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https://twitter.com/winkjs_org/status/973840788902866944 

 

 
 
We want to highlight that the development of the various equations was carried 
out according an our possible logical and original interpretation 
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From: 
 
 
The Quantum Theory of Fields - Volume III - Supersymmetry 
Steven Weinberg 
University of Texas at Austin - Steven Weinberg 2000 - First published 2000 
Printed in the United States of America 

 

From (page 89) 
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with A, B, and C running over the values 1,2, 3,   C, M, N, Va and D are real 
 
for:  A = 1,  B = 2,  F = 3,  G = 5,  γ5 = 1, -1 
 

 

𝜓(𝑥) is an arbitrary Majorana field,   𝜓 = 8 

 

Input: 

 
Determinant: 

 

Inverse: 
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Characteristic polynomial: 
 

Eigenvalues: 

 

 

Eigenvectors: 

 

 

Condition number: 
 

 

 

 

 

 

For:  A = 1,  B = 2,  F = 3,  G = 5,  γ5 = 1, -1;   𝜓 = 8;  θ = -i/(sqrt2) 

(1+2i)/(sqrt2);    (1+1)/2*8;    (3-5i)/(sqrt2);    (1-2i)/(sqrt2);   (1+1)/2*8; 
 
(3+5i)/(sqrt2) 
 

we obtain:  

Polar coordinates: 
 

1.58114          (1-2i)/(sqrt2) ;   (1+2i)/(sqrt2) 
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Polar coordinates: 

 
4.12311         (3-5i)/(sqrt2)  ;    (3+5i)/(sqrt2)    

 

((1+1)/2)*8   = 8 

Input: 

 
Result: 

 
8 

 

Now: 

 

 

1.58114-sqrt2(8*(-i/(sqrt2)))+4.12311((-i/(sqrt2))^2)+1/2((-i/(sqrt2))^2)*1.58114-
1/(sqrt2)*((-i/(sqrt2))^2)*(((-i/(sqrt2)))*8)-1/8((-i/(sqrt2))^4)*1.58114 

Input interpretation: 

 

 
 
Result: 

 
 
Polar coordinates: 

 
6.0709 
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A = 1,  B = 2,  F = 3,  G = 5,  γ5 = 1, -1;   𝜓 = 8;  θ = -i/(sqrt2) 

1.58114-sqrt2(8*(-i/(sqrt2)))+4.12311((-i/(sqrt2))^2)-1/2((-
i/(sqrt2))^2)*1.58114+1/(sqrt2)*((-i/(sqrt2))^2)*(((-i/(sqrt2)))*8)-1/8((((-
i/(sqrt2))^4)*1.58114 

Input interpretation: 

 

 
 
Result: 

 
 
Polar coordinates: 

 
10.0009 

 

Now, from 

 

We obtain: 

1/(sqrt2) [6.0709+10.0009] 

Input interpretation: 
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Result: 

 
11.3644787658... 

 

That is about:   

((1/(sqrt2))) [6+10] 

16/(sqrt2) 

Input: 

 
 
Result: 

 
 
Decimal approximation: 

 
11.3137084... 

 

From the two previous expression, we obtain: 

1/7((1/(sqrt2))) [6.0709+10.0009] 

Input interpretation: 

 
 
Result: 

 
1.62349696655... 
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and: 

1/7((16/(sqrt2))) 

((16/(7(sqrt2)))) 

Input: 

 
 
Result: 

 
 
Decimal approximation: 

 
1.616244071283... 

