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Abstract

In the present paper we have described some ititeyerathematical applications of the Number
Theory to the Heterotic String Theory E8 x ES8. Ie Chapter 1, we have described various
theoretic arguments and equations concerning te& IGroup E8, ESXE8 gauge fields and the
Heterotic String Theory. In th€hapter 2, we have described the link between the subsetslaf
natural numbers and of squares, some equation®ong the Theorem that: “every sufficiently
large odd positive integer can be written as tha sifi three primes”’and the possible method of
factorization of a number. In th€hapter 3, we have described some classifications of the
numbers: perfect, defective, abundant. Furthermeeshave describedn infinite set of integers,
each of which has many factorizations. In tBeapter 4, we have described some interesting
mathematical applications concerning the possib&hod of factorization of a number to the
number of dimensions of the Lie’'s Group E8. In daosion, in the Appendix, we have described
some mathematical connections between variousssefiaumbers concerning the Chapter 1 and
some sectors of Number Theory.

1. On the various theoretic arguments and equations cmerning the Lie’s Group E8, ESXE8
gauge fields and the Heterotic String Theory. [1]2] [3]

The theory of Lie groups is now the language thws to express the TOE'’s (unified field
theories) of physics of particle. More precisetywas discovered that the forces electromagnetic,
nuclear weak and nuclear strong comply with paldicaymmetries of phase rotation of the fields,
of the exchange of charge of the particles andolfi@nge of colors of quark, and that the properties
of these symmetries are described by Lie groups3, $W(2) and SU(3). The relative sizes of these
groups are 1, 3 and 8, and correspond to the nuailbersons that transmit the three forces:
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1 photon, 3 weak bosons and 8 gluons.
[...]

The final step towards the final unification of gioal forces, then, passes through the
determination of an appropriate Lie group that aor# the product U(1) x SU(2) x SU(3). The
minimal simple group of Lie that mathematically isBt the requirement is SU(5), in 24
dimensions, but it does not seems appropriate paljgi the great unification based on it, expected
phenomena doubts as the too fast proton decayharekistence of magnetic monopoles. The group
that today seems most appropriated, for the seddleory of everything, that includes also the
gravity, is instead a dual pair of the maximum spar group E8: having double size 248, it
predicts the existence dB6 bosons field, but for which we know, currently,lyothe 12 already
mentioned.

To deepen, from Wikipedia we have that:

“There is a unique complex Lie algebra of typg &rresponding to a complex group of complex
dimension248 The complex Lie groupgof complex dimensio248can be considered as a simple
real Lie group of real dimensiagi6. This is simply connected, has maximal compacysulp the
compact form (see below) ofgEand has an outer automorphism group of orderrrgéed by
complex conjugation.

The E Lie group has applications in theoretical physies,particular in String Theory and
supergravity. BxEg is the gauge group of one of the two types ofroéitestring and is one of two
anomaly-free gauge groups that can be couplecetdith 1 supergravity in 10 dimensions.i&the
U-duality group of supergravity on an eight-torirsi{s split form).

One way to incorporate the Standard Model of pargihysics into heterotic string theory is the
symmetry breaking of &o its maximal subalgebra SU(3)&E

We let us recall how &s built from Spin(16)/Zin ten dimensions. The adjoint representationgof E
decomposes as

248=120+ 128 (1.2)
under Spin(16)/Z At the level of ordinary Lie algebras, we get tiements of the £.ie algebra

from the adjoint plus a spinor representation ofin@®)/Z,, and assigning them suitable
commutation relations. At the level of WZW confolrfamilies, we could write

Ly =[1] +[128

which implicitly includes equation (1.1) as a spéaase, since the (adjoint-valued) currents are
non-primary descendants of the identity operatbat Btatement about conformal families implies a
statement about characters of the correspondintgdife algebras, namely that

Xk, (:L q) = Xspinte) (l CI) * Xspinas) (128 CI) (1.2)

E, ()
n(a)’

where Xe,(L0)=



and whereE,(q) is the degree four Eisenstein modular form

E,(q)=1+ 240203(m)qm =1+ 24({q + (13 + 23)q2 + (13 +33)q3 + ] =

m=1
=1+240q+216Qy% + 67200° +17520)* +3024a)° + 6048G° +...  (1.3)

with o,(m=>d*> (1.4)
djm

The central charge of a bosonic WZW model at ldvés

kdimG
k+C

(1.5)

where C is the dual Coxeter number. For the caseGof SU(N), dimG=N?-1 and C=N,
hence the central charge of the bosdBid(N) WZW is

k!N2—1!
1.6).
k+ N (1.6)

For k =1, this reduces tdN - .IThus theSU(5) current algebra at level 1 has central charged, a
the SU(9) current algebra has central chaByen particular, this means that tH&U(5)x SU(5)
current algebra at level 1 has central charge 4=t84 just right to be used in critical heterotic
strings to build an g Similarly, the SU(9) current algebra at level 1 has central ch@&gaso just

right to be used in critical heterotic strings talth an k. Similarly, for &, E;, Eg, the dual Coxeter
numbers are 12, 18, 30, respectively, and it ig tmsheck that at level 1, each current algebsa ha
central charge equal to 6, 8, respectively. ForSU(S), the integrable representations &re10=

A5, 10 =A%, and 5 =A“5. The fusion rules obeyed by the WZW conformal faesilhave the
form

Bl x [5] = [10; [ x[5] = [1]; [10] x[5] = [10}; [10] x [5] = [5];

1Q] x [10] = [5]; [10] x[10] = [1]; (1.7)

The adjoint representation of Hecomposes und&U(5)*/ Z, as

248 (1,24) + (24,1) + (5,10) + (5,10) + (10,5) + (10, 5)  (1.8)

(indeed we have that: 24 + 24 + 50 + 50 + 50 + 518) from which one would surmise that the
corresponding statement about conformal families is

1=1[1,1 +[5 10] +[5,10 +[10,5] +[10,5] (1.9)

which can be checked by noting that the right-hsidé above squares into itself under the fusion
rules.



The character of the identity representatiorsef(5) is

moz4

(e mi))
su(s 1 7 . (1.10
Xoue)(La)= (T) >q (1.10)

Taking modular transformations, the characterfiefdther needed integrable representations are

1 (Zoi-3Zmf )2
y 5.q)= : q (1.12)
SU(5)( ) ,7(1') mDZ4,szi =1mod5

and

1 [Zm (Emf ]/2
X 10,q 2 q .
e ( ) ’7(T) oz zzm: 2mod5

(1.12)

The remaining two characters are equal to thesegkiyg m — —m. Now, we need to verify that

XEB (l Q) = Xsu(5) (l Q)Z + 4)(su (5 q) su(s (10 q) (1-13)

which corresponds to equation (1.9) for the contdrfamilies. The Echaracter is given by

~—

E,(q

()

where E,(q) denotes the relevant Eisenstein series. Zheorbifold is implicit here —x(1,q)’

arises from the untwisted sector, and each ofdhe (5,g)x(10,q)’s arises from a twisted sector.
We find:

Xe,(L9)= (1.14)
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7T w1 + Axsuie (5o (10.0)) = 1+ 2400 + 21605 + 67205 + 17520y +
+3024@° +6048@° + ...(1.15)
which are precisely the first few terms of the apprate Eisenstein serieEz(q), numerically
verifying the prediction (1.13). The equivalencen ¢z proved as follows. We need to relate the

theta function of the Elattice to a product of theta functions f6U(5) lattices. Briefly, first one
argues that

o(E,)=0(A. Al12]). (1.16)

This can be written as

@(Q[@]{Am AA}] -y ofigfa.A) @17)

i=1



where g denotes the generator of theattion. This can be written as

o(lig]a)e(igla) = o(ila)eo(2]a). (1.18)
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Using the symmetry

o(5-ila)=0(i]a) (@1.19)

the result then follows after making the identifioas

n(r) xta)=0(A), n()x6a)=0(A), 7() xoaq)=0(2]A,).

The adjoint representation of Eecomposes as
248=80+84+84  (1.21)
and so the conformal families 0§,ESU(9) should be related by
NE[1]+[84 +[84] (1.22)

The relevantSU(9), level 1, characters are given by

:i (Zm“( mi)z)/z 1.23
Xsu(g)(l'q) /7(T)8 Zq (1.23)

moz®

and

zq[Zmz-g(Zmi)Z)/Z . (124)

(T)8 m0z8, %" m =3mod9

Asu(o) (841 Q) =

Then, from the equation (1.22) it should be trus th

)(E8 (1' q) = Xsu(g) (l q) + 2)(su(g) (84’ q) . (1-25)

(1.20)

If one takes Spin(16) and splits it into SpikBpin(9), then GLISpin(7) and kLI Spin(9). Under

the g, x f, subalgebra, the adjoint representatiorea@fecomposes as

24814,1) + (1,52) + (7,26)  (1.26)

indeed: 248 = 14 + 52 +182. The commutant@fxF, in E; has rank zero. The dual Coxeter

number of G is 4 and that of Fis 9, so the central charge of the &gebra at level 1 is 14/5 and
that of the k algebra at level 1 is 52/10, which sum to 8, thme as the central charge of the E
algebra at level 1. Both Gand R affine algebras at level one have only two intblga

representations:



L [, [7] R: [1], [26] (1.27)
The conformal weights of the primary fields arespectively, h,=§ and hzszg. So, our
proposed decomposition of Eevel 1
[1]=1[1,1] +[7,26 (1.28)

does, indeed, reproduce the correct central changethe conformal weights and multiplicity of
currents. Under modular transformations,

