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https://mobygeek.com/features/indian-mathematician-srinivasa-ramanujan-quotes-11012 

 

 

We want to highlight that the development of the various equations was carried 
out according an our possible logical and original interpretation 
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From 

Page 20 – Manuscript Book 3 of Srinivasa Ramanujan 

 

 

 

For x = 2, we obtain: 

(2^4+1)^4+4((2^5-5*2)/2)^4+5(2^4-2)^4 = 3^4+4((2^5+2)/2)^4 

Input: 

 
 
Result: 

 
 
Left hand side: 

 
 
Right hand side: 

 
334165 

 

((((2^4+1)^4+4((2^5-5*2)/2)^4+5(2^4-2)^4)))^1/26 

Input: 
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Result: 

 
 
Decimal approximation: 

 

1.63102281831008….≈ ζ(2) = 
గమ

଺
= 1.644934… 

 

All 26th roots of 334165: 
 

 

 

 

 

 
 

 

 

 

For x = 2, we obtain: 

(4*2^5-5*2)^4+(4*2^4+1)^4+5(4*2^4-2)^4 = 3^4+(4*2^5+2)^4 

Input: 
 

 
Result: 

 
 
Left hand side: 
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Right hand side: 
 

285610081 

 

From which, we obtain: 

 

((((4*2^5-5*2)^4+(4*2^4+1)^4+5(4*2^4-2)^4)))^1/39 

Input: 

 
 
Result: 

 
 
Decimal approximation: 

 

1.647459344300932…..≈ ζ(2) = 
గమ

଺
= 1.644934… 

 
All 39th roots of 285610081: 
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For x = 2, we obtain: 

(3^4+(2*2^4-1)^4+(4*2^5+2)^4)=((4*2^4+1)^4+(6*2^4-3)^4+(4*2^5-5*2)^4) 

Input: 
 

 
Result: 

 
 
Left hand side: 

 
 
Right hand side: 

 
286533602 

 

From which 

 

((4*2^4+1)^4+(6*2^4-3)^4+(4*2^5-5*2)^4)^1/39 

Input: 

 
 
Result: 

 
 
Decimal approximation: 

 

1.6475957209812549…..≈ ζ(2) = 
గమ

଺
= 1.644934… 

 

 
All 39th roots of 286533602: 
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We have the following results:  334165,   285610081,   286533602 

 ((( 286533602 +285610081+ 334165)))^1/40 

Input: 

 
 
 
Result: 

 
 
Decimal approximation: 

 
1.65555634917057646… result very near to the 14th root of the following 

Ramanujan’s class invariant 𝑄 = ൫𝐺ହ଴ହ/𝐺ଵ଴ଵ/ହ൯
ଷ
 = 1164.2696  i.e. 1.65578... 

 
Alternate form: 

 
 
 
All 40th roots of 572477848: 
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We have also: 

((( 286533602 +285610081+ 334165)))/2909+89 

where 2909  and  89 are Eisenstein numbers 

Input: 

 
 
Exact result: 

 
Decimal approximation: 

 
196884.41010656…  196884 is a fundamental number of the following  j-invariant  

 

 
 

(In mathematics, Felix Klein's j-invariant or j function, regarded as a function of 
a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on 
the upper half plane of complex numbers. Several remarkable properties of j have to 
do with its q expansion (Fourier series expansion), written as a Laurent series in 
terms of q = e2πiτ (the square of the nome), which begins: 

 
Note that j has a simple pole at the cusp, so its q-expansion has no terms below q−1. 

All the Fourier coefficients are integers, which results in several almost integers, 
notably Ramanujan's constant: 

 
The asymptotic formula for the coefficient of qn is given by 

 
as can be proved by the Hardy–Littlewood circle method) 
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From: 

https://oeis.org/search?q=104164&sort=&language=&go=Search 

A041020 

 

Numerators of continued fraction convergents to sqrt(14). 