 

From: 

Modular equations and approximations to π – Srinivasa Ramanujan 
Quarterly Journal of Mathematics, XLV, 1914, 350 – 372 

We have: 

 

From the following equation: 

 

we obtain: 

 

exp(-Pi*sqrt22) ((1+2i)/(sqrt2)) 

Input: 

 

 



10 
 

Exact result: 

 

 
Decimal approximation: 

 

Property: 

 

Polar coordinates: 
 

6.30199*10-7 
 
Alternate form: 

 

 
Series representations: 
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From which: 

 

1+((((exp(-Pi*sqrt22) ((1+2i)/(sqrt2))))))^1/30-Pi/10^3 

Input: 

 

 

 
 
Exact result: 

 

Decimal approximation: 

 

 
Alternate forms: 
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Series representations: 
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1.6177561848129013329+ 0.022924614475806975i 

Input interpretation: 
 

 
 
Result: 

 
 
Polar coordinates: 

 
1.6179186047045934603 

 

But, we have that:  

 

 

Thence, we obtain also: 

((((exp(-Pi*sqrt22) ((1+2i)/(sqrt2))))))1/4096 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

Property: 
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Polar coordinates: 
 

1.53857*10-10 
 
Series representations: 

 

 

 

 

From which: 

3Pi-76*ln((((((exp(-Pi*sqrt22) ((1+2i)/(sqrt2))))))1/4096)) 

Input: 
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Exact result: 

 

 
Decimal approximation: 

 

 

Alternate forms: 

 

 

 

 

 
Alternative representations: 

 

 

 
Series representations: 
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Integral representations: 

 

 

 

1726.64451151429526 - 84.1433025523508i 

Input interpretation: 
 

 
 
Result: 

 
 
Polar coordinates: 

 
1728.69354268096222 
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and: 

[3Pi-76*ln((((((exp(-Pi*sqrt22) ((1+2i)/(sqrt2))))))1/4096))]^1/15 

Input: 

 

 

 

 
 
Exact result: 

 

Decimal approximation: 

 

 
Alternate forms: 

 

 

 

 
 
 
 
 
 
 
 
 
 



18 
 

All 15th roots of 3 π - 76 log(((1/4096 + i/2048) e^(-sqrt(22) π))/sqrt(2)): 
 

 

 

 

 



 

 

 
Alternative representations:

 
Series representations: 

19 

Alternative representations: 
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Integral representations: 

 

 

 

 

1.64378714196277015 - 0.0053361622672459i 

Input interpretation: 
 

 
Result: 

 
 
Polar coordinates: 

 
1.64379580322796622 
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From pag. (106)-(109) 
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 We have that: 

                                      Φn = -16 / 4 ;    Φn = - 4 □ Sn 

                                                  - 4 □ Sn = Φn   

Thence: 

 

64  □  □ Sn  = 64 □ 1/4 Φn = 64 * Φn / - 4 Sn * 1/4  Φn  =  

64 * - 1/16 Φ2 n  /Sn = - 64 / Sn ;   -16 Φ2 n =  - 256  ;   
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Φ2 n =  16 ;  Φn = -4 ;   □ = 1;    

 

     ൭ ൱ =  (- 4)* (4) * (- 4) = 64 

That is the value for any left-chiral superfield Φn . We have also: 

 

                                 

                        (-16) * 1 * 1 = 4 * (- 4) ;  -16 = -16 

 

      ൭ ൱  = 4 * (- 4) = -16 

 

We note that: 

     ൭ ൱ × ൭ ൱ = - 1024   

 

And that     -1024 / -16 = 64  

 

From: 
 
Modular equations and approximations to π - S. Ramanujan - Quarterly Journal of 
Mathematics, XLV, 1914, 350 – 372) 
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Note that: 

 

Thence: 

 

and 

 

that are connected with 64, 128, 256, 512, 1024 and 4096 = 642 

 
We have that: 
 
exp(Pi*sqrt22)-24+4372*exp(-Pi*sqrt22)+4096*exp(-Pi*sqrt22) = 
64[(1+sqrt2)^12+(1-sqrt2)^12] 

 

 

exp(Pi*sqrt22)-24+4372*exp(-Pi*sqrt22)+4096*exp(-Pi*sqrt22) 

Input: 

 

Exact result: 
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Decimal approximation: 

 

2508928.0016326 

Property: 

