The Fermat classes and the proof of Beal conjecture Par :
Mohamed Sghiar
msghiar21@gmail.com
Présenté à :
UNIVERSITÉ DE BOURGOGNE DIJON
Faculté des sciences Mirande Département de mathématiques et informatiques
9 Av Alain Savary
21078 DIJON CEDEX

Abstract

If after 374 years the famous theorem of Fermat-Wiles was demonstrated in 150 pages by A. Wiles [4], The purpose of this article is to give a proofs both for the Fermat last theorem and the Beal conjecture by using the Fermat class concept.

Résumé : Si après 374 ans le célèbre théorème de Fermat-Wiles a été démontré en 150 pages par A. Wiles [4], le but de cet article est d'en donner des démonstrations à la fois du dernier théorème de Fermat et de la conjecture de beal en utilisant la notion des classes de Fermat.

Keywords : Fermat, Fermat-Wiles theorem, Fermat's great theorem, Beal conjecture, Diophantine equation

The Subject Classification Codes: 11D41-11G05-11G07-26B15-26B20-28A10-28A75-26A09-26A42-

1 Introduction, notations and definitions

Set out by Pierre de Fermat [3], it was not until more than three centuries ago that Fermat's great theorem was published, validated and established by the British mathematician Andrew Wiles [4] in 1995.

In mathematics, and more precisely in number theory, the last theorem of Fermat [3], or Fermat's great theorem, or since his Fermat-Wiles theorem demonstration [4], is as follows: There are no non-zero integers a , b , and c such that: $a^{n}+b^{n}=c^{n}$, as soon as n is an integer strictly greater than 2 ". The Beal conjecture [2] is the following conjecture in number theory: If $a^{x}+b^{y}=c^{z}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ and z are positive integers with $\mathrm{x}, \mathrm{y}, \mathrm{z}>2$, then a, b, and c have a common prime factor. Equivalently, There are no solutions to the above equation in positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ with a, b and c being pairwise coprime and all of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ being greater than 2 .

The purpose of this article is to give a proofs both for the Fermat last theorem and the Beal conjecture by using the Fermat class concept.
Let be two equations $x^{a}+y^{b}-z^{c}=0$ with $(x, y, z) \in E^{3}$ and $(a, b, c) \in F^{3}$, and $X^{A}+Y^{B}-Z^{C}=0$ with $(X, Y, Z) \in E^{\prime 3}$ and $(A, B, C) \in F^{\prime 3}$, in the following $F=F^{\prime}=\mathbb{N}$ and E and E^{\prime} are subsets of \mathbb{R}.
The two equations $x^{a}+y^{b}-z^{c}=0$ with $(x, y, z) \in E^{3}$ and $(a, b, c) \in F^{3}$; and $X^{A}+Y^{B}-Z^{C}=0$ with $(X, Y, Z) \in E^{\prime 3}$ and $(A, B, C) \in F^{\prime 3}$, are said to be equivalent if the resolution of one is reduced to the resolution of the other. In the following, an equation $x^{a}+y^{b}-z^{c}=0$ with $(x, y, z) \in E^{3}$ and $(a, b, c) \in F^{3}$ is considered at close equivalence, we say $x^{a}+y^{b}-z^{c}=0$ is

a Fermat class.

Example: The equation $x^{15}+y^{15}-z^{15}=0$ with $(x, y, z) \in \mathbb{Q}^{3}$ is equivalent to the equation $X^{3}+Y^{3}-Z^{3}=0$ with $(X, Y, Z) \in \mathbb{Q}_{5}^{3}$ and where $\mathbb{Q}_{5}=$ $\left\{q^{5}, q \in \mathbb{Q}\right\}$

2 The proof of Fermat's last theorem

Theorem 1. There are no non-zero a, b, and c three elements of E with $E \subset \mathbb{Q}$ such that: $a^{n}+b^{n}=c^{n}$, with n an integer strictly greater than 2

Lemma 1. If $n \in \mathbb{N}, a, b$ and c are a non-zero three elements of \mathbb{R} with $a^{n}+b^{n}=c^{n}$ then:

$$
\int_{0}^{b} x^{n-1}-\left(\frac{c-a}{b} x+a\right)^{n-1} \frac{c-a}{b} d x=0
$$

Proof.

$$
a^{n}+b^{n}=c^{n} \Longleftrightarrow \int_{0}^{a} n x^{n-1} d x+\int_{0}^{b} n x^{n-1} d x=\int_{0}^{c} n x^{n-1} d x
$$

But as :

$$
\int_{0}^{c} n x^{n-1} d x=\int_{0}^{a} n x^{n-1} d x+\int_{a}^{c} n x^{n-1} d x
$$

