Classify Positive Integers to Prove Collatz Conjecture by the Mathematical Induction

Zhang Tianshu Email: chinazhangtianshu@126.com xinshijizhang@hotmail.com Nanhai West Oil Administrative Bureau Zhanjiang city, Guangdong province, China

Abstract

First, it is necessary to expound certain of basic concepts relating to prove this conjecture. After that, applies the mathematical induction, and classify positive integers to complete each classificatory proof orderly. In addition, prepares several judging criteria before the proof starts, in order to use them in each classified proof.

AMS subject classification: 11P32; 11A25; 11Y55

Keywords: Collatz conjecture; the operational rule; mathematical induction; classify positive integers; operational routes

Contents

1. IntroductionP ₂
2. Certain of Basic Concepts P ₂
3. Mathematical Induction that Proves the ConjectureP ₃
4. Several Judging Criteria P ₃
5. Initial Classified ProofsP ₅
6. Prove which $15+12c$ and $19+12c$ Suit the ConjectureP ₆
7. Make a Summary and Reach the ConclusionP ₁₁
References
13 May 2020 07:54:07 EDT 1 Algebra+NT+Comb+Logi Version 1 - Submitted to Proc. Amer. Math. Soc.

1. Introduction

The Collatz conjecture also called the 3x+1 mapping, 3n+1 problem, Hasse's algorithm, Kakutani's problem, Syracuse algorithm, Syracuse problem, Thwaites conjecture and Ulam's problem, etc.

Yet, it is still both unproved and un-negated a conjecture ever since named after Lothar Collatz in 1937; [1].

2. Certain of Basic Concepts

The Collatz conjecture states that take any positive integer n, if n is even, divide it by 2; if n is odd, multiply it by 3 and add 1. Repeat the process indefinitely, then, no matter what positive integer you start with, you will always eventually reach a result of 1; [2].

Let us regard aforesaid operational stipulations as the operational rule.

Begin with any positive integer/integral expression to operate by the operational rule continuously, then, form successive integers/integral expressions. We regard such consecutive integers/integral expressions and synclastic arrowheads among them as an operational route.

Furthermore, let us use a capital letter plus the subscript "*ie*" to express a some positive integral expression such as P_{ie} , C_{ie} etc.

Where P_{ie} exists at an operational route, may term the operational route "an operational route via P_{ie} ".

Generally speaking, integral expressions at an operational route contain a common variable or some variables which can be changed into a variable.

3. Mathematical Induction that Proves the Conjecture

Prove the Collatz conjecture by the mathematical induction as follows; [3]. $34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ $22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1;$ $15 \rightarrow 46 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1;$ $14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ and $4 \rightarrow 2 \rightarrow 1$, it is observed that every positive integer ≤ 19 suits the conjecture. (2) Suppose that *n* suits the conjecture, where *n* is an integer ≥ 19 .

(3) Prove which n+1 suits the conjecture likewise.

4. Several Judging Criteria

Before the proof starts, must prepare judging criteria concerned, ut infra:

Theorem 1. If an integral expression at an operational route via P_{ie} is smaller than P_{ie} , and P_{ie} contains n+1, then P_{ie} and n+1 suit the conjecture. For example, if there is $P_{ie}=31+3^2\eta$, and P_{ie} contains n+1, where $\eta \ge 0$, then from $27+2^3\eta \rightarrow 82+3\times 2^3\eta \rightarrow 41+3\times 2^2\eta \rightarrow 124+3^2\times 2^2\eta \rightarrow 62+3^2\times 2\eta \rightarrow 31+3^2\eta > 27+2^3\eta$, infer that P_{ie} and n+1 suit the conjecture.

Also, if there is $P_{ie}=5+2^2\mu$, and P_{ie} contains n+1, where $\mu \ge 0$, then from $5+2^2\mu \rightarrow 16+3\times 2^2\mu \rightarrow 8+3\times 2\mu \rightarrow 4+3\mu < 5+2^2\mu$, infer that P_{ie} and n+1 suit the conjecture.