 

 
Alternate form: 

 

 
Series representations: 

 

 

 

 

and: 

64[(1+sqrt2)^12+(1-sqrt2)^12] 

Input: 

 
 
Result: 

 
2508928 
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Note that: 

2508928 / (64*2) = 19601;  19601*2 = 2508928;  2508928 / 39202 = 64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Now, we have that: 

https://writings.stephenwolfram.com/2016/04/who
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From (3), we have the following expression :  

(sqrt5) / (4Pi^2) * ((exp(10))) / ((20-2+(Pi))) 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

59.010919756… 

 
Alternate forms: 

 

 

 

Series representations: 
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From which: 

(sqrt5) / (4Pi^2) * ((exp(10))) / ((20-2+(Pi)))+5 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

64.0109197…. ≈ 64  

 
Alternate forms: 

 

 

 

 
Series representations: 
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From: 

 

FIELD THEORY. A MODERN PRIMER - Pierre Ramond  - (Florida 
U. and Caltech) - Jan 1, 1981 - 329 pages - Published in: Front.Phys. 51 (1981) 1-
397, Front.Phys. 74 (1989) 1-329 

 

 

We have that: 

 

(3.5.21-3.5.22) 

 

We place: m = 0.510998950 MeV;  v = 2.189e+6 ; (parameters of an electron); μ = 2. 

The value for the Compton wavelength of the electron is 2.4263102367(11)×10−12 m , 
thence:  λ = 2.4263102367×10−12. We obtain: 

 

1/(64*Pi^2) [(((0.510998950^2+(2.426310e-12)1/2(2.189e+6)^2)))]^2 (((-
3/2+ln(0.510998950^2+(2.426310e-12)1/2(2.189e+6)^2)/4))) 

Input interpretation: 

 

 
Result: 

 
-0.0612733… 

 

Or, for  m = 1/√2 
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1/(64*Pi^2) [((((1/(sqrt2))^2+(2.426310e-12)1/2(2.189e+6)^2)))]^2 (((-
3/2+ln((1/(sqrt2))^2+(2.426310e-12)1/2(2.189e+6)^2)/4))) 

Input interpretation: 

 

 
 
Result: 

 
-0.0655790… 

 

Or, for  m = 1/√2  and   λ = √6 × 10−12 

1/(64*Pi^2) [((((1/(sqrt2))^2+((sqrt6)*10^-12)1/2(2.189e+6)^2)))]^2 (((-
3/2+ln((1/(sqrt2))^2+((sqrt6)*10^-12)1/2(2.189e+6)^2)/4))) 

Input interpretation: 

 

 
 
Result: 

 
-0.0665972… 

 

 

Note that: 

1-10(((1/(64*Pi^2) [(((0.510998950^2+(2.426310e-12)1/2(2.189e+6)^2)))]^2 (((-
3/2+ln(0.510998950^2+(2.426310e-12)1/2(2.189e+6)^2)/4))))))+5/10^3 

Input interpretation: 
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Result: 

 
1.617733019… 

 

1-10((((1/(64*Pi^2) [((((1/(sqrt2))^2+(2.426310e-12)1/2(2.189e+6)^2)))]^2 (((-
3/2+ln((1/(sqrt2))^2+(2.426310e-12)1/2(2.189e+6)^2)/4))))))) 

Input interpretation: 

 

 
 
Result: 

 
1.655789818338…  

We note that, the result 1,655789818338... is practically equal to the 14th root of the 

following Ramanujan’s class invariant 𝑄 = ൫𝐺ହ଴ହ/𝐺ଵ଴ଵ/ହ൯
ଷ
 = 1164,2696  i.e. 

1,65578... 