Xe, (L) = xo, (La)xe, (La)+ X6, (7.0)xe, (26,0)  (1.29)
transform identically. To see this, note that th&dn rules of Gand F at level 1 are, respectively,
G: [ x[71=[1]+[7]; R:  [26] x [26] = [1] + [2€]. (1.30)

The modular S-matrix (for both &nd R) is

_ 1 (J1-u4B  1+u4B
> 2 J1+1/4/5 -y1-1/45 (31

SmSijKm
" S
matrix, the particular combination of characterstloa right-hand side of (1.29) is invariant, as it
should be.

which, in both cases, satisfie$ $(STf =1 and N, =) . Using this modular S-

The heterotic E X Eg- string is described by a 10d=1supergravity coupled to super-Yang-Mills
theory with gauge groupgExEg . The corresponding 10-dimensional heterotic gteapergravity
effective action is

1

Seret[G. @ AN B A H] =

[dvols e (R, +4(00) - X,y y10,x, - 9D+
* e‘zq’[g—(l)Tr(FA OF,) —Tr(/Ti)/])j + e‘z‘"(—%ﬁzj + } . (1.32)

The term involving|—~| describes the Kalb-Ramond B-field coupled to {h&ce-time metric and the
gauge field. This so-calleakion 3-form is described by the property

Hi= a'(tr(RG OR,) —%Tr(FA 0 FA)j, (1.33)

where Tr refers to the “gauge trace” in the adjoapresentation and tr to the “normal trace” in
the fundamental representation (if applicable).dllyc H can be described by



I—~|:dB+a'(CS(DG)—%CS( )j, (1.34)

involving the Chern-Simons 3-form of the metric Levi-Civita connection and the gauge

connection, which can be interpreted as secondhayacteristic classes involving ideas from

topological quantum field theory. Consider func@nY that transform ag ¢ under rotations of

the S', for some integek . In their X -dependence, they can be interpreted as sectios.ofhus
we have a decomposition

Fun(Y)=0,,,T(X,£). (1.35)

Here FurlY) is the space of functions on, and F(X,B“) the space of sections & . Consider an
Shinvariant Dirac operatoD, onY with real eigenvalues, . The APS function

n(s)=2 Al sign(4), (1.36)
where the sum runs over all nonzeto can be written

n(s)=Yn(s), (1.37)

kOz

where 7, (s) is the contribution from states that transformed¥ under rotation of the circle. We

write the spin bundleS of Y as S=7%S,)07(S.), where S, and S_ are the positive and

negative chirality spin bundles of . We can pick a basis of eleven-dimensional gamratices
such that the Dirac operator reads

Laae 5
D, =| R L5 | @3

D -——=

ROO

where we have written the Dirac equatiornlidx16 blocks, and we have arranged the spinors as a
column vector

lﬂ+
, (1.39
o) o

with ¢, being sections ohD(Si). D and D are the ten-dimensional Dirac operators for pesiti
and negative chirality. On spinors that transforsned® under rotations of the circle, the Dirac

equationD,¢ = Ay becomes

O 1|~
|
v

7\
s 8
N—

|

A
7\
S
N——
=

N
=)



with ¢, being sections of5, O £. Suppose we have a pair of states, which are sections of

S, 0 £, with Dy, =wy_, Dy_=wy, for some complex numbex. Then for these two states,
the eleven-dimensional Dirac operator becomes

W
(1.41)

s ;=X

_k
R

Suppose now thay is a section ofS, 0.2 or S_ 0 £° that is a zero mode dd or D. We set
)(((,l/) to be 1 or — 1 depending on whetlerhas positive or negative chirality, is an eigenstate
of the eleven-dimensional Dirac operator with eigdne ky(¢)/R. Its contribution tor,(s) is
hence|k/ R sign(kx) =|k/ R sign(k)sign(x). When we sum the quantity sign) over all zero

modes, we get the index of the ten-dimensional@ig@erator with values i ; we denote this as
I (Bk) So we have

-S

sign(k)i (). (1.42)

The function /7(5) Is obtained by summing this expression okerin doing so, we can observe
that | (Ek)= -l (B"). So we can expresgs) as a sum over positivie only:

1(£). @43

Now, the Atiyah-Singer index theorem gives a foranthlat in ten dimensions reads
()= ak+Bc+) (1.44)

for certain rational numberg, 3, and y. In particular, | (Bk) Is a topological invariant. Together

with the fact that the facth|Sin (1.43) will play no role, this means thatwill be a topological
invariant. Using (1.44), we have

@ :|R|si (ak—(s—l) +’6k—(s—3) + yk‘(s‘5))' (145)

As expected, the series converges for sufficidatige Re(s). In fact, in terms of the Riemann zeta
function ¢ , we have

)2 R o (s-1)+ A (-9 (5-5). (146)



This has the expected analytic continuationste0. Since ¢(s) is regular ats=-1-3-5, the
factor|R|Scan be dropped. Using the valuesddf1),{ (- 3), and ¢(-5), we get

n__a,b_r (1.47)
2 12 12C 252

If V is an & bundle with characteristic class and if we see=c(£), then we have
v oe)= [ (248+ 60a + 622 +%asjA(x)eke . (1.48)

Here, A(X) can be expanded

A

A(X):1+A1+A3:1 _+(7/]2_p2

1440

-5 j (1.49)

The index formula (1.48) can be written@s+ Sk® + jk° with

_é

a=elea’ +60aA, +2484 ), 13 6(60a+248A4); y:248%5. (1.50)

The Rarita-Schwinger operator on an eleven-manifold equivalent to the Dirac operator coupled
to TY-30, and forY a circle bundle overX, it is equivalent to the Dirac operator coupled to
TX -20. (In string theory terms;-20 is the contribution of the ghosts plus the dia}i The
appropriate index formula is therefore

1((Tx -20)0£)= jx[gmost(xi)— 2)A(x)eke, (1.51)

where xare the Chern roots d@iX , so A= p, /2=3 x*/2 and p, =), XX, . We can evaluate

the index formula ag'k + 8'k® + y'k>, with

a'=eloagh - #); p= S)Ies . y=8g. (152)
These formulas can be used to evaluate the follpywirase

@ =exp27i((hg, +7c, )/ 4+ (hes +7705)/8)).  (1.53)

The RR fields of Type IIA are expressed in termsaadf-theory classx by G/2r= \/_Achx. In
comparing to M-theory, we will assume tha§ = a@d hence to evaluate, and G,, we can set

A to 1. We then get



2=0; Z=gd) t=2a(f o). (154)

Let & be a one-form ofY that isS! invariant and restricts on each fiber¥of- X to d8/27. The
normalization is picked so that

Lla):l, (1.55)

where St is any fiber of Y -~ X. If we set C=m[Cdwe, and G'=dC' then
G'/2n=%F OF /(277) . Adding C ' to the C-field onY has the effect, therefore, of shiftit@/ 27

by %cl(ﬁ)z. Since C 'is topologically trivial, the effect of the tramsmation C - C+C 'on the

phase of the M-theory effective action can be wdrkeit from the form of the Chern-Simons
coupling in a completely naive way. The Chern-Sismoaupling is

%LC D((%j —%(pZ(Y)—AZ)]. (1.56)

If C is shifted byC - C+C with C' topologically trivial, we can calculate directlyat

dc' -G 1 dc' _dc
B [ N C—O—+= CD—D—. 1.57
Les = Les j E{Zﬂ 24 A(¥)- )} 2j 2 2m 6% 2m 2m (1.57)

We note that this equation can be connected wéletfuation concerning the physical vibrations of
the bosonic strings, i.e. the following Ramanujamction:

I © COSTEXW oW iy
0 COShfF( \/142

Ay t2w'
e 4 q,itw)

Iog[ \/[10+L111\/§J . \/(10+47\/§j]
Thence, we obtain:

- Lo +_I ¢ {[an L (palv )-AZ)}+%LCDd—CD£ = C'Dd_CDE

antilog

24 21 21 6YY 2T 2
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» COSTEXW oW gy
o coshx /142
—n—zw' t2W
e + g(itw)

. (157b)
| N(loulﬁj \/{10+7J§j]
°d s )7 4

Using C'=m Cda, together with (1.55) and the fact thdtc representse=c (£), we can
evaluate the integral over the fibersYof- X and find that the shift i due toC 'is

antilog

ALCS:ZN.[X{%{(a—A/Z)Z—Z—lLl(pz—)lz)}+ée3(a—)l/2)+4—18e5}. (1.58)

Combining the contributions of theg invariants, which give phase factors accordingthe
following equation ® =exp27i((h, +77¢, )/4+ (hes +77xs)/8)), with the phase we have just found

in (1.58), the phase with which a configurationhwgpecified e=c (£) and characteristic class
of the M-theory four-form contributes to the paatit function is

Q, (ea)=(-2)'“ ex;{zﬂx(g—jfﬁ—lleu _ead oF —%H (1.59)

6 144 24 48 2

We note that this equation can be connected wéletfuation concerning the physical vibrations of
the bosonic strings, i.e. the following Ramanujamnction:

© COSTEXW

e™vVdx | s
antilog™ conszhm DtZZLj\fZ
e + g (itw)

N[lo+11\/§j \/(10+ NE]
log +

4 4
Thence, we obtain:

5 3 3 2 ~
QM(e,a)=(—1)*‘3’“{2’@{%*6—5'1513 -5 %ﬂ:‘
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© COSTEXW oW iy
antilog ™ COSVK Dt%\;‘\'fz

e " itw)

(1.59b)
log{ \/[10+4111\/§J . \/(10+47\/§j]