Proof. Suppose that there is C_{ie} at an operational route via P_{ie} where $C_{ie} < P_{ie}$, then when their common variable equals some fixed value such that $P_{ie} = n+1$, let $C_{ie} = m$, so it has m < n+1. Thus, operations of n+1 can pass operations of m at the operational route via n+1 to reach 1 since every positive integer < n+1 has been supposed to suit the conjecture.

When their common variable is equal to each value, a value of P_{ie} can too be operated to *1* via a matching value of C_{ie} , so P_{ie} suits the conjecture.

Theorem 2. If an operational route via Q_{ie} and an operational route via P_{ie} intersect directly, and P_{ie} contains n+1, and that an integral expression at the operational route via Q_{ie} is smaller than P_{ie} , then P_{ie} and n+1 suit the conjecture, where P_{ie} and Q_{ie} exist not at an operational route.

For example, $P_{ie} = 63 + 3 \times 2^8 \varphi$, and P_{ie} contains n+1, where $\varphi \ge 0$, then from $63 + 3 \times 2^8 \varphi \rightarrow 190 + 3^2 \times 2^8 \varphi \rightarrow 95 + 3^2 \times 2^7 \varphi \rightarrow 286 + 3^3 \times 2^7 \varphi \rightarrow 143 + 3^3 \times 2^6 \varphi \rightarrow 430 + 3^4 \times 2^6 \varphi \rightarrow$ $215 + 3^4 \times 2^5 \varphi \rightarrow 646 + 3^5 \times 2^5 \varphi \rightarrow 323 + 3^5 \times 2^4 \varphi \rightarrow 970 + 3^6 \times 2^4 \varphi \rightarrow 485 + 3^6 \times 2^3 \varphi \rightarrow 1456 + 3^7 \times 2^3 \varphi$ $\rightarrow 728 + 3^7 \times 2^2 \varphi \rightarrow 364 + 3^7 \times 2\varphi \rightarrow 182 + 3^7 \varphi \rightarrow \dots$

 $\uparrow 121+3^6 \times 2\varphi \leftarrow 242+3^6 \times 2^2\varphi \leftarrow 484+3^6 \times 2^3\varphi \leftarrow 161+3^5 \times 2^3\varphi \leftarrow 322+3^5 \times 2^4\varphi \leftarrow 107+3^4 \times 2^4\varphi \leftarrow 214+3^4 \times 2^5\varphi \leftarrow 71+3^3 \times 2^5\varphi \leftarrow 142+3^3 \times 2^6\varphi \leftarrow 47+3^2 \times 2^6\varphi < 63+3 \times 2^8\varphi,$ infer that P_{ie} and n+1 suit the conjecture.

Proof. Suppose that D_{ie} at an operational route via Q_{ie} is smaller than P_{ie} ,

and the operational route via Q_{ie} and an operational route via P_{ie} intersect at A_{ie} , then when their common variable is endowed with some fixed value such that $P_{ie} = n+1$, let $D_{ie} = \mu$ and $A_{ie} = \zeta$, so it has $\mu < n+1$.

Since ξ and μ exist at an operational route, so operations of ξ can pass operations of μ to reach 1. Since n+1 and ξ exist at an operational route, then operations of n+1 can pass continuous operations of ξ to reach 1.

When their common variable equals each value, a value of P_{ie} can too be operated to *I* via matching values of A_{ie} and D_{ie} , so P_{ie} suits the conjecture.

Lemma. If an operational route via Q_{ie} and an operational route via P_{ie} are at indirect connection, and P_{ie} contains n+1, and that an integral expression at the operational route via Q_{ie} is smaller than P_{ie} , then P_{ie} and n+1 suit the conjecture.

The indirect connection is directed to two operational routes without the intersection in which case many operational routes intersect orderly. In addition to judging criteria, substitute *d*, *e*, *f*, *g*, *h* etc. for *c* to appear within integral expressions at operational routes of 15+12c and 19+12c, actually, that is in order to avoid confusion and for convenience.

5. Initial Classified Proofs

By now, set about proving the Collatz conjecture gradually, as follows:

Proof. On balance, classify positive integers gradually, and synchronously find out a relation between each class which possibly contains n+1 and another class which is smaller than the former to prove that n+1 suits the

conjecture, according to proven a theorem or the lemma.