 

Indeed: 

                       ඨቆටଵଵଷାହ√ହ଴ହ

଼
+ ටଵ଴ହାହ√ହ଴ହ

଼
ቇ

ଷ
భర

= 1,65578 … ⇒  

⇒

⎣
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎤

 = 1.655789818338…  
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or, for m = 1/√2;  v = 2.189 and  λ = 2.426310, μ = 2  we obtain: 

 
1-10((((1/(64*Pi^2) [((((1/(sqrt2))^2+(2.426310)1/2(2.189)^2)))]^2 (((-
3/2+ln((1/(sqrt2))^2+(2.426310)1/2(2.189)^2)/4))))))) 
 
Input interpretation: 

 

 
 
Result: 

 
1.655789818338…. result equal to the previous 

 

 
Alternative representations: 

 

 

 
 
 
Series representations: 
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Integral representations: 
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1-10(((1/(64*Pi^2) [((((1/(sqrt2))^2+((sqrt6)*10^-12)1/2(2.189e+6)^2)))]^2 (((-
3/2+ln((1/(sqrt2))^2+((sqrt6)*10^-12)1/2(2.189e+6)^2)/4)))))) 

Input interpretation: 

 

 
 
Result: 

 
1.6659723687… result very near to the 14th root of the following Ramanujan’s class 

invariant 𝑄 = ൫𝐺ହ଴ହ/𝐺ଵ଴ଵ/ହ൯
ଷ
 = 1164.2696  i.e. 1.65578... 

 

 

Now, we have: 
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                                                                                                         (3.5.23) 

For:  

m = 1/√2;  𝜙௖௟
ଶ  = 2.189 and  λ = 2.426310, μ = 2 ,  we obtain: 

 

1/2*(1/(sqrt2))^2*2.189^2+(2.426310*2.189^4)/4!+(((1.054571e-
34)/(64Pi^2)))*((((1/(sqrt2))^2+1/2(2.426310*2.189^2))))^2*[-3/2+ 
ln((((1/(sqrt2))^2+(2.426310)1/2(2.189)^2)/4))]+(1.054571e-34)^2 

Input interpretation: 

 

 
 

 
Result: 

 
3.519159811127… 

 

From which: 

13/(9Pi) [1/2*(1/(sqrt2))^2*2.189^2+(2.426310*2.189^4)/4!+(((1.054571e-
34)/(64Pi^2)))((((1/(sqrt2))^2+1/2(2.426310*2.189^2))))^2[-3/2+ 
ln((((1/(sqrt2))^2+(2.426310)1/2(2.189)^2)/4))]+(1.054571e-34)^2] 

Input interpretation: 
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Result: 

 
1.618042629583… 

 

 

We have this wonderful Ramanujan formula for the golden ratio, that is a 
fundamental constant of various fields of mathematics and physics 

 

Input interpretation: 

 

 
 
Result: 

 
1.6180339887… 

 

 

 

 

 

We have that: 
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For   m = 1/√2;  𝜙௖௟
ଶ  = 2.189 and  λ = 2.426310, μ = 2 ,  M2 = 2μ2/λ = 8/2.426310 

we obtain, from (3.5.27): 

                     
 

((2.426310*(2.189)^2))/4! + 
((2.426310^2*(2.189)^2))/(256*Pi^2)*[ln((2.189)/(8/2.426310))-25/6] 

 

nput interpretation: 
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Result: 

 

0.4333324130426… 
 
Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 
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From which, we obtain also: 

 

4((((2.426310*(2.189)^2))/4! + 
((2.426310^2*(2.189)^2))/(256*Pi^2)*[ln((2.189)/(8/2.426310))-25/6])) 

 

Input interpretation: 

 

 

 

 
Result: 

 

1.7333296521704… 

1.7333…  ≈ √3 

 
Possible closed form: 

 
 
 
Alternative representations: 
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Series representations: 
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Integral representations: 
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We remember that  

A =  l2 x φ 

The AREA of a REGULAR POLYGON is given by the PRODUCT between the 
SQUARE of the SIDE size and the CONSTANT of the considered polygon. We 
define this constant φ 

consequently 

 

