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Abstract 
 
In this paper we examine the relations between the Gauss prime numbers 
and the Eisenstein prime numbers and their correlation with Sophie 
Germain primes. Furthermore, we have described also various 
mathematical connections with some equations concerning the string 
theory. 
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1. GAUSSIAN INTEGER 

A Gaussian integer is a complex number whose real and imaginary part are 
both integers. The Gaussian integers, with ordinary addition and 
multiplication of complex numbers, form an integral domain, usually written 
as Z[i]. 

Definition 

Formally, Gaussian integers are the set 

 

                                              [ ] { }ZbabiaiZ ∈+= , . 

                             
Norm 

The norm of a Gaussian integer is the natural number defined as 

 

                                

The norm is multiplicative: 

                                                            ( ) ( ) ( ).wNzNzwN =  

The units of Z[i] are therefore precisely those elements with norm 1, i.e. the 
elements : 
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Gaussian primes in the complex plane are marked in red: 
 

 
 
 

A Gaussian integer   is a Gaussian prime if and only if either: 

• a is prime number and b is zero, so we have a prime number of the 
form 4k+3  

• both are nonzero and p = a2 + b2 = (a+bi) (a-bi) is a prime number 
(which will not be of the form  4k+3).  

 

The prime number 2 is a special case because is the only ramified prime in 
Z[i]). 

 

The integer 2 factors as ( )( ) ( )21112 iiii −=−+=  as a Gaussian integer, the second 
factorization (in which i is a unit) showing that 2 is divisible by the square of 
a Gaussian prime; it is the unique prime number with this property. 
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Instead, the prime number 5 is a unique factorization 

                                                 5 = (2+i)(2−i). 

Gaussian primes are infinite, because they are infinite primes. 
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1.1 REMARKS 

 

The prime numbers that are congruent to 3 (mod.4) are also Gaussian primes.  

Since there are infinitely many rational primes of the form 4k +3, there are 
infinitely many necessarily Gaussian primes. 

The prime numbers congruent to 1 (mod.4) are the product of two distinct 
Gaussian primes. In fact, the primes of the form 4k +1 can always be written 
as the sum of two squares (Fermat's theorem on the sum of two squares) 

so we have: 

                                     p = a2 +b2 = (a+bi)( a-bi) 

 

Numerical form. 

Since the form 4k + 3 corresponds to the form 6k '+1 with k' <k, for 
example, 19 = 4 * 4 +3 = 6 * 3 +1, with k > k ', in fact 4 > 3, the Gaussian 
primes are all of the form 6k '+ 1, and not of the form 6k' - 1, these being 
also of the form 4k +1, and then no-Gaussian primes. 
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1.2 On some equations regarding Lemmas and Theorems of Gaussian 
integers, mod-gaussian convergence of a sum over primes and Gaussian 
primes. 
 
Now we see some Lemmas and Theorems concerning the ring of Gaussian 
integers [ ]iZ , ( ) 22 babiaN +=+ . We note that the letter p denote the Gaussian 
prime. 
 
Lemma 1 
 
                                ( ) xCsxsFres k

s
k

s
=

=
/

1
,        ( ) xCsxsFres k

s
k

s
∗∗=

=/
1

,    (1.1) 

 
where 

       ( ) ( )
( )∏ ∑ 







 −−+=
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1
1

4 a
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k N
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C

ττπ ,    (1.2)    ( ) ( )
( )∏ ∑ 
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1
1

4 a
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kk
k N

aa
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π ,    (1.3)  

    
As a consequence of the following representation, 
 
   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sfsZsZsZsZsZsZsF k

kkkkkkkkkkkkk
k 87652 24/34572632/346/562/1 23423232 −+−+−−+−−− ×=      

                                                                                                                                  
(1.4) 
 
we have 

                     ( )
( )

( )
( ) ( ) ( ) ( )
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and so function ( ) ( )sZsFk /  is regular in the neighbourhood of 1=s . At the same 
time we have 
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                                             ( ) ( ) ( )
4

,1
1

4
1

πζχ ==
==

sresLsZres
ss

,    (1.6) 

 
which implies (1.2). Numerical values of kC  and ∗kC  can be, for example: 

156101,12 ≈C ,    524172,12 ≈∗C .  
We note that the value 1,156101 is very near to the value 1,15522604 and 
that the value 1,524172 is very near to the value 1,52313377 ( 1552,11561,1 ≈ ; 

5231,15241,1 ≈ ). Values concerning the new universal musical system based 
on fractional powers of Phi and Pigreco. 
 
