On some Ramanujan equations: mathematical connections with Prime Number Theorem, $\phi, \zeta(2)$ and various parameters of Particle Physics.

Michele Nardelli ${ }^{1}$, Antonio Nardelli ${ }^{2}$

Abstract

In this paper we have described and analyzed some Ramanujan equations. We have obtained several mathematical connections between Prime Number Theorem, ϕ, $\zeta(2)$ and various parameters of Particle Physics.

[^0]
https://mobygeek.com/features/indian-mathematician-srinivasa-ramanujan-quotes-11012

We want to highlight that the development of the various equations was carried out according an our possible logical and original interpretation

From

On certain trigonometrical sums and their applications in the
theory of numbers - Srinivasa Ramanujan
Transactions of the Cambridge Philosophical Society, XXII, No.13, 1918, 259 - 276
We have that:

$$
s_{r}(n)=\sum_{\lambda}(-1)^{\frac{1}{2}(\lambda-1)} \sin \frac{2 \pi n \lambda}{r},
$$

For $\mathrm{n}=2, \lambda=\mathrm{y}=3$ and $\mathrm{r}=24$, we have:

Sum $\left(\left((-1)^{\wedge}\left(0.5^{*}(\mathrm{y}-1)\right) \sin \left(\left(2 \mathrm{Pi}^{*} 2^{*} \mathrm{y}\right) / 24\right)\right)\right), \mathrm{y}=3$..infinity

Result:

$\sum_{y=3}^{\infty}(-1)^{0.5(y-1)} \sin \left(\frac{2 \pi 2 y}{24}\right)$ (sum does not converge)

Regularized results:

Abel regularization
$\lim _{x \rightarrow 1^{-}}\left(\sum_{y=0}^{\infty}(-1)^{0.5(y+2)} x^{y} \sin \left(\frac{1}{6} \pi(y+3)\right)\right)=-0.5-0.57735 i$

Borel regularization

$\lim _{s \rightarrow 1} \int_{0}^{\infty} e^{-s t}\left(\sum_{y=0}^{\infty} \frac{(-1)^{0.5(y+2)} t^{y} \sin \left(\frac{1}{6} \pi(y+3)\right)}{y!}\right) d t=-0.5-0.57735 i$
$-0.5-0.57735$ i

Input:

$-0.5-0.57735 i$

Result:

$-0.5-0.57735 i$

Polar coordinates:

$r=0.763762$ (radius), $\quad \theta=-130.893^{\circ}$ (angle)
0.763762

From which, we obtain:
$1+1 / 2 * 1 /(0.763762)$
Input interpretation:
$1+\frac{1}{2} \times \frac{1}{0.763762}$

Result:

1.654654198559237039810831122784322864976262238760242064936...
$1.6546541985 \ldots$ result very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164.2696$ i.e. $1.65578 \ldots$

For $\lambda=\mathrm{y}=13$, we have:
$\operatorname{Sum}\left(\left((-1)^{\wedge}\left(0.5^{*}(\mathrm{y}-1)\right) \sin \left(\left(2 \mathrm{Pi}^{*} 2^{*} \mathrm{y}\right) / 24\right)\right)\right), \mathrm{y}=13$..infinity

Result:

$\sum_{y=13}^{\infty}(-1)^{0.5(y-1)} \sin \left(\frac{2 \pi 2 y}{24}\right)$ (sum does not converge)

Regularized results:

Abel regularization

$\lim _{x \rightarrow 1^{-}}\left(\sum_{y=0}^{\infty}(-1)^{0.5(y+12)} x^{y} \sin \left(\frac{1}{6} \pi(y+13)\right)\right)=0.288675 i$

Borel regularization

$\lim _{s \rightarrow 1} \int_{0}^{\infty} e^{-s t}\left(\sum_{y=0}^{\infty} \frac{(-1)^{0.5(y+12)} t^{y} \sin \left(\frac{1}{6} \pi(y+13)\right)}{y!}\right) d t=-1.38778 \times 10^{-17}+0.288675 i$

We note that:
$\left(6^{*} 0.288675 \text { i) }\right)^{12}$

Input interpretation:

$(6 \times 0.288675 i)^{12}$

Result:

728.9959212545085857714019266948823195987921623524046096191...
$728.99592125 \ldots \approx 729$

Thence:
$10^{\wedge} 3+\left(6^{*} 0.288675 i\right)^{\wedge} 12$

Input interpretation:

$10^{3}+(6 \times 0.288675 i)^{12}$

Result:

1728.995921254508585771401926694882319598792162352404609619...
$1728.99592125 \ldots \approx 1729$
$\left(\left(\left(10^{\wedge} 3+\left(6^{*} 0.288675 i\right)^{\wedge} 12\right)\right)\right)^{\wedge} 1 / 15$

Input interpretation:

$\sqrt[15]{10^{3}+(6 \times 0.288675 i)^{12}}$

Result:

1.643814970228915752108776968407202138665028725006260553257...
1.6438149702...

Now, for $\mathrm{s}=16$ and $\mathrm{n}=2$, from:
if s is a multiple of 4 ;

$$
\begin{align*}
& \left(1^{-s}+3^{-s}+5^{-s}+\cdots\right) \delta_{2 s}^{\prime}(n)=\frac{\left(\frac{1}{2} \pi\right)^{s}}{(s-1)!}\left(n+\frac{1}{4} s\right)^{s-1} \\
& \left\{1^{-s}\left(\frac{\sin \left(2 n+\frac{1}{2} s\right) \pi}{\sin \left(2 n+\frac{1}{2} s\right) \pi}\right)+3^{-s}\left(\frac{\sin \left(2 n+\frac{1}{2} s\right) \pi}{\sin \frac{1}{3}\left(2 n+\frac{1}{2} s\right) \pi}\right)\right. \tag{14.7}\\
& \left.+5^{-s}\left(\frac{\sin \left(2 n+\frac{1}{2} s\right) \pi}{\sin \frac{1}{5}\left(2 \pi+\frac{1}{2} s\right) \pi}\right)+\cdots\right\}
\end{align*}
$$

From

$$
\begin{aligned}
& \left(1^{-s}+3^{-s}+5^{-s}+\cdots\right) \delta_{2 s}^{\prime}(n)=\frac{\left(\frac{1}{2} \pi\right)^{s}}{(s-1)!}\left(n+\frac{1}{4} s\right)^{s-1} \\
& \left\{1^{-s}\left(\frac{\sin \left(2 n+\frac{1}{2} s\right) \pi}{\sin \left(2 n+\frac{1}{2} s\right) \pi}\right)+3^{-s}\left(\frac{\sin \left(2 n+\frac{1}{2} s\right) \pi}{\sin \frac{1}{3}\left(2 n+\frac{1}{2} s\right) \pi}\right)\right. \\
& \left.+5^{-s}\left(\frac{\sin \left(2 n+\frac{1}{2} s\right) \pi}{\sin \frac{1}{5}\left(2 n+\frac{1}{2} s\right) \pi}\right)+\cdots\right\}
\end{aligned}
$$

$\left(\left((1 / 2 * \operatorname{Pi})^{\wedge} 16(2+16 / 4)^{\wedge} 15\right)\right) /(16-1)!*\left[1^{\wedge}-16 *\right.$ $(((\sin (4+16 / 2) * \operatorname{Pi}) /(\sin (4+16 / 2) * \mathrm{Pi})))+3^{\wedge}-16^{*}$
$\left.(\sin (4+16 / 2) * \mathrm{Pi}) /(\sin 1 / 3(4+16 / 2) \mathrm{Pi})+5^{\wedge}-16(\sin (4+16 / 2) * \mathrm{Pi}) /(\sin 1 / 5(4+16 / 2) * \mathrm{Pi})\right]$

Input:

$$
\frac{\left(\frac{1}{2} \pi\right)^{16}\left(2+\frac{16}{4}\right)^{15}}{(16-1)!}\left(\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\sin \left(4+\frac{16}{2}\right) \pi}}{1^{16}}+\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{\sin (1)}{3}\left(4+\frac{16}{2}\right) \pi}}{3^{16}}+\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{\sin (1)}{5}\left(4+\frac{16}{2}\right) \pi}}{5^{16}}\right)
$$

Exact result:

$$
\frac{19683 \pi^{16}\left(1+\frac{7632981758 \sin (12) \csc (1)}{1313681671142578125}\right)}{3587584000}
$$

Decimal approximation:

493.9547607207878323885481388713700015614845096394662717329...
$493.9547607 \ldots$ result practically equal to the rest mass of Kaon meson 493.677

Alternate forms:

$\frac{\pi^{16}(1313681671142578125+7632981758 \sin (12) \csc (1))}{239442328125000000000000}$

$$
\begin{aligned}
& \pi^{16}\left(\frac{19683}{3587584000}+\frac{3816490879 \sin (12) \csc (1)}{119721164062500000000000}\right) \\
& \frac{19683 \pi^{16}}{3587584000}+\frac{3816490879 \pi^{16} \sin (12) \csc (1)}{119721164062500000000000}
\end{aligned}
$$

Alternative representations:

$$
\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)
$$

$$
(16-1)!
$$

$$
\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{\frac{1}{5} 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}\right)
$$

$$
()_{15}
$$

$$
\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)\right.
$$

$$
(16-1)!
$$

$$
\frac{\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{\frac{1}{5} \times 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}\right)}{14!!\times 15!!}
$$

$$
\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)
$$

$$
(16-1)!
$$

$$
\frac{\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{\frac{1}{5} 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}\right)}{e^{\log \Gamma(16)}}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!} \\
& \left(\pi^{16}(1313681671142578125-\right. \\
& \left.\left.15265963516 i \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{2}} 12^{1+2 k_{2}} q^{-1+2 k_{1}}}{\left(1+2 k_{2}\right)!}\right)\right) /
\end{aligned}
$$

$$
239442328125000000000000 \text { for } q=e^{i}
$$

$$
\begin{aligned}
& \frac{\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}= \\
& \pi^{16}\left(1313681671142578125+7632981758 \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 12^{1+2 k_{2}}}{\left(1+2 k_{2}\right)!\left(1-\pi^{2} k_{1}^{2}\right)}\right)
\end{aligned}
$$

239442328125000000000000

$$
\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)
$$

$$
(16-1)!
$$

$$
\left(\pi^{16}(1313681671142578125-\right.
$$

$$
\left.15265963516 i \sum_{k_{1}}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{2}}\left(12-\frac{\pi}{2}\right)^{2 k_{2}} q^{-1+2 k_{1}}}{\left(2 k_{2}\right)!}\right) /
$$

239442328125000000000000 for $q=e^{i}$

Integral representations:

$$
\begin{aligned}
& \frac{\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}= \\
& \frac{\pi^{15}\left(437893890380859375 \pi+30531927032\left(\int_{0}^{\infty} \frac{\sqrt[\pi]{t}}{t+t^{2}} d t\right) \int_{0}^{1} \cos (12 t) d t\right)}{79814109375000000000000}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}= \\
& \left(\pi ^ { 2 9 / 2 } \left(437893890380859375 \pi^{3 / 2}-7632981758 i\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-36 / s+s}}{s^{3 / 2}} d s\right)\right.\right. \\
& \left.\left.\int_{0}^{\infty} \frac{\sqrt[\pi]{t}}{t+t^{2}} d t\right)\right) / 79814109375000000000000 \text { for } \gamma>0 \\
& \frac{\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}= \\
& \left(\pi ^ { 2 9 / 2 } \left(1313681671142578125 \pi^{3 / 2}-\right.\right. \\
& \left.\left.3816490879 i\left(\int_{0}^{\infty} \frac{\sqrt[\pi]{t}}{t+t^{2}} d t\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{6^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s\right)\right) /
\end{aligned}
$$

$\left(\left((1 / 2 * \mathrm{Pi})^{\wedge} 16(2+16 / 4)^{\wedge} 15\right)\right) /(16-1)!\left[1^{\wedge}-16(((\sin (4+16 / 2) * \mathrm{Pi}) /(\sin (4+16 / 2) * \mathrm{Pi})))\right.$ $+3^{\wedge}-16(\sin (4+16 / 2) * \mathrm{Pi}) /(\sin 1 / 3(4+16 / 2) \mathrm{Pi})+5^{\wedge}-$
$16(\sin (4+16 / 2) * \mathrm{Pi}) /(\sin 1 / 5(4+16 / 2) * \mathrm{Pi})]^{*} \mathrm{Pi}+233-55-4 / 5$

Input:

$\frac{\left(\frac{1}{2} \pi\right)^{16}\left(2+\frac{16}{4}\right)^{15}}{(16-1)!}\left(\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\sin \left(4+\frac{16}{2}\right) \pi}}{1^{16}}+\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{\sin (1)}{3}\left(4+\frac{16}{2}\right) \pi}}{3^{16}}+\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{\sin (1)}{5}\left(4+\frac{16}{2}\right) \pi}}{5^{16}}\right) \pi+233-55-\frac{4}{5}$
$n!$ is the factorial function

Exact result:

$$
\frac{886}{5}+\frac{19683 \pi^{17}\left(1+\frac{7632981758 \sin (12) \csc (1)}{1313681671142578125}\right)}{3587584000}
$$

Decimal approximation:

1729.004647486131216583211845677445371379835004793972005662...
1729.004647486...

Alternate forms:

$$
\frac{886}{5}+\frac{19683 \pi^{17}}{3587584000}+\frac{3816490879 \pi^{17} \sin (12) \csc (1)}{119721164062500000000000}
$$

$\left(42429180543750000000000000+1313681671142578125 \pi^{17}+\right.$ $\left.7632981758 \pi^{17} \sin (12) \csc (1)\right) / 239442328125000000000000$

$$
\frac{635719884800+19683 \pi^{17}}{3587584000}+\frac{3816490879 \pi^{17} \sin (12) \csc (1)}{119721164062500000000000}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+ \\
& 233-55-\frac{4}{5}= \\
& 178-\frac{4}{5}+\frac{\pi\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{\frac{1}{5} \times 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}\right)}{(1)_{15}}
\end{aligned}
$$

$$
\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+
$$

$$
233-55-\frac{4}{5}=
$$

$$
178-\frac{4}{5}+\frac{\pi\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{\frac{1}{5} 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}\right)}{14!!\times 15!!}
$$

$$
\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+
$$

$$
233-55-\frac{4}{5}=
$$

$$
178-\frac{4}{5}+\frac{\pi\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{\frac{1}{5} 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}\right)}{e^{\log \Gamma(16)}}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+ \\
& 233-55-\frac{4}{5}= \\
& \left(42429180543750000000000000+1313681671142578125 \pi^{17}-\right. \\
& \left.15265963516 i \pi^{17} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{2}} 12^{1+2 k_{2}} q^{-1+2 k_{1}}}{\left(1+2 k_{2}\right)!}\right) /
\end{aligned}
$$

$$
\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+
$$

$$
233-55-\frac{4}{5}=
$$

$$
\left(42429180543750000000000000+1313681671142578125 \pi^{17}+\right.
$$

$$
\left.7632981758 \pi^{17} \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 12^{1+2 k_{2}}}{\left(1+2 k_{2}\right)!\left(1-\pi^{2} k_{1}^{2}\right)}\right) /
$$

239442328125000000000000

$$
\begin{aligned}
& \frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+ \\
& 233-55-\frac{4}{5}=
\end{aligned}
$$

$$
\left(42429180543750000000000000+1313681671142578125 \pi^{17}-\right.
$$

$$
\left.15265963516 i \pi^{17} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{2}}\left(12-\frac{\pi}{2}\right)^{2 k_{2}} q^{-1+2 k_{1}}}{\left(2 k_{2}\right)!}\right) /
$$ 239442328125000000000000 for $q=e^{i}$