 
 

 

3, 4, 11, 15, 101, 116, 333, 449, 3027, 3476, 9979, 13455, 90709, 104164, 299037, 403201, 2718243, 
3121444, 8961131, 12082575, 81456581, 93539156, 268534893, 362074049, 2440979187, 2803053236, 
8047085659 (list; graph; refs; listen; history; text; internal format) 

 

The formula is: 

(3+4*x+11*x^2+15*x^3+11*x^4-4*x^5+3*x^6-x^7)/(1-30*x^4+x^8) 

Multiplying the previous results, we obtain: 

(286533602 * 285610081 * 334165) 

Input: 
 

 
Result: 

 
27347022768402161398730 

 

From this result, dividing from the above formula, we have: 

27347022768402161398730/(3+4*x+11*x^2+15*x^3+11*x^4-4*x^5+3*x^6-
x^7)/(1-30*x^4+x^8) 

Input: 

 

Result: 

 

 
 
 
 
 



10 
 

Plots: 

 

 

Alternate forms: 

 

 

 

 
 
 
Expanded form: 

 

 
Properties as a real function: 

 
Domain 

 

Range 
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Series expansion at x = 0: 

 

 
Series expansion at x = ∞: 

 

 
 
Derivative: 
 

 

 
Indefinite integral: 
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Limit: 

 

 

For the above formula equal to 104164, we obtain: 

(3+4*x+11*x^2+15*x^3+11*x^4-4*x^5+3*x^6-x^7)/(1-30*x^4+x^8) = 104164 

 
Input: 

 
 
 
Alternate forms: 

 

 
 
Expanded form: 

 
 
Real solutions: 

 

 

 

 
 

we take the solutions 0.427397474759 

 

With regard the function, we have the following mathematical description: 

(3 + 4 x + 11 x^2 + 15 x^3 + 11 x^4 - 4 x^5 + 3 x^6 - x^7)/(1 - 30 x^4 + x^8) 
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Input: 

 

 
 
 
Plots: 

 

 

Alternate forms: 

 

 

 

Expanded form: 

 

Real root: 

 

3.31181 
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Complex roots: 

 

 

 

 

 

  

Properties as a real function: 
 
Domain 

 

Range 

 

 

Series expansion at x = 0: 

 

 
Series expansion at x = ∞: 

 

 
Derivative: 

 

Indefinite integral: 
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Local maxima: 

 

 

 
 
 
 
Local minima: 

 

 

 
Limit: 

 

 

From 

 

we obtain, for x = 3.31181: 

(3 + 4 *3.31181 + 11 *3.31181^2 + 15 *3.31181^3 + 11 *3.31181^4 - 4 *3.31181^5 
+ 3 *3.31181^6 -3.31181^7)/(1 - 30 *3.31181^4 + 3.31181^8) 

Input interpretation: 

 
 
Result: 

 
1.50929196949…*10-7 
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From which: 

0.1/(1.5092919694901756590223731380507984120329280170446150 × 10^-
7)^(((35 ζ(3))/(3 log(2) log^2(3) log^3(2 π)))) 

Input interpretation: 

 

 
 

 
Result: 

 
2.62538…*1017 

 

Furthermore, adding 1/(27347022768402161398730), we obtain: 

1/(27347022768402161398730)+(((0.1/(1.5092919694901756590223731380507984
120329280170446150 × 10^-7)^(((35 ζ(3))/(3 log(2) log^2(3) log^3(2 π))))))) 

 
Input interpretation: 

 

 
 

 
Result: 

 
2.62538…*1017 

 

From which: 

sqrt[1/10^17[1/(27347022768402161398730)+(((0.1/(1.50929196949017565902237
31380507984120329280170446150 × 10^-7)^(((35 ζ(3))/(3 log(2) log^2(3) log^3(2 
π)))))))] 
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Input interpretation: 

 

 
 

 
 
 
Result: 

 
1.620300973709…. result that is a good approximation to the value of the golden 
ratio 1.618033988749... 
 

