D D+ (a,dl,] O

is equal to the middle degree Laplacian and is maximally hypoelliptic and invertible in the
Heisenberg symbolic calculus. We define the regularized determinant of A via its zeta function

Z(8)(s)= EA_S (92)

A0 specD (A )

Also, ( (A )(s) admits a meromorphic extension to C that is regular at s = 0. Thus, we define the

regularized determinant of A as
det'(a )= e ¢ (93)

Let A, := (d;,dH)z on Q°Xx), A,=1 on Q'(H) and define (,-(S) = (A;)(S). We claim the

following
Proposition 2

For any real number 0< ¢ R,
det'(cd )= Vdet(n,) (94)

for i= 0,1

Proposition 3

For 8, = (did,,] on @ °(X),8,= b on Q'(H) defined as above and { (s) = { (8,)(s), we have

,(0)-¢,(0) = @ 8%})5% 0 dx @+ dimKerd | - dimKerd ,, (95)
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L e - -
olo)- (0] = - o[ R D B+ dim (X d, ) - dim°(X.,), - 96)

where RO C* (X ) is the Tanaka-Webster scalar curvature of X and « [ Q l(X ) is our chosen

contact form as usual. Let
ZAO(S) = dimKerl | + ZO(S) , ZAl(s) = dim Kerh | + Zl(s) 97)

denote the zeta functions. We have that ZAI(O) = ZZAO(O) for all 3-dimensional contact manifolds.

We know that on CR-Seifert manifolds that

(0= 7o) Clasllo)= oo prn e o9)

Thus,

U P
ZI(O)-256L;€KDdK. (99)

By our definition of the zeta functions, we therefore have

7.(0)= éIXRzK 1 d - dimKerd . {,(0)= ﬁJ'XRzK 0 dk - dimKerd, . (100)
Hence,
~ _01 2 Y 0 01 2 Y 0_
ZO(O) ZI(O) - HEJ‘XR k O dk dlmKerA OH HﬁIXR k O dk dlmKerA 1H_

- B- LI R* 0 dk 1+ dimKerd | - dim Kerd , =
0 512J)x 0

- H_ 1 1 - di
E [ Rk D d @+ dimH'(X,d,)- dimH(X,d,). (101)

2.2 Yang-Mills Gauge Theory [6]

Let £ be an oriented closed Riemann surface of genus &. Let £ be an H bundle over . The
adjoint vector bundle associated with £ will be called ad(E ) . Let A be the space of connections
on E,and G be the group of gauge transformations on E . The Lie algebra G of G is the space of

ad(E ) -valued two-forms. G acts symplectically on A , with a moment map given by the map

__ I
uia)= 7 (102)
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from the connection A4 to its ad(E) -valued curvature two-form F = d4d+ A0 A. |l _I(O) therefore
consists of flat connections, and I "(O)/ G is the moduli space M of flat connections on E up to

gauge transformation. 4 is a component of the moduli space of homomorphisms p :7 I(Z) - H,

up to conjugation. The partition function of two dimensional quantum Yang-Mills theory on the
surface 2 is formally given by the Feynman path integral

JDAepo — FF)@, (103)

vol A

where ¢ is a real constant, DA is the symplectic measure on the infinite dimensional function

space A , i.e. the “Lebesgue integration”, and vol(G) is the volume of G .

For any BRST invariant operator 0 (we want remember that the BRST (i.e. the Becchi-Rouet-

Stora-Tyutin) invariance is a nilpotent symmetry of Faddeev-Popov gauge-fixed theories, which

encodes the information contained in the original gauge symmetry) , let <0> be the expectation
value of 0 computed with the following equation concerning the cohomological theory

, 1

= -0V} = 7z

(104)

lduTr@%(H- f)- %f“ i 0Dy +iDpy '+ DADYg + %X[X,fph iy A @

and let <0 >' be the corresponding expectation value concerning the following equation
" - l i . i . ij
L"(u) = El duTr(D Do+ ifly 9 |- Dy e "Dy ). (105

We will describe a class of O ’s such that the higher critical points do not contribute, and hence
<O > = <0 >'. Two particular BRST invariant operators will play an important role. The first, related
to the symplectic structure of M, is

W =

1 1
T H F+ =y 0
nz! rigF s Sy 0y @ (106)
The second is
0= duTry® (1
8n2l . (107)

We wish to compute
(explo + €0 )08 ) (108)
with € a positive real number, and B an arbitrary observable with at most a polynomial

dependence on ¢ . This is
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1— 1 HLD k D
(explw + €0 0B )'= VOZ(G)J'DADQUD(/) 0p Depohzu%Q,lduw Dka+

1
2

. 1 £ 2
+ . lTr@leEw DI/J@+ Sn—z!duTqu % (109)

Thus, we can simply set # = ® in eq. (109), discarding the terms of order 1/u, and reducing to

1
vol (G)

1
4r 2

(explo + 0 )08 )= [ DADY Dy expE !Tr@i(pF+ %w 0y @+ &i_zfderq)z%Dﬁ . (110)

Thence, we have passed from “cohomological” to “physical” Yang-Mills theory. Also here DA is
the “Lebesgue integration”. With regard the eq. (110), if assuming that f = 1, in this case, the only
U dependent factors are in

1
DADU ex
v pE 4r?

[Try Dy E (111)

X

Let us generalize to ¢ # 0, but for simplicity f = 1. In this case, by integrating out ¢ , we get

2

1
vol (G)

2n
£

<exp(w +¢0 )>‘: J'DAexpE !du Trﬁ%_ (112)

This is the path integral of conventional two dimensional Yang-Mills theory. Now, at ¢ # 0, we
cannot claim that the < > and < >' operations coincide, since the higher critical components M,

contribute. However, their contributions are exponentially small, involving the relevant values of

= 'J'Xd/fTrfz.Soweget

2

vol(G)

J’ DA expE 21
£

!duTrfz%+ O(exp(— 2n Zc/z)), (113)
where € is the smallest value of the Yang-Mills action / on one of the higher critical points. We
consider the topological field theory with Lagrangian

i
L= - TroF
47{2! 0F | (114)

which is related to Reidemeister-Ray-Singer torsion. The partition function is defined formally by

1

2= o)

[ D4Dg expl- L). (115)

Here if E is trivial, G is the group of maps of I to H; in general G is the group of gauge
transformations. Now we want to calculate the H' partition function
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~ 1
Z(t;u)= Vel PADe expl- L), (116)

Thence, with the eq. (114) we can rewrite the eq. (116) also as follows

I
4i?