Integral representations:

$$
\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+
$$

$$
233-55-\frac{4}{5}=
$$

$$
\left(14143060181250000000000000+437893890380859375 \pi^{17}+\right.
$$

$$
\left.30531927032 \pi^{16}\left(\int_{0}^{\infty} \frac{\sqrt[\pi]{t}}{t+t^{2}} d t\right) \int_{0}^{1} \cos (12 t) d t\right) /
$$

79814109375000000000000

$$
\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)\right.}{(16-1)!}+
$$

$$
233-55-\frac{4}{5}=
$$

$$
\left(14143060181250000000000000+437893890380859375 \pi^{17}-\right.
$$

$$
\left.7632981758 i \pi^{31 / 2}\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-36 / s+s}}{s^{3 / 2}} d s\right) \int_{0}^{\infty} \frac{\sqrt[\pi]{t}}{t+t^{2}} d t\right)
$$

79814109375000000000000 for $\gamma>0$

$$
\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)\right.}{(16-1)!}+
$$

$$
\left(42429180543750000000000000+1313681671142578125 \pi^{17}-\right.
$$

$$
\left.3816490879 i \pi^{31 / 2}\left(\int_{0}^{\infty} \frac{\sqrt[\pi]{t}}{t+t^{2}} d t\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{6^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s\right) /
$$

239442328125000000000000 for $0<\gamma<1$
$\left(\left(\left(\left((((1 / 2 * \operatorname{Pi}) \wedge 16(2+16 / 4) \wedge 15)) /(16-1)!\left[1^{\wedge}-16\right.\right.\right.\right.\right.$
$(((\sin (4+16 / 2) * \operatorname{Pi}) /(\sin (4+16 / 2) * \mathrm{Pi})))+3^{\wedge}-16$
$(\sin (4+16 / 2) * \mathrm{Pi}) /(\sin 1 / 3(4+16 / 2) \mathrm{Pi})+5^{\wedge}-$
$\left.\left.\left.\left.16(\sin (4+16 / 2) * \mathrm{Pi}) /(\sin 1 / 5(4+16 / 2) * \mathrm{Pi})]^{*} \mathrm{Pi}+233-55-4 / 5\right)\right)\right)\right)^{\wedge} 1 / 15$

Input:

$$
\sqrt[15]{\frac{\left(\frac{1}{2} \pi\right)^{16}\left(2+\frac{16}{4}\right)^{15}}{(16-1)!}\left(\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\sin \left(4+\frac{6}{2}\right) \pi}}{1^{16}}+\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{3}\left(4+\frac{16}{2}\right) \pi}{3^{16}}+\frac{\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{\sin (1)}{5}\left(4+\frac{16}{2}\right) \pi}}{5^{16}}\right) \pi+233-55-\frac{4}{5}}
$$

Exact result:

$\sqrt[15]{\frac{886}{5}+\frac{19683 \pi^{17}\left(1+\frac{7632981758 \sin (12) \csc (1)}{1313681671142578125}\right)}{3587584000}}$
$\csc (x)$ is the cosecant function

Decimal approximation:

1.643815523315872719740459558951017206182900655629199501415...
1.6438155233...

Alternate forms:

$\sqrt[15]{\frac{886}{5}+\frac{19683 \pi^{17}\left(1-\frac{15265963516 \sin (1) \sin (12)}{1313681671142578} 125(\cos (2)-1)\right.}{}}$
$\sqrt[15]{\frac{886}{5}+\frac{19683\left(1+\frac{7632981758\left(e^{-12 i}-e^{12 i}\right)}{1313681671142578125\left(e^{-i}-e^{i}\right)}\right) \pi^{17}}{3587584000}}$
$\left(\left(\frac{1}{143}\left(42429180543750000000000000+1313681671142578125 \pi^{17}+\right.\right.\right.$ $\left.\left.\left.7632981758 \pi^{17} \sin (12) \csc (1)\right)\right)^{\wedge}(1 / 15)\right) /\left(5 \times 2^{4 / 5} \times 3^{7 / 15} \sqrt[5]{5} 7^{2 / 15}\right)$

All 15th roots of $886 / 5+\left(19683 \pi^{\wedge} 17(1+(7632981758 \sin (12)\right.$ $\csc (1)) / 1313681671142578125)$)/3587584000:
$e \sqrt[15]{\frac{886}{5}+\frac{19683 \pi^{17}\left(1+\frac{7632981758 \sin (12) \csc (1)}{1313681671142578125}\right)}{3587584000}} \approx 1.6438$ (real, principal root)
$e^{(2 i \pi) / 15} \sqrt[15]{\frac{886}{5}+\frac{19683 \pi^{17}\left(1+\frac{7632981758 \sin (12) \csc (1)}{1313681671142578125}\right)}{3587584000}} \approx 1.5017+0.6686 i$
$e^{(4 i \pi) / 15} \sqrt[15]{\frac{886}{5}+\frac{19683 \pi^{17}\left(1+\frac{7632981758 \sin (12) \csc (1)}{1313681671142578125}\right)}{3587584000}} \approx 1.0999+1.2216 i$
$e^{(2 i \pi) / 5} \sqrt[15]{\frac{886}{5}+\frac{19683 \pi^{17}\left(1+\frac{7632981758 \sin (12) \csc (1)}{1313681671142578125}\right)}{3587584000}} \approx 0.5080+1.5634 i$
$e^{(8 i \pi) / 15} \sqrt[15]{\frac{886}{5}+\frac{19683 \pi^{17}\left(1+\frac{7632981758 \sin (12) \csc (1)}{1313681671142578125}\right)}{3587584000}} \approx-0.17183+1.6348 i$

Addition formulas:

$$
\begin{aligned}
& z^{a_{1}+a_{2}}=z^{a_{1}} z^{a_{2}} \\
& z^{a_{1}+a_{2}+\ldots+a_{I n}}=\prod_{k=1}^{m} z^{a_{k}} \\
& \left(z_{1}+z_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} z_{1}^{k} z_{2}^{n-k} \text { for }(n \in \mathbb{Z} \text { and } n>0)
\end{aligned}
$$

Alternative representations:

$$
\left.\begin{array}{l}
\left(\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+\right. \\
\left.233-55-\frac{4}{5}\right) \wedge(1 / 15)=\left(178-\frac{4}{5}+\right. \\
\left.\quad \frac{\pi\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{\frac{1}{5} \times 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}\right)}{(1)_{15}}\right) \wedge
\end{array}\right)
$$

(1/15)

$$
\left.\begin{array}{l}
\left(\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+\right. \\
\left.233-55-\frac{4}{5}\right) \wedge(1 / 15)=\left(178-\frac{4}{5}+\right. \\
\left.\quad \frac{\pi\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{14!!\times 15!!}\right) 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}{14}\right)
\end{array}\right)
$$

(1/15)

$$
\left.\begin{array}{l}
\left(\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+\right. \\
\left.233-55-\frac{4}{5}\right) \wedge(1 / 15)=\left(178-\frac{4}{5}+\right. \\
\left.\quad \frac{\pi\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\left(\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1^{16}\left(\pi \cos \left(-12+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{3^{16}\left(4 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}+\frac{\pi \cos \left(-12+\frac{\pi}{2}\right)}{1_{5} \times 5^{16}\left(12 \pi \cos \left(-1+\frac{\pi}{2}\right)\right)}\right)}{e^{\log \Gamma(16)}}\right) \wedge
\end{array}\right)
$$

Series representations:

$$
\begin{gathered}
\left(\frac{1}{(16-1)!}\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\right. \\
\left.\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)+233-55-\frac{4}{5}\right) \wedge(1 / 15)=
\end{gathered}
$$

$$
\int\left(42429180543750000000000000+1313681671142578125 \pi^{17}-\right.
$$

$$
\begin{aligned}
& \left.\left.15265963516 i \pi^{17} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{2}} 12^{1+2 k_{2}} q^{-1+2 k_{1}}}{\left(1+2 k_{2}\right)!}\right) \wedge(1 / 15)\right) / \\
& \left(5 \times 2^{4 / 5} \times 3^{7 / 15} \sqrt[5]{5} 7^{2 / 15} \sqrt[15]{143}\right) \text { for } q=e^{i}
\end{aligned}
$$

$$
\left(\begin{array}{l}
\left(\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)\right. \\
(16-1)! \\
\left.233-55-\frac{4}{5}\right) \wedge(1 / 15)= \\
\end{array}\right.
$$

$$
\left(\left(42429180543750000000000000+1313681671142578125 \pi^{17}+\right.\right.
$$

$$
\begin{gathered}
\left.7632981758 \pi^{17} \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 12^{1+2 k_{2}}}{\left(1+2 k_{2}\right)!\left(1-\pi^{2} k_{1}^{2}\right)}\right) \wedge \\
(1 / 15) /\left(5 \times 2^{4 / 5} \times 3^{7 / 15} \sqrt[5]{5} 7^{2 / 15} \sqrt[15]{143}\right) \\
\left(\frac{1}{(16-1)!}\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\right. \\
\left.\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)+233-55-\frac{4}{5}\right) \wedge(1 / 15)=
\end{gathered}
$$

$42429180543750000000000000+1313681671142578125 \pi^{17}-$

$$
\begin{aligned}
& \left.15265963516 i \pi^{17} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{2}}\left(12-\frac{\pi}{2}\right)^{2 k_{2}} q^{-1+2 k_{1}}}{\left(2 k_{2}\right)!}\right) \wedge(1 / 15) / \\
& \left(5 \times 2^{4 / 5} \times 3^{7 / 15} \sqrt[5]{5} 7^{2 / 15} \sqrt[15]{143}\right) \text { for } q=e^{i}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left(\begin{array}{l}
\frac{\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)}{(16-1)!}+ \\
\left.233-55-\frac{4}{5}\right) \wedge(1 / 15)= \\
\left(\left(14143060181250000000000000+437893890380859375 \pi^{17}+\right.\right. \\
\left.\quad 30531927032 \pi^{16}\left(\int_{0}^{\infty} \frac{\pi / 4}{t+t^{2}} d t\right) \int_{0}^{1} \cos (12 t) d t\right) \wedge \\
(1 / 15)) /\left(5 \times 2^{4 / 5} \times 3^{2 / 5} \sqrt[5]{5} 7^{2 / 15} \sqrt[15]{143}\right) \\
\left(\frac{1}{(16-1)!}\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\right. \\
\left.\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)+233-55-\frac{4}{5}\right) \wedge(1 / 15)=
\end{array}\right.
\end{aligned}
$$

$\int\left(14143060181250000000000000+437893890380859375 \pi^{17}-\right.$
$\left.\left.7632981758 i \pi^{31 / 2}\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-36 / s+s}}{s^{3 / 2}} d s\right) \int_{0}^{\infty} \frac{\sqrt[\pi]{t}}{t+t^{2}} d t\right) \wedge(1 / 15)\right) /$ $\left(5 \times 2^{4 / 5} \times 3^{2 / 5} \sqrt[5]{5} 7^{2 / 15} \sqrt[15]{143}\right)$ for $\gamma>0$

$$
\begin{gathered}
\left(\frac{1}{(16-1)!}\left(\left(\frac{\sin \left(4+\frac{16}{2}\right) \pi}{1^{16}\left(\sin \left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{3} \times 3^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}+\frac{\sin \left(4+\frac{16}{2}\right) \pi}{\frac{1}{5} \times 5^{16}\left(\sin (1)\left(4+\frac{16}{2}\right) \pi\right)}\right) \pi\right)\right. \\
\left.\left(\left(\frac{\pi}{2}\right)^{16}\left(2+\frac{16}{4}\right)^{15}\right)+233-55-\frac{4}{5}\right) \wedge(1 / 15)=
\end{gathered}
$$

$\int 42429180543750000000000000+1313681671142578125 \pi^{17}-$

$$
\left.\left.3816490879 i \pi^{31 / 2}\left(\int_{0}^{\infty} \frac{\sqrt[\pi]{t}}{t+t^{2}} d t\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{6^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s\right) \wedge(1 / 15)\right) /
$$

$$
\left(5 \times 2^{4 / 5} \times 3^{7 / 15} \sqrt[5]{5} 7^{2 / 15} \sqrt[15]{143}\right) \text { for } 0<\gamma<1
$$

We have that:

It follows that

$$
\begin{align*}
& \sigma_{s}(1)+\sigma_{s}(2)+\cdots+\sigma_{s}(n)=n^{s}\left\{\sigma_{-s}(1)+\sigma_{-s}(2)+\cdots+\sigma_{-s}(n)\right\} \\
& -\frac{s n^{1+s}}{1+s} \zeta(1+s)+\frac{1}{2} n^{s} \zeta(s)-\frac{s n}{1-s} \zeta(1-s)+O(m) \tag{17.5}
\end{align*}
$$

if $s>0, m$ being the same as in (17.4). If $s=1,(17.5)$ reduces to

$$
\begin{align*}
& (n-1) \sigma_{-1}(1)+(n-2) \sigma_{-1}(2)+\cdots+(n-n) \sigma_{-1}(n) \\
& =\frac{\pi^{2}}{12} n^{2}-\frac{1}{2} n(\gamma-1+\log 2 n \pi)+O(\sqrt{n})^{*} . \tag{17.6}
\end{align*}
$$

From

$$
\begin{aligned}
& (n-1) \sigma_{-1}(1)+(n-2) \sigma_{-1}(2)+\cdots+(n-n) \sigma_{-1}(n) \\
& =\frac{\pi^{2}}{12} n^{2}-\frac{1}{2} n(\gamma-1+\log 2 n \pi)+O(\sqrt{n})^{*}
\end{aligned}
$$

We obtain, for $\mathrm{n}=2$:
$\left(4 \mathrm{Pi}^{\wedge} 2\right) / 12-1 / 2 * 2($ euler constant- $1+\ln (4 \mathrm{Pi}))+(\operatorname{sqrt}(2))$

Input:

$\frac{1}{12}\left(4 \pi^{2}\right)-\frac{1}{2} \times 2(\gamma-1+\log (4 \pi))+\sqrt{2}$
$\log (x)$ is the natural logarithm γ is the Euler-Mascheroni constant

Exact result:

$1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log (4 \pi)$

Decimal approximation:

2.595841784198724268162115373149934178167117260214799270087...
2.595841784...

Alternate forms:

$\frac{1}{3}\left(3+3 \sqrt{2}-3 \gamma+\pi^{2}-3 \log (4 \pi)\right)$
$\frac{1}{3}\left(-3 \gamma+\pi^{2}-3(-1-\sqrt{2}+2 \log (2))-3 \log (\pi)\right)$
$1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}+\log \left(\frac{1}{4 \pi}\right)$

Alternative representations:

$\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}=1-\gamma-\log _{e}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}$
$\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}=1-\gamma-\log (a) \log _{a}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}$
$\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}=1-\gamma+\mathrm{Li}_{1}(1-4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}$

Series representations:

$$
\begin{aligned}
& \frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}=1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\sum_{k=1}^{\infty} \frac{\left(\frac{1}{1-4 \pi}\right)^{k}}{k} \\
& \frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}= \\
& \left.\left.1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-2 i \pi \right\rvert\, \frac{\arg (4 \pi-x)}{2 \pi}\right]-\log (x)+\sum_{k=1}^{\infty} \frac{(-1)^{k}(4 \pi-x)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}= \\
& 1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,-\log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(4 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.
\end{aligned}
$$

Integral representations:

$$
\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}=1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\int_{1}^{4 \pi} \frac{1}{t} d t
$$

$$
\begin{aligned}
& \frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}= \\
& \quad 1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}+\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+4 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

$\left(\left(\left(\left(4 \mathrm{Pi}^{\wedge} 2\right) / 12-1 / 2 * 2(\text { euler constant- } 1+\ln (4 \mathrm{Pi}))+(\operatorname{sqrt}(2))\right)\right)\right)^{\wedge} 1 / 2$

Input:

$\sqrt{\frac{1}{12}\left(4 \pi^{2}\right)-\frac{1}{2} \times 2(\gamma-1+\log (4 \pi))+\sqrt{2}}$
$\log (x)$ is the natural logarithm γ is the Euler-Mascheroni constant

Exact result:

$\sqrt{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log (4 \pi)}$

Decimal approximation:

$1.611161625721865394057230517147071909233641376206228980311 \ldots$
1.61116162572...