 

From 

 

 

putting x = 0.427397474759 ≈ 0.42739747476, we obtain: 

 

27347022768402161398730/(((3+4*0.42739747476+11*0.42739747476^2+15*0.42
739747476^3+11*0.42739747476^4-4*0.42739747476^5+3*0.42739747476^6-
0.42739747476^7))/(1-30*0.42739747476^4+0.42739747476^8) 

Input interpretation: 

 
 
Result: 

 
2.6253813801…*1017   
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From 

(3+4*x+11*x^2+15*x^3+11*x^4-4*x^5+3*x^6-x^7)/(1-30*x^4+x^8) 

for x =  0.427397474759, we obtain: 

 

(3+4*0.427397474759+11*0.427397474759^2+15*0.427397474759^3+11*0.42739
7474759^4-4*0.427397474759^5+3*0.427397474759^6-0.427397474759^7)/(1-
30*0.427397474759^4+0.427397474759^8) 

Input interpretation: 

 
 
Result: 

 
104163.988266….. ≈ 104164 

 

We remember that: 

((( 286533602 * 285610081* 334165))) 

 
 

 

 
27347022768402161398730 

 

Dividing the two obtained results, we have: 

27347022768402161398730/104163.98826620834171177880996829970178878546
58184992382824 

 
Input interpretation: 
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Result: 

 

2.625381691272…*1017 

 
Decimal form: 

 
262538169127244924.21814…. result near to the value of the Ramanujan’s constant 

 

From Ramanujan's constant 

 
 

we obtain:  

640320^3+744 

Input: 
 

 
Result: 

 
262537412640768744 
 
 
Scientific notation: 

 
2.625374126407…*1017 
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Now, from: 

Page 22 

 

 

(5m^2+15n^2)^4 

Input: 
 

Values: 
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3D plot: 
 

 

Contour plot: 
 

 

 
Geometric figure: 

 

Alternate forms: 
 

 

 

 

Expanded form: 
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Roots: 
 

 

 

Integer root: 

 

Polynomial discriminant: 
 

Property as a function: 
Parity 

 

Derivative: 

 

Indefinite integral: 
 

 

Global minimum: 
 

 
 
Definite integral over a disk of radius R: 
 

 

 

For m = 3, we obtain: 

(15n^2+45)^4 

Input: 
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Plots: 

 

 

Values: 
 

 

Alternate forms: 
 

 

 

 

Expanded form: 
 

 

Complex roots: 
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𝑖√3  = √3  
 
that is the ratio between the gravitating mass M0  and the Wheelerian mass q  
 

       

 
(see: Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? - 
arXiv:1909.13052v1 [gr-qc] 28 Sep 2019) 
 
 
Polynomial discriminant: 

 

Property as a function: 
Parity 

 

Derivative: 
 

 

Indefinite integral: 
 

 

Global minimum: 
 

 

 
For n = 3, we have: 

(15*3^2+45)^4 

Input: 
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Result: 
 

 
1049760000 

 

Performing the 41th root, we obtain: 

 

((((15*3^2+45)^4)))^1/41 

where 41 is an Eisenstein number 

Input: 

 
 
Result: 

 
Decimal approximation: 

 
1.6596885041…. result very near to the 14th root of the following Ramanujan’s class 

invariant 𝑄 = ൫𝐺ହ଴ହ/𝐺ଵ଴ଵ/ହ൯
ଷ
 = 1164.2696  i.e. 1.65578... 

 

and we obtain also: 

1/(31*43*4)(15*3^2+45)^4 + 5 

where 31 and 43 are prime numbers, while 4 is a Lucas number 

Input: 

 
 
Exact result: 
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Decimal approximation: 
 

 
196884.2198…. 

 

196884 is a fundamental number of the following  j-invariant  

 

 
 

(In mathematics, Felix Klein's j-invariant or j function, regarded as a function of 
a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on 
the upper half plane of complex numbers. Several remarkable properties of j have to 
do with its q expansion (Fourier series expansion), written as a Laurent series in 
terms of q = e2πiτ (the square of the nome), which begins: 

 
Note that j has a simple pole at the cusp, so its q-expansion has no terms below q−1. 

All the Fourier coefficients are integers, which results in several almost integers, 
notably Ramanujan's constant: 

 
The asymptotic formula for the coefficient of qn is given by 

 
as can be proved by the Hardy–Littlewood circle method) 

 

and again: 

1/19(((5*3^2+15*3^2)^4))^1/2 +24 

Input: 

 
 
Exact result: 
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Decimal approximation: 

 
1729.263157…..  