 
Theorem 1 
 
   ( ) ( )( )xxOxCxM k

kk
3/1432/1 log −++= ,    (1.7)        ( ) ( )( )xxOxCxM kk

kk
3/2232/1 2

log −++
∗∗ += ,    

(1.8) 
 
where kC  and ∗kC  were defined in (1.2) and (1.3). 
By Perron formula and by the following expressions, 
 
                           ( )( ) ετ nne

k <<∗ ,        ( )( ) ( )αα εNe
k <<t ,        ( )( ) ( )αα εNe

k <<∗t ,    (1.9) 
 
for xc log/11+= , xT loglog ≈  we have 
 

                                         ( ) ( ) 







+=

++

−∫ T

x
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s
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1

2
1 ,    (1.10) 

 
that, for the eq. (1.7), can be rewritten also as follows: 
 
 

                 ( ) ( )( )xxOxCxM k
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Suppose xd log/12/1 −= . Let us shift the interval of integration to [ ]iTdiTd +− , . 
To do this consider an integral about a closed rectangle path with vertexes in  

iTd − , iTd + , iTc +  and iTc − . There are two poles in 1=s  and 2/1=s  inside the 
contour. The residue at 1=s  was calculated in (1.1). The residue at 2/1=s  is 
equal to 2/1Dx , D = const  and will be absorbed by error term (see below). 
Identity (1.4) implies 
 
                                                 ( ) ( ) ( ) ( )sfsZsZsF k

k
k 21−= ,    (1.11) 

 
where ( )sfk  is regular for 3/1>sR , so for each 0>ε  it is uniformly bounded for 

ε+> 3/1sR . Let us estimate the error term. The error term absorbs values of 
integrals about three sides of the integration’s rectangle. We take into 
account ( ) ( ) ( )4,χζ sLssZ = . On the horizontal segments we have 

                         ( ) ( )
[ ]

( ) ( )∫
+

+

−−

∈

− <<++<<
iTc
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cd

s
k TxiTZiTZds

s

x
sZsZ 11

,

1 22max2 σ

σ
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                                                              ( ) TxTTTx k 3/413/14122/1 loglog −−− +<< θ .    (1.12) 
 
It is well-known that ( ) ( ) 11 −−≈ ssζ  in the neighbourhood of 1=s . So on [ ]idd +,  
we get 
 

  ( ) ( ) ( )∫ ∫ ∫
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222 ζ ,    (1.13) 

 
and for the rest of the vertical segment we have 
 

( ) ( ) ( ) ( ) ( ) ( )
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dt
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12
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4
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                                      ( )( ) ( ) TxTTx kk 3/1432/12/113/1852/1 logloglog −++− <<⋅<< .    (1.14) 
 
The choice ε+= 2/1xT  finishes the proof of (1.7). 
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In conclusion, we note that multiplying both the sides of (1.14) for 8, we 
obtain the equivalent expression: 
 

( ) ( ) ( ) ( ) ( ) ( )
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                                       ( )( ) ( ) TxTTx kk 3/1432/12/113/1852/1 log8loglog8 −++− <<⋅<< ,    (1.14b) 
 
that we can connect to the modes corresponding to the physical vibrations of 
the superstrings by the following Ramanujan modular equation: 
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Thence, we obtain the following mathematical connection: 
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Theorem 2 
 
Let NTex /log=  and N  such that x  and ∞→TN loglog/  as ∞→T . Then  
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                        ( )
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∫
≤+ 2

logsin

4/loglog 12 γ     as    ∞→T     (1.15) 

 
locally uniformly for Ru∈ . Here γ  denotes Euler’s constant and Φ  is the 
analytic function given by 

                                              ( ) ∏
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where 0J  denotes the zeroth Bessel function. 
 