With regard the parity symmetry, the discussionceoning theS' bundlesY over X , using the
following bilinear identity f(a+a')= f(a)+ f(a')+J'XaD Sqfa’, we have

th-¢)=t{1-e-a)+ t(a)+[ (1-¢-a)Osda. (1.60)

The expressiorj'x e’ 0 Sdfa, with e,a integral classes, vanishes as a consequencesafdbation

ISanD a'= J'aD S¢fa’ and the following Cartan formulaSd(y O y')= > Sq (y)Osd(y),
j=0
taking into account the fact th&d annihilates integral classes:

[ eOsda=] see?D a:jx((Scfe)D e+el(Sde))0a=0. (1.61)
Moreover, the following Stong’s resquaD Sofa = IaD SfA, implies that
jx (A-a)0Scfa=0. (1.62)
Therefore, the last term in (1.60) vanishes. Repgdhese steps fof ()I - ez), we find
t(A)=f(1-e-a)+ f(e?)+ f(a). (1.63)
The variation of the additional phase factor@x, (e a), written in (1.59), can be evaluated by

direct computation. Upon doing so and using (1.8%)find thatQ,, (e, a) transforms under parity
by

Q,(-el-¢e-a)= (—1)f(”)”(ez)exr{2n'jx (i_e; —/11—683 + G&BHQM (ea). (1.64)

The phase factor written as an exponential in (1i$4) fact half the index density of the Dirac

operator onX coupled to the K-theory clas€” — (¢, where ¢ denotes a trivial complex line
bundle andc,(£) = e. Therefore we can rewrite (1.64) as

Q,(-et-e-a)=(-1) kg (@a). (165
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We have that
fle)=1(e-0) (.66)
for all integral two-classes. Therefore (1.65) reduces to
Q,(-ed-¢-a)=(-1)'",(ea). (1.67)

The identity (1.66) needed above is part of a ngereeral formula expressing the mod two index of
an E bundle with characteristic class=ullv in terms of elementary invariants. Hewev are

integral two-classes i 2(X;Z). Such a formula can be derived by constructigdplhdles using
the embeddingSU(3) O E,. Let £, be complex line bundles with(£)=u, ¢ (M)=v. We
first construct theSU(3) bundle

W=LOMOLOM. (1.68)
A direct computation shows that
CZ(W):—(u2+v2 +u Dv). (1.69)

Therefore, by embeddingU(3) in Es (using the chairSU(3) O E, x SU(3) 0 E,) we obtain an g

bundle with characteristic class=u®+v>+uv. The decomposition of the Lie algebra ofiE
terms of representations &U(3)x E; is

2488, 1)0 (1,78 0(3,27)0(3,27). (1.70)

(Indeed, we have that 8*1 + 1*78 + 27*3 + 3*27 = g8 + 81 + 81 = 248). The mod two index of
the B bundle constructed above is the same as the mmdhtiex with values in th8d 30 3 of
SU(3). This can be evaluated using the fact that the Bnimdiex with values irs 0 S (for any S)

is the mod 2 reduction of the ordinary index witdlues inS. We get

fu?+v+uv)=1(@20omoeoa?)+1(e0MOLOM)+1(£0M) mod2 (1.71)

As an ordinary index, the right hand side of equafil.71) can be expressed in terms of elementary
invariants. Settingil = ¢, and working mod two, we obtain

flu?)=1(#-¢) mod2. (1.72)
This is the formula (1.66) needed above. We retmneé a more general identity which is easily
obtained from (1.71) and (1.72) using the biliniggntity for f and the index theorem. Applying
twice the bilinear identity, and taking into acco(h61), we have

flu+v2+udv)= f{u?)+ £(?)+ fuOv). (1.73)

Combining (1.71) — (1.73), we arrive at
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fuov)=1((e-e)om’-o)+1(e-0)owm-0)+1leoMoLOm) mod2. (1.74)

The right hand side of (1.74) can be evaluatedguia index theorem, obtaining
1 3 3 1 3,2
f(uv)= j[uv(u +v)(uv—z/]j +Zuv(u +v3)+1—2(uv4 +2u’v —/]uvz)} mod2. (1.75)

The right hand side of this formula is symmetridenexchangingy and v since on a spin 10-
manifold 1((£ 0 4C)=1(£ O.#)) mod2 .

2. Link between the subsets of odd natural numbers andf squares, some equations
concerning the Theorem that: “every sufficiently lage odd positive integer can be written
as the sum of three primes; and the possible method of factorization of a numbe [4] [5]

We recall the following mathematical statemehé sum of the first N odd numbersis equal to N-
squared (from: http://lidimatematici.wordpress.cgm

This is a very interesting property, which shows thlationship between the subsets of the odd
natural numbers and the squares. We have alreagly ew to build a geometric representation of
the problem which seems to confirm the propositiont we can not say to have actually
demonstrated because we are not sure that theitgestvalid for any N. We use the following
mathematical tools, namely:

1) a function that builds the set of odd numbers
2) the distributive property of summations
3) the sum of the first natural numbers (Gauss toan

The first step for the algebraic demonstration bé& tour proposition is to provide a formal
representation. The idea behind the process ofbafge demonstration is the sum of the odd
numbers using the tool of summation and verify thatsum leads on to numbers in quadratic form.
To do this we need a function that lists the odohimers. We already know how to build the even
numbers, using the functidn, but if for anyn, 2nis even ther2n-1is necessarily odd, as is clear
from the following table:

RWNR Z
~owe D

The difficulty that emerges is clear: we are noleato carry out the procedure explicitly for each
value of N and therefore we must use a formalnomie sophisticatedror this purpose will use the
summation, that we can use to represent the proposs follows:

14



ZN:(Zk—l):

k=1

From here, just do the calculations by applying dmsributive property:

We already know the term summation of the natusahlvers, is the formula of Gauss, while the
sum repeated of the unit for N times is just equd. Substituting:

EN:(zk 1)= i —zN_:1=2

k=1

k-N

M=z

P
1l

1

performing the calculations and simplifying:

N(N +1)

2 -N=N?+N-N=N?

which is precisely our thesis.

With regard the Vinogradov theorem for that: “eveufficiently large odd positive integer can be
written as the sum of three primes”, recall that weighted sumRz(N), of the number of different
ways the numbeN can be the sum of two primes can be represented by

J' F2(x)e(- Nx)dx = j F2(x)e(- Nx)dx+J'm F2(x)e(- Nx)dx. (2.1)

Vinogradov showed that in the case of the ternamidach problem, the integral over the minor

arcs is bounded by
2

.[m F2 (x)e(- Nx)dx << W’Cl/l)(m . (2.2)

From this he showed that fgx> 0

_ \MZ M2
jF x)e(~ Mx)dx=0(M ) = +O[(IogM)Aj (2.3)

which is bounded away from O sincelsls - o, logM — c and so

M2

M* <<D(M)7. (2.4)

(logM )*
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Therefore the functiorR(M )> 0. Note that the function

RM)= Y logpepx) (2.5)

Py, P <M
P+ p2=M

is greater than O if and only if the function

c(M)= > (2.6)

P, P, <M
P+ P2 =M

is greater than 0.
For the ternary case, it was possible to deterdboands for the integral over the minor arcs. If we
simply take

[ R (x)e(= NxJdx<< | |R,, (x} dx<< max|F,, (x): xO0 m}jm|FM () (xJdx  (2.7)

then it is possible to find a bound for the maximafrthe functionF,, on the minor arcs and the
integral

.[|F > (log p)* <logM > log p

p<'V| p=M

and by Chebyshev’s Theorem,

<<M logM .
Thence, we have that
J'|F Iog p)’ <logM > logp <<MlogM . (2.8)
p<M

And Vinogradov gives us a bound for the functigp(x):

N N
Fy (x) << (W + N+ N”qu’zJ@Og N)* <<wmm- (2.9)

From above, we have

2

N
max{jFM(x)|:xDm}J'm|FM(x)|2( )dX«W“F |dx<<TN)(m. (2.10)

When we try to apply this method to the binary Galch problem, we find that we cannot bound
R(N) away from 0 since we cannot determine the cortidhufrom the minor arcs to be small
enough that were it to be negative, it still woulok contribute enough to diminish the value of
R(N) to less than 0. We have

16



R(N)=NO(N) + O((I?l\ll\;@rsj + O(Wj +[ Fi(x)e(-NxJdx  (2.11)

and we cannot yet show that

+

F2(x)e(- Nx)d% <NO(N). (2.12)

{wnr=)

If we try to bound the integral over the minor aitgshe same way that we did for the ternary case
we find that

O N +
(logN =B
.[m F2(x)e(- Nx)dx << jm| Fy (x)|2dx << ma>{} Fy (x)|}J-m|FN (x)|dx (2.13)
but it is not easy to boundj' |F |dx (2.14) enough. As we saw earlier,

“F xjdx<< NlogN  (2.15)

but looking back at the contribution from the magocs we see that the term from the minor arcs is
of larger order.

ND(N)+O[( N(l_E)B}o(( N)C_5BJ+O(NI09N) (2.16)

log N) logN

is not necessarily larger than 0. Let us try anothethod to bound the contribution from the minor
arcs. We employ the Cauchy-Schwartz inequality.idgae have

max{|F,, () J. |F (X)fdx = max{Fy () J. IF (x) (dx < max{Fy ( )|}([m|FN (x)|2)1/2(.[m|]jz)u2 <<

N NEE:
<<W(N logN )2 = o N (2.17)
thence:
N3/2
max{ﬂ: J.|F x)Jdx = ma>{}F “F Dldx_(logN)(B’z)_(m) (2.18)

which is still larger than the term contributedthg major arcs.
We know that Vinogradov has proved that every sidfitly large odd positive integer can be
written as the sum of three primes. Furthermorehaxe the following theorem:

For N =b +b, +b,(modk) and an oddN sufficiently large, there holds

J(N;k,b,b,,b,)>0 (2.19)
for all k< N?, whered is a very small, positive constant

Theorem 1.
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Let R=N®%**°_ Then the inequality2.19) holds for all prime numberk <R with at most
O((Iog N)B) exceptions for a certai > 0.