Alternate forms:

$\sqrt{\frac{1}{3}\left(3+3 \sqrt{2}-3 \gamma+\pi^{2}-3 \log (4 \pi)\right)}$

1
$\sqrt{\frac{3}{-3 \gamma+\pi^{2}-3(-1-\sqrt{2}+2 \log (2))-3 \log (\pi)}}$
$\sqrt{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}+\log \left(\frac{1}{4 \pi}\right)}$

All 2nd roots of $1+\operatorname{sqrt}(2)-\operatorname{gamma}+\pi^{\wedge} 2 / 3-\log (4 \pi)$:
$e^{0} \sqrt{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log (4 \pi)} \approx 1.6112$ (real, principal root)

$$
e^{i \pi} \sqrt{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log (4 \pi)} \approx-1.6112 \text { (real root) }
$$

Alternative representations:

$\sqrt{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}=\sqrt{1-\gamma-\log _{e}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}$
$\sqrt{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}=\sqrt{1-\gamma-\log (a) \log _{a}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}$
$\sqrt{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}=\sqrt{1-\gamma+\mathrm{Li}_{1}(1-4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}$

Series representations:

$$
\begin{aligned}
& \sqrt{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}=\sqrt{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\sum_{k=1}^{\infty} \frac{\left(\frac{1}{1-4 \pi}\right)^{k}}{k}} \\
& \sqrt{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}= \\
& \sqrt{\left.\left.1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-2 i \pi \right\rvert\, \frac{\arg (4 \pi-x)}{2 \pi}\right]-\log (x)+\sum_{k=1}^{\infty} \frac{(-1)^{k}(4 \pi-x)^{k} x^{-k}}{k}} \text { for } x<0 \\
& \sqrt{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}= \\
& \sqrt{\left(1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log \left(z_{0}\right)-\left\lfloor\frac{\arg \left(4 \pi-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)+\right.} \\
& \sqrt{\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(4 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)}
\end{aligned}
$$

Integral representations:

$\sqrt{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}=\sqrt{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\int_{1}^{4 \pi} \frac{1}{t} d t}$
$\sqrt{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}=$
$\sqrt{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}+\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+4 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}$ for $-1<\gamma<0$
$1 /\left(\left(\left(\left(4 \mathrm{Pi}^{\wedge} 2\right) / 12-1 / 2 * 2(\text { euler constant }-1+\ln (4 \mathrm{Pi}))+(\operatorname{sqrt}(2))\right)\right)\right)^{\wedge} 1 / 64$

Input:

$$
1
$$

$\sqrt[64]{\frac{1}{12}\left(4 \pi^{2}\right)-\frac{1}{2} \times 2(\gamma-1+\log (4 \pi))+\sqrt{2}}$
$\log (x)$ is the natural logarithm

Exact result:

$\sqrt[64]{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log (4 \pi)}$

Decimal approximation:

0.985205670521153006968489609998707694558697555325715632043...
$0.9852056705 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the Omega mesons $\left(\omega / \omega_{3}|5+3| m_{\boldsymbol{u} / d}=255-390 \mid 0.988-1.18\right)$ Regge slope value (0.988) connected to the dilaton scalar field $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Alternate forms:

$\sqrt[64]{\frac{3}{3+3 \sqrt{2}-3 \gamma+\pi^{2}-3 \log (4 \pi)}}$
$\sqrt[64]{\frac{3}{-3 \gamma+\pi^{2}-3(-1-\sqrt{2}+2 \log (2))-3 \log (\pi)}}$
$\frac{1}{\sqrt[64]{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}+\log \left(\frac{1}{4 \pi}\right)}}$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{\sqrt[64]{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}}=\frac{1}{\sqrt[64]{1-\gamma-\log _{e}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}} \\
& \frac{1}{\sqrt[64]{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}} \\
& \sqrt[64]{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}
\end{aligned}=\frac{1}{\sqrt[64]{1-\gamma+\operatorname{Li}_{1}(1-4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}}=\frac{1}{\sqrt[64]{1-\gamma-\log (a) \log _{a}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{ }}}
$$

Series representations:

$\frac{1}{\sqrt[64]{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}}=$

$$
\sqrt[64]{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\sum_{k=1}^{\infty} \frac{\left(\frac{1}{1-4 \pi}\right)^{k}}{k}}
$$

$\frac{1}{\sqrt[64]{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}}=$

1
$\sqrt[64]{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-2 i \pi\left\lfloor\frac{\arg (4 \pi-x)}{2 \pi}\right\rfloor-\log (x)+\sum_{k=1}^{\infty} \frac{(-1)^{k}(4 \pi-x)^{k} x^{-k}}{k}}$
$\frac{1}{\sqrt[64]{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}}=$
$\sqrt[64]{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\log \left(z_{0}\right)-\left\lfloor\frac{\arg \left(4 \pi-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)+\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(4 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k}}$

Integral representations:

$\frac{1}{\sqrt[64]{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}}=\frac{1}{\sqrt[64]{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}-\int_{1}^{4 \pi} \frac{1}{t} d t}}$

$$
\frac{1}{\sqrt[64]{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}}=
$$

$$
\frac{1}{\sqrt[64]{1+\sqrt{2}-\gamma+\frac{\pi^{2}}{3}+\frac{i}{2 \pi} \int_{-i \infty}^{i \infty+\gamma} \frac{(-1+4 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}} \text { for }-1<\gamma<0
$$

$27 * 1 / 2 * 2 \log$ base $0.985205670521\left(\left(\left(1 /\left(\left(\left(\left(4 \mathrm{Pi}^{\wedge} 2\right) / 12-1 / 2 * 2(\right.\right.\right.\right.\right.\right.$ euler constant $-1+\ln$ $(4 \mathrm{Pi}))+((\operatorname{sqrt}(2))))))))+1$

Input interpretation:
$27 \times \frac{1}{2} \times 2 \log _{0.985205670521}\left(\frac{1}{\frac{1}{12}\left(4 \pi^{2}\right)-\frac{1}{2} \times 2(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

1729.000000...

1729

Alternative representations:

$$
\begin{aligned}
& \frac{27}{2} \times 2 \log _{0.0852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1= \\
& \quad 27 \log \left(\frac{1}{1-\gamma-\log (4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right) \\
& 1+\frac{\log (0.9852056705210000)}{}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{2} \times 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1= \\
& 1+27 \log _{0.9852056705210000}\left(\frac{1}{1-\gamma-\log _{e}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right)
\end{aligned}
$$

$$
\frac{27}{2} \times 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1=
$$

$$
1+27 \log _{0.9852056705210000}\left(\frac{1}{1-\gamma-\log (a) \log _{a}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right)
$$

Series representations:

$\frac{27}{2} \times 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1=$
$1-\frac{27 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{3}{3-3 \gamma+\pi^{2}-3 \log (4 \pi)+3 \sqrt{2}}\right)^{k}}{k}}{\log (0.9852056705210000)}$

$$
\begin{aligned}
& \frac{27}{2} \times 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1= \\
& 1+27 \log _{0.9852056705210000}(\\
& 1 /\left(1-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+4 \pi)^{-k}}{k}+\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right)\right. \\
& \left.\left.\sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\frac{27}{2} \times 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1=
$$

$$
1+27 \log _{0.9852056705210000}\left(1 /\left(1-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+4 \pi)^{-k}}{k}+\right.\right.
$$

$$
\left.\left.\left(\frac{1}{z_{0}}\right)^{1 / 2 \arg \left(2-z_{0}\right)((2 \pi)\rfloor} z_{0}^{1 / 2\left(1+\arg \left(2-z_{0}\right) /(2 \pi)\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)\right)
$$

Integral representations:

$$
\begin{aligned}
& \frac{27}{2} \times 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1= \\
& 1+27 \log _{0.9852056705210000}\left(\frac{3}{3-3 \gamma+\pi^{2}-3 \int_{1}^{4 \pi} \frac{1}{t} d t+3 \sqrt{2}}\right)
\end{aligned}
$$

$$
\frac{27}{2} \times 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1=
$$

$$
1+27 \log _{0.9852056705210000}\left(\frac{1}{1-\gamma+\frac{\pi^{2}}{3}-\frac{1}{2 i \pi} \int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{(-1+4 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+\sqrt{2}}\right)
$$

for $-1<\gamma<0$
$\left(\left(\left(\left(27^{*} 1 / 2 * 2 \log\right.\right.\right.\right.$ base $0.985205670521\left(\left(\left(1 /\left(\left(\left(\left(4 \mathrm{Pi}^{\wedge} 2\right) / 12-1 / 2 * 2\right.\right.\right.\right.\right.\right.$ (euler constant- 1 $+\ln (4 \mathrm{Pi}))+((\operatorname{sqrt}(2))))))))+1))))^{\wedge} 1 / 15$

Input interpretation:

$\sqrt[15]{27 \times \frac{1}{2} \times 2 \log _{0.985205670521}\left(\frac{1}{\frac{1}{12}\left(4 \pi^{2}\right)-\frac{1}{2} \times 2(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+1}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm
γ is the Euler-Mascheroni constant

Result:

1.643815228747586916876220187768741933757775158298989979528...
1.6438152287...

2 log base $0.985205670521\left(\left(\left(1 /\left(\left(\left(4 \mathrm{Pi}^{\wedge} 2\right) / 12-1 / 2 * 2\right.\right.\right.\right.\right.$ (euler constant- $1+\ln$ (4Pi))+(sqrt(2)))))))) $)$-Pi+1/golden ratio

Input interpretation:

$2 \log _{0.985205670521}\left(\frac{1}{\frac{1}{12}\left(4 \pi^{2}\right)-\frac{1}{2} \times 2(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm γ is the Euler-Mascheroni constant

Result:

125.4764413...
125.4764413...

Alternative representations:

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}= \\
& \left.-\pi+\frac{1}{\phi}+\frac{2 \log \left(\frac{1}{\log (0.9852056705210000)}\right.}{1-\gamma-\log (4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}= \\
& \quad-\pi+2 \log _{0.9852056705210000}\left(\frac{1}{1-\gamma-\log _{e}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right)+\frac{1}{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}= \\
& -\pi+2 \log _{0.9852056705210000}\left(\frac{1}{1-\gamma-\log (a) \log _{a}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right)+\frac{1}{\phi}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{3}{3-3 \gamma+\pi^{2}-3 \log (4 \pi)+3 \sqrt{2}}\right)^{k}}{k}}{\log (0.9852056705210000)}
\end{aligned}
$$

$$
2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}=
$$

$$
-\frac{1}{\phi}\left(-1+\phi \pi-2 \phi \log _{0.9852056705210000}\left(1 / / 1-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\right.\right.
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+4 \pi)^{-k}}{k}+\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x}
$$

$$
\left.\left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
$$

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}= \\
& -\frac{1}{\phi}\left(-1+\phi \pi-2 \phi \log _{0.9852056705210000}(1 /\right. \\
& \left(1-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+4 \pi)^{-k}}{k}+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left.\left.z_{0}^{1 / 2\left(1+\left\lfloor\operatorname{agg}\left(2-z_{0}\right) /(2 \pi)\right)\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi+2 \log _{0.9852056705210000}\left(\frac{3}{3-3 \gamma+\pi^{2}-3 \int_{1}^{4 \pi} \frac{1}{t} d t+3 \sqrt{2}}\right)
\end{aligned}
$$

$2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+2 \log _{0.9852056705210000}\left(\frac{1}{1-\gamma+\frac{\pi^{2}}{3}-\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+4 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+\sqrt{2}}\right)
$$

```
for \(-1<\gamma<0\)
```

$2 \log$ base $0.985205670521\left(\left(\left(1 /\left(\left(\left(\left(4 \mathrm{Pi}^{\wedge} 2\right) / 12-1 / 2 * 2\right.\right.\right.\right.\right.\right.$ (euler constant- $1+\ln$ $(4 \mathrm{Pi}))+(\operatorname{sqrt}(2))))))))+11+1 /$ golden ratio

Input interpretation:

$2 \log _{0.985205670521}\left(\frac{1}{\frac{1}{12}\left(4 \pi^{2}\right)-\frac{1}{2} \times 2(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}$

Result:

139.6180340...
139.618034...

Alternative representations:

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}= \\
& \left.11+\frac{1}{\phi}+\frac{2 \log \left(\frac{1}{\log (0.9852056705210000)}\right.}{1-\gamma-\log (4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}= \\
& 11+2 \log _{0.9852056705210000}\left(\frac{1}{1-\gamma-\log _{e}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right)+\frac{1}{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}= \\
& 11+2 \log _{0.9852056705210000}\left(\frac{1}{1-\gamma-\log (a) \log _{a}(4 \pi)+\frac{4 \pi^{2}}{12}+\sqrt{2}}\right)+\frac{1}{\phi}
\end{aligned}
$$

Series representations:

$2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}=$

$$
11+\frac{1}{\phi}-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{3}{3-3 \gamma+\pi^{2}-3 \log (4 \pi)+3 \sqrt{2}}\right)^{k}}{k}}{\log (0.9852056705210000)}
$$

$$
\begin{aligned}
& 2 \log _{0.0852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}= \\
& \frac{1}{\phi}\left(1+11 \phi+2 \phi \log _{0.9852056705210000}\left(1 /\left(1-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\right.\right.\right. \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+4 \pi)^{-k}}{k}+\exp \left(i \pi \left\lvert\, \frac{\arg (2-x)}{2 \pi}\right.\right)\right) \sqrt{x} \\
& \\
& \left.\left.\sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}=$ $\frac{1}{\phi}\left(1+11 \phi+2 \phi \log _{0.9852056705210000}(1 /\right.$

$$
\left(1-\gamma+\frac{\pi^{2}}{3}-\log (-1+4 \pi)+\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+4 \pi)^{-k}}{k}+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\right.
$$

Integral representations:

$$
\begin{aligned}
& 2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}+2 \log _{0.9852056705210000}\left(\frac{3}{3-3 \gamma+\pi^{2}-3 \int_{1}^{4 \pi} \frac{1}{t} d t+3 \sqrt{2}}\right)
\end{aligned}
$$

$$
2 \log _{0.9852056705210000}\left(\frac{1}{\frac{4 \pi^{2}}{12}-\frac{2}{2}(\gamma-1+\log (4 \pi))+\sqrt{2}}\right)+11+\frac{1}{\phi}=
$$

$$
11+\frac{1}{\phi}+2 \log _{0.9852056705210000}(
$$

$$
\left.\frac{1}{1-\gamma+\frac{\pi^{2}}{3}-\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+4 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+\sqrt{2}}\right) \text { for }-1<\gamma<0
$$

From
The normal number of prime factors of a number \mathbf{n} - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLVIII, 1917, 76-92

Now, we have that:

But

$$
\begin{equation*}
\frac{1}{\log x-\log p}=\frac{1}{\log x}+\frac{\log p}{(\log x)^{2}}\left\{1+\frac{\log p}{\log x}+\cdots\right\} \leq \frac{1}{\log x}+\frac{2 \log p}{(\log x)^{2}}, \tag{2.25}
\end{equation*}
$$

since $\log p \leq \frac{1}{2} \log x$; and so

$$
\begin{align*}
\sum_{p^{2} \leq x} \frac{1}{p \log (x / p)} & <\frac{1}{\log x} \sum_{p^{2} \leq x} \frac{1}{p}+\frac{2}{(\log x)^{2}} \sum_{p^{2} \leq x} \frac{\log p}{p} \tag{2.26}\\
& <\frac{\log \log x+B}{\log x}+\frac{I I}{\log x}<\frac{\log \log x+C}{\log x} .
\end{align*}
$$

For $x=3$ and $p=\sqrt{ } 3$
$1 /(\ln (3))+(2 \ln (\operatorname{sqrt} 3)) /\left((\ln 3)^{\wedge} 2\right)$

Input:

$\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}$

Exact result:

$$
\frac{2}{\log _{(3)}}
$$

Decimal approximation:
1.820478453253674787228480331472214001225272114510423489452...
1.82047845325.....