JDA‘D(/) exp% I Tr(ﬂF%. (116b)

2

Vol(G')
First we calculate the corresponding H partition function for connections on I - P with

monodromy # around P . This is

1
Vol|G

2[5 u) = 1] DADY exp(- L) . (117)

Also here, we can rewrite the above equation also as follows

1
Vol(G')

Z(Z;u):

[ DADy epo 47’T _ l Tr(/)FH . (117b)

A is the lift of A'. From what we have just said, this is given by the same formula as the following

AAE H(V‘)’ﬂﬁwuz % (118)

o ) 7 (dima

but weighting each representation by an extra factor of 4, (u ]) . So

Z(Z;u): H(Vdﬂ%zgzﬂz M (119)

o )4 > (dima )**7°
We now use the following equation
Vol(G) =#T "*Vol(G'), (120)
to relate Z(2;u) to Z(3 ;u), and also
Voll[H)=#T VollH'"); #Z(H)=#TGz(H'); #r (H)=#7; (@121

to express the result directly in terms of properties of H'. Using also (121), we get

Z(5:u) = #nll(Hv)H(;/;l)(dﬁg' Ezg_zuz % (122)

Note that in this formula, the sums runs over all isomorphism classes of irreducible representations
of the universal cover H of H'. We can immediately write down the partition function, with gauge

group H', for connections on a bundle E'(u) , generalizing (122) to ¢ # 0. We get
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w2 A, (u'l)Dexp%- £ Cula ] i

Sts .oy 1 DVollH) [ 2 DE. (122a)
Z(z’g’u)'#nl(H')E(zn)dimH'E DZ, (dima )**7*

| — — |

Furthermore, with the (119) and (122) we can rewrite the egs. (116b) and (117b) also as follows:

i !MF%: #nl EVOZ(H') Hg_ DZ ) (122b)

Z(1u) = 1 IDA'Dql exp%

Vol(G') 47 2 1(Hv) (Zn)dimH' (dl )zgz,
ARE 1 DAD(PGXPE : Trq)FE: Voll ) zg_zu —Aa(”_l) . (122¢)
el TERGEN e B

We consider the case of H = SU (2) . Then Vol(SU (2)) = 2°*11* with our conventions, and so

1 = expl-£'n’/4
Z[3.¢) = (2n2)g-lzl p(nzg.'f ) (123)
On the other hand, for a non-trivial SO(3) bundle with u= -1, we have An(u'l): (-1)"",
#1,(H') = 2 and Vol(SO(3)) = 2212, so

1 ° (- l)"”exp(- £'n2/4)

Z(1,e:-1)= 2D(8n2)g_1 21 s . (124)

We will now show how (124) and (123) can be written as a sum over critical points. First we

consider the case of a non-trivial SO(3) bundle. It is convenient to look at not 7 but

1¢'7 _ (- 1)¢

de! 2D(32ﬂ2)g'lnzl(_ " expl- ¢ /4], (125)

We write

zm (- 1) exp(- £'n2/4) = - %+ % (- 1) exp(- £ 'n2/4). (126)

n=1

The sum on the right hand side of (126) is a theta function, and in the standard way we can use the
Poisson summation formula to derive the Jacobi inversion formula:

4 (21 (m+ 1/2))2H

;Z(' 1) expl- £ 'n*14)= ;ZJ dnexp(2minm + itn - £'n”/4) = \/;,;ZGXPE_

Putting the pieces together,

T [ o B
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The eq. (128) shows that §¢'Z/j¢ ¢! is a constant up to exponentially small terms, and hence
Z (E) is a polynomial of degree £- 1 up to exponentially small terms. The terms of order ¢*,

k< g- 2 that have been annihilated by differentiating g -1 times with respect to ¢' are most
easily computed by expanding (124) in powers of ¢ :

Sl - 1 g-Z(_HZE)k _ A3-2g+2k AL o1
Z(g)_z(gnZ)g*;o - (1- 27227 (2g - 2- 2k)+ Oe =), (129)

Using Euler’s formula expressing { (271) for positive integral 7 in terms of the Bernoulli number
B

2n s

(2n)*"(- 1) B,

eq. (129) implies
- g+1 (225’ o 2)Bzg_2_2k
mi-nexp(w ez Z W2 ag-2-2k) - BV

Thence, we obtain the following relationship:

N 1 g2 1% k s -
2k lsn ) Zo( nk! ) [1- 2224 (26 - 2- 24) + Ol =) 0
gl k (22g 2-2k _

0 exp(w +¢0 )= (- 1)
A (0+e0)= Zk'

) 2g-2-2k

2% (2g - 2- 2k)!