Theorem 1 is a direct consequence of Theorem Band
Theorem 2.

For a given prime numbek < N***¢ | if none of the integergd A is N-exceptional, the(2.19)
is true for this k

Theorem 3.

There are at mosO((Iog N)B) prime numbers kl1<k< [Nsuch that at least one of the integers
qU A, is N-exceptional. HereB is a fixed positive constant

We see that:

i=1

RN)= [V ¢f- Na)lj S(an )dar = (z L, ]e(- Na)lj S{a b )da +

daj = R(N)+R(N)+O(R(N)+R(N). (2.20)

Lemma 1.

Let A>0 be arbitrary anda OE,(k) O E,(k). Ifin S(A,b)=" > A(n)e(n1), S(A,x)=

N /4<nsN
n=b; (modk)

= Z/\(n)e(nA))((n), (8) G=G(A) is chosen sufficiently large, then

N /4<nsN

S(a,b) << (2.21)

kLA+1 '

We derive from Lemma 1 and Dirichlet’'s lemma onal approximation the following estimate:

Jo e fSln)S(ab,)slan)dar << max Is{ab) [Is(e b2)|2da)1 x

a0E, (k)0 E, (k

1 9 1/2 N2
x( []sla.b) da) <z @22
Under the condition of Theorem 2, we have that
N2
R(N)+R,(N)=0(N.k) - + o(N*k2L™), (2.23)

for any A> 0and wherea(N, k) is defined as in the following expressions
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0’>1—%, <N, L(sx)=0. (2.23b)

Using
k k

40 {0l

Theorem 2 follows from (2.20), (2.22) and (2.23).

>>g(N,k)>> (2.24)

Lemma 2
There exists a positive numbérsuch that

a)

m AN,a.k,)=o(N.k) (2.25)

b)

q)Pak/—kF‘A(N ak,) << (P . (2.26)

We first consider the se (k). If ktq, we find

S(EHLQJ Z ga] S An)e(nt)+0(12).  (2.27)

q N /4<nsN
n=b, (modk)
n=g(moda)

We shall introduce the Dirichlet charactérsodk and y modg and obtain

{5748 = G o428 4T i 2, 70) Zeant )<l

&modk )( modq
(2.28).
We obtain from (2.20)

R(N)=R"(N)+R(N), (2.29)
where

3

1/9Q

R'(N)=3" 07 ()i C(Xo,q,lh,a)e(—gNj [ T3(A)e(-NA)dA.  (2.30)

q< P1 a=1 1=

We evaluate the main terrﬁ?im(N) using the following expression

> ANILk)<<1, (2.31)

I<P/r
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with r =1,

RI”(N)=ﬁ AN a2)["” T(AVe(- NAJA +O

A S,y }

:LZA(N,q;L\NZjLo{(;%} f(k)%A(N q,1) +O(N*KL),  (2.32)

thence:

022N

1 N? 2,-4 -A
:(f—@c;PIA(N,q,l)§+O(N 4L ) (2.32b)

Kla
where we have usefi() <<1/|A| and
12 N?
[T e-NAJda = > 1=—-+0(N). (2.33)
-1z N /4<n <N /2N /4<n,<3N/4-n, 32

Now, we know that:

)= 3 A(N,q.k) —2+o( N%k°L4)  (2.34)
qsPk,
klg

Using Lemma 2, we see from (2.32) and (2.34) thaafsufficiently largeG = G(A)

R(N)+RP(N)=o(N, k)%m( N*k2L2). (2.35)

Thence, form (2.32b) and (2.34), we obtain the foiltgy expression:

"(N)+ R =i Y - + 1 +
RI(N)+Rp(N) fk)gEaA(N'ql)jl’ T(A)e(- NA)dA 0{ ()%'A SEV P d/‘]
+ Y AN,q, k)—2+O( N%kL4)= o(N, k)';'—22+o( N’k2L™). (2.36)

qsP,
klg

We note that this expression can be related wghRlamanujan’s modular equation concerning the
physical vibrations of the superstrings and we ioldtze following interesting relationship:
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R™(N)+R"(N) :(f—@ESHA(N,q;L)ﬁZT(A)Se(— NA)dA +0 ﬁz A(N,ql]jlt/quﬁd)l ¥

<Pk
[a klq

N_2 2—3—A£_ N_2 2—2—A£
+ZA(N,q,k)64+O(N k3L )Z—U(N,k)64+O(N k2L )2:>

© COSTEXW

e™Vdx |
antilog = COSIVX E %42
—n—w' t W

1 e * @litw)

2 . (2.37)
3 | N[muﬂi} \/(10+7\/§j]
0 s |7 4

On an article in the network of "Gruppo Eratostenshich refers to the number RSA-2048
(Numero RSA - 2048: una previsione sulla stima aggimativa dei suoi fattori p e q - Francesco
Di Noto, Michele Nardel)i mentions the presumed relationship among therfag (min) and g
(max). Dr. Servi believes that is possible factondth a few tens of attempts any number of which
we know that relationship.

We describe calculations developed3gyvi.

The following formula is useful for the factorizai of all numbers in which the ratio between the
two factors is between ¥xand (X+0.65) approximately, with x odd number.

F1= 4T x - 4y +4xx /{16y - 32xy - 32T, xy+ 64Rx2)]8—i2 (2.38)

where:

F1= factor to find

R = difference between the square (q) immediatdlpwing N (Number to factorize) and N itself.
Ti = last term of the summation of odd numbers tbah g [Es. g=49=Som.1/13, from which, Ti
=13.]

x?(with x odd number. There is also a similar formialax even.) =about the ratio between the two
factors, not necessarily prime, of N.

y = all the even numbers included between (2x-#A)@r[This implies that the possible numbers of

y indicate the attempts to do. Only for one of thaformula give as result an integer equal to F1.
However is not necessary to put y = 0 becauseaihcidse R is a number to the square.]
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The formula is absolutely valid, however, the rdtgiween the two factors, mentioned above,
which guarantees the validity varies according tieead rather complicated to understand and that
Dr. Servi deepen later.

The formula is based on some regularities reladd¢td "R" and "Ti", numbers to factorize that are
placed in a specific pattern of numbers.

Such regularities can be found easily by takinguay pair of numbers, x and y, and then
calculating the product, increasing from time todix of 1 and y of a square.

The products thus obtained, from a certain poiiit,give increasing values of "R" and "Ti",
according to a clear pattern.

Es:

1*5=5; R=4,Ti=5
2*14=28 R=8;Ti=11
3*23=69 R=12;Ti=17
4*32=128 R=16;Ti=23

In this case, taking as square 9, we will haveeslf R and Ti which follow the particular type of
pattern shown.

In the cases illustrated with the square equal th®R and Ti are calculated as follows:

Since "R" is the distance from the number to fazgm, at the square immediately next to it, q,
and being "Ti" the last term of the summation ofl oadimbers that form g, we calculate:

3=9: 9-5=4=R; furthermore: 9=Som.1/5, (9 = 1+3+®nfrwhich Ti=5

6=36; 36-28=8=R; furthermore: 36=Som.1/11, (36=1+8AH+11) from which Ti=11
$=81:81-69=12=R; furthermore; 81=Som. 1/17, (81=15-8A4+9+11+13+15+17)
from which Ti=17

Continuing we get from time to time R+4 and Ti+6.

As regards the formula (2.38) one can proceedsteetification as follows.

Let us take a number F1, multiply it by a squarargl we add to the value obtained a number
equal to a fifth of the starting number. (The latidditional value can also be greater or less to a
fifth of F1, depending on the case, it does notlairthe validity of the formula.)

Es:

F1=531
F2=531*25+68=13343 (25 2p

(The number 68 is a random number. In this casaghbess than 1/5 of starting number there is a
greater certainty that the number N can be faadrigince the ratio between these two factors is
very near to the square, i.e. to 25. Can also bd asaumber greater than 1/5, fraction taken as an
example, the important thing is that the ratio riwred above is betweer and, approximately,
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depending on the casé, %0.65. A similar formula can be used for casestiich the ratio between
the factors will be betweerf mnd, approximately,>0.65).

N=F1*F2=7085133 (the root of 7085133 is about 2681314)

from which;

R=1111 (2662=7086244; 7086244 — 7085133 = 1111)

Ti=5323 (the last term in the summation of odd bars that form q is equal to 2662*2 — 1 from
what has been said before).

At this point we use the formula with x = 5 and pleven numbers between 2 and 8. (That is, all
the even numbers between 0 and (2x-2), i.e. bet@esmd (2*5) — 2 = 8, thence all the even
numbers between 2 and 8).

We have that:

F1=531 with y=2 and x=5.

Indeed:

F1=[4(53235-412+4 5+ /16143210~ 320532310+ 64[111125)| /825 =
= (106460~ 8+ 20+ /64— 320-1703360+ 1777600/ 200=

= 106460~ 8 + 20+ /73984)/ 200=
= (106460~ 8 + 20+ 272)/ 200= (106460- 8+ 20~ 272)/ 200= 106200 200= 531

We note that 13343 /531 = 25,1280@5, thus the ratio between the two factors F1 ahdaHl
be between & = 25 and, approximately, {¢0,65 = 25,65 with x odd number. (We specify that
the number to factorize is N = 7085133).