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. The number 1728 is one less than the Hardy–Ramanujan number 1729  
(taxicab number) 

 

Performing the 15th root: 

 

(((1/19(((5*3^2+15*3^2)^4))^1/2 +24)))^1/15 

Input: 

 
 
 
Result: 

 
 
Decimal approximation: 

 

1.6438319…. ≈ ζ(2) = 
గమ

଺
= 1.644934… 

 
Alternate form: 

 
 
 
All 15th roots of 32856/19: 
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From which: 

 

(((1/19(((5*3^2+15*3^2)^4))^1/2 +24)))^1/15 - (21+5)1/10^3 

Input: 

 
 
 
Result: 

 
 
Decimal approximation: 

 
1.617831907068…. result that is a very good approximation to the value of the 
golden ratio 1.618033988749... 
 

 

Alternate forms: 
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Now, we have that: 

Page 25 

 

 

 

Where 11, 59, 83  and 107 are Eisenstein numbers 

8J + 3 = 59;  J = 7 

1/3*sqrt(1+(8*7)/3) = t 

Input: 
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Result: 

 
 
Decimal approximation: 

 
1.4782371884…. 

 

Alternate form: 

 
 

 

 

For J = 7, we obtain: 

(((2*(64*7^2-24*7+9)^0.5 – (16*7-3))))^1/6 

 
Input: 

 

Exact result: 

 

Decimal approximation: 

 

0.705954629… 

Alternate form: 

 

Minimal polynomial: 
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All 6th roots of 2 sqrt(2977) - 109: 
 

 

 

 

 

 

 

From which: 

 

1+5((((((2*(64*7^2-24*7+9)^0.5 – (16*7-3))))^1/6)))^6 

Input: 

 
Exact result: 

 
 
Decimal approximation: 

 
1.618914628149…. result that is a very good approximation to the value of the 
golden ratio 1.618033988749... 
 

 

Alternate forms: 

 

 
 
Minimal polynomial: 
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From the above minimal polynomial, we obtain: 

-1764 + 1088 x + x^2 

Input: 
 

 
 
Plots: 

 

 

 
Geometric figure: 

 

Alternate forms: 
 

 

 

Roots: 

 

 

Polynomial discriminant: 
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Properties as a real function: 
Domain 

 

Range 

 

 

Derivative: 

 

Indefinite integral: 

 

Global minimum: 
 

Definite integral: 

 

 
Definite integral area below the axis between the smallest and largest real 
roots: 

 

 

from which: 

1088 (-2 (272 + 5 sqrt(2977))) + (-2 (272 + 5 sqrt(2977)))^2 

Input: 

 
 
Result: 

 
1764  result in the range of the mass of candidate “glueball” f0(1710) (“glueball” 
=1760 ± 15 MeV). 
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Performing the 15th root: 

(((1088 (-2 (272 + 5 sqrt(2977))) + (-2 (272 + 5 sqrt(2977)))^2 )))^1/15 

Input: 

 

 
Result: 

 

Decimal approximation: 

 

1.646012915965…. ≈ ζ(2) = 
గమ

଺
= 1.644934… 

 

Alternate forms: 
 

 

 

All 15th roots of 4 (272 + 5 sqrt(2977))^2 - 2176 (272 + 5 sqrt(2977)): 
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Now, we have: 

 

Sqrt(8*8+3)+(2(64*8^2-24*8+9)^0.5-8*8+6)^0.5 

For J = 7, we obtain: 

sqrt(59)+(2(64*7^2-24*7+9)^0.5 – 8*7+6)^0.5 

Input: 

 
 
Exact result: 

 
 
Decimal approximation: 

 
15.37034485… 

 

Alternate forms: 

 

 
 
Minimal polynomial: 

 
 

From which: 

(3sqrt3)/R^6 = sqrt(59)+(2(64*7^2-24*7+9)^0.5 – 8*7+6)^0.5 

Input: 
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Exact result: 

 
 
Alternate forms: 

 

 

 
 
Alternate form assuming R is positive: 

 
 
Real solutions: 

 

 
 

 

 
 
Complex solutions: 
 

 



37 
 

 

 

 
 

 

From the real solution, we obtain: 

3^(1/4)/(sqrt(59) + sqrt(2 (-25 + sqrt(2977))))^(1/6) 

Input: 

 
 
Decimal approximation: 

 
0.83464099429… 
 
 
Alternate forms: 
 

 

 
 
Minimal polynomial: 
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and, multiplying by 2: 

2(((3^(1/4)/(sqrt(59) + sqrt(2 (-25 + sqrt(2977))))^(1/6)))) 

Input: 

 
 
 
 
 
Result: 

 
 
Decimal approximation: 

 
1.66928198858…. result very near to the 14th root of the following Ramanujan’s 

class invariant 𝑄 = ൫𝐺ହ଴ହ/𝐺ଵ଴ଵ/ହ൯
ଷ
 = 1164.2696  i.e. 1.65578... 