(132)

With regard the link between the Bernoulli number and the Riemann’s zeta function, we
remember that

)- B, (x+1)- B. (1] |

Syl k+1

As B', (x) = mBm_l(x) for all m | we see that

: - - lBk+1(X+ 1)' Bk+1(1) (¢ Bie
JOSk(x 1)dx-J'0 o = (-1 Tl
Thence, we have that:
AN - - (- 1)% B

The cohomology of the smooth SO(3) moduli space ./l/l'(- 1) is known to be generated by the

classes ¥ and © , whose intersection pairings have been determined in equation (131) above, along
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with certain non-algebraic cycles, which we will now incorporate. The basic formula that we will
use is equation (110):

1
vol (G)

1

<exp(w +¢0 ) 0B >': e

. 1 £ 2
[ DADY Dy epo !Tr@l(pF+ 00 @+ &T—zlduTr¢ ED[S. (133)

We recall that < >' coincides with integration over moduli space, up to terms that vanish

exponentially for ¢ - 0. Note that ¥ is a free field, with a Gaussian measure, and the “trivial”
propagator

Wl ()= -4ne 862 (x- ). (134)

For every circle C U I there is a quantum field operator

1
Ve = 4n2chr<0w. (135)

It represents a three dimensional class on moduli space; this class depends only on the homology
class of C. As the algebraic cycles are even dimensional, non-zero intersection pairings are

possible only with an even number of the V. ’s. The first case is <€Xp(w t €0 ) e Ve, >', with two

oriented circles C|,C, that we can suppose to intersect transversely in finitely many points. So we

consider
. 1 ; 1 1, ¢ 5
(explo +¢0 )07, 7, )= vol(G)IDADWDq) exp 4n2lTrDz(pF+ 00y ik Snzldu Trp2 00
1 1
D4n2£Tr(/)¢l D4n2i2Tr(ptﬂ . (136)

Upon performing the ¢ integral, using (134), we see that this is equivalent to

1
4r?

-0 (P)Trg?(P) (137)

vol(G) I DADY Dy exp%

) 1 £ )
lTr@l(pF+ E(ﬂ dy @+ &T—zlduTr(p %D Z

POCin C,

Here P runs over all intersection points of C; and C,, and 0 (P) = t1 is the oriented intersection

number of C, and C, at P. Since the cohomology class of 7 r¢2(P) is independent of P, and

equal to that of [ diT7r9” | eq. (137) implies
i

1 1 1
<exp(a) +¢0 ) We Ve, >': vol(G)IDADt/JD(p expE4nijr@i(pF+ Ew 0y @+ 87£T_2I Trqﬂ%ﬂ
L X
#Cn C
DE— #en c) e 2)!Tr<02%, (138)
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with #(C/n G)= z o0 (P) the algebraic intersection number of C, and C,. The eq. (138) is

equivalent to
1= a '
(explw + 0 )v ¥, )= -2#(C,n CZ)D£<exp(a) +0)), (139)
which interpreted in terms of intersection numbers gives in particular

d
Iexp(w +¢0 )Vcchz = -Z#(C1 N Cz)a— J'exp(w €0 ) (140)

M(-1) M(-1)

Of course, the right hand side is known from (131). Indeed, we can to obtain the following
relationship:

[explo + 60 77, = -2#(Cn )L [explo + 20

M(-1) ¢ MT(-1)

o 22g 2-2k 2)B2g-2-2k

0 _ é+1 5_
Z K 2°¢7'(2g- 2- 2k

= -2#(C 0 C,)—
de

. (140b)

[ -]
o |

where we remember that B represent the Bernoulli number. The generalization to an arbitrary

number of ¥ ’s is almost immediate. Consider oriented circles C, , 0 = 1...2g | representing a basis
of H l(Z ,Z ) .Let ¥, = #(Cg N C,) be the matrix of intersection numbers. Introduce anticommuting

parameters /1, ,0 = 1..2n It is possible to claim that
2g
J’ expEw £e0+ Y 0,7, E: J‘exp(w +€0), (141)
(1) 0=l M(-1)
with

£=¢6- 22 Noll Vor . (142)

<1

The computation leading to this formula is a minor variant of the one we have just done. The left
hand side of (141) is equal to

! i1 b
VOZ(G)jDADwD(p epo4 CJ,TVW H (143)

Shifting ¥ to complete the square, and then performing the Gaussian integral over ¢ , this becomes

[

The polynomial part of this is the right hand side of (141). Thence, we can rewrite the eq. (141) also
as follows:

!TFH1¢F+ = 0y H+ T!duTr(p

vol(G) .[ DADY Dy exp% 4n

!du Trqﬁ%. (144)

26



2g
J exp%a) + 60+ Uzzlr)ach H:

;-1

£
] ?

o1 11
= vol(G) J' DADY Dy epo e

We now want to evaluate the generalization of the following conventional Yang-Mills path integral

!Tr@w“%w 0y @+ !duTrW+ : inlnngrcvw H (144b)

2
4m - ¢ &

[ DADy epo4 [ TroF s 8;—2!@%(/)2%, (145)
z

l
T
1.e.:

[ DADg exp%m;z [Tror !Q(fPN )E, (146)

with Q((pN ) an arbitrary invariant polynomial on €. The path integral can be evaluated by summing

over the same physical states. The Hamiltonian is now: H = - Q With our normal-ordering recipe,

the generalization of the following equation

-1 _ o C2(a)+l‘
1, [u )DGXP% 5@ ) @% (147)

Za (dima )zg'2

, 2g-2
Z(3,65u) = Voll 1) % 0

#n,(H') DE(ZH Jdm

is then

Z(z ,Q;u) - #nll(H') DE(;/(;Z)(dZ)[ Ezg—z DZ A,1(u‘1)3?2§(g_Q£h+ 5)) . (148)

With regard the intersection ring of the moduli space, the basic formula that we will use is (110):

1
vol (G')

1
4i?