Dr. Roberto Servi believes that the procedure aisdformula is more efficient, though at the
moment it is valid only to those particular N, b&texisting systems.

However he is strongly convinced about the efficieaf the formula, and he hopes that someone
may have the patience to validate.

Servi also believe that we can really to get vanre of this formula that make it possible to
factorize any number whose ratio between the fadsodifferent from about >xAlready with the
above formula, provided that there isn’t hugelyetiént from X, it is sufficient to use R'=R+Ti+2
and Ti' = Ti +2 to obtain F1, and possibly increfisen time to time R and Ti to obtain the desired
result.

All this also is based on a scheme of numbers iichvstand out the trends of the various R and Ti
from which it is possible to derive the formulaseite are more than one) for the factorization.

We have the new version of the formula (2.38) his formula is present the term N.
We define:
Par=TF-4Tix+2Ti-4x+1-4R+4y-4N

The symbols are the usual as above
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Fl=[-Par+/-(P&r64Nx2)"/8x?,
We can rewrite the formula also as follows:
F1=[-(Ti?-4Tix+2Ti-4x+1-4R+4y-AN)+A( Ti%-4Tix+2Ti-4x+1-4R+4y-ANJ-64N]/8x*

or
F1 3 (Ti? - 4Tix + 2Ti — 4x+1- 4R + 4y - 4N )+

++/(Ti2 - 4Tix+ 2Ti - 4x +1- 4R+ 4y — 4N - 64Nx2}/8x2. (2.39)

This formula work also for more general cases, imctv the ratio between the two factors of the
number to factorize deviates further, comparedhéotdvlerance provided, from the square.
Furthermore, it is useful to observe that the fdemwork also with values negative of y, or odd, (-1
-2, -3,...), values that are able to be almost alWews

The following is another formula for the factorimat of numbers for which the relationship
between the two factors assume any value, thehtigeahumbers.

It is a first version in which there is the term N.

Finally, the following formula is valid also foréhcases in which the ratio between the two factors
of the number to factorize is lower than a givember, not necessarily integer, within the
tolerance estimate previously of 0,65.

As for the other formulas, will be enough to caitelR'=R+Ti+2 e Ti'=Ti+2, or,
R"=R+(Ti+2)+(Ti+4) e Ti"=Ti+4 etc..., to factorizbose numbers in which the ratio between the
two factors deviates from the tolerance.

The formula is the following:

We define:
Par=4N+4R+4i-ATiAB-2Ti-4AB-1
thence:
F1=[-Pa(Plaf-64NA’B*) /8B (2.40)
where:

B?/A?, with B>A, is equal or approximately equal to th&o between the two factors, not
necessarily primes, of the number to factorize.

y = all even numbers between (2AB — 2) and 0, whamd B are both odd numbers or even
numbers.

y = all odd numbers between (2AB — 1) and 1, wheand B are, respectively, an even number and
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an odd number, or vice versa.

Example:

F1=687

F2=2369

N=F1*F2=1627503

R=673

Ti=2551

F2/F1=3,448... ;about equal to:’18=3,448..
Thence, we obtain:

A=7;, B=13

y = all the even numbers between 2*13*7 —2 =480 O;
R = a number about equal to the square root ofi$édao the power of two subtracted to N, i.e.:

VN =12753301276; 1276 —-N =673
[It is possible to obtain a number of possible ealof y lower than that estimated above, depending

on the cases examined.]

The formula give as a result an integer, equalltokth y = 48.

The values 13 and 7 are taken in random mode ctnKaowing that the ratio between the two
factors of the number to factorize is about 3,4dking up the case shown, we could attribute to A
and B any two numbers such th&i4 is near to that relationship. [with B>A].

We could also choose:

B=28
A=15

where, 28/15°=3.,48..
Or:

B=35

A=19

where, 35/19°=3,39..

In these cases, however, the possible values @iwdahave been in greater numbers. Therefore, it
is useful to assign to A and B the integers smigfiessible.

To obtain other examples will suffice to take adam square, multiply it by the value of the ratio
between the two factors, and extract the squarteofdbe number thus obtained. The nearest
integer to the result provided, will be the ondéoattributed to B

Example:
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F1=579
F2=139521

F2/F1=240.96..

we consider:

A=17% [random number]
thence:

(A*240.96.. }°=263,89..
thence:

A=17
B=264

This factorization method will be used to make phesent work even more clear, interesting and
remarkable. Trying the formula on the values of E8Xthis works very good. The formula is true
also for the other values concerning this “Lie’sup”, which is fundamental in the superstring
theory.

3. On some classifications of the numbers: perfectedfective, abundant and an infinite set of
integers, each of which has many factorizations. [6

The natural numbers, odd or even, were classifigdNitodemo, according to the sum of their
divisors excluding the number itself, as defectiveabundant or perfect.
Perfect numbers are those for which the sum ofdikisors is equal to the number itself, for
example the number 6. A number slightly excess ragé a sum of + 1 with respect to the number
itself.

A defective number has a sum less than the nuntbaf, iwhile an abundant number has a sum
greater than the number itself.

Euclide has observed for the perfect numbers alsinute: If we sum an odd number of numbers,
starting from 1, each of which is the double of grevious, obtaining a prime number and then
multiply the result of the sum for the last summahdum, we get a perfect number:

1+2+4=7
7*4=28

(the divisors of 28 are 1, 2, 4, 7, 14 and 28. Jima of the divisors, excluding 28, is: 1+2+4+7+14
= 28)

1+2+4+8+16=31
31*16 =496
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(the divisors of 496 are 1, 2, 4, 8, 16, 31, 62,228 and 496. The sum of the divisors, excluding
496, is: 1+2+4+8+16+31+62+124+248 = 496)

1+2+4+8+16+32+64=127
127 * 64 = 8128

Euclid has observed also that a perfect numbéeisam of consecutive numbers:
1+2+3=6
1+2+3+4+5+6+7=28

1+42+3+4+5+....+31496

An even perfect number follows, in fact, the Egleule:

If p is prime number and the Mersenne’s number M =1 is prime number, a perfect number is
given by:

Np =[279]x|(2)-1]

For example, with the Euler’s rule, we obtain:

p=2 Mp=3 Np=2*3=6
p=3 Mp=7 Np=7*4=28
p=5 Mp=31 Np=16*31496

It can also be observed that the product is betveeprime number, not classifiable between the
previous ones, and a number power of 2, whichvisyd defective.

Nicodemo has observed that Np is always going tor 8 but the rule is not enough to have a
perfect number.

Once that we have found a new Mersenne prime numiberobtain also the perfect number.

A multiple of an abundant number is still abundamcause the function “sum of divisors”,

including n, is multiplicative, but not completely GCD(a, b) = 1 or a and b coprime, then

s(a*b) = s(a)*s(b)

For example, following the definition
GCD(321,992)=1
$(992)=1024992-2016

(Indeed, for the number 992 the divisors are 4, 8, 16, 31, 32, 62, 124, 248, 496 and 992. The
sum of proper divisors is 1+2+4+8+16+31+32+62+12BH2196 = 1024)

s(321)=111+321=432
(Indeed, for the number 321 the divisors are 1,03, and 321. The sum of proper divisors is

1+3+107 = 111)
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$(992)*s(321)=2016*432=870912

s(318432)=s(992*321)=552480+318432=870912

s(318432)=s(992*321)=s(992)*s(321)

992is an abundant number (is an abundant number bedtis smaller than the sum of its proper
divisors); and also 318432 is abundant, obtainesirasiltiple 0f992 We note that the only perfect
numbers between 1 and 1000 are 6, 2848

(see: Rosario Turcdrttp://www.scribd.com/doc/46194270/Dai-numeri-mpiitidi-6-alla-Riemann-
Hypothesi3.

Now we explicitly describe an infinite set of ine#g, each of which has many factorizations.
THEOREM

Let x be large and let

E =
log, x

(Iog3x+|og4x+|°g—4XJ, t:(1+£log§x)“£, k =logx/log; X, n:|_| p[ka]. (3.1)

log; X bl

Then there is an absolute const@nsuch that

f(n)=nrex _ logn Ioggn+log4n+IOg“n_1+Clog‘21n . (3.2)
log,n log, n logsn

Now we want to analyze the proof of this Theorem.
We first show thatogn cannot be too much bigger theogx . In fact, we show

logn<logx+ O(Iog x/log; x). (3.3)
To see this, note that
logn<> kp*tlogp. (3.4)

p<t

Now if we let 77(s) =li(s) + A(s), then

> ptlogp= Lt s**logsdr(s) = j;sf‘lds+ J'; s**logsdA(s). (3.5)

pst

We note that

logt = %(Iogs +2log, x + O(;D =

log, xlog, x
2
_ log, x N Iogsx+log4x+|094x— Iog42x 10 Ioggx _
log, x +log, x +log, x/log, x log, x 2logs x logs x
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log? x log, X
=lo 1- A~ +0 4 . (3.6
9 X[ 2logs x (Iogg XD (3:6)

With this estimate and the fact that= log, xlog, x, we have for2< s<t andt large,

< = (logs)glog s/loglogs < (lOg S)slogt/loglogt - (lOg S)1+o(1) . (3.7)

Also using|A(s) << s/log* s, we have

Lt s logsdA(s) = t**logtAt — 2 log2A(2) - Lt s?((e -1)logs+1)A(s)ds =

=0(1)+ o( [ Slj;g - dsj = o(

Using (3.8) in (3.5) we have

t 1 _

> plogp = [\ ds+O(1) =%t£ —%25 +0() =%(tf ~1)+0(1) = log2x+0(1). (3.9)

p<t

Thus (3.3) follows from (3.4) and (3.9).
Recall that the Piltz divisor functiod, (n) counts the number of factorizations mfinto exactlyl

positive factors, where 1 is allowed as a factat different permutations of a single factorization
count separately. It is easily shown thai{n) is multiplicative and that

dl(pa)=(| +a_1}. (3.10)