 
 
 
 
 
 
Corollary 1 
 
Assume RH. Let TU  be random variables uniformly distributed on [ ]TT 2, . 
Then the family ( )( )( ) ( )TiUT +2/1logIm2/loglog/1 ζ  satisfies the large deviation 
principle with speed ( )( )2/loglog/1 T  and rate function ( ) 2/2hhI = . For instance, 
 

( ) [ ] ( ) ( ){ }( ) 2/2/loglog2/1logIm:2,
1

log
2/loglog

1 2hThitTTt
TT

−→






 ≥+∈ ζλ   as  ∞→T  

(1.17) 
 
where 0>h  and λ  denotes the Lebesgue measure.  
 
Let x  be a positive real number and denote by nppp ,...,, 21  the prime numbers 
not exceeding x . We have  
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and applying the mean value theorem of Montgomery and Vaughan this is 
equal to 
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with 1≤θ . The absolute value of the remainder is bounded by ( ) knkT !/6π .  
We note that, for the eq. (1.19) and multiplying both the sides for 4, we can 
rewrite the eq. (1.18) also as follows: 
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The eq. (1.19b) can be related with the following Ramanujan modular 
equation concerning the modes corresponding to the physical vibrations of 
the bosonic strings: 
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and we obtain: 



Versione 1.0 
18/06/2013  

Pagina 13� di 35� 
 

   13 

 

                         ( ) =







=∫ ∫ ∑∑

=++

+−−

≤
+

T

T

T

T
k

it

n
n

k

xp
it

dtpp
k

T
dt

pT
n

n
2 2

2

...

2/1

1
1

2

2/1
1

1 ...
...

414

λλ

λλ

λλ
  

                              ⇒







+








= ∑ ∑

=++ =++

−−

k k n
n

nn n

n
k

T
pp

k

λλ λλ

λλ

λλ
πθ

λλ... ...

2

1
1

2

11 1

1

...
24

...
...

4  

                                     
( )
























 ++







 +

⋅
















⇒

−

∞ −
∫

4
2710

4
21110

log

'
142

'

cosh
'cos

log4 2

'

'
4

0

'

2

2

wt
itwe

dxe
x

txw

anti

w

w
t

wx

φ

π
π

π

π

.    (1.19d) 

   
Applying  ( ) ( ) ipppt itit 2/logsin −−=   and a version of the mean value theorem, we 
obtain: 
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with 1≤θ  and D  is a constant, and we have also that: 
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Now, for eq. (1.21) and multiplying both the sides for 8, we can rewrite the 
eq. (1.20) also as follows: 
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This expression, can be related with the Ramanujan modular equation that 
concerning the “modes” that correspond to the physical vibrations of a 
superstring: 
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and so, we obtain the following relationship: 
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Now let ,..., 21 XX  be an i.i.d. sequence of random variables uniformly 
distributed on the unit circle. We have 

                                          [ ] ( )∫ ==
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Applying (1.22), Weierstrass’ product formula, and Merten’s formula, we 
obtain that ( )

∑ =

x

i ii pX
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1
/Im   converges mod-Gaussian, i.e. 
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as ∞→x , locally uniformly for Cu∈ , where ( )xπ  denotes the number of 
primes not exceeding x .  
By means of (1.20), (1.21), and the analogous results for odd integers, we 
can apply for fixed x  the method of moments and obtain the following weak 
convergence 
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The improvement of Theorem 2 follows from combining (1.23) with the 
following proposition. 
 
 
Proposition 1 
 
Let 1>c  be a constant. Define NTex /log=  with ( ) TeccN loglog4/' 2= , 1'>c  another 
constant. Then for T  sufficiently large independent of c and 'c , 
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uniformly for cu ≤ , Ru∈ . The remainder is ( )( )( )4/loglogexp 2 Tco − , if ecc /1'log' > . 
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From the Taylor expansion ( ) ( )∑ −≤
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 NN =' , we obtain 
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with 1≤θ . The remainder is by (1.20) 
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Using the bound ( ) ( ) '/'!' NeNN ≥ , elementary results in the theory of primes, 
namely the formulas ( )∑ ≤
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for sufficiently large T independent of ',cc  (since 1', >cc ). 
Now let ,..., 21 XX  be an i.d.d. sequence of random variables uniformly 
distributed on the unit circle. The moments in (1.26) are by (1.20) and (1.21) 
equal to those of the stochastic model plus a remainder which is bounded by 
( ) !/2 knTD k . The resulting remainders in (1.26), 1'2 −≤ Nk , add up to 