<exp(w t €0 ) 0p >': jDADtp Dy exp%

[Trior s 20 0y Iy &i—zjduwz%m. (149)

)2 )2

In eq. (149), B is supposed to be an equivariant differential form with a polynomial dependence on

¢ . We aim to compute

<CXPEQ<2) * Tjg) * Zp S(’i)(Cp)E>'- (150)

It is convenient to introduce

0, = 4n

(151)

(=3

0
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We will first evaluate (150) under the restriction

dp*
det =1. (152
The basic formula (149) equates (150) with the following path integral:

1 000 ., 1 0%0 o0 o 08, i
jDADwD¢epo!Eza¢aF EYrrr Al E Zcfaww +jduT(<o)H. (153)

vol(G') 7 !

First we carry out the integral over ¥ . Because of (152), the ¥ determinant coincides with what it
would be if Q= Trg*/81°. As we have discussed in connection with (111), this determinant just
produces the standard symplectic measure on the space A of connections; this measure we

conventionally call DA (it is always the “Lebesgue integration”). Let (a ZQ)_1 be the inverse matrix

to the matrix 4°0/39“¢", and let
1S 08"

Tlp)=7(p)- § . WW(a 0], (154)

The second term arises, as in the derivation of (138), in shifting ¥ to complete the square in (153).
Then integrating out ¥ gives

00 -

DADg expri| — F“+ [duT . (155
] o0 e [T s
Now change variables from ¢ to (5 , defined in (151). The Jacobian for this change of variables is 1
because of (152). Because the 0, are nilpotent, the transformation is invertible; the inverse is given
by some functions ¢ “ = W“((/f’ . After the change of variables, (155) becomes

I
an’

IDAquexpE !Tr¢AF+ ldpfoW(qf)H. (156)

Vol(G)
This is a path integral of the type that we evaluated in equation (148). In canonical quantization,
¢)A” /4m* is identified with the group generator - ;7. To avoid repeated factors of 472, define an

invariant function V' by W(qf) = V((pA / 4712). The invariant function 7 oW(((f ) corresponds in the

quantum theory to the operator that on a representation of highest weight % is equal to 7 o V(h ) ) ,

with 0 equal to half the sum of the positive roots. Borrowing the result of (148), the explicit
evaluation of (156) gives

L 0 vollH) 3 Ju ) cexpl? o v{n+ 6]

e 0 el

(157)
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with % running over dominant weights and § as above. The determinant in the ¥ integral would
be formally, if (152) is not assumed,

u detEa - b% (158)

times the determinant for Q= Trg”/81°. We have set Q'= 41°Q . The factors in (158) are all

equal up to coboundaries (since more generally, for any invariant function U on 56 U ((p(P)) is

cohomologous to U(p(P)), for P,P'0 I | according to the following equation: d0 ° {Q ol ] ).
This infinite product of essentially equal factors diverges unless (152) is assumed. The Jacobian in

the changes of variables from ¢ to ¢ is formally

120" O
ngdet%a(pawﬁg . (159)

Formally, these two factors appear to cancel, but this cancellation should be taken to mean only that
the result is finite, not that it equals one. The number of factors in (158) should be interpreted as

N, /2, half the dimension of the space of one-forms. The number of factors in (159) should be
interpreted as N, the dimension of the space of zero-forms. The difference N,/2- N, is - 1/2 the
Euler characteristic of X, or g~ 1. Thus the product of (158) and (159) should be interpreted as

det(0 000 %0" )g_1 . A convenient function cohomologous to this is

exp%jZ (g-1) lndet%a;a%b EH

The sole result of relaxing (152) is accordingly that (156) becomes

1
Vol(G)

IDADga epo4 !Tr¢F+ ! duT W((ﬂ)% (160)

with

) 020
-0%0),+ (g l)lndetﬁa(pwbﬁ. (161)

A o' 15" 08"
T=T+(g 1)1ndetEa¢ % UZTyMa 397

The evaluation of the path integral therefore leaves in general not quite (157) but

1 0 vollH)

i Al (h+5)
e 1 )-

i (162)

Furthermore, we can rewrite the expression (160) also as follows:
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1 R . R 1S° 38 i 62Q' X
vollG]| AP0 xp %ﬁlm’“ [T UZTVMWW(VQLb (g- l)lndet%awwﬁow((p))-
(162b)

2.3 On some equations concerning the large N 2D Yang-Mills Theory and Topological String
Theory 7]

The partition function of two-dimensional Yang-Mills theory on an orientable closed manifold 2 ;
of genus G is

Me(r)

Z(su(N).5,) = J'[DA“]expE- ﬁkrdzx detG!/TrFljF”E: ] (dimR)* 2% " (163)
where the gauge coupling 1 = ¢’ N is held fixed in the large N limit, the sum runs over all unitary
irreducible representations R of the gauge group ¢ = SU (N ) , CZ(R) is the second casimir, and A4
is the area of the spacetime in the metric G;;. Also here DA is always the “Lebesgue integration”.
Let " be the simple Hurwitz space of maps with B simple branch points. Denote these simple
branch points by P, with corresponding ramification points of index 2 at R, : these are the unique

,,,,,

have support only at the /" ramification point. The analogue in ordinary string theory is a choice of
Beltrami differentials which have support only at punctures. This is a well-defined choice away
from the boundary of moduli space. Now consider the curvature insertions in these local
coordinates:

B

J’fl)lZ]expE- iZ%,,Z’E: ('21)3 Praff(R,), (164)

where B is even and the matrix, &, , takes the following form in an oriented orthonormal basis

H 0 R, H
0 R, 0
T . 0 “7{23-123D’ (165)
ﬁ - Rp 108 0 ﬁ

so that

pratt(,) = [] R |67 ]R) (166

1=1

and the full measure for the topological string theory is
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(;]'[1))3 Ig(ll ®’F=G]” .‘7?21_12,’G2[‘1,G21](R1)eXpE- %IZ ) fo %2

—

(2;)3 ,ZO(_kl') J'gm Q)IF’G]li ‘7221-121’G21_1,G21]E%JZ . [ . - (2]_[)3 Iio(;kll()f! <<A 2 A (2)>>5(B,k) .