Now, we know that φ = 0.433 for an equilateral triangle. If we have a side of √3/2 , 
we obtain: 

(sqrt(3/2))^2 * 0.433 

Input: 

 
 
Result: 

 

0.6495 

 

Thence, in the previous formula, we obtain: 

(sqrt(3/2))^2 * ((2.426310*(2.189)^2))/4! + 
((2.426310^2*(2.189)^2))/(256*Pi^2)*[ln((2.189)/(8/2.426310))-25/6] 

Input interpretation: 
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Result: 

 

0.675544925115744… 
 
 
Alternative representations: 

 

 

 

 
 
Series representations: 
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Integral representations: 
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Adding the value of the following spectral index ns = 0.965 ± 0.004, consistent with 
the predictions of slow-roll, single-field, inflation, we obtain: 
 
0.965+(sqrt(3/2))^2 * ((2.426310*(2.189)^2))/4! + 
((2.426310^2*(2.189)^2))/(256*Pi^2)*[ln((2.189)/(8/2.426310))-25/6] 
 
Input interpretation: 

 

 

 

Result: 

 

1.640544925115744… 
 
Alternative representations: 
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Series representations: 
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Integral representations: 
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0.965+(sqrt(3/2))^2 * ((2.426310*(2.189)^2))/4! + 
((2.426310^2*(2.189)^2))/(256*Pi^2)*[ln((2.189)/(8/2.426310))-25/6]-(18+4)1/10^3 
 
Input interpretation: 

 

 

 

Result: 

 

1.618544925115744… 
 
 
Alternative representations: 
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Series representations: 
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Integral representations: 
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Now, we have that: 
 

 
 

 
 
For:  m = 1/√2;  𝜙଴

ଶ = 2.189 and  λ = 2.426310, μ = 2 ,  M2 = 2μ2/λ = 8/2.426310;  

f = 1;  we obtain: 

(2.426310^2*2.189^2) / (256*Pi^2) [(-3/2+ln((2.426310*2.189)/8))]-
2.189^2/(8*Pi^2) ((-3/2+ln((2.189)/4))) 

Input interpretation: 
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Result: 

 

0.106297… 

Series representations: 

 

 

 

 
Integral representation: 
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We know that α’ is the Regge slope (string tension). The following result of the 
meson fits in the (J,M2) plane concerning Ψ is 0.979 
 

 

Adding this value to the previous expression that we have multiplied by 6, we obtain: 

 

0.979+6*(((((2.426310^2*2.189^2) / (256*Pi^2) [(-3/2+ln((2.426310*2.189)/8))]-
2.189^2/(8*Pi^2) ((-3/2+ln((2.189)/4))))))) 

Input interpretation: 

 

 

Result: 

 

1.616783009361… 
 
 
Alternative representations: 
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Series representations: 

 

 

 

 
Integral representation: 
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Now, we have that: 

 

 

For:  m = 64√2;  𝜙଴
ଶ = 𝜙 = 2.189 and  λ = 2.426310, μ = 2 ,  M2 = 2μ2/λ = 

8/2.426310;  

1/2*2.189^2+ (((64sqrt2))^4)/(2.426310) [cos((((2.426310)^0.5 * 2.189)/(64sqrt2)))-
1] 

Input interpretation: 

 

Result: 

 

-19622.2… 
 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 

 

 
Multiple-argument formulas: 
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From which: 

-1/11((((1/2*2.189^2+ (((64sqrt2))^4)/(2.426310) [cos((((2.426310)^0.5 * 
2.189)/(64sqrt2)))-1]))))-55 

Input interpretation: 

 

Result: 

 

1728.83… 
 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 

 

 
Multiple-argument formulas: 
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and: 

((((-1/11((((1/2*2.189^2+ (((64sqrt2))^4)/(2.426310) [cos((((2.426310)^0.5 * 
2.189)/(64sqrt2)))-1]))))-55))))^1/15 

Input interpretation: 

 
 
Result: 

 

1.643804696679... 