Moreover, we evidently have for any choicel ahat
f(n)=d(n)/11. (3.12)
Thus

log f (n) 2 logdy,(n) - log[k} = ,Z: |og([k][;’£ffiij]l_ 1} ~loglk]. (3.12)

Now if a,b>2, then

of -

o 1}:(a+b)log(a+b)—anga—bIogb+O(Iog(a+b)) (3.13)

so that
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Iog([k][k [f I?i 111 j k{1+ p**logk + logfL+ p**)) - klogk - kp* *(logk + (& - )iog p) + Oflogk) =

k{L+ p**)iog(L+ p)+k(1-£)p log p + O(logk).  (3.14)

Now
> {1+ piogle+ p) =3 pt +0(1) = [ s dr(s)+ O) zmd“ , 7d(s)+0fy).
p<t pst

(3.15)
The last integral is

E

ds] o(1), (3.16)

)2 0)- e~ =0l o[ ;2

slog®s

by (3.8). Also

t gt _ ¢t du il 2 du ) _ té 1
LIogsOIS # logu “(t )+OUZEIoguj_£Iogt—1(1+O(£2Iogztjj+Oq|°95|)- (3.17)

Thus using (3.6), we have

¥ (1+ pf‘l)log(l+ pg_l) _log, x(log, x +log, x +log, x/log, x)(1+ O(l/ log? x)) _
o log, x+log, x +log, x/log, x—1+ O{logZ x/log? x)

=log, {1+~ +0| 129Xl of 1 }lzjog,q1+ L 40 10%X || (318
log, x logs x logs x log, x logs x

Thence, from (3.15) and (3.17), we can rewrite th€3el5) also as follows:

> {1+ pYogli+ p)= Y et +0f)= || s dn(s)+ 0f) = [ iifee)+ 0( fﬂ] +

p<t pet 2 logu logu

+J'2ts€‘1dA(s)+O(1):Iogzx(1+ 1 +O(|Og‘2‘);n. (3.18b)

log, x logs

Thus, from (3.3), (3.9) — (3.14), and (3.18), wedav

Iogf() IIogx 1+ 1 10 Ioggx +logx— logx Ioggx+log4x+log4x +0 Iogzx N
0g, X log, x logs x log, x log, x log; x

Iogx logx log, x-1 log
log, x + Oflo logx — log, x +log, x + —=4—=+ 4 >
o (log, x+O(log, x)) = logx ~ - ZX( G X +log, x+ = (Iogs
zlogn—Iogn Iogsn+log4n+|og4n_1+0 Ioggn , (3.19)
log, n log; n logs n

which proves the theorem.
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4. On some interesting mathematical applications conceing the possible method of
factorization of a number to the number of dinensions of the Lie’s Group E8 [7]

Let us now analyze the number 496 and the othetbetsirelated to the number of dimensions of
the Lie’s Group ES8.
We analyze before the formula (2.38)

F1=[4T,x - 4y + 4x+ /(16y? - 32xy - 32T, xy + 64RX2)]8—12 ,
X

1) x =5 (odd number) ; y =2 (even number betw2x —2 = (2 *5) -2 and 0)

F1=496; F2 =496 * 25 + 48 = 12448; (we not tR5 = % and that 1/5 * 496 = 99,2 and

48 < 99,2)

N = F1* F2 =6174208 R = 1017; (N = 2484,795; 2485- N = 1017); T= 4969 (2485 * 2 —
1).

Thence, we have the following number: N = 61742D8 square root of this number~sl =
2484,795. We take the number immediately following. 2485 and raise it to the squared and
subtracting it to N, we obtain 2485 N = 1017, that we have called R. Instead, 2485-*1 =
4969 that we have called. Now, for x we choose an odd number, in this eXarbpand y must be
between 0 and (2 * 5 )— 2 = 8. We take, in thisneple, y = 2. Furthermore, N/496 = 12448 that we
can obtain as follows: 496 #x 496 * 25 = 12400 to which we add 48 which isaiet than 1/5 *
496 = 99,2. Thence: 496 * 25 + 48 = 12400 + 42448B.

Now, we apply the formula (2.38) and obtain:

Fl1= [4 (#9695 - 42+ 4[5+ /1604 - 32[10- 32[10[#969+ 64[1017[25]8#;5 =

= [99380— 8+ 20 +/64-320-1590080+ 162720(]% = (99380—8+ 20+ +/36864)/ 200=
= (99380~ 8+ 20+ 192)/ 200= (99380~ 8+ 20—-192)/ 200= 496.
2) Now we analyze the formula for F1 = 248.

F1=248; F2=248*25+ 48 =6248; N =F1*¥2549504 R =521; {N = 1244,79;
1245 — N = 521); T=2489 (1245*2—1). For x =5 and y = 2 \dbtain:

F1=[4248005 - 412 + 4[5+ 168 - 32010~ 32(248910+ 64[521[25]8#;5 =

= [49780-8+ 20+ /64— 320~ 796480+ 833600/ 200= [49780- 8+ 20+ 36864/ 200=
= (49780-8+20-192)/ 200= 49600 200= 248.

3) Now we analyze the formula for F1 = 128.
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F1=128; F2=128*25+ 48 =3248; N=F1*¥215744 R =281 (/N = 644,78; 645— N =
281); TT=1289 (645*2—1=1289). Forx=5 andy,w obtain:

F1= [4[5&289— A2+ 4[5+ /1604 -32[10- 32101289+ 64@81@5]8#;5 =

= [25780- 8+ 20+ /64— 320~ 412480+ 449600/ 200= 25780~ 8 + 20+ 136864/ 200=
= (25780-8+20-192)/ 200= 25600/ 200=128.

4) Now we analyze the formula for F1 = 120.

F1=120; F2=120*25+ 48 =3048; N = F1 *¥265760 R =265 {N = 604,780; 605- N
=265); T=1209 (605*2—1=1209). Forx=5 and £,we obtain:

F1= [4[5&209— A2+ 4[5+ /1604 -32[10- 32101209+ 64[265@5]8#;5 =

= [24180-8 + 20+ /64320~ 386880+ 42400/ 200= (24180~ 8+ 20+ /36 736)/ 200=
= (24192+19166)/ 200= (24192-192)/ 200= 24000/ 200=120.

5) Now we analyze the formula for F1 = 84.

F1=84;, F2=84*25+ 48 = 2148; N=F1* F280432Z R =193 (/N = 424,772; 425-N =
193); TT=849 (425*2-1=849). Forx=5 and y,s2 obtain:

F1= [4[5[849— A2+ 4[5+ /1604 -32010- 3210849+ 64D93D25]8#:25 =

= [16980- 8+ 20+ /64 - 320~ 271680+ 30880/ 200= [16980+ 12+ 36736/ 200=
= (16980+12+19166)/ 200= (16992-192)/ 200= 16800 200=84.

6) Now we analyze the formula for F1 = 81.

F1=81; F2=81*25+48=2073; N=F1*F267913 R =187 (/N =409,771; 415-N =
187); T1=819 (410*2-1=819). Forx=5 and y,=2 obtain:

F1= [4 [B195-4[2+4[5++/16[4-32[10-32[10B19+ 64[25&87]8#;5 =

= [16380-8 + 20+ /64— 320~ 262080+ 299200/ 200= [16380- 8+ 20+ /36736]/ 200=
= (16380-8+ 20+ 19166)/ 200= (16392-19166)/ 200= (16392-192)/ 200= 16200/ 200=81.

7) Now we analyze the formula for F1 = 80.

F1=80; F2=80*25+48=2048; N =F1*F2&3840 R =185 {N =404,77; 405— N =
185); TT=809 (405*2-1=809). Forx=5 and y,=2 obtain:

Fl1= [4[809[5—4[?.+4[51 V162 -3210- 32100809+ 64[25[185]8#;5 =

= [16180- 8+ 20+ /64 - 320~ 258880+ 29600/ 200= 16180+ 12+ 36736/ 200=
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= (16180+12+19166)/ 200= (16180+12-192)/ 200= (16192-192)/ 200= 16000 200= 80.
8) Now we analyze the formula for F1 = 78.

F1=78 F2=78*25+48=1998; N=F1*F255844 R =181 {N =394,77; 395— N =
181); TT=789 (395*2—-1=789). Forx=5 and y =2, obtain:

F1= [4 (7895 - 4[R2+ 45+ 164 —3210-32[10789+ 64EI.81E25]8#:25 =

= [15780-8+ 20+ /64— 320~ 252480+ 289600/ 200= [15780- 8+ 20+ /36736]/ 200=
= (15780+12+ 19166637/ 2000(15792-192)/ 200= 15600 200= 78.

9) Now we analyze the formula for F1 = 50.

F1=50; F2=50*25+8=1258; N=F1*F22900 R =101 {N =250,798; 251— N =
101); TT=501 (251*2-1=501). Forx=5 andy =2 obtain:

F1= [4[501[5—4E2+ AB++/16[4-32010- 3210601+ 64EI.01E25]8#:25 =

= [10020- 8+ 20+ /64 - 320~ 160320+ 161600/ 200=[L0020+ 12:+ +/1024]/ 200=
= (10020+ 12+ 32)/ 200= (10032- 32)/ 200=10000 200= 50.