(167)

In the last line we have introduced a space fi(B,k) , which is the product space
F(B,k)= Vx(z,). (168)

The integral over this space, <<>> #5.4) is formally defined by the eq. (167). Furthermore, we have

the following expression:

((h12..A (2)>>g<3,k) ; Z"Oﬁfﬁzz g!{—l)l!)/ () (A (R )0 Rl)>>5(3,0;3—1) . (169)

When /> B it is clear that the correlation function on the right vanishes, by ghost number counting.
So that altogether

PR e L e LA RSSOV

S B MR L )
_Zom Zo EIE@ EnA@ <<A (Rl)mA (Rl)>>5(3,0;3—1)' (170)

Substituting in the right-hand side of (170) we obtain

lAB

" B! 0 o
Y k)!<<A()(Rl)...m)(Rk)>>5(3’0;r:3_k). (171)

So we are left with the integral
B-k

Ig(l] @[F,Glﬂ ‘(RZI—IZI[GZI_l’GH](RI)A (0)(RB—k+l)"'A (0)(R3)- (172)
1=1

We are only interested in the contribution of simple Hurwitz space. This space is a bundle over
Co5/S; with discrete fiber the set ¥ (n,B,G,L= B). Further the measure on Hurwitz space

inherited from the path integral divides out by diffeomorphisms. Therefore the correlator in (171)
is:

k

Z 1 xi <B|'|
(/JDLIJ(n,B,G,L:B)|C(w )| B!ICO’” =1

Ry GG RN (R, . ). A (‘”(RB)>. (173)
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In isolating the contributions of simple Hurwitz space we must ignore the singularities from the
collisions of R,, I < B- k with R, J> B- k+ 1. Thus we replace (173) by the expression:

1 1 B-k i
(Z Wl )|x =] - <|-| Rﬂ_m[Gzz I,Gzz](R1)>D 0(Py,,)0.00(R), (174)
¢y OVY(n,B,G,L=B . 0.8-kx(z7)k \'721

where P, U I, are the images of the simple ramification points R, . Thence, from the egs. (170) and

(174), we obtain the following expression:

1
(21)”

Ig(l) ‘(D’F’G]ﬂ 5?2,_12,’G21_1,G21](Q,)exp- %LW f]w =

) 1 1 gk 20-1 21 >
; « Ly R, |2 c¥| (R 0w(p . )0 00(P) (174
wDW(n,ZB,G,L:B) |C(w )| B! J-Cu,B-kx(ZT)k<|1-ll 21 121[ ]( 1) ( B-k 1) ( B) (174b)

3. Ramanujan’s equations, zeta strings and mathematical connections

Now we describe some mathematical connections with some sectors of String Theory and Number
Theory, principally with some equations concerning the Ramanujan’s modular equations that are
related to the physical vibrations of the bosonic strings and of the superstrings, the Ramanujan’s
identities concerning « and the zeta strings.

3.1 Ramanujan’s equations [8] [9]

With regard the Ramanujan’s modular functions, we note that the number 8, and thence the

numbers 64 = 8 and 32= 27X 8, are connected with the “modes” that correspond to the physical
vibrations of a superstring by the following Ramanujan function:

0 _[ cosmixw' o nxzw.de

[ 0
4nantilog?’—coshix ik 142

D -mTw' . , D t W'

D e (pw'(ltW) D

o

g (175)

W | =

Furthermore, with regard the number 24 (12 =24 /2 and 32 = 24 + 8) this is related to the physical
vibrations of the bosonic strings by the following Ramanujan function:
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0 » COST txw

!{x Wd
I D \/
4DantilogJ0 coshnx il 142
i . 4W¢ (itw) £
I w' i

24 =

10g§\/H10+i1ﬁH+\/H10+47ﬁH§ |

It is well-known that the series of Fibonacci’s numbers exhibits a fractal character, where the forms
J5-1

repeat their similarity starting from the reduction factor g - 0,618033 = 2 (Peitgen et al.
1986). Such a factor appears also in the famous fractal Ramanujan identity (Hardy 1927):

(176)

0618033-1/¢-Q-R( )4 Js
2 1+3+\/§e Hl'[f()dtH
7 \/_ 475 ’ a7
0 0
0 0
120 - 2 DR(g)s J5 -
200 3+ 1 ¢ f°(-t) dr U
il 1+ ) 8 E\/—I A5 4475 ED
and i ), (178)
o - J5+1
where 2

Furthermore, we remember that T arises also from the following identities (Ramanujan’s paper:
“Modular equations and approximations to m”’ Quarterly Journal of Mathematics, 45 (1914), 350-
372.):
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D(2+ J3)3+ Vi3 )D 24 10g§\/@10+11\/5H+\/H10+ 7\5%%

= —
) /_ V142 4 4
130 D V2 U (178a) and
(178b)

From (178b), we have that

1142
0 104 \ 0
loga\/ﬁlo ilﬁH+\/%10 47\5@@

Let u(q) denote the Rogers-Ramanujan continued fraction, defined by the following equation

24 =

(178c¢)

2 3
s.4"ad ¢ :
u=ulg): TRTETETIR lal<1 (179

and set v = u(qz) . Recall that ¢/ (q) is defined by the following equation

0(q)= sla.g)=§ 2= ‘;_;;2 > (180)
n=0 ) 3
§‘/JS(QQ: 2.3 1+ (V5 - 2Jun?
shole log(uV)ﬂ/glong_ £+2MV2E. (181)