 

((((-1/11((((1/2*2.189^2+ (((64sqrt2))^4)/(2.426310) [cos((((2.426310)^0.5 * 
2.189)/(64sqrt2)))-1]))))-55))))^1/15-(21+5)1/10^3 

Input interpretation: 

 

 
Result: 

 

1.617804696679… 
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Alternative representations: 

 

 

 

 
Series representations: 
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Integral representations: 
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Multiple-argument formulas: 
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From the formula of coefficients of the '5th order' mock theta function 𝜓1(q): 
(A053261 OEIS Sequence) 

sqrt(golden ratio) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n))   for n = 279 , we obtain: 

sqrt(golden ratio) * exp(Pi*sqrt(279/15)) / (2*5^(1/4)*sqrt(279)) +123 -7 

Input: 

 

 
 
Exact result: 

 
 
Decimal approximation: 

 
19621.765125489… 
 
 
Property: 

 
 
 
Alternate forms: 
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Series representations: 
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Furthermore, we obtain also the following interesting expression: 

-10((1/2*2.189^2+ (((64sqrt2))^4)/(2.426310) [cos((((2.426310)^0.5 * 
2.189)/(64sqrt2)))-1]))+521+123+18 

Input interpretation: 

 

 
Result: 

 

196883.722357468… 

196884 is a fundamental number of the following  j-invariant  

 

 
 

(In mathematics, Felix Klein's j-invariant or j function, regarded as a function of 
a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on 
the upper half plane of complex numbers. Several remarkable properties of j have to 
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do with its q expansion (Fourier series expansion), written as a Laurent series in 
terms of q = e2πiτ (the square of the nome), which begins: 

 
Note that j has a simple pole at the cusp, so its q-expansion has no terms below q−1. 

All the Fourier coefficients are integers, which results in several almost integers, 
notably Ramanujan's constant: 

 
The asymptotic formula for the coefficient of qn is given by 

 
as can be proved by the Hardy–Littlewood circle method) 

 

 
Alternative representations: 
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Series representations: 
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Integral representations: 

 

 

 

 

 
Multiple-argument formulas: 
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and again: 

(-Pi-1/golden ratio)((1/2*2.189^2+ (((64sqrt2))^4)/(2.426310) [cos((((2.426310)^0.5 
* 2.189)/(64sqrt2)))-1]))-233-34-13 

Input interpretation: 

 

 

 
Result: 

 

73492 

 
Alternative representations: 
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Series representations: 
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Integral representations: 
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Multiple-argument formulas: 

 

 

 

  

 

We have the following mathematical connection: 

 

  ൮ ൲ = 73492 ⇒ 
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⇒ −3927 + 2

⎝

⎜
⎛

ඪ
+

భయ

⎠

⎟
⎞

= 

 

                      
     
                     = 73490.8437525.... ⇒ 
 
 

⇒ ൬𝐴(𝑟) ×
1

𝐵(𝑟)
൬−

1

𝜙(𝑟)
൰ ×

1

𝑒Λ(௥)
൰ ⇒ 

 

⇒ ቌ ቍ = 

               =   
 
               =  73491.7883254... ⇒ 
 
 

⎝

⎜
⎛

⎠

⎟
⎞

/ 

 

       /(26 × 4)ଶ −24  = ቌ ቍ = 73493.30662… 

 
 
Mathematical connections with the boundary state corresponding to the NSNS-sector 
of N Dp-branes in the limit of u → ∞, with the ratio concerning the general 
asymptotically flat solution of the equations of motion of the p-brane and with the  
Karatsuba’s equation concerning the zeros of a special type of function 
connected with Dirichlet series. 
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Appendix  
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Observations  

 

 

Figs. 
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The ratio between M0  and  q  
 
 

 
 

 
i.e. the gravitating mass M0  and the Wheelerian mass q of the wormhole, is equal to: 
 