So :

$$
\int_{0}^{b} n x^{n-1} d x=\int_{a}^{c} n x^{n-1} d x
$$

And as by changing variables we have :

$$
\int_{a}^{c} n x^{n-1} d x=\int_{0}^{b} n\left(\frac{c-a}{b} y+a\right)^{n-1} \frac{c-a}{b} d y
$$

Then :

$$
\int_{0}^{b} x^{n-1} d x=\int_{0}^{b}\left(\frac{c-a}{b} y+a\right)^{n-1} \frac{c-a}{b} d y
$$

It results:

$$
\int_{0}^{b} x^{n-1}-\left(\frac{c-a}{b} x+a\right)^{n-1} \frac{c-a}{b} d x=0
$$

Corollary 1. If $N, n \in \mathbb{N}^{*}, a, b$ and c are a non-zero three elements of \mathbb{R} and $a^{n}+b^{n}=c^{n}$ then :

$$
\int_{0}^{\frac{b}{N}} x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b} d x=0
$$

Proof. It results from lemma 1 by replacing a, b and c respectively by $\frac{a}{N}, \frac{b}{N}$ and $\frac{c}{N}$

Lemma 2. If $a^{n}+b^{n}=c^{n}$ is a Fermat class, where $n \in \mathbb{N}, a, b$ and c are a non-zero three elements of $E \subset \mathbb{R}$ with $n>2$ and $a \leq b \leq c$. Then we can choose a not zero integer N, a, b, c and n in the class, such that:

$$
f(x)=x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b} \leq 0 \forall x \in\left[0, \frac{b}{N}\right]
$$

Proof.

$$
\frac{d f}{d x}=(n-1) x^{n-2}-(n-1)\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-2}\left(\frac{c-a}{b}\right)^{2}
$$

The function f decreases to the right of 0 in $[0, \epsilon[$.
But $f(x)=0 \Longleftrightarrow x=\frac{\frac{a}{N}\left(\frac{c-a}{b}\right)^{\frac{1}{n-1}}}{1-\left(\frac{c-a}{b}\right)^{1+\frac{1}{n-1}}}$
So $f(x) \leq 0 \forall x$ such that $0 \leq x \leq \frac{\frac{a}{N}\left(\frac{c-a}{b}\right)^{\frac{1}{n-1}}}{1-\left(\frac{c-a}{b}\right)^{1+\frac{1}{n-1}}}$
And $f(x) \geq 0 \forall x$ such that $x \geq \frac{\frac{a}{N}\left(\frac{c-a}{b}\right)^{\frac{1}{n-1}}}{1-\left(\frac{c-a}{b}\right)^{1+\frac{1}{n-1}}}$
Otherwise if $\mu \in] 0,1]$ we have $\frac{b(1-\mu)}{N} \not \equiv \frac{\frac{a}{N}\left(\frac{c-a}{b}\right)^{\frac{1}{n-1}}}{1-\left(\frac{c-a}{b}\right)^{1+\frac{1}{n-1}}} \Longleftrightarrow 1-\mu\left(1-\left(\frac{c-a}{b}\right)^{1+\frac{1}{n-1}}\right) \supsetneqq$ $\left(\frac{c-a}{b}\right)^{1+\frac{1}{n-1}}+\frac{a}{b}\left(\frac{c-a}{b}\right)^{\frac{1}{n-1}}$
Let $a^{n}=\left(a^{\frac{1}{n}}\right)^{n^{2}}, b^{n}=\left(b^{\frac{1}{n}}\right)^{n^{2}}$ and $c^{n}=\left(c^{\frac{1}{n}}\right)^{n^{2}}$
By replacing a, b and c respectively with $a^{\frac{1}{n}}, b^{\frac{1}{n}}$, and $c^{\frac{1}{n}}$, we get another Fermat class : $a^{\prime n^{2}}+b^{\prime n^{2}}=c^{\prime n^{2}}$
we will show for this class that $1-\mu\left(1-\left(\frac{c^{\prime}-a^{\prime}}{b^{\prime}}\right)^{1+\frac{1}{n^{2}-1}}\right) \leq\left(\frac{c^{\prime}-a^{\prime}}{b^{\prime}}\right)^{1+\frac{1}{n^{2}-1}}+$ $\frac{a^{\prime}}{b^{\prime}}\left(\frac{c^{\prime}-a^{\prime}}{b^{\prime}}\right)^{\frac{1}{n^{2}-1}}$:
$\left(\frac{c^{\prime}-a^{\prime}}{b^{\prime}}\right)^{1+\frac{1}{n^{2}-1}}+\frac{a^{\prime}}{b^{\prime}}\left(\frac{c^{\prime}-a^{\prime}}{b^{\prime}}\right)^{\frac{1}{n^{2}-1}}=\frac{c^{\prime}}{b^{\prime}}\left(\frac{c^{\prime}-a^{\prime}}{b^{\prime}}\right)^{\frac{1}{n^{2}-1}} \geq\left(\frac{c^{\frac{1}{n}-a^{\frac{1}{n}}}}{b^{\frac{1}{n}}}\right)^{\frac{1}{n^{2}-1}} \geq\left(1-\left(\frac{a}{c}\right)^{\frac{1}{n}}\right)^{\frac{1}{n^{2}-1}}$ But using the logarithm, we have $\lim _{n \rightarrow+\infty}\left(1-\left(\frac{a}{c}\right)^{\frac{1}{n}}\right)^{\frac{1}{n^{2}-1}}=\lim _{n \rightarrow+\infty}\left(1-\left(\frac{a}{c}\right)^{\frac{1}{n}}\right)^{\frac{1}{n^{2}}}=$ 1; because:
$\left(1-\left(\frac{a}{c}\right)^{\frac{1}{n}}\right)^{\frac{1}{n^{2}}}=e^{\frac{1}{n^{2}} \ln \left(1-\left(\frac{a}{c}\right)^{\frac{1}{n}}\right)}$, by posing : $1-\left(\frac{a}{c}\right)^{\frac{1}{n}}=e^{-\mathcal{N}}$, we will have $: \frac{1}{n^{2}}=\left(\frac{\ln \left(1-e^{-\mathcal{N}}\right)}{\ln \left(\frac{a}{c}\right)}\right)^{2}$ and $\lim _{n \rightarrow+\infty}\left(1-\left(\frac{a}{c}\right)^{\frac{1}{n}}\right)^{\frac{1}{n^{2}}}=\lim _{\mathcal{N} \rightarrow+\infty} e^{\left(\frac{\ln \left(1-e^{-\mathcal{N}}\right)}{\ln \left(\frac{a}{c}\right)}\right)^{2}(-\mathcal{N})}=1$ which shows the result.