We note that 1+ (v5-2)= 200,61803398 and that 1- [v/5+2)= 201,61803398, where
¢ = 0,61803398 and ® = 1,61803398 are the aurea section and the aurea ratio respectively. Let

Then

k= k(q) = wv’ . Then from page 326 of Ramanujan’s second notebook, we have
1+ k
: Y SiEu)
u’ kH +kH and v = KDDL (18)
It follows that
1
togluv?) = L1oget K5
glu)= < gk ol (s

If we set ¢ = (\/§+ 1)/2 = 1,61803398, i.e. the aurea ratio, we readily find that ¢° = J5+2 and
= /5 - 2. Then, with the use of (183), we see that (181) is equivalent to the equality
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8y la)dg_ 1) M1k k
o e i vt o

Now from Entry 9 (vi) in Chapter 19 of Ramanujan’s second notebook,

w(q;_zs P ALY
wq QZQU() ( )+ qdq gqu4 - (185)

>

By the Jacobi triple product identity
fla,b) = (- a;ab), (- b;ab), (absab), , (186)
we have

Ad.a) . |- )| a5a). . lad') la'sa) (a*1a"). (a2a"), _ s uld)

=1L (187
flad'l - ad’) - a4, |aid). a%sq°). a%54"). a5 ") T ) (187)
by the following expression
s @) lata).
= g'P Lk S (188
ulg)= q (qz,qs)m(q3;q5) (188)
Using (187) in (185), we find that
8 u(q)d 8 d
gjz (qi] ;q= 40[ qy (gl 3(q5)dq+j5dq- 8jd IOg(q”su/V)dq—
8 24 1-k
= 40[ qu (gl *(q")dg - 810glu/v)= 40] gy (gl q°Jdg + Zlogh - Tlog =, (189)

where (182) has been employed. We note that we can rewrite the eq. (189) also as follows:

80 lg)dg . 8 10ak- Progl K
sjw o1 40[ qy (4l *(a )dq+510gk 5 logi - (190)

In the Ramanujan’s notebook part IV in the Section “Integrals” are examined various results on
integrals appearing in the 100 pages at the end of the second notebook, and in the 33 pages of the
third notebook. Here, we have showed some integrals that can be related with some arguments
above described.

fo W lahan= g 4’y o 40

4a . k“) IO (ean_ 1)(4a4+ x4J; (191)

xdx 1

Let n2 0. Then
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. sin(2nx)dx 1.2 (-1 e Vo (2k + 1)n
IO x(cosh(ﬂ(x) + )cos(nx)) ) 4 2ZO((2k)+ 1) cosh{(2l£(+ l)n ;)2}} ;

(193)

Now we analyze the following integral:
log%“ NE 4xH
2 25 (194
I:= Jl de= (159)
0 X 15

Let u= (1 t A1 4x)/2, so that x = u* - u . Then integrating by parts, setting u = 1/v and using the

zlog{1-
following expression Liz(z) = -JOMdW, z0D C, and employing the value
w
J5-10_n° J5-1
Lii——0= —- log’H——
le > % 10 g% ; %,We find that
V54 V54 2. V54 -
- I( e logu (o) )y - 'I( wlogle’ <u] o Neleglogu  loglu- 1),
! u - u 1 u ! 0 u u 0

dv =

2 2

\%

- llogz%\/g+ 1%+ 1(ﬁﬂ)/zlog(l- v) - logv

2 2

- 2 2 2
- - llogzg\/gz"' 1%_ Ll.z%%%'l' Liz(l)_ %logzgﬁgz - IT_+ %: 7'[_ (195)

Thence, we obtain the following equation:

log%m (\/§+])/2 logu 2

i
E = 2u-1 - —. 196
I:I 2 dx L uz-u(u ) 15 (196)

0 X

In the work of Ramanujan, [i.e. the modular functions,] the number 24 (8 x 3) appears repeatedly.
This is an example of what mathematicians call magic numbers, which continually appear where we
least expect them, for reasons that no one understands. Ramanujan‘s function also appears in string
theory. Modular functions are used in the mathematical analysis of Riemann surfaces. Riemann
surface theory is relevant to describing the behavior of strings as they move through space-time.
When strings move they maintain a kind of symmetry called "conformal invariance". Conformal
invariance (including "scale invariance") is related to the fact that points on the surface of a string's
world sheet need not be evaluated in a particular order. As long as all points on the surface are taken
into account in any consistent way, the physics should not change. Equations of how strings must
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behave when moving involve the Ramanujan function. When a string moves in space-time by
splitting and recombining a large number of mathematical identities must be satisfied. These are the
identities of Ramanujan's modular function. The KSV loop diagrams of interacting strings can be
described using modular functions. The "Ramanujan function" (an elliptic modular function that
satisfies the need for "conformal symmetry") has 24 "modes" that correspond to the physical
vibrations of a bosonic string. When the Ramanujan function is generalized, 24 is replaced by 8 (8 +
2 =10) for fermionic strings.

3.2 Zeta Strings [10]

The exact tree-level Lagrangian for effective scalar field ? which describes open p-adic string
tachyon is

1 p> 01, -2 1 ..U
L= — é_ID'E¢P 9 +-—:T¢plD
g P p 0 (197

O=-92+0"7

where P is any prime number, is the D-dimensional d’Alambertian and we adopt

metric with signature (_ ot ) . Now, we want to show a model which incorporates the p-adic
string Lagrangians in a restricted adelic way. Let us take the following Lagrangian

Recall that the Riemann zeta function is defined as

s=o+it 0 >1 . (199)

Employing usual expansion for the logarithmic function and definition (199) we can rewrite (198)
in the form

L=-L 2 B8R s g+ mn(1- )
= WMQP P+ In ¢)H’ 00
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i
where |¢| < 020 acts as pseudodifferential operator in the following way:
1 : k> O~
020 (x) - eMZE-——%(Hdk B}
020 (2n)DI 2 , -k k- kP> 2+ ¢ o)
7 (%) = [ ol
where ! (k) J e[ is the Fourier transform of o(x] .