( )( ) ( )( )NN
xcOTncO log/2/ 22 = . Hence, (1.26) is equal to 

 

                              ( ) ( ) ( )( )∑ ∑
−≤ =

++














1'2

2

1

log/2'/1
Im

!Nk

NN

k
n

i i

i
k

xccO
p

X
E

k

iu     (1.29) 

 



Versione 1.0 
18/06/2013  

Pagina 17� di 35� 
 

   17 

for sufficiently large T . Applying the above Taylor expansion again, we 
obtain 
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with 1≤θ . The remainder already appeared in (1.26) and is ( )( )NcO '/1  for 
sufficiently large T .  
Now, we note that multiplying in the eqs. (1.26) and (1.30) both the sides for 
8, we obtain the following relationship: 
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Also this expression, can be related with the Ramanujam modular equation 
that concerning the “modes” that correspond to the physical vibrations of a 
superstring: 
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thence, we obtain the following mathematical connection: 
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Now we briefly discuss Selberg’s result about the rate of convergence in the 
central limit theorem of ( )it+2/1logIm ζ . From Theorem 2 we obtain 
 
Lemma 
 
Let NTex /log=  and N  such that x  and ∞→TN loglog/  as ∞→T . Assume further 
than ( )TON loglog= . Then  
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(1.31) 
In fact, the right hand side can be replaced by ( )To loglog/1 . 
 
We denote by ( )unφ  the left hand side of (1.15). We can bound the right hand 
side by ( )1loglog/loglog →Tx  
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We choose 0>c  such that ( )uJ0  has no zeros for cu ≤ . An inspection of the 
proof of Proposition 1 shows that ( ) ( ) ( )( )xuOuun log/1+= φφ , cu ≤ . On the other 
hand, we have ( )( ) ( )TuOxu loglog/12/loglog/ +=+ γφ , xcu loglog≤ . Plugging in 
these estimates gives the lemma. 
This lemma combined with the following bound 
 
                             [ ] ( ){ } ( )TOTctrTTt x loglog/1logloglog:2, ,1 =≥∈     (1.33) 

 
where 0>c  is a constant, yields Selberg’s result 
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Let x  and y  be positive real number, pa and pb  be complex numbers with 

1≤pa  and xpbp log/log≤ , and k  be a positive integer. By repeating the 

arguments in (1.18) and (1.19), we obtain 
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If kTx /1≤ , the first two terms are bounded by ( )kAk  and the third by 

( )( )kAyxk +− loglogloglog , 0>A  some constant. 
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Now, if we multiply for 4 both the sides of the eq. (1.36), we obtain the 
equivalent expression: 
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and this expression, can be related with the following Ramanujan modular 
equation concerning the modes corresponding to the physical vibrations of 
the bosonic strings, i.e. 
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and thence, we obtain the following mathematical connection: 
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Returning to the eqs. (1.35) – (1.37), for example, we obtain for a function 

( ) 1≤ug  
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      ( )  
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(1.38) 
 
Also here, multiplying both the sides for 8, we obtain the following similar 
expression: 
 

     ( )  

( )
 

≤++=






Λ
∫ ∑ ∑∫ ∑

≤ ≤
++

≤
+ dtO

p

a

p

b

T
dt

T

n
g

n

n

TT

V
T

T
Tp Tp

it

p

it

p

V
T

T
Tn

VitV
V VV

2
2

212/1

2
2

/12/1/1
/1 /12/1

1
8

log
log

log
18  

                                                                           ( ) ( ) ( )( )VVVV OAVAV 1242 ++≤ ,    
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and this expression can be related with the Ramanujan’s modular equations 
concerning the modes corresponding to the physical vibrations of the 
superstrings and the bosonic strings, i.e. 
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Thence, we can obtain, for example, the following mathematical connection: 
 

     ( )  

( )
 

≤++=






Λ
∫ ∑ ∑∫ ∑

≤ ≤
++

≤
+ dtO

p

a

p

b

T
dt

T

n
g

n

n

TT

V
T

T
Tp Tp

it

p

it

p

V
T

T
Tn

VitV
V VV

2
2

212/1

2
2

/12/1/1
/1 /12/1

1
8

log
log

log
18  

                                                                           ( ) ( ) ( )( )⇒++≤ VVVV OAVAV 1242  

                                  
( )
