  

 
 

 

 

1.7320507879 ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q of  the wormhole 
 

We note that: 
 
 

 

 
 

 

 
1.73205 

 
This result is very near to the ratio between M0  and  q, that is equal to 1.7320507879 
≈ √3 
 
 
With regard √3 , we note that is a fundamental value of the formula structure that we 
need to calculate a Cubic Equation 
 

We have that the previous result 
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can be related with: 
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Considering:  
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Thence: 
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We observe how the graph above, concerning the cubic function, is very similar 
to the graph that represent the scalar field (in red). It is possible to hypothesize 
that cubic functions and cubic equations, with their roots, are connected to the 
scalar field. 
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From: 
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8m
pSjRs1BDeremA 
 
Ramanujan's statement concerned the deceptively simple concept of partitions—the 
different ways in which a whole number can be subdivided into smaller numbers. 
Ramanujan's original statement, in fact, stemmed from the observation of patterns, 
such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575 
and so on are all divisible by 5. Note that here the n's come at intervals of five units. 
 
Ramanujan posited that this pattern should go on forever, and that similar patterns 
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all 
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11. 
 
Then, in nearly oracular tone Ramanujan went on: "There appear to be 
corresponding properties," he wrote in his 1919 paper, "in which the moduli are 
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other 
than these three." (Primes are whole numbers that are only divisible by themselves or 
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by 
5^3 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125. 
In the past methods developed to understand partitions have later been applied to 
physics problems such as the theory of the strong nuclear force or the entropy of 
black holes. 
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Note that: 

 

Thence: 

 

And 

 

That are connected with 64, 128, 256, 512, 1024 and 4096 = 642 

 
(Modular equations and approximations to π - S. Ramanujan - Quarterly Journal of 
Mathematics, XLV, 1914, 350 – 372) 
 
 
All the results of the most important connections are signed in blue throughout the 
drafting of the paper. We highlight as in the development of the various equations we 
use always the constants π, ϕ, 1/ϕ, the Fibonacci and Lucas numbers, linked to the 
golden ratio, that play a fundamental role in the development, and therefore, in the 
final results of the analyzed expressions. 
 
In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, 
called the Fibonacci sequence, such that each number is the sum of the two preceding 
ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden 
ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the 
golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends 
to the golden ratio as n increases. 
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Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci 
and Lucas numbers form a complementary pair of Lucas sequences  

The beginning of the sequence is thus: 

 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 
1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 
63245986, 102334155...  

 

The Lucas numbers or Lucas series are an integer sequence named after the 
mathematician François Édouard Anatole Lucas (1842–91), who studied both that 
sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci 
numbers form complementary instances of Lucas sequences. 

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, 
where each term is the sum of the two previous terms, but with different starting 
values. This produces a sequence where the ratios of successive terms approach 
the golden ratio, and in fact the terms themselves are roundings of integer powers of 
the golden ratio.[1] The sequence also has a variety of relationships with the 
Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms 
apart in the Fibonacci sequence results in the Lucas number in between. 

The sequence of Lucas numbers is: 

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 
9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 
1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 
54018521, 87403803…… 

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff 
array; the Fibonacci sequence itself is the first row and the Lucas sequence is the 
second row. Also like all Fibonacci-like integer sequences, the ratio between two 
consecutive Lucas numbers converges to the golden ratio. 

 

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are: 

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 
6643838879, ... (sequence A005479 in the OEIS). 

 
In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, 
the golden ratio.[1] That is, a golden spiral gets wider (or further from its origin) by a 
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factor of φ for every quarter turn it makes. Approximate logarithmic spirals can 
occur in nature, for example the arms of spiral galaxies[3] - golden spirals are one 
special case of these logarithmic spirals 

 

We observe that 1728 and 1729 are results very near to the mass of candidate glueball 
f0(1710) scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-
invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a 
pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–
Ramanujan number 1729  (taxicab number). 
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