Dynamics of this field ¢ is encoded in the (pseudo)differential form of the Riemann zeta function.
When the d’Alambertian is an argument of the Riemann zeta function we shall call such string a

“zeta string”. Consequently, the above ¢ isan open scalar zeta string. The equation of motion for

the zeta string b is

H¢: ID i “kZE—k—Zwakdk:L
i (2]‘[) jkg-k2>2+se 2 ( ) I-¢ (202)

which has an evident solution ¢ ~ 0.

For the case of time dependent spatially homogeneous solutions, we have the following equation of
motion

(B " Bl 2

(203)

With regard the open and closed scalar zeta strings, the equations of motion are

n(n-l)

of 1 ixk _k_2~ - 3
(3 Gl T

(2r)”




and one can easily see trivial solution p=0=0 .

3.3 Mathematical connections.

With regard the mathematical connections with the Lebesgue measure, Lebesgue integrals and
some equations concerning the Chern-Simons theory and the Yang-Mills theory, we have the
following expressions:

0,0, )= 1 01,7, ) = —— [ rlx]poi)
2l 2 EZ+ 1@

0

nikS A
el X,P( 0)

DAexpEKHIXA 0 dA- J

K ‘[0
: Vol(S)Vol((}P)JAP g4n i %

X x Odk %’ (206)
thence between the eq. (45) and the eq. (84).

1

Al o 174 10
02 O

%(Mf): T’”w(MfTa):

JM f(x)|vol|(x) .

1
vol(G)

1

i
4i?

. 1 2
JDAD(/JD(p exp% ‘[Tr@z¢F+ E(/J 0y @+ 8;—2‘[ duTry %Dﬁ , (207)

thence between the eq. (45) and the eq. (110).

o B el el = el el okt

nikS A
el xy( o)

DAexpgiEL{A 0 dA- J’

K g
- Vol(S)Vol(QP)JAr 4T e H

X ¢ O dk 5 (208)
thence between the eq. (63) and the eq. (84).

fu(x)E'j:l expl- ¢ al )

a’.B(g’ ) - exp((o - l)y)exp(- 0 'leloga(x)dm(x)) 0

1
vol (G)

1
4r?

£
/1 ?

0

I DADY Dg exp

!Tr§i¢F+%w 0y @+ !duTrWEDﬁ, (209)

thence between the eq. (63) and the eq. (110)
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With regard the Ramanujan’s equations we now describe various mathematical connections with
some equations concerning the Chern-Simons theory and the Yang-Mills theory. With regard the
Chern-Simons theory, we have:
10k Qe 2 0

H H J'.‘DAepoz—I TrHAD dA+ EAD Al AHH

Z(k)- voll@)04n >0

207 xdx PR S SR R S
1 da .[0 (ez’”‘ - l)(4a4 + x4) 4a 4 ' azzlaz + (a+ k)2 > (210)

thence, between the eq. (76) and the eq. (192).

”[kSX,P(AO)

_ 0; 2
Zo| X, pk) = DAexpl-~ [« 0 a4) %DD

Vol(S)Vol((}P)-[ 74 i EI AT [ 5 ;

2" xdx R S SR 1
- da IO (ez""-l)(4a4+x4) 4a 4+a;1a2+(a+ k)z’ (211

thence, between the eq. (84) and the eq. (192).

) nikS y p(4) - ik (K DdA)2 D_
Zy( X, p.k) = volle) IAPDAexpEEEIXAD dd- [ S %5
TikS . p (4o
' 0ik 0
= DA — i
vollg,) [, P44y sl4 )H
20" xdx N SR SV S S
1 da IO (ez”x - 1)(4a4 + x4) 4a 4 ' azzl a’ + (a+ k)2

sin|2nx)dx T ¢ (- 1) e o2k + 1)n
- IO x(cosh(n(j) + )i)S(ITX)) ] 4 220((22+ 1) COSh{(ZIE(SIIC)" })2}} ’

(212)

thence, between the eq. (88) and the eqgs. (192), (193).

With regard the Yang-Mills theory, we have:

1
vol (G)

<exp(a) +¢0 )0 )'= J‘DADwD(p epo4 !dp Trq)ZEDﬁ 0

7

8.0 °(q)dg _ 8 24, 1-k
0 ij - ?-401qu (gl (g )dq+§logk Tlog . @13)

Thence, between the eq. (110) and the eq. (190), where 8 and 24 are connected with the physical
vibrations of the superstrings and of the bosonic strings respectively.
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_ 1 Vol(H) Al A u‘l!
Z\L:ul= DAD TroF : g
e Rl L i e e

) xdx 1 i 1

SR v rrrwe) REwRbAt) By el

o sin(2mdaxw ¢ (- 1) e eod|(2k + 1))
© o Toosh(m] coslm]] - 2 22, 2k Teosh[[2k+ r i3 > @Y

thence, between the eq. (122¢) and the egs. (192), (193).

o1
(explo + 60 ) IV, 7, )= VOI(G)J'DADquo expE4 !Ter(pF+ —y 0y H+ T!Tr(p E
- #(Cl N Cz) 2
D% e !Trql ED
¢ -2a’n - 1 2 - k 20" xdx .
D[, (n)dn= ot 4a ;1( S e - 4d, o 1aa ) @9

thence, between the eq. (138) and the eq. (191).