Figure 1: $\longrightarrow 1$

So, for n large enough, we deduce that there exists a class $a^{\prime n^{2}}+b^{\prime n^{2}}=c^{\prime n^{2}}$ such that:

$$
f(x)=x^{n^{2}-1}-\left(\frac{c^{\prime}-a^{\prime}}{b^{\prime}} x+\frac{a^{\prime}}{N}\right)^{n^{2}-1} \frac{c^{\prime}-a^{\prime}}{b^{\prime}} \not \supsetneqq 0 \forall x \in\left[0, \frac{b^{\prime}(1-\mu)}{N}\right]
$$

independently of \mathbf{N}.

Let's fix an N and put $S=\sup \left\{f(x), x \in\left[0, \frac{b^{\prime}(1-\mu)}{N}\right]\right\}$
By replacing a^{\prime}, b^{\prime} and c^{\prime} respectively with $a^{\prime}(1-\mu)=a^{\prime \prime}, b^{\prime}(1-\mu)=b^{\prime \prime}$, and $c^{\prime}(1-\mu)=c^{\prime \prime}$, we get another Fermat class : $a^{\prime \prime n^{2}}+b^{\prime \prime n^{2}}=c^{\prime \prime n^{2}}$
And we will have for M large enough :

$$
f(x)=x^{n^{2}-1}-\left(\frac{c^{\prime \prime}-a^{\prime \prime}}{b^{\prime \prime}} x+\frac{a^{\prime \prime}}{M}\right)^{n^{2}-1} \frac{c^{\prime \prime}-a^{\prime \prime}}{b^{\prime \prime}} \not \supsetneqq 0 \forall x \in\left[0, \frac{b^{\prime \prime}}{M}\right]
$$

Because $f(x) \leq S+\operatorname{Sup}\left\{\frac{P(x \mu)}{M}, x \in\left[0, \frac{b^{\prime}(1-\mu)}{N}\right]\right\}$ where P is a polynomial.
As for M large enough $\left|S u p\left\{\frac{P(x \mu)}{M}, x \in\left[0, \frac{b^{\prime}(1-\mu)}{N}\right]\right\}\right| \supsetneqq|S|$ and $S \supsetneqq 0$, the result is deduced.

Proof of Theorem:

Proof. If $a^{n}+b^{n}=c^{n}$ is a Fermat class, where $n \in \mathbb{N}$, a, b and c are a non-zero three elements of $E \subset \mathbb{R}$ with $n>2$ and $a \leq b \leq c$. Then, by the lemma 2, for well chosen N , and $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and n in the class, we will have :

$$
f(x)=x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b} \leq 0 \forall x \in\left[0, \frac{b}{N}\right]
$$

And by using the corollary 1, we have :

$$
\int_{0}^{\frac{b}{N}} x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b} d x=0
$$

So

$$
x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b}=0 \forall x \in\left[0, \frac{b}{N}\right]
$$

And therefore $\frac{c-a}{b}=1$ because $\mathrm{f}(\mathrm{x})$ is a null polynomial as it have more than n zeros. So $c=a+b$ and $a^{n}+b^{n} \neq c^{n}$ which is absurde.