Property:

$\frac{2}{\log (3)}$ is a transcendental number

Alternative representations:

$\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}=\frac{1}{\log _{e}(3)}+\frac{2 \log _{e}(\sqrt{3})}{\log _{e}^{2}(3)}$
$\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}=\frac{1}{\log (a) \log _{a}(3)}+\frac{2 \log (a) \log _{a}(\sqrt{3})}{\left(\log (a) \log _{a}(3)\right)^{2}}$
$\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}=-\frac{1}{\mathrm{Li}_{1}(-2)}-\frac{2 \mathrm{Li}_{1}(1-\sqrt{3})}{\left(-\mathrm{Li}_{1}(-2)\right)^{2}}$

Series representations:

$$
\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}=\frac{2}{\log (2)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}}{k}}
$$

$$
\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}=\frac{2}{2 i \pi\left\lfloor\frac{\operatorname{agg}(3-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-x x^{k} x^{-k}\right.}{k}} \text { for } x<0
$$

$$
\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}=\frac{2}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}=\frac{2}{\int_{1}^{3} \frac{1}{t} d t} \\
& \frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}=\frac{4 i \pi}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }-1<\gamma<0
\end{aligned}
$$

$(\ln \ln (3)+1) / \ln (3)$

Input:

$$
\frac{\log (\log (3))+1}{\log (3)}
$$

Decimal approximation:

$0.995845248502595625910060697024710370192775541553465572766 \ldots$
$0.9958452485025 \ldots \ldots$ result very near to the value of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the Omega mesons $\left(\omega / \omega_{3}|5+3| m_{u / d}=255-390 \mid 0.988-1.18\right)$ Regge slope value (0.988) connected to the dilaton scalar field $\mathbf{0} \mathbf{9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Alternate form:

$\frac{1}{\log (3)}+\frac{\log (\log (3))}{\log (3)}$

Alternative representations:

$$
\begin{aligned}
& \frac{\log (\log (3))+1}{\log (3)}=\frac{1+\log _{e}(\log (3))}{\log _{e}(3)} \\
& \frac{\log (\log (3))+1}{\log (3)}=\frac{1+\log (a) \log _{a}(\log (3))}{\log (a) \log _{a}(3)}
\end{aligned}
$$

$$
\frac{\log (\log (3))+1}{\log (3)}=-\frac{1-\operatorname{Li}_{1}(1-\log (3))}{\operatorname{Li}_{1}(-2)}
$$

Series representations:

$$
\begin{aligned}
& \frac{\log (\log (3))+1}{\log (3)}=\frac{-i+2 \pi\left\lfloor\frac{\arg (-x+\log (3))}{2 \pi}\right\rfloor-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}(-x+\log (3))^{k}}{k}}{2 \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-x x^{k} x^{-k}\right.}{k}} \text { for } x<0 \\
& \frac{\log (\log (3))+1}{\log (3)}=\frac{-i+2 \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\log (3)-z_{0}\right)^{k} z_{0}^{-k}}{k}}{2 \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log (\log (3))+1}{\log (3)}= \\
& \frac{1+\left\lfloor\frac{\arg \left(\log (3)-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\log (3)-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\log (3)-z_{0} k^{k} z_{0}^{-k}\right.}{k}}{\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}}
\end{aligned}
$$

Integral representations:

$$
\frac{\log (\log (3))+1}{\log (3)}=\frac{1+\int_{1}^{\log (3)} \frac{1}{t} d t}{\int_{1}^{3} \frac{1}{t} d t}
$$

$$
\frac{\log (\log (3))+1}{\log (3)}=\frac{2 i \pi+\int_{-i \infty+\gamma}^{i \infty} \frac{\Gamma(-s)^{2} \Gamma(1+s)(-1+\log (3))^{-s}}{\Gamma(1-s)} d s}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-s} \Gamma \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }-1<\gamma<0
$$

$$
2\left(\left(1 /(\ln (3))+(2 \ln (\operatorname{sqrt} 3)) /\left((\ln 3)^{\wedge} 2\right)-(((\ln \ln (3)+1) / \ln (3)))\right)\right)
$$

Input:

$2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)$

Exact result:

$2\left(\frac{2}{\log (3)}-\frac{1+\log (\log (3))}{\log (3)}\right)$

Decimal approximation:

1.649266409502158322636839268895007262064993145913915833372...
1.6492664095021583......

Alternate forms:

$-\frac{2(\log (\log (3))-1)}{\log (3)}$
$\frac{2-2 \log (\log (3))}{\log (3)}$
$\frac{2}{\log (3)}-\frac{2 \log (\log (3))}{\log (3)}$

Alternative representations:

$$
\begin{aligned}
& 2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)= \\
& 2\left(\frac{1}{\log (a) \log _{a}(3)}-\frac{1+\log (a) \log _{a}(\log (3))}{\log (a) \log _{a}(3)}+\frac{2 \log (a) \log _{a}(\sqrt{3})}{\left(\log (a) \log _{a}(3)\right)^{2}}\right) \\
& 2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)=2\left(\frac{1}{\log _{e}(3)}-\frac{1+\log _{e}(\log (3))}{\log _{e}(3)}+\frac{2 \log _{e}(\sqrt{3})}{\log _{e}^{2}(3)}\right) \\
& 2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)= \\
& 2\left(-\frac{1}{\mathrm{Li}_{1}(-2)}--\frac{1-\mathrm{Li}_{1}(1-\log (3))}{\mathrm{Li}_{1}(-2)}-\frac{2 \mathrm{Li}_{1}(1-\sqrt{3})}{\left(-\mathrm{Li}_{1}(-2)\right)^{2}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)= \\
& -\frac{2\left(i+2 \pi\left[\frac{\arg (-x+\log (3))}{2 \pi}\right]-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}(-x+\log (3))^{k}}{k}\right)}{2 \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right]-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}}{k}} \text { for } x<0 \\
& 2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)= \\
& -\underline{2\left(i+2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\log (3)-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)\right.} \\
& 2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k} \\
& 2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)= \\
& -\left(\left(2 \left(-1+\left[\frac{\arg \left(\log (3)-z_{0}\right)}{2 \pi}\right] \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\right.\right.\right. \\
& \left.\left\lfloor\frac{\arg \left(\log (3)-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\log (3)-z_{0}\right)^{k} z_{0}^{k}}{k}\right) \mid / \\
& \left.\left(\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)
\end{aligned}
$$

Integral representations:

$2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)=-\frac{2\left(-1+\int_{1}^{\log (3)} \frac{1}{t} d t\right)}{\int_{1}^{3} \frac{1}{t} d t}$

$$
2\left(\frac{1}{\log (3)}+\frac{2 \log (\sqrt{3})}{\log ^{2}(3)}-\frac{\log (\log (3))+1}{\log (3)}\right)=\frac{2 i\left(2 \pi+i \int_{-i \infty+\gamma}^{i \infty} \frac{\Gamma(-s)^{2} \Gamma(1+s)(-1+\log (3))^{-s}}{\Gamma(1-s)} d s\right)}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}
$$

Ulam Spiral

From:
http://primorial-sieve.com/3 Prime\%20number\%20pattern.php

100	99	98	92	96	95	94	93	92	91
65	64	63	62	64	60	59	58	57	90
66	37	36	35	34	33	32	34	56	89
62	38	7	16	15	14	13	30	55	88
68	39	18	5	4	3	12	29	54	87
69	40	19	6	1	2	14	28	53	86
70	4	20	7	8	9	10	27	52	85
74	42	21	22	23	24	25	26	51	84
72	43	44	45	46	47	48	49	50	83
73	74	75	76	77	78	79	80	81	82

$[(97 / 89+89 / 83+83 / 79+79 / 73+73 / 71+71 / 67+67 / 61+61 / 59+59 / 53+53 / 47+$ $47 / 43+43 / 41+41 / 37+37 / 31+31 / 29+29 / 23+23 / 19+19 / 17+17 / 13+13 / 11+$ $11 / 7+7 / 5+5 / 3+3 / 2) * 1 / 24]$

Input:
$\left(\frac{97}{89}+\frac{89}{83}+\frac{83}{79}+\frac{79}{73}+\frac{73}{71}+\frac{71}{67}+\frac{67}{61}+\frac{61}{59}+\frac{59}{53}+\frac{53}{47}+\frac{47}{43}+\frac{43}{41}+\right.$ $\left.\frac{41}{37}+\frac{37}{31}+\frac{31}{29}+\frac{29}{23}+\frac{23}{19}+\frac{19}{17}+\frac{17}{13}+\frac{13}{11}+\frac{11}{7}+\frac{7}{5}+\frac{5}{3}+\frac{3}{2}\right) \times \frac{1}{24}$

Exact result:

677054336195724798111142246030764679
570449805512293218495612902432599440

Decimal approximation:

1.186878020911402076501256271953137905236464024789974791971...
1.186878020911...

Input interpretation:

$1.186878020911402076501256271953137905236464024789974791971^{1.5236+1.2683}$

Result:

1.613371406015215413838501589685286116664864943342145497410...
1.613371406...
$[(97 / 89+89 / 83+83 / 79+79 / 73+73 / 71+71 / 67+67 / 61+61 / 59+59 / 53+53 / 47+$ $47 / 43+43 / 41+41 / 37+37 / 31+31 / 29+29 / 23+23 / 19+19 / 17+17 / 13+13 / 11+$ $\left.11 / 7+7 / 5+5 / 3+3 / 2)^{*} 1 / 24\right]^{\wedge} 6$

Input:

$$
\begin{array}{r}
\left(\left(\frac{97}{89}+\frac{89}{83}+\frac{83}{79}+\frac{79}{73}+\frac{73}{71}+\frac{71}{67}+\frac{67}{61}+\frac{61}{59}+\frac{59}{53}+\frac{53}{47}+\frac{47}{43}+\frac{43}{41}+\frac{41}{37}+\right.\right. \\
\left.\left.\frac{37}{31}+\frac{31}{29}+\frac{29}{23}+\frac{23}{19}+\frac{19}{17}+\frac{17}{13}+\frac{13}{11}+\frac{11}{7}+\frac{7}{5}+\frac{5}{3}+\frac{3}{2}\right) \times \frac{1}{24}\right)^{6}
\end{array}
$$

Exact result:

96325471443063196617901077941726536246063882958624743397889 :
631504474952879671301182457469946513948491944813313111669911 : 874191586578516625124201111049898143476838664995154192486608 : $233567091703128193322294407912907921 /$
34459154590074954903194170060841016777864373477487011884917 : 413317144424040513526493159794469830380742770355432004605 : 726509916586664358111726303906102790874799443651283642980 : 411569997399792275699005063862419456000000

Decimal approximation:

2.795352137594437463215607882784766428695746202551642565502...
2.7953521375...

Input interpretation:

$\sqrt{2.795352137594437463215607882784766428695746202551642565502}$

Result:

1.671930661718492877049814408665075227093289566919910534188
1.6719306617...

We have also:
$[(97 / 89+89 / 83+83 / 79+79 / 73+73 / 71+71 / 67+67 / 61+61 / 59+59 / 53+53 / 47+47 / 43+43 / 41$
$+41 / 37+37 / 31+31 / 29+29 / 23+23 / 19+19 / 17+17 / 13+13 / 11+11 / 7+7 / 5+5 / 3+3 / 2)(11.845$
$8)^{\wedge} 1 / 8 * 1 /(24)$]
Where 11.8458 is an entropy deriving from $\ln (139503)$
Input interpretation:

$$
\begin{gathered}
\left(\frac{97}{89}+\frac{89}{83}+\frac{83}{79}+\frac{79}{73}+\frac{73}{71}+\frac{71}{67}+\frac{67}{61}+\frac{61}{59}+\frac{59}{53}+\frac{53}{47}+\frac{47}{43}+\frac{43}{41}+\frac{41}{37}+\frac{37}{31}+\right. \\
\left.\frac{31}{29}+\frac{29}{23}+\frac{23}{19}+\frac{19}{17}+\frac{17}{13}+\frac{13}{11}+\frac{11}{7}+\frac{7}{5}+\frac{5}{3}+\frac{3}{2}\right) \sqrt[8]{11.8458} \times \frac{1}{24}
\end{gathered}
$$

Result:

$1.616596510290705942928488832563501790747715820085286562000 \ldots$
1.61659651029...

We have that:
A fractal is a mathematically defined, self similar object which has similarity and symmetry on a variety of scales. The Julia Set Fractal is a type of fractal defined by the behavior of a function that operates on input complex numbers. More explicitly, upon iterative updating of input complex number, the Julia Set Fractal represents the set of inputs whose resulting outputs either tend towards infinity or remain bounded.

Mathematics of the Julia Set Fractal

The Julia Set Fractal is dependent upon complex numbers - numbers which have both a real and 'imaginary' component i, i being defined as the square root of -1 . A complex number can formally be expressed as:

$$
\mathrm{c}=\mathrm{r}+\mathrm{b} * \mathrm{i}
$$

Where c is the complex number, r is the real component and b the imaginary component. To create the bounded set, we first create a mathematical function $\mathbf{f}(\mathbf{z})$ which accepts a complex number, a simple example is the following equation...

$$
\mathrm{z}=\mathrm{z}^{2}+\mathrm{c}
$$

...where c is a constant complex number. The complex number z can be updated iteratively (here defined as $\mathbf{F}(\mathbf{z})$):

- Initialization of the complex number variable z.
- Iteratively updating the value of z based upon the function $f()$.

Often, we set a threshold to prevent infinite iteration, which can be one or both of a) we surpass a value of z (in the examples below, iteration stops when absolute value of z exceeds 2) b) and/or b) we surpass a predefined number of iterations. Based upon either method, z can be defined as bounded or unbounded (iteration trends towards infinity).

The Douady rabbit is any of various particular filled Julia sets associated with the parameter near the center period 3 buds of Mandelbrot set for complex quadratic map.

We have:
$[(97 / 89+89 / 83+83 / 79+79 / 73+73 / 71+71 / 67+67 / 61+61 / 59+59 / 53+53 / 47+47 / 43+43 / 41$ $+41 / 37+37 / 31+31 / 29+29 / 23+23 / 19+19 / 17+17 / 13+13 / 11+11 / 7+7 / 5+5 / 3+3 / 2)(2.06-$ $1.3934 / 2) * 1 /(24)]$

Where 2.06 and 1.3934 are two Hausdorff dimension, i.e. 1.3934 for the Julia set for $c=-0,123+0.745 \mathrm{i}$, while 2.06 for the Lorenz attractor

Input interpretation:

$$
\begin{array}{r}
\left(\frac{97}{89}+\frac{89}{83}+\frac{83}{79}+\frac{79}{73}+\frac{73}{71}+\frac{71}{67}+\frac{67}{61}+\frac{61}{59}+\frac{59}{53}+\frac{53}{47}+\frac{47}{43}+\frac{43}{41}+\frac{41}{37}+\frac{37}{31}+\right. \\
\left.\frac{31}{29}+\frac{29}{23}+\frac{23}{19}+\frac{19}{17}+\frac{17}{13}+\frac{13}{11}+\frac{11}{7}+\frac{7}{5}+\frac{5}{3}+\frac{3}{2}\right)\left(2.06-\frac{1.3934}{2}\right) \times \frac{1}{24}
\end{array}
$$

Result:

1.618070805908514450894162675553712906208871404996172633895...
1.61807080590851445.....