 
Alternate forms: 
 

 

 
Minimal polynomial: 

 
 

From the expression 

 



39 
 

we obtain also the following result: 

(((sqrt(59)+(2(64*7^2-24*7+9)^0.5 – 8*7+6)^0.5)))^3-Pi^2 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

3621.3359572… result practically equal to the rest mass of double charmed Xi 
baryon 3621.40 

Property: 

 

Alternate forms: 

 

 

 

 
Series representations: 
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and again, we obtain also: 

1/2(((sqrt(59)+(2(64*7^2-24*7+9)^0.5 – 8*7+6)^0.5)))^3-89+golden ratio^2 

Input: 

 

 

Exact result: 

 

Decimal approximation: 

 

1729.220814825… 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. The number 1728 is one less than the Hardy–Ramanujan number 1729  
(taxicab number) 

 
Alternate forms: 
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Minimal polynomial: 

 

 
Series representations: 
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and: 

(((sqrt(59)+(2(64*7^2-24*7+9)^0.5 – 8*7+6)^0.5)))^2-89-8 

Input: 

 
 
Exact result: 

 
 
Decimal approximation: 

 
139.247500994… result practically equal to the rest mass of  Pion meson 139.57 
MeV 
  

 

Alternate forms: 

 

 

 
 
Minimal polynomial: 

 
 

 

(((sqrt(59)+(2(64*7^2-24*7+9)^0.5 – 8*7+6)^0.5)))^2-89-21-1/golden ratio 

Input: 
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Exact result: 

 

Decimal approximation: 

 

125.629467005… result very near to the Higgs boson mass 125.18 GeV 

Alternate forms: 

 

 

 

 
Minimal polynomial: 

 

 

Series representations: 

 

 



44 
 

 

 

 

For J = 8, from the previous expression, we obtain: 

 

Sqrt(8*8+3)+(2(64*8^2-24*8+9)^0.5-8*8+6)^0.5 

Input: 

 
 
Exact result: 

 
 
Decimal approximation: 

 
16.37729719… 

 

Alternate forms: 

 

 
 
Minimal polynomial: 
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From which, we obtain: 

2Pi(((Sqrt(8*8+3)+(2(64*8^2-24*8+9)^0.5-8*8+6)^0.5)))^2+41+2 

where 2 and 41 are Eisenstein numbers 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

1728.2499715… 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. The number 1728 is one less than the Hardy–Ramanujan number 1729  
(taxicab number) 

 

Property: 

 

Alternate forms: 
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Series representations: 

 

 

 

 

and: 

(((2Pi(((Sqrt(8*8+3)+(2(64*8^2-24*8+9)^0.5-8*8+6)^0.5)))^2+41+2)))^1/15 

Input: 

 

Exact result: 

 

 
Decimal approximation: 

 

1.6437676807…. ≈ ζ(2) = 
గమ

଺
= 1.644934… 

 



47 
 

Property: 

 

Alternate forms: 

 

 

 

 
All 15th roots of 43 + 2 (sqrt(67) + sqrt(2 sqrt(3913) - 58))^2 π: 
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Series representations: 
 

 

 

 

 
Integral representation: 
 

 

 

and again: 

 

8(((Sqrt(8*8+3)+(2(64*8^2-24*8+9)^0.5-8*8+6)^0.5)))-2Pi+1/golden ratio 

Input: 
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Exact result: 

 

Decimal approximation: 

 

125.353226218… result very near to the Higgs boson mass 125.18 GeV 

 
Property: 

 

Alternate forms: 

 

 

 