J eXpEw +60 + igngVCU H:
1) 0=1

M-

1 H 1 2 H
o] PADY DR exp [l 2 00 [ s i g o [T

® -2a%n _ 1 2¢ ) k 20" . )‘C,dx .
O fy e (n)dn = e 44 Zl( T 1aa"+ 1) - da’| e laa’+ ¥ (216)

thence, between the eq. (144b) and the eq. (191).

1 .
Vol(G‘) J' DADg exp
057 08" - '
%471 !Tr(ﬂF+ !du T - OZTVM WW(@ ZQ)a; +(g- l)lndetEa{paaQ(pr W(p))D
1 ag’( xdx _1_£+°" 1

2 JR— e —
.[0 (62”- 1)(4(1 +x ) 4a 4 azzlaz + (a+ k)2 -

sin(2nx)dx _ T i (- l)ke'm”)” cos{(2k+ l)n}
4

Io x(cosh(mx) + cos(mx)) Lo (2 + 1)cosh{(2k + 1)n /2} (217)

thence, between the eq. (162b) and the egs. (192), (193).
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Furthermore, we have the following mathematical connections:

1
vol(G)

1

(explo + €0 )0p )= .

) 1 £ )
IDADI/JD((J exp%4 !Tr@z¢F+ 5(/J dy @+ &T—z‘[duTr(o %Dﬁ 0

<t =40y (aly *(g°)dg + glogk- %log%ﬂ

(2u-1)du=—, (218)

2% N (\/§+1)/2 ]()gu
0 J’ dx Jl u'-u
0 X

thence, between the eq. (110) and the egs. (190), (196).

2g
J exp%m+£@+ZUUVQH:
MT(-1) 0=1

-1 DADtpD¢epo L rnfliors Ly oy s £ duTr¢2+qu Troy i
vol(G)o[ H4n2! 0 2 0 8n2! 4n2 L, J -
8 .0 °(q)dg ; 8 24 -k
1+ 1+ 4x
llogH2 E : J‘(\EH)/Z l?gu (2u- 1)du= ﬁ’ (219)
0 J’O . dx ! u -u 15

thence, between the eq. (144b) and the egs. (190), (196).

With regard the mathematical connections between the fundamental equation of the Yang-Mills
theory that we have described in this paper and the topological string theory, we have the following
relationship.

1)’

2n )

_[gm ®’F=G]|:L ‘7?21—121’G21_1’G21](Rz)eng' %L . fw E:

Ju—

L Y i st g0l o 0 1 &
(2]_[)3/20 X Ig[l)ﬁ)[F,G]ulfRzl-lu[G G ]HELwaH z (ZH)BzO gT <<A A >>5(B~k)|]

i
1 z(SU(N).5,) = I’DA“]expE- ﬁjirdzx detGy.TrEjFUE= Y (dimR)"*e v 200)

R

thence, between the eq. (167) and the eq. (163).
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With regard the zeta strings, it is possible to obtain some interesting mathematical connections that
we now go to describe.

7.(0)-¢,(0)= & ) 12.[ R* 0 dk -dlmKerA()H HLJ R* 0 dk -dlmKerAIH

-0 LI R 0 dk 0+ dimKerd - dim Kerd , =
5 s12x i

] z@'gfﬁw(tﬁﬁjkome_w E%E‘”N(k())dk(’ - (JZt),

thence, between the eq. (101) and the eq. (203).

(e - 1 g-Z(_n2£)k _ A3-2g+2k h o1
Z(g)_z(snz)g"zo ; (1- 27227 (2g - 2- 2k)+ Ofe =)0

a1,k 2822k
- (- 1)e*! 5_(2 2)Bzg—2-zk
0 MJ(_I)eXp(a)+£0) =0 g 2- 24

i ZE aZH@( 1) ﬁjwme'”‘“i H%?E@N(k”)dk‘): lfo(;gt)

thence, between the eq. (132) and the eq. (203).

[explo + c0 )77, = -2#(C 0 cz)a"_ [explo + c0)-

M(-1) M(-1)

0_% gl 5_22g22k 2)BZg22k
as@ Zk 2%¢7(2g - 2- 2k)!

i Z% azﬁw( t): ﬁhwmeﬁw H%H‘;(k‘))dk“ ] lfo(f;zt)

Thence, between the eq. (140b) and the eq. (203).

= -2#(C 0 C,)

0
gd
i

. (223)

We note also that the eqs. (101) and (132) can be connected with the Ramanujan’s equation (175)
concerning the number 8, corresponding to the physical vibrations of the superstring. Indeed, we
have:
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Anantilog ™ coshrx © il 142
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3 Ulno+ 1142 10+ 74/2 0E
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(224)

Se) - 1 g-2(_n2€)k _ A3-2g+2k AL o1
Zle)= 2&yrﬂg"zo - (1- 272247 (2g- 2- 2k)+ Ol =)0

gl k (22g-2-2k _ 2)B

- (- 1)e*! c 2g-2-2k
0 MJ(_I)eXp(w+£0) ( 1) ;ok! 23g'1(2g-2-2k)! 0

0 J cosﬂtxw - W
0 D «/
Anantilog ™ coshnx il 142
D Tw' D t W
0 i e * g, (iw 0

8=

Eate

In conclusion, also the eqgs. (110) and (218) can be related to the Ramanujan’s equation (175),
obtaining the following mathematical connections:

(225)

1

<exp(w Heo)op )= vol(G)

jDAD(ﬂD(ﬂ expE lTrHl(pF+ —y 0y H+ —!dﬂTr(o HD[K 0
4n &

0 © COST txw

ﬂx Wd
JO coshﬂx % V142

D tZW'

0
4pantilog

H e 4 W¢W(ZIW) i

L

0

8=

. (226)
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