Now, from 101 to 200, we have the following prime numbers:
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199

Thence,
(199/197+197/193+193/191+191/181+181/179+179/173+173/167+167/163+163/1 $57+157 / 151+151 / 149+149 / 139+139 / 137+137 / 131+131 / 127+127 / 113+113 / 109+10$ $9 / 107+107 / 103+103 / 101$)* $1 / 20$

Input:

$$
\begin{gathered}
\left(\frac{199}{197}+\frac{197}{193}+\frac{193}{191}+\frac{191}{181}+\frac{181}{179}+\frac{179}{173}+\frac{173}{167}+\frac{167}{163}+\frac{163}{157}+\frac{157}{151}+\frac{151}{149}+\right. \\
\left.\frac{149}{139}+\frac{139}{137}+\frac{137}{131}+\frac{131}{127}+\frac{127}{113}+\frac{113}{109}+\frac{109}{107}+\frac{107}{103}+\frac{103}{101}\right) \times \frac{1}{20}
\end{gathered}
$$

Exact result:

175920640480325044604603282299425538139497733
170004045693312436240693405065149782450812170

Decimal approximation:

1.034802670506360505054235319585467414133742213225363599994...
1.03480267050636....

Performing the mean with the previous result for the primes between 1 to 10 , we obtain:
$(1.03480267050636+1.186878020911) / 2$

Input interpretation:

$1.03480267050636+1.186878020911$
2

Result:

1.11084034570868

1.11084034570868

From which, we obtain the following result:
$1+1 /((((1.03480267050636+1.186878020911) / 2)))^{\wedge} 4$

Input interpretation:

$1+\frac{1}{\left(\frac{1.03480267050636+1.186878020911}{2}\right)^{4}}$

Result:

1.656739926860039435540872040193724995228204057232412381480 .
1.65673992686.... result very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164.2696$ i.e. $1.65578 \ldots$

From

II

RAMANUJAN AND THE THEORY OF PRIME NUMBERS

16 Jan. 1913

$$
' \phi_{\mathbf{2}}(y)+\log 2\left(1-\frac{y}{3.1!}+\frac{y^{2}}{7.2!}-\frac{y^{3}}{15.3!}+\ldots\right)=\frac{1}{y}+F(y) .
$$

where

$$
y F(y)=\cdot 0000098844 \cos \left(\frac{2 \pi \log y}{\log 2}+\cdot 872811\right)
$$

$0.0000098844 \cos \left(\left(2 \mathrm{Pi}^{*} \ln (\mathrm{x})\right) / \ln 2+0.872811\right)=-\left(\left(\left(\ln 2\left(\left(\left(1-\mathrm{x} /(3 * 1)!+\mathrm{x}^{\wedge} 2 /\left(7^{*} 2\right)!-\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\mathrm{x}^{\wedge} 3 /(15 * 3)!\right)\right)\right)$)))

Input interpretation:

$9.8844 \times 10^{-6} \cos \left(\frac{2 \pi \log (x)}{\log (2)}+0.872811\right)=-\left(\log (2)\left(1-\frac{x}{(3 \times 1)!}+\frac{x^{2}}{(7 \times 2)!}-\frac{x^{3}}{(15 \times 3)!}\right)\right)$
$\log (x)$ is the natural logarithm $n!$ is the factorial function

Result:

$9.8844 \times 10^{-6} \cos \left(\frac{2 \pi \log (x)}{\log (2)}+0.872811\right)=$

$$
\begin{aligned}
& -\left(-\frac{x^{3}}{119622220865480194561963161495657715064383733760000000000}+\right. \\
& \left.\frac{x^{2}}{87178291200}-\frac{x}{6}+1\right) \log (2)
\end{aligned}
$$

Plot:

Alternate forms:

$$
\begin{aligned}
& -5.86224 \times 10^{-52} x^{3}+8.0439 \times 10^{-7} x^{2}- \\
& \quad 11687.6 x+\cos \left(\frac{2 \pi \log (x)}{\log (2)}+0.872811\right)=-70125.4
\end{aligned}
$$

$$
\begin{aligned}
& 9.8844 \times 10^{-6} \cos \left(\frac{2 \pi \log (x)}{\log (2)}+0.872811\right)= \\
& \left(\left(x^{3}-1372156063383359761953709428703022284800000000 x^{2}+\right.\right. \\
& 19937036810913365760327193582609619177397288960000 \\
& 000000 x- \\
& 119622220865480194561963161495657715064383733760000 \\
& 000000) \log (2)) / \\
& \begin{array}{c}
119622220865480194561963161495657715064383733760000000000 \\
\left(3.17623 \times 10^{-6}+3.78641 \times 10^{-6} i\right) x^{(2 i \pi) / \log (2)}+ \\
\left(3.17623 \times 10^{-6}-3.78641 \times 10^{-6} i\right) x^{-(2 i \pi) / \log (2)}= \\
\frac{x^{3} \log (2)}{119622220865480194561963161495657715064383733760000000000}- \\
\frac{x^{2} \log (2)}{87178291200}+\frac{1}{6} x \log (2)-\log (2)
\end{array}
\end{aligned}
$$

Alternate form assuming x is positive:

$$
\begin{gathered}
x\left(\left(8.0439 \times 10^{-7}-5.86224 \times 10^{-52} x\right) x-11687.6\right)+ \\
\cos (9.06472 \log (x)+0.872811)+70125.4=0
\end{gathered}
$$

Expanded form:

$$
\begin{aligned}
& 9.8844 \times 10^{-6} \cos \left(\frac{2 \pi \log (x)}{\log (2)}+0.872811\right)= \\
& \frac{x^{3} \log (2)}{119622220865480194561963161495657715064383733760000000000} \\
& \frac{x^{2} \log (2)}{87178291200}+\frac{1}{6} x \log (2)-\log (2)
\end{aligned}
$$

Alternate form assuming $\mathbf{x}>\mathbf{0}$:

$9.8844 \times 10^{-6} \cos (9.06472 \log (x)+0.872811)=$

$$
\begin{aligned}
& \frac{x^{3} \log (2)}{119622220865480194561963161495657715064383733760000000000}- \\
& \frac{x^{2} \log (2)}{87178291200}+\frac{1}{6} x \log (2)-\log (2)
\end{aligned}
$$

Numerical solution:

$x \approx 5.99998601882105$.
5.999986...
$0.0000098844 \cos \left(\left(2 \mathrm{Pi}^{*} \ln (5.99998601882105)\right) / \ln 2+0.872811\right)$

Input interpretation:

$9.8844 \times 10^{-6} \cos \left(\frac{2 \pi \log (5.99998601882105)}{\log (2)}+0.872811\right)$

Result:

$-1.61546 \ldots \times 10^{-6}$
$-1.61546 \ldots * 10^{-6}$

Addition formulas:

$$
\begin{aligned}
& 9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)= \\
& 9.8844 \times 10^{-6}\left(\cos (0.872811) \cos \left(-\frac{2 \pi \log (5.999986018821050000)}{\log (2)}\right)+\right. \\
& \left.\sin (0.872811) \sin \left(-\frac{2 \pi \log (5.999986018821050000)}{\log (2)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)= \\
& 9.8844 \times 10^{-6} \cos (0.872811) \cos \left(\frac{2 \pi \log (5.999986018821050000)}{\log (2)}\right)- \\
& 9.8844 \times 10^{-6} \sin (0.872811) \sin \left(\frac{2 \pi \log (5.999986018821050000)}{\log (2)}\right)
\end{aligned}
$$

$$
9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)=
$$

$$
9.8844 \times 10^{-6}\left(\cosh \left(\frac{2 i \pi \log (5.999986018821050000)}{\log (2)}\right) \cos (0.872811)+\right.
$$

$$
\left.i \sinh \left(\frac{2 i \pi \log (5.999986018821050000)}{\log (2)}\right) \sin (0.872811)\right)
$$

$9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)=$

$$
\begin{aligned}
& 9.8844 \times 10^{-6} \cosh \left(-\frac{2 i \pi \log (5.999986018821050000)}{\log (2)}\right) \cos (0.872811)- \\
& 9.8844 \times 10^{-6} i \sinh \left(-\frac{2 i \pi \log (5.999986018821050000)}{\log (2)}\right) \sin (0.872811)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& 9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)= \\
& 9.8844 \times 10^{-6} \cosh \left(i\left(0.872811+\frac{2 \pi \log (5.999986018821050000)}{\log (2)}\right)\right) \\
& 9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)= \\
& 9.8844 \times 10^{-6} \cosh \left(-i\left(0.872811+\frac{2 \pi \log (5.999986018821050000)}{\log (2)}\right)\right) \\
& 9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)= \\
& 4.9422 \times 10^{-6}\left(e^{-i(0.872811+(2 \pi \log (5.99986018821050000)) / \log (2))}+\right. \\
& \left.e^{i(0.872811+(2 \pi \log (5.999986018821050000)) / \log (2))}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)= \\
& 9.8844 \times 10^{-6} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(0.872811+\frac{2 \pi \log (5.990986018821050000)}{\log (2)}\right)^{2 k}}{(2 k)!}
\end{aligned}
$$

$$
9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)=
$$

$$
-9.8844 \times 10^{-6} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(0.872811+\pi\left(-\frac{1}{2}+\frac{2 \log (5.909086018821050000)}{\log (2)}\right)\right)^{1+2 k}}{(1+2 k)!}
$$

$$
9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)=
$$

$$
9.8844 \times 10^{-6} \sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(0.872811+\frac{2 \pi \log (5.999986018821050000)}{\log (2)}-z_{0}\right)^{k}}{k!}
$$

Integral representations:

$$
\begin{aligned}
& 9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)= \\
& -9.8844 \times 10^{-6} \int_{\frac{\pi}{2}}^{0.872811+\frac{2 \pi \log (5.999986018821050000)}{\log (2)}} \sin (t) d t \\
& 9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)= \\
& 9.8844 \times 10^{-6}+\int_{0}^{1} \frac{1}{\log (2)} \\
& \left(-8.62721 \times 10^{-6} \log (2)-0.0000197688 \pi \log (5.999986018821050000)\right) \\
& \sin \left(t\left(0.872811+\frac{2 \pi \log (5.999986018821050000)}{\log (2)}\right)\right) d t
\end{aligned}
$$

$$
9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)=
$$

$$
\frac{4.9422 \times 10^{-6} \sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{s-\frac{\left(0.436406 \log (2)+\pi \log _{2}(5.999986018821050000)\right)^{2}}{s}}}{s \log _{2}^{2}(2)} d s \text { for } \gamma>0
$$

$$
9.8844 \times 10^{-6} \cos \left(\frac{2(\pi \log (5.999986018821050000))}{\log (2)}+0.872811\right)=
$$

$$
\frac{4.9422 \times 10^{-6} \sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{4^{s} \Gamma(s)\left(0.872811+\frac{2 \pi \log (5.909086018821050000)}{\log (2)}\right)^{-2 s}}{\Gamma\left(\frac{1}{2}-s\right)} d s
$$

$$
\text { for } 0<\gamma<\frac{1}{2}
$$

-(((ln 2)((1-(5.99998601882105)/(3*1)!+(5.99998601882105)^2/(7*2)!$\left.\left.\left.\left.\left.\left.(5.99998601882105)^{\wedge} 3 /(15 * 3)!\right)\right)\right)\right)\right)\right)$

Input interpretation:
$-\left(\log (2)\left(1-\frac{5.99998601882105}{(3 \times 1)!}+\frac{5.99998601882105^{2}}{(7 \times 2)!}-\frac{5.99998601882105^{3}}{(15 \times 3)!}\right)\right)$

Result:

$-1.61545536 \ldots \times 10^{-6}$
$-1.61545536 \ldots * 10^{-6}$

Alternative representations:

$$
\begin{aligned}
& -\log (2)\left(1-\frac{5.999986018821050000}{(3 \times 1)!}+\right. \\
& \left.\quad \frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)= \\
& -\log (a) \log _{a}(2)\left(1-\frac{5.999986018821050000}{\Gamma(4)}+\right. \\
& \left.\frac{5.999986018821050000^{2}}{\Gamma(15)}-\frac{5.999986018821050000^{3}}{\Gamma(46)}\right) \\
& -\log (2)\left(1-\frac{5.999986018821050000}{(3 \times 1)!}+\right. \\
& \left.\quad \frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)= \\
& -\log _{e}(2)\left(1-\frac{5.99998018821050000}{(1)_{3}}+\frac{5.999986018821050000^{2}}{(1)_{14}}-\right. \\
& \left.\frac{5.999986018821050000^{3}}{(1)_{45}}\right)
\end{aligned}
$$

$$
\begin{aligned}
-\log (2) & \left(1-\frac{5.999986018821050000}{(3 \times 1)!}+\right. \\
& \left.\frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)
\end{aligned}=
$$

$$
-\log (a) \log _{a}(2)\left(1-\frac{5.999986018821050000}{(1)_{3}}+\right.
$$

$$
\left.\frac{5.999986018821050000^{2}}{(1)_{14}}-\frac{5.999986018821050000^{3}}{(1)_{45}}\right)
$$

Series representations:

$$
\begin{aligned}
& -\log (2)\left(1-\frac{5.999986018821050000}{(3 \times 1)!}+\right. \\
& \left.\quad \frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)= \\
& -\log (2)+\frac{5.999986018821050000 \log (2)}{\sum_{k=0}^{\infty} \frac{\left(3-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}-\frac{35.99983222604807336 \log (2)}{\sum_{k=0}^{\infty} \frac{\left(14-n_{0} k^{k} \Gamma^{(k)}\left(1+n_{0}\right)\right.}{k!}}+ \\
& \\
& 215.9984900361919178 \log (2)
\end{aligned}
$$

$$
\sum_{k=0}^{\infty} \frac{\left(45-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}
$$

for $\left(\left(n_{0} \geq 0\right.\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $\left.n_{0} \rightarrow 45\right)$

$$
\begin{aligned}
&-\log (2)(1- \frac{5.999986018821050000}{(3 \times 1)!}+ \\
&\left.\frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)= \\
&-\left(2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)\left(1-\frac{5.999986018821050000}{\sum_{k=0}^{\infty} \frac{\left(3-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}+\right. \\
&\left.\frac{35.99983222604807336}{\sum_{k=0}^{\infty} \frac{\left(14-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}-\frac{215.9984900361919178}{\sum_{k=0}^{\infty} \frac{\left(45-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}\right)
\end{aligned}
$$

for $\left(x<0\right.$ and $\left(n_{0} \geq 0\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $\left.n_{0} \rightarrow 45\right)$

$$
\begin{aligned}
-\log (2)(1- & \frac{5.999986018821050000}{(3 \times 1)!}+ \\
& \left.\frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)=
\end{aligned}
$$

$$
-\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)
$$

$$
\left(1-\frac{5.999986018821050000}{\sum_{k=0}^{\infty} \frac{\left(3-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}+\right.
$$

$$
\left.\frac{35.99983222604807336}{\sum_{k=0}^{\infty} \frac{\left(14-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}-\frac{215.9984900361919178}{\sum_{k=0}^{\infty} \frac{\left(45-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}\right)
$$

for $\left(n_{0} \geq 0\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $n_{0} \rightarrow 45$)

$$
\left.\begin{array}{r}
-\log (2)\left(1-\frac{5.999986018821050000}{(3 \times 1)!}+\right. \\
-\left(2 i \pi\left[-\frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)=\right. \\
-\left(1-\frac{5.999986018821050000}{\sum_{k=0}^{\infty} \frac{\left(3-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}+\right. \\
\left(\frac{35.99983222604807336}{\left.z_{0}\right)+\arg \left(z_{0}\right)}\right. \\
\sum_{k=0}^{\infty} \frac{\left(14-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}
\end{array}+\frac{\left.\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)}{\sum_{k=0}^{\infty} \frac{215.9984900361919178}{\left(45-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}} k\right) .
$$

for $\left(\left(n_{0} \geq 0\right.\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $\left.n_{0} \rightarrow 45\right)$