 
Series representations: 
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8(((Sqrt(8*8+3)+(2(64*8^2-24*8+9)^0.5-8*8+6)^0.5)))+8+1/golden ratio 

Input: 

 

 

Exact result: 

 

 
 
Decimal approximation: 

 

139.636411525… result practically equal to the rest mass of  Pion meson 139.57 
MeV 
 

Alternate forms: 
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Minimal polynomial: 

 

 
Series representations: 

 

 

 

 

 

Now, we have that: 

 

and 
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We have obtained (see part II): 

1/3.9121192269((1+0.0000098844 cos((2Pi*ln(3.9121192269))/ln2+0.872811))) 

Input interpretation: 

 

 

 
 
 
Result: 

 

0.25561790957… 

 

For y = 3.9121192269 , r = 2  and  k = 1 , we obtain: 

 

1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -1/3.9121192269 gamma 
(((1+2*Pi)/(ln(2)))) 3.9121192269^(((2Pi)/(ln(2)))))    

Input interpretation: 

 

 

 

 

Result: 

 

-6.9086374196…*1010 
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Alternative representations: 

 

 

 

 
Integral representations: 
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Performing the 52th  root of the above expression, we obtain: 

 

(((-(1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -1/3.9121192269 
gamma (((1+2*Pi)/(ln(2)))) 3.9121192269^(((2Pi)/(ln(2))))))))^1/52 

Input interpretation: 

 

 

 



55 
 

 

Result: 

 

1.6160316045…. result that is a good approximation to the value of the golden ratio 
1.618033988749... 
 

and: 

27*(((-(1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -1/3.9121192269 
gamma (((1+2*Pi)/(ln(2)))) 3.9121192269^(((2Pi)/(ln(2))))))))^1/6-1/2 

Input interpretation: 

 

 
 
 

 
Result: 

 
1729.034105… 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. The number 1728 is one less than the Hardy–Ramanujan number 1729  
(taxicab number) 

 

With regard 27 (From Wikipedia): 

 “The fundamental group of the complex form, compact real form, or any algebraic 
version of E6 is the cyclic group Z/3Z, and its outer automorphism group is the cyclic 
group Z/2Z. Its fundamental representation is 27-dimensional (complex), and a basis 
is given by the 27 lines on a cubic surface. The dual representation, which is 
inequivalent, is also 27-dimensional. In particle physics, E6 plays a role in 
some grand unified theories”. 

 



56 
 

Alternative representations: 
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Integral representations: 
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Performing the 15th root, we obtain: 

((((27*(((-(1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -
1/3.9121192269 gamma (((1+2*Pi)/(ln(2)))) 3.9121192269^(((2Pi)/(ln(2))))))))^1/6-
1/2))))^1/15 

Input interpretation: 

 

 
 
 

 
Result: 

 

1.64381739040… ≈ ζ(2) = 
గమ

଺
= 1.644934… 

 

or, remaining 2πi in the previous expression: 

 

1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -1/3.9121192269 gamma 
(((1+2*Pi*i)/(ln(2)))) 3.9121192269^(((2Pi*i)/(ln(2)))))    

Input interpretation: 

 

 

Result: 

 

Polar coordinates: 
 

5.806326344  
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Alternative representations: 
 

 

 

 

 
 
Integral representations: 
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From which: 

1.093364164+(((([1/(((1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -
1/3.9121192269 gamma (((1+2*Pi*i)/(ln(2)))) 
3.9121192269^(((2Pi*i)/(ln(2)))))))^1/4])))) 

where 1.093364164 is the Hausdorff dimension of Rauzy fractal boundary r 
(Boundary of the Rauzy fractal) 

Input interpretation: 

 

 

 

 

 

Result: 

 

Polar coordinates: 
 

1.61448  result that is a good approximation to the value of the golden ratio 
1.618033988749... 
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Alternative representations: 
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Integral representations: 

 

 

 

 

 

 

and: 
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4[(((1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -1/3.9121192269 
gamma (((1+2*Pi*i)/(ln(2)))) 3.9121192269^(((2Pi*i)/(ln(2)))))))]^2+5 

Input interpretation: 

 

 

Result: 

 

Polar coordinates: 
 

139.85370246  result practically equal to the rest mass of  Pion meson 139.57 MeV 
 