Now we analyze with the formula (2.39)

F1[= (Ti% - 4Tix + 2Ti - 4x +1- 4R+ 4y - 4N))

++/(Ti? - 4Tix+ 2Ti - 4x +1- 4R+ 4y — AN —64Nx2}/8x2,

the value 496, thence for F1 = 496. We obtain:

F1=496; F2 =496 * 25+ 48 =12448; N =F1 *¥8174208; R =1017; E 4969; forx=5
and y=2.

F1|= (Ti? - 4Tix + 2Ti - 4x+1- 4R + 4y - 4N

+J(Ti2 - 4Tix + 2Ti - 4x+1- 4R+ 4y - 4N —64Nx2}/8x2 =

=|- (4969 - 4129695 + 2[2969- 4[5 +1- 4[1017+ 4[2 - 4 (6174208

+1/(496F - 4296905 + 2[#969- 4[5+1- 411017+ 4[2 - 4[617420 - 64[617420825]8#;5 =
= [- (24690961 99380+ 9938- 20+1 - 4068+ 8 - 2469683} +
+ /(24690961 99380+ 9938~ 20+1- 4068+ 8 - 2469683 — 64 E25[6174208} /825=

= |- (- 99399 + /9878769664 987873280(y 200= 99392+ \/36864)/ 200=
=(99392+192)/200= (99392-192)/ 200= 99200/ 200= 496.
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Now we analyze with the formula (2.40) the valu6,4128 and 120.
For F1 =496, and A=5; B=13 and y = 48, weaobt
F1=496; F2 =496* (BA? = 496 * (169/25) = 496 * 6,76 = 3352,96 = 3353;
N = F1 * F2 = 496 * 3353 2663088 R = 1012 {N = 1289,607; 1290- N = 1012); T= 2579
(1290 * 2 — 1 = 2579).
Now:
Par=4N+4R+4ij-FTiAB-2Ti-4AB-1
thence:

F1=[-Pa(Plaf-64NA’B%)*?/8B? , we obtain:

Par {4 1663088+ 4[1012+ 4[#8- 2579 — 4[B5[2579- 2[(2579- 4[65-1)=
= (6652352+ 4048+192- 6651241 670540~ 5158- 260-1) = -670608

F1=|670608t /44971508964 - 64[16630884225|/8169=

= [670608¢ 44971508964 449698995@0)/1352= |670608t +/16094440/1352=
= (670608t 40117876)/1352= 4930445, 498,9791 Ma = (493,0445 + 498,9791)J 296.

2) For F1 =128, we obtain:

F1=128; F2=865; F1*F2E0720 R =169 {N =332,746; 333— N = 169); T=665;
F2/F1=6,75786,76 =18/5% A=5; B=13 and y = 48. Thence:

Par ([4110720+ 4[169+ 4 [#8- 665 — 4 66565 2665~ 465-1)=
= (442880+ 676+192- 442225-172900-1330- 260-1) = 172968

F1=[172968: /(2991792902 - 6411107204225 /8169=

= [172968¢ +2075897¢/8[169= (172968 45562019/1352=1313048; 124,5649;
Ma = 127,98128.

3) For F1 =120, we obtain:

F1=120; F2=811; N=F1*F23732Q0 R=24 (N =2311,961; 312— N =24); T=623;
F2/F1=6,758%6,76 =13/5% A=5; B=13 and y = 48. Thence:

Par 497320+ 4[24+ 4[#8- 623 - 4[623(65— 2623~ 4[65-1)=
=(389280+ 96+192- 388129-161980-1246- 260~ 1) = 162048

F1= 162048+ /(2625955430 - 64[973204225 |/8169= 162048+ /55773694/1352=
= (162048t 7468178)/1352=12538178; 114,33418; Ma = 119,8579120.
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We note that: ((13)13 Gg = 521001919378'@3 =8683365322978 and In8683365322978 6,76;
J5+1

with @ :T=161803398. Furthermore, 13 and 5 are both Fibonacci’'s nunaiper y = 48

correspond to the physical vibrations of the bosatrings.

Furthermore, it is possible note that in orderaoctdrize any number without the knowledge of the
relationship between its two factors, is need nd fa simple and immediate way to calculate which
square is equal to a multiple of the number téoigmwe, added with a much smaller number linked
toit.

Q=XN+N'

The N is divided into four classes.
One of these is:

N=9X+5

Now we see how could be factorized the numbersa4@b6248. (Note that 248 is half of 496, so the
reasoning can be done very well also only on 496)

Trying to factorize 496 with the system before named, is obtained, in one case, the following
equality:

11*496=88*62.

From here we can to obtain the factors of 496.

The method is simple. The previous factorizatiorthoe was based on the regularity, referring to
the R and Ti present in the columns of productsvimich the first term increased by 1 and the
second of a square.

1*1 R=3Ti=3
2*10 R=5Ti=9
3*19 R=7 Ti=15
4*28 R=9 Ti=21

in the case in which Q is equal to 9.

Now, in this column there will be some products Vdrich the values of R will be of the squares
from which one can derive the factors other thawséh present in the column itself.
For example in the case above of 4 * 28 we oliRan9, which yields to 14 * 8.

In these particular cases if the numbers that makihe second term of the product considered, in
this case the number 28, are present separattig jproduct obtained by R, it is possible easily
identify. In other words, by exploiting the quadecgbrm of R, we can obtain two versions of the
same number, in this case 112 = 4 * 28 = 14 *@nfwhich one can go back to the various primes
that compose it.

Let us assume that we want to enter the numbexctorize, in this case 496, in the right part &f th
column taken as an example, i.e. between the tératsncrease of the square.

35



We have that:

1*1 R=3
2*10 R=5

55496 R=113
At this point we have to find a product of thiswwin in which the second term is a multiple of the
number to be factorize and yielding an R of quadrfarm.
The multiples of 496, present in the right parth@ column, are the following:

1*1 R=3

55496 R=113
551*(496*10) R=113+992(496*2)

04B*(496*19) R=113+992*2

So we get an R squared by 113+992+992+992+ ...
We obtain R=105-113+992*11, thence: 5512*(496*100)=16640*164303295200
The method works with the columns obtained by iasmeg the second term of any square. For
example, we can insert 496 in the right part ofdbleimn obtained by increasing the second term of
49.

1*6 R=19

2*55 R=34(19+15)

3*104 R=49(34+15)

11*496 R=169=13

In this case we get immediately R of quadratic fdinmm which:
11*496=88*6254564
We note that 496 =62 *8 and 88 =11 * 8, whig a Fibonacci’'s number and regard the
physical vibrations of the superstrings.
In conclusion, we observe thatl the numbers that are obtained from F1 * F2 thence the

numbers that must be factorized, (in bleare all new possible mathematical solutions
concerning the equations of the string theoryE8x E8.

APPENDIX
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In the Section 1, we have various number thatisAlppendix have analyzed for to
obtain various and interesting mathematical conoestwith some sectors of
Number Theory

Series 14, 24, 50,52, 78, 80, 81, 84, 120, 128, 18248, 496

First observation: in bold the Lie’s groufid2 =14, F4=52, E6=78, E8 =248)

Second observatiorSome numbers of the series are multiples of.tes groups,
for ex. 84=6"14, , 182=13%14 and 496 = 2248)

Third observation: the other numbers of the saresabout all multiples of the
Lie’s numbers

Subsequent ratios

TABLE 1
Series Previous Following Factors Observations
number ratio (see Many factors are
observationg Lie’s numbers of

form n®+n+1or
exponent
(in red)

14 2%7

24 14 1,71 2°*3

50 24 2,08 2*57

52 50 1,04 213

78 52 1,50 2*3*13

80 78 1,02 25

81 80 1,01 3

84 =6*14 81 1,03 2% 3*7

120 =5%24 84 1,42 2% 3%5

128 120 1,06 2’

182=13*14 128 1,42 2*7*13

248 128 1,93 2°*31

496=2%248 248 2 231

Sum following ratios:
1,71+2,08+1,04+1,50+1,02+1,01+1,03+1,42+1,06+1,423+2= 17,22

Arithmetic mean 17,2212 =1,435about mean betweein3247 and 1,618 = 1,4713,
where 1,3247 is the fixed number for the Padovseiges and 1,618 is phi.
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Thus there exists a weak connection withrthebers of Padovan But the mean
1,444 between 1,27204,618 and 1,618 is also reliable, since 1,444iyg near
also t01,435.

However, it should be noted that also the ratiaveenh 248 and 182 (humbers that
are part of the series), that is approximately etuad, 362637, is a number between

1,3247 and 1,375 (the mean factor of partitions).