Integral representations:

$$
\begin{aligned}
& -\log (2)\left(1-\frac{5.999986018821050000}{(3 \times 1)!}+\right. \\
& \left.\frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)= \\
& -\log (2)+\frac{5.999986018821050000 \log (2)}{\int_{1}^{\infty} e^{-t} t^{3} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(4+k) k!}}-\frac{35.99983222604807336 \log (2)}{\int_{1}^{\infty} e^{-t} t^{14} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(15+k) k!}}+ \\
& \frac{215.9984900361919178 \log (2)}{\int_{1}^{\infty} e^{-t} t^{45} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(46+k) k!}} \\
& -\log (2)\left(1-\frac{5.999986018821050000}{(3 \times 1)!}+\right. \\
& \left.\frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)= \\
& -\left(\left(1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (\int _ { 1 } ^ { 2 } \frac { 1 } { t } d t) \left(\int_{0}^{1} \int_{0}^{1} \log ^{3}\left(\frac{1}{t_{1}}\right) \log ^{14}\left(\frac{1}{t_{2}}\right) d t_{2} d t_{1}+\right.\right.\right. \\
& \int_{0}^{1} \int_{0}^{1} \log ^{3}\left(\frac{1}{t_{1}}\right)_{1} \log ^{45}\left(\frac{1}{t_{2}}\right) d t_{2} d t_{1}+\int_{0}^{1} \int_{0}^{1} \log ^{14}\left(\frac{1}{t_{1}}\right) \log ^{45}\left(\frac{1}{t_{2}}\right) d t_{2} \\
& \left.\left.d t_{1}+\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log ^{3}\left(\frac{1}{t_{1}}\right) \log ^{14}\left(\frac{1}{t_{2}}\right) \log ^{45}\left(\frac{1}{t_{3}}\right) d t_{3} d t_{2} d t_{1}\right)\right) / \\
& \left.\left(\left(\int_{0}^{1} \log ^{3}\left(\frac{1}{t}\right) d t\right)\left(\int_{0}^{1} \log ^{14}\left(\frac{1}{t}\right) d t\right) \int_{0}^{1} \log ^{45}\left(\frac{1}{t}\right) d t\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\log (2)\left(1-\frac{5.999986018821050000}{(3 \times 1)!}+\right. \\
& \left.\quad \frac{5.999986018821050000^{2}}{(7 \times 2)!}-\frac{5.999986018821050000^{3}}{(15 \times 3)!}\right)= \\
& -\int_{1}^{2} \frac{1}{t} d t+\frac{5.999986018821050000 \int_{1}^{2} \frac{1}{t} d t}{\int_{1}^{\infty} e^{-t} t^{3} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(4+k) k!}}-\frac{35.99983222604807336 \int_{1}^{2} \frac{1}{t} d t}{\int_{1}^{\infty} e^{-t} t^{14} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(15+k) k!}}+ \\
& \\
& \frac{215.9984900361919178 \int_{1}^{2} \frac{1}{t} d t}{\int_{1}^{\infty} e^{-t} t^{45} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(46+k) k!}}
\end{aligned}
$$

$1 /(((((((\ln 2)((1-(5.99998601882105) /(3 * 1)!+(5.99998601882105) \wedge 2 /(7 * 2)!-$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.(5.99998601882105)^{\wedge} 3 /(15 * 3)!\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$

Approximating 5.99998601882105 to 5.99998604273 , we obtain:
 $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.(5.99998604273)^{\wedge} 3 /(15 * 3)!\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$

Input interpretation:

$\log (x)$ is the natural logarithm
$n!$ is the factorial function

Result:

620080.7099280641834039998686573842181852974296511048637519...
620080.709928..... result that is practically equal to the following algebraic sum concerning the Prime Number Theorem:

x	$\pi(\mathrm{x})$	$\pi(\mathrm{x})-\mathrm{x} / \ln \mathrm{x}$	$\pi(\mathrm{x}) /(\mathrm{x} / \ln \mathrm{x})$	$\operatorname{Li}(\mathrm{x})-\pi(\mathrm{x})$	$\pi(\mathrm{x}) / \operatorname{Li}(\mathrm{x})$	$\mathrm{x} / \pi(\mathrm{x})$
10^{7}	664579	44158	1,071	339	0,999490163	15,047

$664579-44158-1.071-339=620080.929$

Alternative representations:

$\frac{1}{\log (2)\left(1-\frac{5.999986042730000}{(3 \times 1)!}+\frac{5.999986042730000^{2}}{(7 \times 2)!}-\frac{5.999986042730000^{3}}{(15 \times 3)!}\right)}=$
$\frac{1}{\log (a) \log _{a}(2)\left(1-\frac{5.999986042730000}{\Gamma(4)}+\frac{5.999986042730000^{2}}{\Gamma(15)}-\frac{5.999986042730000^{3}}{\Gamma(46)}\right)}$

Series representations:

$$
\begin{aligned}
& \left.\frac{1}{\log (2)\left(1-\frac{5.999086042730000}{(3 \times 1)!}+\frac{5.999086042730000^{2}}{(7 \times 2)!} 1\right.}-\frac{5.909986042730000^{3}}{(15 \times 3)!}\right)
\end{aligned}=
$$

$$
\text { for }\left(\left(n_{0} \geq 0 \text { or } n_{0} \notin \mathbb{Z}\right) \text { and } n_{0} \rightarrow 3 \text { and } n_{0} \rightarrow 14 \text { and } n_{0} \rightarrow 45\right)
$$

```
\(\overline{\log (2)\left(1-\frac{5.999086042730000}{(3 \times 1)!}+\frac{5.999986042730000^{2}}{(7 \times 2)!}-\frac{5.999986042730000^{3}}{(15 \times 3)!}\right)}=\)
    \(\left(0.50000000000000 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty}\right.\)
        \(\left.\frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!k_{3}!}\right)\)
    \(\int\left(1.00000000000000 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor+0.500000000000000 \log (x)-\right.\)
    \(\left.0.500000000000000 \sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)(-215.998492618346\)
    \(\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+\)
    35.9998325129548
    \(\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}-\)
    5.99998604273000
        \(\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(14-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+\)
    \(1.00000000000000 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\)
        \(\left.\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)\right)\)
```

 for \(\left(x<0\right.\) and \(\left(n_{0} \geq 0\right.\) or \(\left.n_{0} \notin \mathbb{Z}\right)\) and \(n_{0} \rightarrow 3\) and \(n_{0} \rightarrow 14\)
 and
 \(n_{0} \rightarrow 45\))
 $\overline{\log (2)\left(1-\frac{5.999986042730000}{(3 \times 1)!}+\frac{5.999986042730000^{2}}{(7 \times 2)!}-\frac{5.999986042730000^{3}}{(15 \times 3)!}\right)}=$
$\left(0.50000000000000 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty}\right.$

$$
\begin{aligned}
& \left.\frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!k_{3}!}\right) \\
& /\left(\left\{1.00000000000000 i \pi\left\lfloor-\frac{-\pi+\arg \left(\frac{2}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+\right.\right. \\
& 0.500000000000000 \log \left(z_{0}\right)- \\
& \left.0.500000000000000 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)(-215.998492618346 \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+
\end{aligned}
$$

35.9998325129548

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}-
$$

5.99998604273000

$$
\begin{aligned}
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(14-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+ \\
& 1.00000000000000 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \\
& \left.\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)\right)
\end{aligned}
$$

for $\left(\left(n_{0} \geq 0\right.\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$
and
$n_{0} \rightarrow 45$)

$$
\begin{aligned}
& \overline{\log (2)\left(1-\frac{5.999986042730000}{(3 \times 1)!}+\frac{5.999986042730000^{2}}{(7 \times 2)!}-\frac{5.999986042730000^{3}}{(15 \times 3)!}\right)}= \\
& \left(1.00000000000000 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty}\right. \\
& \left.\frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!k_{3}!}\right) \\
& \left(\left(1.00000000000000\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+1.00000000000000 \log \left(z_{0}\right)+\right.\right. \\
& 1.00000000000000\left[\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)- \\
& \left.1.00000000000000 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}\right)(-215.998492618346 \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+ \\
& 35.9998325129548 \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}- \\
& 5.99998604273000 \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(14-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+ \\
& 1.00000000000000 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \\
& \left.\left.\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)\right)\right)
\end{aligned}
$$

for $\left(\left(n_{0} \geq 0\right.\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and

$$
\left.n_{0} \rightarrow 45\right)
$$

Integral representations:

$$
\begin{gathered}
\frac{1}{\log (2)\left(1-\frac{5.999986042730000}{(3 \times 1)!}+\frac{5.999986042730000^{2}}{(7 \times 2)!}-\frac{5.999986042730000^{3}}{(15 \times 3)!}\right)}= \\
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log ^{3}\left(\frac{1}{t_{1}}\right) \log ^{14}\left(\frac{1}{t_{2}}\right) \log ^{45}\left(\frac{1}{t_{3}}\right) d t_{3} d t_{2} d t_{1}
\end{gathered}
$$

$\overline{\log (2)\left(1-\frac{5.999986042730000}{(3 \times 1)!}+\frac{5.999986042730000^{2}}{(7 \times 2)!}-\frac{5.999986042730000^{3}}{(15 \times 3)!}\right)}=$

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log ^{3}\left(\frac{1}{t_{1}}\right) \log ^{14}\left(\frac{1}{t_{2}}\right) \log ^{45}\left(\frac{1}{t_{3}}\right) d t_{3} d t_{2} d t_{1} \text { for }-1<\gamma<0
$$

$\overline{\log (2)\left(1-\frac{5.909086042730000}{(3 \times 1)!}+\frac{5.909986042730000^{2}}{(7 \times 2)!}-\frac{5.999986042730000^{3}}{(15 \times 3)!}\right)}=$
$1 /\left(\log (2)\left(1-\frac{5.999986042730000}{\int_{1}^{\infty} e^{-t} t^{3} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(4+k) k!}}+\right.\right.$

$$
\left.\left.\frac{35.99983251295481}{\int_{1}^{\infty} e^{-t} t^{14} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(15+k) k!}}-\frac{215.9984926183465}{\int_{1}^{\infty} e^{-t} t^{45} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(46+k) k!}}\right)\right)
$$

$-\left(\left(\left(\ln 2\left(\left(\left(1-x /(3 * 1)!+x^{\wedge} 2 /(7 * 2)!-x^{\wedge} 3 /\left(15^{*} 3\right)!\right)\right)\right)\right)\right)\right)$

Input:

$-\left(\log (2)\left(1-\frac{x}{(3 \times 1)!}+\frac{x^{2}}{(7 \times 2)!}-\frac{x^{3}}{(15 \times 3)!}\right)\right)$
$\log (x)$ is the natural logarithm
$n!$ is the factorial function

Exact result:

$-\left(-\frac{x^{3}}{119622220865480194561963161495657715064383733760000000000}+\right.$
$\left.\frac{x^{2}}{87178291200}-\frac{x}{6}+1\right) \log (2)$

Plots:

Alternate forms:

$x(x((x \log (2)))$
119622220865480194561963161495657715064383733760 :

$$
\left.\left.000000000-\frac{\log (2)}{87178291200}\right)+\frac{\log (2)}{6}\right)-\log (2)
$$

$\left(\left(x^{3}-1372156063383359761953709428703022284800000000 x^{2}+\right.\right.$
19937036810913365760327193582609619177397288960000000 : $000 x$ -
119622220865480194561963161495657715064383733760000000 : 000) $\log (2)) /$

119622220865480194561963161495657715064383733760000000000
$-\left(-\left((x-457385354461119920651236476234340761600000000)^{3} /\right.\right.$
119622220865480194561963161495657715064383733760 : $000000000)+\frac{1}{6}$
31479306246905646206419550207999999
$(x-457385354461119920651236476234340761600000000)+$ 1599797071770120621494563038355093662753539433181734915 :

$$
113049340143206400000001) \log (2)
$$

Expanded form:

```
                \(x^{3} \log (2)\)
    119622220865480194561963161495657715064383733760000000000
    \(\frac{x^{2} \log (2)}{87178291200}+\frac{1}{6} x \log (2)-\log (2)\)
```


Roots:

$x \approx 6$
$x \approx 14529715194$

14529715194

```
x\approx1372156063383359761953709430358354116132995072
```


Polynomial discriminant:

```
\Deltax}
    (1937049649351556898123342031656389549306638026036939622 320:
            880160809843296514867199999999 知4(2))/
        529980582399619452893477372284140772307073481102003002 926:
        358239420364608942414147143650508800000000000000000000
```

Derivative:

$$
\begin{aligned}
& \frac{d}{d x}\left(-\left(\log (2)\left(1-\frac{x}{(3 \times 1)!}+\frac{x^{2}}{(7 \times 2)!}-\frac{x^{3}}{(15 \times 3)!}\right)\right)\right)= \\
& -\left(-\frac{x^{2}}{39874073621826731520654387165219238354794577920000000000}+\right. \\
& \left.\quad \frac{x}{43589145600}-\frac{1}{6}\right) \log (2)
\end{aligned}
$$

Indefinite integral:

$$
\begin{aligned}
& \int-\left(\log (2)\left(1-\frac{x}{(3 \times 1)!}+\frac{x^{2}}{(7 \times 2)!}-\frac{x^{3}}{(15 \times 3)!}\right)\right) d x=-\left(-\left(x^{4} /\right.\right. \\
& 478488883461920778247852645982630860257534935 \\
& \left.040000000000)+\frac{x^{3}}{261534873600}-\frac{x^{2}}{12}+x\right)
\end{aligned}
$$

$1 /\left(\left((\ln 2)\left(\left(\left(1-(14529715194) /(3 * 1)!+(14529715194)^{\wedge} 2 /(7 * 2)!-\right.\right.\right.\right.\right.$ (14529715194)^3/(15*3)!))))))

Input:

$\frac{1}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}$

Exact result:

553806578080926826675755377294711643816591360000000000 $228692677230559946124663168493930073073062401 \log (2)$

Decimal approximation:

$3.49365801076149907230323661978603930408690860629724192 \ldots \times 10^{9}$

Input interpretation:

$3.49365801076149907230323661978603930408690860629724192 \times 10^{9}$

Decimal form:

3493658010.76149907230323661978603930408690860629724192
$3493658010.76149 \ldots \ldots$ result very near to the following algebraic sum concerning the Prime Number Theorem:

```
10'11}4118054813 169923 159 1,043 11588 
```

```
1040}455052511 20 758 029 1,048 3 104 
```

10^{9}	50847534	2592592	1,054	1.701

10^{7}	664579	44	158	1,071

(4118054813-169923159-1.043-11588-455052511-1.048-3104-1.054-$1701+664579-44158)$

```
Input:
4118054813-169923159-1.043-11588-
    455 052511-1.048-3104-1.054-1701+664579-44158
```


Result:

$3.493683167855 \times 10^{9}$
3493683167.855

Property:

$$
\frac{553806578080926826675755377294711643816591360000000000}{228692677230559946124663168493930073073062401 \log (2)}
$$ is a transcendental number

Alternative representations:

$\frac{1}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$\frac{1}{\log (a) \log _{a}(2)\left(1-\frac{14529715194}{\Gamma(4)}+\frac{14529715194^{2}}{\Gamma(15)}-\frac{14529715194^{3}}{\Gamma(46)}\right)}$
$\frac{1}{\log _{(2)}\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$\frac{1}{\log _{e}(2)\left(1-\frac{14529715194}{(1) 3}+\frac{14529715194^{2}}{(1)_{14}}-\frac{14529715194^{3}}{(1) 45}\right)}$
$\frac{1}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$\frac{1}{\log (a) \log _{a}(2)\left(1-\frac{14529715194}{(1)_{3}}+\frac{14529715194^{2}}{(1)_{14}}-\frac{14529715194^{3}}{(1)_{45}}\right)}$

Series representations:

$\frac{1}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
553806578080926826675755377294711643816591360000000000 /
(228692677230559946124663168493930073073062401

$$
\left.\left(2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)\right) \text { for } x<0
$$

$\left.\begin{array}{l}\frac{1}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}= \\ 553806578080926826675755377294711643816591360000000 \\ (228692677230559946124663168493930073073062401 \\ \left(\log \left(z_{0}\right)+\left[\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \\ \frac{1}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}= \\ 553806578080926826675755377294711643816591360000000\end{array}\right)$.