 
Alternative representations: 

 



65 
 

 

 

 

 
4[(((1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -1/3.9121192269 
gamma (((1+2*Pi*i)/(ln(2)))) 3.9121192269^(((2Pi*i)/(ln(2)))))))]^2+2-11-1/golden 
ratio 

Input interpretation: 
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Result: 

 

Polar coordinates: 
 

125.32566847  result very near to the Higgs boson mass 125.18 GeV 

 
Alternative representations: 
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Integral representations: 
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and again: 

27*1/2*(((4[(((1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -
1/3.9121192269 gamma (((1+2*Pi*i)/(ln(2)))) 
3.9121192269^(((2Pi*i)/(ln(2)))))))]^2+2-8-1/golden ratio)))-2 

Input interpretation: 

 

 

 

 

 

 

Result: 

 

Polar coordinates: 
 

1729.1815244 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 
curve. The number 1728 is one less than the Hardy–Ramanujan number 1729  
(taxicab number) 
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Alternative representations: 
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Integral representations: 
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Performing the 15th root, we obtain: 

 

((((27*1/2*(((4[(((1/3.9121192269 – ln(2) (3.9121192269^2)/2! 2^3/(2^3-1) -
1/3.9121192269 gamma (((1+2*Pi*i)/(ln(2)))) 
3.9121192269^(((2Pi*i)/(ln(2)))))))]^2+2-8-1/golden ratio)))-2))))^1/15 

Input interpretation: 
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Result: 

 
 
Polar coordinates: 

 

1.64382673359  ≈ ζ(2) = 
గమ

଺
= 1.644934… 
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Observations  

 

Figs. 
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The ratio between M0  and  q  
 
 

 
 

 
i.e. the gravitating mass M0  and the Wheelerian mass q of the wormhole, is equal to: 
 
  

 
 

 

 

1.7320507879 ≈ √3  that is the ratio between the gravitating mass M0  and the 
Wheelerian mass q of  the wormhole 
 

We note that: 
 
 

 

 
 

 

 
1.73205 

 
This result is very near to the ratio between M0  and  q, that is equal to 1.7320507879 
≈ √3 
 
 
With regard √3 , we note that is a fundamental value of the formula structure that we 
need to calculate a Cubic Equation 
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We have that the previous result 
 
 

  =   =  
 
=  
 

 
 
can be related with: 
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Considering:  
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Thence: 
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We observe how the graph above, concerning the cubic function, is very similar 
to the graph that represent the scalar field (in red). It is possible to hypothesize 
that cubic functions and cubic equations, with their roots, are connected to the 
scalar field. 
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From: 
https://www.scientificamerican.com/article/mathematics-
ramanujan/?fbclid=IwAR2caRXrn_RpOSvJ1QxWsVLBcJ6KVgd_Af_hrmDYBNyU8m
pSjRs1BDeremA 
 
Ramanujan's statement concerned the deceptively simple concept of partitions—the 
different ways in which a whole number can be subdivided into smaller numbers. 
Ramanujan's original statement, in fact, stemmed from the observation of patterns, 
such as the fact that p(9) = 30, p(9 + 5) = 135, p(9 + 10) = 490, p(9 + 15) = 1,575 
and so on are all divisible by 5. Note that here the n's come at intervals of five units. 
 
Ramanujan posited that this pattern should go on forever, and that similar patterns 
exist when 5 is replaced by 7 or 11—there are infinite sequences of p(n) that are all 
divisible by 7 or 11, or, as mathematicians say, in which the "moduli" are 7 or 11. 
 
Then, in nearly oracular tone Ramanujan went on: "There appear to be 
corresponding properties," he wrote in his 1919 paper, "in which the moduli are 
powers of 5, 7 or 11...and no simple properties for any moduli involving primes other 
than these three." (Primes are whole numbers that are only divisible by themselves or 
by 1.) Thus, for instance, there should be formulas for an infinity of n's separated by 
5^3 = 125 units, saying that the corresponding p(n)'s should all be divisible by 125. 
In the past methods developed to understand partitions have later been applied to 
physics problems such as the theory of the strong nuclear force or the entropy of 
black holes. 
 
