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1 Introduction

The Special Theory of Relativity introduces us to the effects of observing the
spacetime coordinates from different frames of reference. In this paper we will
introduce the concept of Incremental from of time and the effects of relativity
on them.

2 Incremental forms of Time

From the special theory of relativity we adopt that Time is what the clock reads.
if we place clocks at each point in the entire Cartesian coordinate system, then
in a general view at each individual point at any instant the clock will read the
same. This means all clocks read the same at any given instant. We assume
a perfect synchronization in clocks. But observation differs at each individual
point. it suggests us that a single observer cannot observe two distinct Cartesian
points at once. Thus we will treat every observer to observe a single body at a
given instant. since all clocks are synchronized, any increment ¢ observed in any
one clock leads to an increment in all other clocks. we claim a principle: that the
Algebric sum of increments of time entering and exiting the stationary Cartesian
coordinate equal zero. using appropriate sign convection we may write it as:

tin — tout = 0 (1)

The principle is limited to stationary points, preferably it can be applied to non
stationary points, by rephrasing that the algebraic sum of time entering and
exiting the coordinate is non zero.

As the coordinates remain stationary with the incoming of increments all co-
ordinates must not change their values i.e. under the principle of increments
the coordinates are invariant. we will now represent each coordinate w.r.t. an
observer at origin 0, we will limit our work only in one dimension and assume
all coordinates to be non-luminous.

Consider a system of single observer at origin O, consider it to be Luminous and
beings its observation by sending a light pulse at the speed c. say a time t,ps
passes. this implies that the light has reached a distance H = ct,ps. consider



any point at a distance x < H. For x to be observed, the light must retrace
the path and come back to the observer. say t; is the time spent to illuminate
the coordinate then to make it till the observer a time t, = t.,s — t; will be
remaining.

after illumination light has traveled a distance « = H — x = ct, say a dis-
tance R is required to be covered so that light from « reaches the observer then
R = H — 2x. Thus we may interpret, if z = H/2 the light reaches the observer
completely. if > H/2 light has already reached the observer. if © < H/2 light
has still to cover a distance before it reaches the observer.

Time for which x is actually observed is

_H—2JU
o c

2%

(2)

we know clock reads a time t,5s = % clearly in the equation we may write,

te = tobs (1 - 2;) (3)

defining x in terms of time we get:

2= 5 (T = T) @)

Here T, counts the total time of observer while T, is the total time for which
the coordinate x was actually observed, it is a clock made by the observer for
the observed coordinate. The clock of observer has increment t¢;, and clock
build up by observer has a increment t¢,,;. This is our new representation of
coordinate. clearly from the equation we may see how adding the increments
does not change the coordinate. for instance adding t;, to Tpps and tyy: to T
and applying the principle of increments we get the same coordinate back and
it must. If it does not it suggests that the coordinate is not stationary. we will
indeed see this when we will apply the special relativity.

3 Application of Galilean Relativity

Before we apply the lorentz transformation, I would like to show how it looks
like under Galilean relativity. Consider that the coordinates of observed object
are dynamical, say the object moves with a velocity v as seen from the observer.
we have x4y, = x + vt;;,, before we proceed take a look at the fact, say x1 =
5(tops — to) after the addition of increments x2 = $[(tobs + tin) — (tz + tout)]
which is same as, 22 = @1 + §(tin — toue) this is simply Az = §(tin — tout)
clearly if Az = 0 it implies t;, = tout- as such QAT”” = tin — tout but from
Galilean relativity, Az = vt;, putting this we get

2v
tin (1 - C) = tout (5)

This is the relation between the increments under Galilean Relativity. clearly
at v = 0 our principle is conserved.



4 Application of Special Relativity

Using the Lorentz Transformation & = (2’ +vt},,) hence z—x' = v’ +yvt;, —a’
and x — x’ represents the change in increments and we get,
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tin <1 - ) = tout + *J}/(’Y - 1) (6)
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the term 22/(y — 1) is based on initial condition, if x’=0 initially then the
term vanishes. For smaller velocity v = 1 and the equation reduces to Galilean
relativity. same way if v = 0 we get back our principle.

5 conclusion

From the Assumption of Non-luminous coordinates and the incremental prin-
ciple we see how the addition of increments in the clocks of observer and the
observed object differs as the object gains velocity.