Integral representations:

```
\(\frac{1}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=\)
    \(\frac{553806578080926826675755377294711643816591360000000000}{228692677230559946124663168493930073073062401 \int_{1}^{2} \frac{1}{t} d t}\)
```

 \(\frac{1}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=\)
 (1107613156161853653351510754589423287633182720000000000 \(i \pi\))/
 (228692677230559946124663168493930073073062401
 $$
\left.\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right) \text { for }-1<\gamma<0
$$

We note that, we obtain also:
$(3.426486 * \mathrm{Pi}) /\left(\left(\left(\ln 2\left(\left(\left(1-(14529715194) /(3 * 1)!+(14529715194)^{\wedge} 2 /(7 * 2)!-\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.(14529715194)^{\wedge} 3 /(15 * 3)!\right)\right)\right)\right)\right)\right)$

Input interpretation:

3.426486π
$\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 / 3)!}\right)$

Result:

$3.7607912233521212299789337310144491506028977634701717 \ldots \times 10^{10}$
$3.76079122 \ldots * 10^{10}$ value very near to $3.7607912018 * 10^{10}$

Alternative representations:

$\frac{3.42649 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$\log (a) \log _{a}(2)\left(1-\frac{14529715194}{\Gamma(4)}+\frac{14529715194^{2}}{\Gamma(15)}-\frac{14529715194^{3}}{\Gamma(46)}\right)$
3.42649π
$\overline{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
3.42649π
$\log _{e}(2)\left(1-\frac{14529715194}{(1)_{3}}+\frac{14529715194^{2}}{(1)_{14}}-\frac{14529715194^{3}}{(1)_{45}}\right)$
3.42649π
$\overline{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$\log (a) \log _{a}(2)\left(1-\frac{14529715194}{(1)_{3}}+\frac{14529715194^{2}}{(1)_{14}}-\frac{14529715194^{3}}{(1)_{45}}\right)$

Series representations:

3.42649π

$\overline{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$(3.42649 \pi) /\left(\log (2)\left(1-\frac{14529715194}{\sum_{k=0}^{\infty} \frac{\left(3-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}+\frac{211112623618754457636}{\sum_{k=0}^{\infty} \frac{\left(14-n_{0} k^{k} \Gamma^{(k)}\left(1+n_{0}\right)\right.}{k!}}-\right.\right.$

$$
3067406295038619906469018521384
$$

$$
\sum_{k=0}^{\infty} \frac{\left(45-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}
$$

for ($n_{0} \geq 0$ or $n_{0} \notin \mathbb{Z}$) and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $n_{0} \rightarrow 45$)

for $\left(x<0\right.$ and $\left(n_{0} \geq 0\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $n_{0} \rightarrow 45$)
$\frac{3.42649 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$

$$
\left.\begin{array}{rl}
1.71324 \pi & \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!k_{3}!}
\end{array}\right)
$$

$$
\left(\left(i \pi\left[-\frac{-\pi+\arg \left(\frac{2}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+0.5 \log \left(z_{0}\right)-0.5 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right.
$$

$$
\left(-3.06741 \times 10^{30} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+\right.
$$

$$
2.11113 \times 10^{20} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}-
$$

$$
1.45297 \times 10^{10}
$$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(14-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+
$$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}}
$$

$$
\left.\Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)\right)
$$

for $\left(\left(n_{0} \geq 0\right.\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $\left.n_{0} \rightarrow 45\right)$
$\frac{3.42649 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$

$$
\left.\begin{array}{rl}
3.42649 \pi & \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!k_{3}!}
\end{array}\right)
$$

$$
\left(\left(\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right.
$$

$$
\left(-3.06741 \times 10^{30} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+\right.
$$

$$
2.11113 \times 10^{20} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}-
$$

$$
1.45297 \times 10^{10}
$$

$$
\begin{aligned}
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(14-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+ \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \\
& \left.\left.\Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)\right)\right)
\end{aligned}
$$

for $\left(\left(n_{0} \geq 0\right.\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $\left.n_{0} \rightarrow 45\right)$

Integral representations:

$$
\begin{aligned}
& \frac{3.42649 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}= \\
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log ^{3}\left(\frac{1}{t_{1}}\right) \log ^{14}\left(\frac{1}{t_{2}}\right) \log ^{45}\left(\frac{1}{t_{3}}\right) d t_{3} d t_{2} d t_{1} \\
& \frac{3.42649 \pi}{\log (2)\left(1-\frac{14529715194}{(31)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}= \\
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log ^{3}\left(\frac{1}{t_{1}}\right) \log ^{14}\left(\frac{1}{t_{2}}\right) \log ^{45}\left(\frac{1}{t_{3}}\right) d t_{3} d t_{2} d t_{1} \text { for }-1<\gamma<0
\end{aligned}
$$

$$
\begin{gathered}
\frac{3.42649 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=(3.42649 \pi) / \\
\left(\operatorname { l o g } (2) \left(1-\frac{14529715194}{\int_{1}^{\infty} e^{-t} t^{3} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(4+k) k!}}+\frac{211112623618754457636}{\int_{1}^{\infty} e^{-t} t^{14} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(15+k) k!}}-\right.\right. \\
\left.\left.\frac{3067406295038619906469018521384}{\int_{1}^{\infty} e^{-t} t^{45} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(46+k) k!}}\right)\right)
\end{gathered}
$$

and:
(2719.2 * Pi)/(((ln 2(((1-(14529715194)/(3*1)!+(14529715194)^2/(7*2)!(14529715194)^3/(15*3)!))))))

Input interpretation:

$$
\frac{2719.2 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}
$$

Result:

$2.9844988406603990352094584951972633567799196023062959 \ldots \times 10^{13}$
$2.984498840 \ldots * 10^{13}$ result very near to the value $2.9844570422669 * 10^{13}$

Alternative representations:

$\frac{2719.2 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$\frac{2719.2 \pi}{\log (a) \log _{a}(2)\left(1-\frac{14529715194}{\Gamma(4)}+\frac{14529715194^{2}}{\Gamma(15)}-\frac{14529715194^{3}}{\Gamma(46)}\right)}$
$\frac{2719.2 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$\frac{2719.2 \pi}{\log _{e}(2)\left(1-\frac{14529715194}{(1)_{3}}+\frac{14529715194^{2}}{(1)_{14}}-\frac{14529715194^{3}}{(1) 45}\right)}$
$\frac{2719.2 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(72)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$
$\log (a) \log _{a}(2)\left(1-\frac{14529715194}{(1)_{3}}+\frac{14529715194^{2}}{(1)_{14}}-\frac{14529715194^{3}}{(1)_{45}}\right)$

Series representations:

```
        \(2719.2 \pi\)
\(\overline{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=\)
    \((2719.2 \pi) /\left(\log (2)\left(1-\frac{14529715194}{\sum_{k=0}^{\infty} \frac{\left(3-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}+\frac{211112623618754457636}{\sum_{k=0}^{\infty} \frac{\left(14-n_{0}\right)^{k} \Gamma^{(k)}\left(1+n_{0}\right)}{k!}}-\right.\right.\)
    3067406295038619906469018521384
        \(\left.\sum_{k=0}^{\infty} \frac{\left(45-n_{0} k^{k} \Gamma^{(k)}\left(1+n_{0}\right)\right.}{k!}\right)\)
```

 for \(\left(\left(n_{0} \geq 0\right.\right.\) or \(\left.n_{0} \notin \mathbb{Z}\right)\) and \(n_{0} \rightarrow 3\) and \(n_{0} \rightarrow 14\) and \(n_{0} \rightarrow 45\))
 \(2719.2 \pi\)
 \(\overline{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=\)
 \(\left(1359.6 \pi \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty}\right.\)
 \(\left.\frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!k_{3}!}\right)\)
 \(/\left(\left\{i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+0.5 \log (x)-0.5 \sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)\right.\)
 \(\left(-3.06741 \times 10^{30} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+\right.\)
 \(2.11113 \times 10^{20} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}-\)
 \(1.45297 \times 10^{10}\)
 \(\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(14-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+\)
 \(\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}}\)
 \(\left.\left.\Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)\right)\right)\)
 for \(\left(x<0\right.\) and \(\left(n_{0} \geq 0\right.\) or \(\left.n_{0} \notin \mathbb{Z}\right)\) and \(n_{0} \rightarrow 3\) and \(n_{0} \rightarrow 14\) and
 \(n_{0} \rightarrow 45\))
 $\overline{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$

$$
\begin{aligned}
& 1359.6 \pi \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \\
& \left.\frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!k_{3}!}\right) \\
& \left(\int i \pi\left|-\frac{-\pi+\arg \left(\frac{2}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right|+0.5 \log \left(z_{0}\right)-0.5 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \\
& \left(-3.06741 \times 10^{30} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+\right. \\
& 2.11113 \times 10^{20} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}-
\end{aligned}
$$

$$
1.45297 \times 10^{10}
$$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(14-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+
$$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}}
$$

$$
\left.\Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)\right)
$$

$\overline{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}=$

$$
\left(2719.2 \pi \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty}\right.
$$

$$
\left.\frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!k_{3}!}\right)
$$

$$
\left(\left(\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}\right)\right.
$$

$$
\left(-3.06741 \times 10^{30} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+\right.
$$

$$
2.11113 \times 10^{20} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(3-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}-
$$

$$
1.45297 \times 10^{10}
$$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(14-n_{0}\right)^{k_{1}}\left(45-n_{0}\right)^{k_{2}} \Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right)}{k_{1}!k_{2}!}+
$$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}\left(3-n_{0}\right)^{k_{1}}\left(14-n_{0}\right)^{k_{2}}\left(45-n_{0}\right)^{k_{3}}
$$

$$
\left.\Gamma^{\left(k_{1}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{2}\right)}\left(1+n_{0}\right) \Gamma^{\left(k_{3}\right)}\left(1+n_{0}\right)\right)
$$

for $\left(n_{0} \geq 0\right.$ or $\left.n_{0} \notin \mathbb{Z}\right)$ and $n_{0} \rightarrow 3$ and $n_{0} \rightarrow 14$ and $\left.n_{0} \rightarrow 45\right)$

Integral representations:

2719.2π

$\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)=$

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log ^{3}\left(\frac{1}{t_{1}}\right) \log ^{14}\left(\frac{1}{t_{2}}\right) \log ^{45}\left(\frac{1}{t_{3}}\right) d t_{3} d t_{2} d t_{1}
$$

2719.2π

$\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)=$

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{(3 \times 1)!} \log ^{3}\left(\frac{1}{t_{1}}\right) \log ^{14}\left(\frac{1}{t_{2}}\right) \log ^{45}\left(\frac{1}{t_{3}}\right)^{(15 \times 3)!} d t_{3} d t_{2} d t_{1} \text { for }-1<\gamma<0
$$

$$
\begin{aligned}
& \frac{2719.2 \pi}{\log (2)\left(1-\frac{14529715194}{(3 \times 1)!}+\frac{14529715194^{2}}{(7 \times 2)!}-\frac{14529715194^{3}}{(15 \times 3)!}\right)}= \\
& (2719.2 \pi) /\left(\operatorname { l o g } (2) \left(1-\frac{14529715194}{\int_{1}^{\infty} e^{-t} t^{3} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(4+k) k!}}+\frac{211112623618754457636}{\int_{1}^{\infty} e^{-t} t^{14} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(15+k) k!}}-\right.\right. \\
& \left.\left.\frac{3067406295038619906469018521384}{\int_{1}^{\infty} e^{-t} t^{45} d t+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(46+k) k!}}\right)\right)
\end{aligned}
$$

From the ratio of the two results, performing the $18^{\text {th }}$ root, we obtain:
$(3493683167.855 / 620080.709928)^{\wedge} 1 / 18$

Input interpretation:

$\sqrt[18]{\frac{3.493683167855 \times 10^{9}}{620080.709928}}$

Result:

1.615770738004...
1.615770738004...

Or, from the following values concerning Prime Number Theorem

x	$\pi(x)$	$\pi(x)-x / \ln x$
10^{11}	4118054813	169923159
10^{7}	664579	44158

we obtain:
$(4118054813 / 664579)^{\wedge} 1 / 18$

Input:

$\sqrt[18]{\frac{4118054813}{664579}}$

Decimal approximation:

1.624331814232483790805056207712866227532386597551114202241
1.62433181423...

Alternate form:

$\frac{\sqrt[18]{4118054813} 664579^{17 / 18}}{664579}$

From the mean of two expressions, we obtain:
$\left((3493683167.855 / 620080.709928) \wedge 1 / 18+(4118054813 / 664579)^{\wedge} 1 / 18\right) / 2$

Input interpretation:

$\frac{1}{2}\left(\sqrt[18]{\frac{3.493683167855 \times 10^{9}}{620080.709928}}+\sqrt[18]{\frac{4118054813}{664579}}\right)$

Result:

1.6200512761183...
1.6200512761183..

We have also:
$(664579 / 168)^{\wedge} 1 / 18$

Input:

$\sqrt[18]{\frac{664579}{168}}$

Result:

$\frac{\sqrt[18]{\frac{664570}{21}}}{\sqrt[6]{2}}$

Decimal approximation:

1.584333183323270308087964453492573173106589909653941136428...
1.58433318332...

Alternate form:

root of $168 x^{18}-664579$ near $x=1.58433$

All 18th roots of 664579/168:

We note that, from the following Table (from Wikipedia):

x	$\pi(x)$	$\pi(x)-x / \ln x$	$\begin{aligned} & \pi(x) \\ & I(x \mid \\ & \ln x) \end{aligned}$	$\underline{L i}(x)-\pi(x)$	$\pi(x) / \operatorname{Li}(x)$	$\begin{gathered} x / \\ \pi(x) \end{gathered}$
10	4	-0,3	0,921	2,2	0,64516129	2,500
10^{2}	25	3,3	1,151	5,1	0,830564784	4,000
10^{3}	168	23	1,161	10	0,943820225	5,952
10^{4}	1229	143	1,132	17	0,98635634	8,137
10^{5}	9592	906	1,104	38	0,996053998	10,425
10^{6}	78498	6116	1,084	130	0,998346645	12,740
10^{7}	664579	44158	1,071	339	0,999490163	15,047
10^{8}	5761455	332774	1,061	754	0,999869147	17,357
10^{9}	50847534	2592592	1,054	1.701	0,999966548	19,667
10^{10}	455052511	20758029	1,048	3104	0,999993179	21,975
10^{11}	4118054813	169923159	1,043	11588	0,999993179	24,283
10^{12}	37607912018	1416705193	1,039	38263	0,999997186	26,590
10^{13}	346065536839	11992858452	1,034	108971	0,999998983	28,896
10^{14}	3204941750802	102838308636	1,033	314890	0,999999685	31,202
10^{15}	29844570422669	891604962452	1,031	1052619	0,999999902	33,507
10^{16}	279238341033925	7804289844393	1,029	3214632	0,999999965	35,812
10^{17}	2623557157654233	68883734693281	1,027	7956589	0,999999988	38,116
10^{18}	24739954287740860	612483070893536	1,025	21949555	0,999999997	40,420
10^{19}	234057667276344607	5481624169369960	1,024	99877775	0,999999999	42,725
10^{20}	2220819602560918840	49347193044659701	1,023	222744644	1,000000000	45,028
10^{21}	21127269486018731928	446579871578168707	1,022	597394254	1,000000000	47,332
10^{22}	201467286689315906290	4060704006019620994	1,021	1932355208	1,000000000	49,636
10^{23}	1925320391606818006727	37083513766592669113	1,020	7236148412	1,000000000	51,939

We obtain the following interesting mathematical connections:
(9592/4)^1/18

Input:

$\sqrt[18]{\frac{9592}{4}}$

Result:

Decimal approximation:

1.540882059926678322421659818907171314837670343186868694886...
1.5408820599266783....