Now we see any possible connections with triangulaumbers T, 2T+1,
Fibonacci’'s numbers, partitions of numbers and Padean’s numbers

TABLE 2
Series to be | Triangular Lie's Fibonacci's Partition’s Padovan’s
studied numbers T numbers = numbers numbers numbers
more near 2T+1 more near more near more near
more near
14 15 13 13 15 12
24 21, 28 21 21 22 21
(mean245)
50 45, 55 57 55 42, 56 49
(mean 50) (mean 49)
52 55 57 55 42, 56 49
(mean 49)
78 78 73 55, 89 77 65, 86
(mean 72) (mean 75,5)
80 78 73 55, 89 77 65, 86
(mean 72) (mean 75,5)
81 78 73 55, 89 77 65, 86
(mean 72) (mean 75,5)
84 78, 91 73,91 77,101 86
(mean84,5 (mean 82) (mean 89)
120 120 89, 144 101, 135 114
(mean 116,5 | (mean 118)
128 120, 136 133 144 101, 135 114, 151
(meanl128) (mean 118) | (mean 132,5)
182 171, 190 183 144,233 171, 190 151,200
(mean 180,5) (mean 188,5) | (mean 180,5) | (mean 175,5)
248 231, 253 241, 273 233 231 200, 265
(mean 242) | (mean 257) (mean 232,5)
496 496 463, 551 377, 610 490 465, 616
(mean 507) | (mean 493,5 (mean
540,5), or:
351, 616
(mean 483,5)
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The triangular numbers up to 496 are:
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325, 351, 378, 406, 435, 465, 496,

82

Partition numbers up to 490

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231,
297, 385, 490

Padovan’s numbers up to 616 :

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114,
151, 200, 265, 351, 465, 616

As can be see from the Table 2, the numbers of tinew series are more or less
aligned with the numbers (or their arithmetic meang of the other numerical
series notes, with a few oscillations (few unitsjdm the mean value. Usually, the
oscillation is generally equal or near to the squar root of the first value of the
initial series (first column): for example, for thelast line the oscillation

maximum is 507- 496= 14+496/2 = 22,27/2 21,13; or at the most near to the
square root, for example for 50, the maximum oscé#ition is 57-50 =7 = 7,07 =
V50 (if this observation may be useful)

Series 6, 8, 12, 15, 18, 24, 48, &0),1144, 252, 1440

Before the usual table, we see the results of theiah by 6, the numbers being
almost all multiples of 6
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6/6 1 Observations
about Fibonacci

8/6 1,33 ~1

12/6 2 2

15/6 2,5

18/6 3 3

24/6 4

48/6 8 8

60/6 10

120/6 20 21=20

1446 24

252/6 42 ~ 44,5= (34+55/2

1440/6 240 ~233

First observation: the results of the division bgf@he numbers of the series are near
to theFibonacci’s series

Subsequent ratios

S(n) /S/(n-1) value observations

8/6 1,33 b = 1,27

12/8 1,50

15/12 1,25 D = 1,27

18/15 b = 1,27

24/18 1,33 b = 1,27

48/24 2

60/48 1,25 Vb = 1,27

120/60 2 ~ ®*\Vd=2,05

144/120

252/144 1,75 ~®=1,618

1440/252 5,71 ~3,52%1,618:5,69
~n* ®=5,08

Second observation: the subsequent ratios, offerated two by two (for example,
there are three values 1,33, 1,25, 2)that@meected to the aureo number 1,618...
and perhaps also to (last ratio)

Third observation:
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a) V1,75=1,322:1,33 thus 1,372 1,7476~ 1,75
8
b) +5,71= 1,243% 1,25, thus 1,2433- 5,7096~ 5,71
4
c) 1,7=1,44~1,41 =\2, thence 1,2 V2 =1,1892~

d) 1,25= 1,56~ 1,50 = second subsequent ratio.

Thence the subsequent ratios are near to the powaélrs or roots of other
subsequent ratios

16
Mean ratio 16,44/11%549 =1,618 /3,14= 1,618/1,074= 1,5062831,618/ 1,06 =
1,50~ 1,49 (1,074 >= 3,1337= 3,14)

Sometimes the ratio between a number and one q@iréwous, is 10 (three times out
of five) or very near to 10:

1440/144 =10

252/24 = 10,5
144/12 = 12
144/15 = 9,6
120/12 = 10
60/6= 10

But also 18 *10 = 180 = 60 +120 . Furthermorejslfear to the squared af =
9,85

First conclusion: the phenomenon from which we iobtize numbers of the series, is
governed by the numbers referred in these obsenstand partly related tb and

.

More definitive conclusions emerge from the talaéoty:

Table classical with the “equation preferred by Natire” (n+n+1)
Series: 6, 8, 12, 15, 18, 24, 48, 60, 120, 182, 2440

Triangular numbers T :
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253 ... 741 --- 1431,

Series T more nearor 2T 2T+1 Fibonacci
their means more near more near more near
6 6 12 7 5=6-1
8 6 7 8
12 12,5 =(10+15)/2 13 13=12+1
15 15 12 13 13=15-2
18 18=(15+21)/2 20 21
24 24,5=(21+28)/2 20 21 21=24-3
48 50= (45+55)/2 42 43
60 60,5 {55+66)/2 | 56 57 55=60-5
120 120 110 111 133=120+13
144 1445 132 133 144 +0
=(136+153)/2
252 253=252+1 240 241 233252-19
(19=21)
1440 1431=1440-9 1406 1407 15974440
+157=144+13

With the usual table, we find that the numbers of lhe series:
a) coincide with the triangular number T , for exanple 6, 15 12Q

b) coincide (for example,18) or are very near to the arithmetic means of two
consecutive triangular numbers T, for example:

12, 240, 144

C) are very near to the triangular numbers T, for «éample 252 253-1 and 1440
=1431+9

d) are very near to theFibonacci’'s numbers(fifth column) with differences also
Fibonacci’'s numbers.

Definitive conclusion

The numbers of the new series, are connected with and &t (from the first
general observations), almost coincide with the tangular numbers T or their
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arithmetic means, and are near to the numbers 2TR2T+1 (Lie’'s numbers) and
to the Fibonacci’s numbers(from the final Table).

Let's see now with the partitions of numbers:

Series:

6, 8, 12, 15, 18,

24, 48,

Partitions of numbers up to 1575

1,1,2,3,5
176, 231, 2

, 7,11, 15, 22, 30, 42, 56, 77, 101,
97, 385, 490, 627, 792, 1002, 1255, 1575

Numbers partitions more near

S, 7,

11, 15,

42, 56,513 231

Now we see with the following Table:

60, 0,12144, 252, 1440

135,

Numerical series

Partitions of numbers (or
their arithmetic means)

Differences (near to the
Fibonacci’'s numbers

6 5 1

8 7 1

12 11 1

15 15 0

18 18,5 =(15+22)/2/ 0

24 22 2

48 49 = (42+56)/2 1

60 56 4 3+1
120 118 = (101+135)/2 2

144 135 98+1
252 231 21
1440 1415= (1255+1575)/2 2R =4
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Also here, there is a certain closeness to the nuebof partitions (only the
number 15 coincide) and with differences also here near tdé Fibonacci’s
numbers. Therefore, also with the partitions (or treir arithmetic means) there is
a certain proximity, with the triangular numbers T, 2T, 2T+1 and the
Fibonacci's series. The general connection with thiermula L(n) = n*+n+1 is
therefore once again confirmed also for this new ses. Also with the Padovan’s
series (called daughter of Fibonacci) there may k®me connections. We
continue the series:

6, 8, 12, 15, 18, 24, 48, 60, 0,12144, 252, 1440

Padovan’s numbers:

1,0,0,1,0,1,1,1,2,2,3,4,5,7,9,12, 16 , 21,
28, 37, 49, 65, 86, 114, 151, 200, 265, ...1432

TABLE

Series Padovan’s number more| Differences
near Padovan — series
(or their means) (near to Fibonacci’s

numbers)

6 6= (5+7)/2 0

8 8=(7+9)/2 0

12 12 0

15 16 1

18 185 =(16+21)/2 0

24 24,5 )(21+28)/2 0

48 49 1

60 65 5

120 114 -6 =561

144 151 7 =8-1

252 265 13

1440 1432 -8

Only the Padovan’s numberl12 coincide with 12, number of the series, for all th
other there is a certain proximity between the numbrs of the series, the
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Padovan’s numbers or their arithmetic means, with dfferences very near to
small Fibonacci’'s numbers or near to these.

Series N = 6,8, 12, 15, 18, 24, 48, 60, 12@, 252, 1440

Connections with square roots and factors

N N next
square ctéas of N
6 2,44 9 23
8 2,82 9 2*2%2
12 3,46 16 2*3
15 3,87 16 3*5
18 4,24 25 3*3
24 4,89 25 2%2%2*3
48 6,92 49 2*2%2%2* 3
60 7,74 64 2*B*5
120 10,95 121 2*2*2* 3*5
144 12 144 2%2%2*%2* 3*3
252 15,87 256 2*Bx3*7
1440 37,94 1444 2%2*2*2*2*3*3*5
Observations

The numbers of the series have often, in theirsquaots, the decimal part near to 1.
This means, for Legendre's conjecture (see our dstration, and that could be used
in the future as possible demonstration of thegraeage hypothesis on the
factorization), that they are very near to the rsextare (i.e . for 1440, we have that
37 +1 = 38 and 38= 1444), in fact, five of them (8,15,24,48,120tjsimply add a
single unit for the next square, while only 144isquare perfect. For the other, the
difference is 3 (in the initial case 9-6 = 3), lehfor the other is 4, as in the cases 16-
12=4,64-60 =4, 256 - 252 = 4, 1444 - 144(Q with the only exception of 25 - 18
= 7. Recall that 1 and 4 are perfect squares, faclwthe numbers of the series which
differ by 1 or 4 by the next square, can be seatifgssences of two squares, for
example 1440 = 1444-4, 252 = 256 - 4, 60 = 64-4; 1B-4, and so even those that
differ by 1, because also 1 is a square ()=although improper: 8 = 9-1, 15 = 16-1,
24 = 25-1,120 =121 -1. This rule isn’t respeaaty from 6 = 9-3 and 18 =25 - 7,
where 3 and 7 are not perfect squares.

With regard the factorsyre all powers of 2 and 3and in some cases also the
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numbers 5 and 7. Recall that 3 and 7 are also nsnabéie L(n) = F + n +1, since 3
=1'+1 +1, 7 = 2+2 +1. Furthermore, 2, 3, 5 and are also Fiborgocimbers.

In other phenomena the emerging numbers (FiboractPartitions) are about
halfway between a square and the next, while miribiw series, the numbers are
generally very near to the next square, as seereabo
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