3 The proof of Beal conjecture

Corollary 2 (Beal conjecture). If $a^{x}+b^{y}=c^{z}$ where a, b, c, x, y and z are positive integers with $x, y, z>2$, then a, b, and c have a common prime factor.
Equivalently, there are no solutions to the above equation in positive integers a, b, c, x, y, z with a, b and c being pairwise coprime and all of x, y, z being greater than 2.

Proof. Let $a^{x}+b^{y}=c^{z}$
If a, b and c are not pairwise coprime, then by posing $a=k a^{\prime}, b=k b^{\prime}$, and $c=k c^{\prime}$.

Let $a^{\prime}=u^{\prime y z}, b^{\prime}=v^{\prime x z}, c^{\prime}=w^{\prime x y}$ and $k=u^{y z}, k=v^{x z}, k=w^{x y}$
As $a^{x}+b^{y}=c^{z}$, we deduce that $\left(u u^{\prime}\right)^{x y z}+\left(v v^{\prime}\right)^{x y z}=\left(w w^{\prime}\right)^{x y z}$.
So :

$$
k^{x} u^{\prime x y z}+k^{y} v^{\prime x y z}=k^{z} w^{\prime x y z}
$$

This equation does not look like the one studied in the first theorem.
But if a, b and c are pairwise coprime, we have $k=1$ and $u=v=w=1$ and we will have to solve the equation :

$$
u^{\prime x y z}+v^{\prime x y z}=w^{\prime x y z}
$$

The equation $u^{\prime x y z}+v^{\prime x y z}=w^{\prime x y z}$ have a solution if and only if at least one of the equations: $\left(u^{\prime x y}\right)^{z}+\left(v^{\prime x y}\right)^{z}=\left(w^{\prime x y}\right)^{z},\left(u^{\prime x z}\right)^{y}+\left(v^{\prime x z}\right)^{y}=\left(w^{\prime x z}\right)^{y}$, $\left(u^{\prime y z}\right)^{x}+\left(v^{\prime y z}\right)^{x}=\left(w^{\prime y z}\right)^{x}$ have a solution.

So by the proof given in the proof of the first Theorem we must have: $z \leq 2$ or $y \leq 2$, or $x \leq 2$.

We therefore conclude that if $a^{x}+b^{y}=c^{z}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$, and z are positive integers with $\mathrm{x}, \mathrm{y}, \mathrm{z}>2$, then a, b, and c have a common prime
factor.

4 Important notes

1- If a, b, and c are not pairwise coprime, someone, by applying the proof given in the corollary like this : $a=u^{y z}, b=v^{x z}, c=w^{x y}$ we will have $u^{x y z}+v^{x y z}=w^{x y z}$, and could say that all the x, y and z are always smaller than 2 . What is false: $7^{3}+7^{4}=14^{3}$

The reason is sipmle: it is the common factor k which could increase the power, for example if $k=c^{\prime r}$ in the proof, then $c^{z}=\left(k c^{\prime}\right)^{z}=c^{\prime(r+1) z}$. You can take the example : $2^{r}+2^{r}=2^{r+1}$ where $k=2^{r}$.
2- These techniques do not say that the equation $a^{n}+b^{n}=c^{n}$ where $a, b, c \in$ $] 0,+\infty\left[\right.$ has no solution since in the proof the Fermat class $X^{2}+Y^{2}=Z^{2}$ can have a sloution(We take $a=X^{\frac{2}{n}} b=Y^{\frac{2}{n}}$ and $C=Z^{\frac{2}{n}}$).

3- In [1] I proved the abc conjecture which implies only that the equation $a^{x}+b^{y}=c^{z}$ has only a finite number of solutions with $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ a positive integers and a, b and c being pairwise coprime and all of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ being greater than 2.

5 Conclusion

The Fermat class used in this article have allowed to prove both the Fermat' last theorem and the Beal' conjecture and have shown that the Beal conjecture is only a corollary of the Fermat' last theorem.

6 Acknowledgments

I want to thank everyone who contributed to the success of the result of this article.

References

[1] M. Sghiar. La preuve de la conjecture abc. IOSR Journal of Mathematics, 14.4:22-26, 2018.
[2] https://en.wikipedia.org/wiki/Bealconjecture.
[3] https://en.wikipedia.org/wiki/Fermatlasttheorem.
[4] Andrew Wiles. Modular elliptic curves and fermat's last théorème. Annal of mathematics, 10:443-551, september-december 1995.