 ++







 +

⋅
















⇒

−

∞ −
∫

4
2710

4
21110

log

'
142

'

cosh
'cos

log4

3
1

2

'

'
4

0

'

2

2

wt
itwe

dxe
x

txw

anti

w

w
t

wx

φ

π
π

π

π

.    (1.38c) 

 
Now, we consider the following function: 
 
                                                     ( ) ( ) 1

1
−+= zezF ,    (1.39) 

 
Developing in series the (1.39), we obtain: 
 
                             ( ) ( ) ( ) ( ) ( )∑ ∑

≥ ≥
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0 0
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k k
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The equation (1.40) is defined in the complex half-plane 0≥zRe  with the 
exception of points in which 1−=ze .      
Now, we examine the following function 
 
                                                    ( ) pze

−−1 ,   0>p     (1.41) 
 
performing the series expansion type (1.40) of the function ( ) pze

−−1 , we find: 
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the series on the right hand-side of equation (1.42) is defined in the half-
plane 0≥zRe  with the exception of points in which 1=ze . 
Integrating the equation (1.42) between the limits 0 and infinity, we find: 
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Thence, we can rewrite all also as follows: 
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and thence: 
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Thence, for 
2
1=p  the eq. (1.45), for the eqs (1.47) – (1.49), can be rewritten 
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or also as follows: 
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Multiplying both the sides of (1.42), for qze− , and integrating with respect to 
z, between the limits 0 and infinity, we find:  
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For 2/1== qp , we find: 
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Thence, in conclusion, for 2/1== qp , we find: 
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Now, we note that the eqs. (1.50b) and (1.53b) can be related with the eqs. 
(1.15) and (1.32) for obtain the following mathematical relationships: 
 

For example, multiplying the eq. (1.53b) for 
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1 Indeed, we have that the following relation: 
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Form this, we can to obtain  
π
2  :  

 
 

    =
π
2 ( )

( )

/
1 2

logsin

4/loglog2

dte
T

e
T

T

p

pt
iu

xu xp

∫
∑ ≤+γ    

                              ( )( )( )∫
−

−














+−+

xc

xc

n
u

Tc
Oduuxue

loglog

loglog

2/

loglog

1
/12/loglog/ γφ .     (2) 

 

Also the following  relation yields to 
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2  . Indeed:  
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The eqs. (2) and (3), thence, are both equal to 
π
2  . 
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The same can be make with the eq. (1.50b). As we note, the eq. (1.54) can be 

related with π  (and thence with 
2

15 +=φ ) by the following Ramanujan 

expression regarding just π : 
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We observe that the eq. (1.55) contain the number 24, that is related to the 
physical vibrations of the bosonic strings. Thence, for the (1.54) for 

2/1== qp , we obtain the following mathematical connection: 
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A general relationship that link, π , prime numbers, Riemann Hypothesis and 
physical vibrations of bosonic strings.  
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2. EISENSTEIN INTEGER 
 
Eisenstein integers are the intersection points of a triangular lattice in the 
complex plane: 
 
 

 
 

Eisenstein integers (named after Gotthold Eisenstein), are complex numbers 
of the form: 

                                                                      ωbaz += .                                         

where a and b are integers and 

                                                             ( ) 3/231
2

1 iei πω =+−=                                 

is a primitive (non-real) cube root of unity. The Eisenstein integers form a 
triangular lattice in the complex plane, in contrast with the Gaussian integers 
which form a square lattice in the complex plane, (see the two figures 
above). 
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2.1 EISENSTEIN PRIME 

 

The Eisenstein primes which are equal to a natural number 3n -1 are 2, 5, 11, 
17, 23, 29, 41, 47, 53, 59, 71, 83, 89 (with differences (after 5) equal to 6 
(sexy numbers) or 12, for example. 41-29 = 12, 71-59 = 12, 83 = 12 -71, 
etc..) or even more. 

For larger numbers we have in fact the biggest differences, but always of the 
form 6k, for example 419-401 = 18 = 6 * 3 

All, less the initial prime number 2 are of the form 6k - 1 (since, for n even, 
we have the form 6n -1) and therefore are not Gaussian integers, which are 
of the form 6k +1 as already seen before. 