From Wikipedia 
 
In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki 
Yukawa, is an interaction between a scalar field ϕ and a Dirac field ψ. The Yukawa 
interaction can be used to describe the nuclear force between nucleons (which 
are fermions), mediated by pions (which are pseudoscalar mesons). The Yukawa 
interaction is also used in the Standard Model to describe the coupling between 
the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion 
particles). Through spontaneous symmetry breaking, these fermions acquire a mass 
proportional to the vacuum expectation value of the Higgs field.  
 
 

Can be this the motivation that from the development of the Ramanujan’s equations 
we obtain results very near to the dilaton mass calculated as a type of Higgs boson: 
125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV and practically equal to 
the rest mass of  Pion meson 139.57 MeV 
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Note that: 

 

Thence: 

 

And 

 

That are connected with 64, 128, 256, 512, 1024 and 4096 = 642 

 
(Modular equations and approximations to π - S. Ramanujan - Quarterly Journal of 
Mathematics, XLV, 1914, 350 – 372) 
 
 
All the results of the most important connections are signed in blue throughout the 
drafting of the paper. We highlight as in the development of the various equations we 
use always the constants π, ϕ, 1/ϕ, the Fibonacci and Lucas numbers, linked to the 
golden ratio, that play a fundamental role in the development, and therefore, in the 
final results of the analyzed expressions. 
 
In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, 
called the Fibonacci sequence, such that each number is the sum of the two preceding 
ones, starting from 0 and 1. Fibonacci numbers are strongly related to the golden 
ratio: Binet's formula expresses the nth Fibonacci number in terms of n and the 
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golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends 
to the golden ratio as n increases. 
Fibonacci numbers are also closely related to Lucas numbers ,in that the Fibonacci 
and Lucas numbers form a complementary pair of Lucas sequences  

The beginning of the sequence is thus: 

 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 
1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 
63245986, 102334155...  

 

The Lucas numbers or Lucas series are an integer sequence named after the 
mathematician François Édouard Anatole Lucas (1842–91), who studied both that 
sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci 
numbers form complementary instances of Lucas sequences. 

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, 
where each term is the sum of the two previous terms, but with different starting 
values. This produces a sequence where the ratios of successive terms approach 
the golden ratio, and in fact the terms themselves are roundings of integer powers of 
the golden ratio.[1] The sequence also has a variety of relationships with the 
Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms 
apart in the Fibonacci sequence results in the Lucas number in between. 

The sequence of Lucas numbers is: 

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 
9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 
1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 
54018521, 87403803…… 

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff 
array; the Fibonacci sequence itself is the first row and the Lucas sequence is the 
second row. Also like all Fibonacci-like integer sequences, the ratio between two 
consecutive Lucas numbers converges to the golden ratio. 

 

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are: 

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 
6643838879, ... (sequence A005479 in the OEIS). 
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In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, 
the golden ratio.[1] That is, a golden spiral gets wider (or further from its origin) by a 
factor of φ for every quarter turn it makes. Approximate logarithmic spirals can 
occur in nature, for example the arms of spiral galaxies[3] - golden spirals are one 
special case of these logarithmic spirals 

 

We observe that 1728 and 1729 are results very near to the mass of candidate glueball 
f0(1710) scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-
invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a 
pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–
Ramanujan number 1729  (taxicab number). 

 

Furthermore, we obtain as results of our computations, always values very near to the 
Higgs boson mass 125.18 GeV and practically equals to the rest mass of  Pion meson 
139.57 MeV. In conclusion we obtain also many results that are very good 
approximations to the value of the golden ratio 1.618033988749... and to ζ(2) = 
గమ

଺
= 1.644934… 

 

 

We note how the following three values: 137.508 (golden angle), 139.57 (mass of 
the Pion - meson Pi) and 125.18 (mass of the Higgs boson), are connected to each 
other. In fact, just add 2 to 137.508 to obtain a result very close to the mass of 
the Pion and subtract 12 to 137.508 to obtain a result that is also very close to 
the mass of the Higgs boson. We can therefore hypothesize that it is the golden 
angle (and the related golden ratio inherent in it) to be a fundamental ingredient 
both in the structures of the microcosm and in those of the macrocosm. 
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