All 18th roots of 2398:

$\sqrt[18]{2398} e^{0} \approx 1.540882$ (real, principal root)
$\sqrt[18]{2398} e^{(i \pi) / 9} \approx 1.44796+0.5270 i$
$\sqrt[18]{2398} e^{(2 i \pi) / 9} \approx 1.1804+0.9905 i$
$\sqrt[18]{2398} e^{(i \pi) / 3} \approx 0.77044+1.3344 i$
$\sqrt[18]{2398} e^{(4 i \pi) / 9} \approx 0.26757+1.51747 i$
$(78498 / 25)^{\wedge} 1 / 18$

Input:

$\sqrt[18]{\frac{78498}{25}}$

Exact result:

$\sqrt[9]{\frac{21}{5}} \sqrt[18]{178}$

Decimal approximation:

1.564131472120657585251775339556746589935426988024405402709
1.56413147212065....
$(50847534 / 9592)^{\wedge} 1 / 18$

Input:

$\sqrt[8]{\frac{50847534}{9592}}$

Result:

Decimal approximation:

1.610307920928417017761430919405480608489523266418111241803...
1.610307920928417....

Alternate form:

root of $4796 x^{18}-25423767$ near $x=1.61031$

All 18th roots of $\mathbf{2 5 4 2 3 7 6} / \mathbf{4 7 9 6}$:

$\sqrt[6]{3} \sqrt[18]{\frac{941621}{1199}} e^{(i \pi) / 9}$
$\frac{\sqrt{1199}}{\sqrt[9]{2}} \approx 1.51319+0.5508 i$
$\sqrt[6]{3} \sqrt[18]{\frac{941621}{1109}} e^{(2 i \pi) / 9}$
$\frac{\sqrt{1199}}{\sqrt[9]{2}} \approx 1.2336+1.0351 i$
$\sqrt[6]{3} \sqrt[18]{\frac{941621}{1199}} e^{(i \pi) / 3}$
$\frac{\sqrt{\frac{9}{1199}}}{\sqrt[9]{2}} \approx 0.8052+1.3946 i$
$\frac{\sqrt[6]{3} \sqrt[18]{\frac{941621}{1199}} e^{(4 i \pi) / 9}}{\sqrt[9]{2}} \approx 0.27963+1.58584 i$
$(3204941750802 / 455052511)^{\wedge} 1 / 18$
Input:
$\sqrt[18]{\frac{3204941750802}{455052511}}$
Result:
$\sqrt[6]{3} \sqrt[18]{\frac{118701546326}{455052511}}$
Decimal approximation:
1.635928686983868827528162061384938650768886510848504451936...
1.6359286869838.....

All 18th roots of $\mathbf{3 2 0 4 9 4 1 7 5 0 8 0 2 / 4 5 5 0 5 2 5 1 1}$

$\sqrt[6]{3} \sqrt[18]{\frac{118701546326}{455052511}} e^{0} \approx 1.63593$ (real, principal root)
$\sqrt[6]{3} \sqrt[18]{\frac{118701546326}{455052511}} e^{(i \pi) / 9} \approx 1.53727+0.5595 i$
$\sqrt[6]{3} \sqrt[18]{\frac{118701546326}{455052511}} e^{(2 i \pi) / 9} \approx 1.2532+1.0516 i$
$\sqrt[6]{3} \sqrt[18]{\frac{118701546326}{455052511}} e^{(i \pi) / 3} \approx 0.81796+1.4168 i$
$\sqrt[6]{3} \sqrt[18]{\frac{118701546326}{455052511}} e^{(4 i \pi) / 9} \approx 0.28408+1.61108 i$
(21127269486018731928/2623557157654233)^1/18

Input:

$\frac{21127269486018731928}{2623557157654233}$
Result:
$\sqrt[6]{2} \sqrt[18]{\frac{880302895250780497}{874519052551411}}$

Decimal approximation:

1.648152448906887728782722352713932534909452975975684199033.
1.6481524489068877....

All 18th roots of 7042423162006243976/874519052551411:

$\sqrt[6]{2} \sqrt[18]{\frac{880302895250780497}{874519052551411}} e^{0} \approx 1.64815$ (real, principal root)
$\sqrt[6]{2} \sqrt[18]{\frac{880302895250780497}{874519052551411}} e^{(i \pi) / 9} \approx 1.54876+0.5637 i$
$\sqrt[6]{2} \sqrt[18]{\frac{880302895250780497}{874519052551411}} e^{(2 i \pi) / 9} \approx 1.2626+1.0594 i$
$\sqrt[6]{2} \sqrt[18]{\frac{880302895250780497}{874519052551411}} e^{(i \pi) / 3} \approx 0.82408+1.4273 i$
$\sqrt[6]{2} \sqrt[18]{\frac{880302895250780497}{874519052551411}} e^{(4 i \pi) / 9} \approx 0.28620+1.62311 i$
$(1925320391606818006727 / 234057667276344607)^{\wedge} 1 / 18$

Input:
1925320391606818006727
$\sqrt[18]{234057667276344607}$

Decimal approximation:

$1.650099024997094439272719440817175234129925511065623775089 \ldots$
1.650099024997094439.....

Alternate form:

$\sqrt[18]{1925320391606818006727} 234057667276344607^{17 / 18}$ 234057667276344607

All 18th roots of $\mathbf{1 9 2 5 3 2 0 3 9 1 6 0 6 8 1 8 0 0 6 7 2 7 / 2 3 4 0 5 7 6 6 7 2 7 6 3 4 4 6 0 7 : ~}$

$\sqrt[18]{\frac{1925320391606818006727}{234057667276344607}} e^{0} \approx 1.650099$ (real, principal root)
$\sqrt[18]{\frac{1925320391606818006727}{234057667276344607}} e^{(i \pi) / 9} \approx 1.55059+0.5644 i$
$\sqrt[18]{\frac{1925320391606818006727}{234057667276344607}} e^{(2 i \pi) / 9} \approx 1.2640+1.0607 i$
(234057667276344607 / 29844570422669$)^{\wedge} 1 / 18$

Input:

$\sqrt[18]{\frac{234057667276344607}{29844570422669}}$

Result:

Decimal approximation:

1.645730630078931997881403228219966724829355307607447620548...
1.64573063007893199....

All 18th roots of $\mathbf{2 3 4 0 5 7 6 6 7 2 7 6 3 4 4 6 0 7 / 2 9 8 4 4 5 7 0 4 2 2 6 6 9 :}$

$(29844570422669 / 4118054813)^{\wedge} 1 / 18$

Input:

$\sqrt[18]{\frac{29844570422669}{4118054813}}$

Result:

$$
\frac{1570766864351}{216739727}
$$

Decimal approximation:

$1.638528754376369092359768164613456552143708993760130791940 \ldots$
1.638528754376369.....

All 18th roots of 1570766864351/216739727:

$\sqrt[18]{\frac{1570766864351}{216739727}} e^{0} \approx 1.638529$ (real, principal root)
$\sqrt[18]{\frac{1570766864351}{216739727}} e^{(i \pi) / 9} \approx 1.53971+0.5604 i$
$\sqrt[18]{\frac{1570766864351}{216739727}} e^{(2 i \pi) / 9} \approx 1.2552+1.0532 i$
$\sqrt[18]{\frac{1570766864351}{216739727}} e^{(i \pi) / 3} \approx 0.81926+1.4190 i$
$\sqrt[18]{\frac{1570766864351}{216739727}} e^{(4 i \pi) / 9} \approx 0.28453+1.61364 i$

The mean of all results is:
$(1.62433181423+1.5843331833232703080+$
$1.650099024997094439+1.64573063007893199+1.638528754376369) / 5$

Input interpretation:

$\frac{1}{5}(1.62433181423+1.5843331833232703080+$
$1.650099024997094439+1.64573063007893199+1.638528754376369)$

Result:

1.6286046814011331474
1.6286046814011331474
$(1.62433181423+1.5843331833232703080+$
$1.650099024997094439+1.64573063007893199+1.638528754376369) / 5-$
$11 / 10^{\wedge} 3+5 / 10^{\wedge} 4$

Input interpretation:

$\frac{1}{5}(1.62433181423+1.5843331833232703080+1.650099024997094439+$ $1.64573063007893199+1.638528754376369)-\frac{11}{10^{3}}+\frac{5}{10^{4}}$

Result:

1.6181046814011331474
1.6181046814011331474

And also:
$(201467286689315906290 / 24739954287740860)^{\wedge} 1 / 18$

Input:

$\frac{201467286689315906290}{24739954287740860}$

Result:

$\sqrt[8]{\frac{20146728668931590629}{2473995428774086}}$

Decimal approximation:

1.649175902220077641794167141875437150461886006342390439783...
1.64917590222007764.....

Alternate form:

All 18th roots of 20146728668931590629/2473995428774086:

$(2623557157654233 / 346065536839)^{\wedge} 1 / 18$

Input:

$\frac{2623557157654233}{346065536839}$

Result:

$\frac{18}{\sqrt[9]{11}}$

Decimal approximation:

$1.642633503621954394450749140924515710577984938855983356254 \ldots$
1.64263350362195.....

Alternate form:

root of $346065536839 x^{18}-2623557157654233$ near $x=1.64263$

All 18th roots of 2623557157654233/346065536839:

$(2220819602560918840 / 279238341033925)^{\wedge} 1 / 18$
Input:
$\frac{2220819602560918840}{279238341033925}$
Result:
$\sqrt[6]{2} \sqrt[18]{\frac{4270806928001767}{4295974477445}}$
Decimal approximation:
1.647011260802406796615541167014174488180388373572217984617...
1.6470112608024....

All 18th roots of 34166455424014136/4295974477445:

$$
\sqrt[6]{2} \sqrt[18]{\frac{4270806928001767}{4295974477445}} e^{0} \approx 1.64701 \text { (real, principal root) }
$$

$$
\sqrt[6]{2} \sqrt[18]{\frac{4270806928001767}{4295974477445}} e^{(i \pi /) 9} \approx 1.54768+0.5633 i
$$

$$
\sqrt[6]{2} \sqrt[18]{\frac{4270806928001767}{4295974477445}} e^{(2 i \pi) / 9} \approx 1.2617+1.0587 i
$$

$\sqrt[6]{2} \sqrt[18]{\frac{4270806928001767}{4295974477445}} e^{(i \pi) / 3} \approx 0.82351+1.4264 i$
$\sqrt[6]{2} \sqrt[18]{\frac{4270806928001767}{4295974477445}} e^{(4 i \pi) 9} \approx 0.28600+1.62199 i$

The final mean is:
$(1.5408820599266783+1.56413147212065+1.610307920928417+1.635928686983$ $8+1.6481524489068877+1.650099024997094439+1.64573063007893199+1.6385$ $28754376369+1.6491759022007764+1.64263350362195+1.6470112608024) / 11$
$1.624780151360296006 \overline{27}($ period 2$)$
$1.62478015136029600627 \ldots$

From the previous Table that compares the three functions $\pi(x), x / \ln (x)$ and $\operatorname{Li}(x)$, we have obtained, performing the above ratio, a value that approximates the golden ratio. It is practically an average between ϕ and $\zeta(2)$. What has been obtained could indicate a connection between the Prime Number Theorem, $\zeta(2)$ and ϕ.

Observations

From:

https://www.scientificamerican.com/article/mathematicsramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8m pSjRs1BDeremA

Ramanujan's statement concerned the deceptively simple concept of partitions-the different ways in which a whole number can be subdivided into smaller numbers. Ramanujan's original statement, in fact, stemmed from the observation of patterns, such as the fact that $p(9)=30, p(9+5)=135, p(9+10)=490, p(9+15)=1,575$ and so on are all divisible by 5. Note that here the n's come at intervals of five units.

Ramanujan posited that this pattern should go on forever, and that similar patterns exist when 5 is replaced by 7 or 11 -there are infinite sequences of $p(n)$ that are all divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11.

Then, in nearly oracular tone Ramanujan went on: "There appear to be corresponding properties," he wrote in his 1919 paper, "in which the moduli are powers of 5, 7 or 11... and no simple properties for any moduli involving primes other than these three." (Primes are whole numbers that are only divisible by themselves or by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by $5^{\wedge} 3=125$ units, saying that the corresponding $p(n)$'s should all be divisible by 125.
In the past methods developed to understand partitions have later been applied to physics problems such as the theory of the strong nuclear force or the entropy of black holes.

From Wikipedia

In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between a scalar field ϕ and a Dirac field ψ. The Yukawa interaction can be used to describe the nuclear force between nucleons (which are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa interaction is also used in the Standard Model to describe the coupling between the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion particles). Through spontaneous symmetry breaking, these fermions acquire a mass proportional to the vacuum expectation value of the Higgs field.

Can be this the motivation that from the development of the Ramanujan's equations we obtain results very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $T=0$ and to the Higgs boson mass 125.18 GeV and practically equal to the rest mass of Pion meson 139.57 MeV

Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})} .
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\} .
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}=\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with 64, 128, 256, 512, 1024 and $4096=64^{2}$
(Modular equations and approximations to $\pi-S$. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372)

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the
golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

In mathematics, the Fibonacci numbers, commonly denoted F_{n}, form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci and Lucas numbers form a complementary pair of Lucas sequences

The beginning of the sequence is thus:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765$, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155...

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842-91), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.
The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio. ${ }^{[1]}$ The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.
The sequence of Lucas numbers is:
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803......
All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the
second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are:
2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... (sequence A005479 in the OEIS).

In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. ${ }^{[1]}$ That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes. Approximate logarithmic spirals can occur in nature, for example the arms of spiral galaxies ${ }^{[3]}$ - golden spirals are one special case of these logarithmic spirals

We observe that 1728 and 1729 are results very near to the mass of candidate glueball $\mathbf{f}_{\mathbf{0}}(\mathbf{1 7 1 0})$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-Zagier theorem. The number 1728 is one less than the HardyRamanujan number 1729 (taxicab number).

Furthermore, we obtain as results of our computations, always values very near to the Higgs boson mass 125.18 GeV and practically equals to the rest mass of Pion meson 139.57 MeV . In conclusion we obtain also many results that are very good approximations to the value of the golden ratio $1.618033988749 \ldots$ and to $\zeta(2)=$ $\frac{\pi^{2}}{6}=1.644934 \ldots$

We note how the following three values: 137.508 (golden angle), 139.57 (mass of the Pion - meson $\mathbf{P i}$) and 125.18 (mass of the Higgs boson), are connected to each other. In fact, just add 2 to $\mathbf{1 3 7 . 5 0 8}$ to obtain a result very close to the mass of the Pion and subtract 12 to 137.508 to obtain a result that is also very close to the mass of the Higgs boson. We can therefore hypothesize that it is the golden angle (and the related golden ratio inherent in it) to be a fundamental ingredient both in the structures of the microcosm and in those of the macrocosm.

References

On certain trigonometrical sums and their applications in the theory of numbers - Srinivasa Ramanujan
Transactions of the Cambridge Philosophical Society, XXII, No.13, 1918, 259 - 276

The normal number of prime factors of a number \mathbf{n} - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLVIII, 1917, 76-92

II

RAMANUJAN AND THE THEORY OF PRIME NUMBERS

16 Jan. 1913

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy
 ${ }^{2}$ A. Nardelli studies at the Università degli Studi di Napoli Federico II - Dipartimento di Studi Umanistici Sezione Filosofia - scholar of Theoretical Philosophy