Eisenstein primes are congruent to 2 mod 3 and Mersenne primes (except the 
smallest, 3) are congruent to 1 mod 3; thus no Mersenne prime is an 
Eisenstein prime. 
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3. RELATIONS BEETWEEN GAUSSIAN PRIMES AND EISENSTEIN 
PRIMES 

 
We have seen that the Gaussian primes "g" are of the form: 
 
                                    g = 4k+3   with k = 0, 1, 2,… 
 
The sequence is the following: 
 
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 
163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 
331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 
499, 503, 523, 547, 563, 571,… 
 
 
 
Eisenstein primes “e” are of the form: 
 
                                      e = 3k+2   with k = 0, 1, 2,… 
 
The sequence is the following: 
 
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 
167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 
317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 
503, 509, 521, 557, 563, 569, 587, … 
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From the intersection of the two sequences we obtain prime numbers of 
Gauss-Eisenstein. 
From the two preceding formulas 3k +2 and 4k +3, since the least common 
multiple between 3 and 4 is 12 we have the following formula for primes 
common Gauss-Eisenstein ρ: 
 
                                   ρ = 12k + 11   with k = 0, 1, 2,… 
 
The sequence is the following: 
 
11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 
359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 
719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, … 
 
 
It should be noted that all the prime numbers that are derived from this 
formula 12k +11 are all prime numbers that are simultaneously Gauss 
and Eisenstein primes. 
These numbers are then congruent to 11 modulo 12. 
 
We note that is 12 = 24/2, where 24 is the number connected to the modes 
corresponding to the physical vibrations of the bosonic strings by the 
following Ramanujan’s modular equation: 
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3.1 CORRELATION WITH SOPHIE GERMAIN PRIMES 

 
We observe that some of the previous sequence numbers are also Sophie 
Germain primes. 

A Sophie Germain prime is a prime p such that 2p+1 is also prime. The 
number 2p + 1 is instead called safe prime. 

The Sophie Germain prime numbers up to 1000 are: 

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 
281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 
761, 809, 911, 953, 1013, 1019, 1031, … 

 

Let’s recall the list of numbers   ρ = 12k+11   with k = 0, 1, 2,… 

 
11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 
359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 
719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, … 
 
 
Out of 40 numbers of Sophie Germain, as many as 20, are also Gaussian-
Eisenstein (marked in bold in the two sequences). 
So we have a new connection, with the numbers of Sophie Germain, of 
which ρ is a subset and is exactly the half. 
We can say that 50% of the Sophie Germain primes are also Gauss-
Eisenstein primes 
This can be demonstrated with a simple consideration: 
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In the list of Sophie Germain primes, if we want to know if its any number N 
is a number ρ of the form 12k +11, obviously we must subtract 11 and divide 
by 12, if the result is integer, then N = ρ 
A few examples: 
 
3779 =  Sophie German prime = prime ρ since 
 
(3779-11)/12 = 3768/12 = 314 (integer) 
 
Instead 4793 (Sophie German prime) it is not because (4793-11) / 12 = 
4782/12 = 398,5 is not an integer, and then 4793 is not a prime number of 
Gauss-Eisenstein. 
 
Now chosen any prime number N of Sophie Germain and applying the rule 
above, we have 
 
(N -11) / 12 = integer or half-integer 
 
The division produces only 2 possible results, or an integer, and then N is 
also a prime number of Gauss-Eisenstein or is a half-integer of the form 
x+1/2 and N isn’t a Gauss-Eisenstein prime. 
 
As a result 50% of the Sophie Germain primes are also Gauss-Eisenstein 
primes. 
 
Also here, we note that is present the number 12 that, as we have 
described above, is connected to the modes corresponding to the 
physical vibrations of the bosonic strings. 
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3.2 PROOF THAT THERE ARE INFINITELY MANY SOPHIE 
GERMAIN PRIMES 

 
It is conjectured that there are infinitely many Sophie Germain primes. 
 
Since Gauss-Eisenstein primes are infinite and there is a relationship with 
Sophie Germain primes, we can by induction affirm that Sophie Germain 
primes are infinite. 
 
This is because the set ρ of Gauss-Eisenstein of the form 12k +11 is infinite 
and these numbers are an infinitely subset so that produce endless Sophie 
Germain primes. 
 

. 
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