First, divide integers $\geq l$ into positive even numbers and odd numbers.

For even number 2k with $k \ge 1$, from $2k \rightarrow k < 2k$, infer that if $n+1 \in 2k$, then 2k and n+1 suit the conjecture according to Theorem 1.

For positive odd numbers out of first step of the mathematical induction, divide them into 2 genera, i.e. 5+4k and 7+4k, where $k \ge 4$.

For 5+4k, from 5+4k \rightarrow 16+12k \rightarrow 8+6k \rightarrow 4+3k<5+4k, infer that if $n+1 \in 5+4k$,

then 5+4k and n+1 suit the conjecture according to Theorem 1.

Further divide 7+4k into 3 sorts: 15+12c, 19+12c and 23+12c, where $c \ge 0$.

For 23+12c, from $15+8c \rightarrow 46+24c \rightarrow 23+12c > 15+8c$, infer that if $n+l \in 23+12c$,

then 23+12c and n+1 suits the conjecture according to Theorem 1.

For 15+12c and 19+12c when c=0, they have proved to suit the conjecture

in third section. So only need us to prove 15+12c and 19+12c where $c \ge l$.

6. Proving which 15+12c and 19+12c Suit the Conjecture

For 15+12c/19+12c where $c \ge 1$, continue to operate them, so as to find a relation between each operational result and a judging criterion.

First, operate 15+12c by the operational rule successively as listed below. 15+12c \rightarrow 46+36c \rightarrow 23+18c \rightarrow 70+54c \rightarrow 35+27c \clubsuit

 $\begin{array}{c} d=2e+1:\ 29+27e\ (1) \\ \bullet =2f:\ 142+486f \rightarrow 71+243f \\ \bullet 35+27c \downarrow \rightarrow c=2d+1:\ 31+27d \uparrow \rightarrow d=2e:\ 94+162e \rightarrow 47+81e \uparrow \rightarrow e=2f+1:64+81f\ (2) \\ c=2d:\ 106+162d \rightarrow 53+81d \downarrow \rightarrow d=2e+1:67+81e \downarrow \rightarrow e=2f+1:74+81f\ (3) \\ d=2e:160+486e \\ \bullet e=2f:\ 202+486f \rightarrow 101+243f \\ \bullet \end{array}$

 $g=2h+1: 200+243h (4) \dots$ ♥ 71+243f↓→f=2g+1:157+243g↑→g=2h: 472+1458h→236+729h↑→ … f=2g: 214+1458g→107+729g↓→g=2h+1: 418+729h↓→... g=2h: 322+4374h→... ...

13 May 2020 07:54:07 EDT6Algebra+NT+Comb+LogiVersion 1 - Submitted to Proc. Amer. Math. Soc.

$$g=2h: 86+243h (5)$$

$$\bullet 101+243f \downarrow \rightarrow f=2g+1:172+243g \uparrow \rightarrow g=2h+1:1246+1458h \rightarrow \dots$$

$$f=2g: 304+1458g \rightarrow 152+729g \downarrow \rightarrow \dots$$

$$m$$

$$\bullet 160+486e \rightarrow 80+243e \downarrow \rightarrow e=2f+1: 970+1458f \rightarrow 485+729f \uparrow \rightarrow \dots$$

$$e=2f:40+243f \downarrow \rightarrow f=2g+1:850+1458g \rightarrow 425+729g \uparrow \rightarrow \dots$$

$$f=2g: 20+243g \downarrow \rightarrow g=2h: 10+243h (6) \qquad \dots$$

$$g=2h+1:790+1458h \rightarrow 395+729h \uparrow \rightarrow \dots$$

Annotation:

(1) Each of letters c, d, e, f, g, h \dots etc at listed above operational routes expresses each of natural numbers plus 0.

(2) Also, there are $\clubsuit \leftrightarrow \clubsuit$, $\lor \leftrightarrow \lor$, $\clubsuit \leftrightarrow \clubsuit$, and $\diamond \leftrightarrow \diamond$.

(3) Aforesaid two points are suitable to latter operational routes of 19+12c similarly.

First the author defines a terminology. Namely in the course of operation of 15+12c/19+12c by the operational rule, if an operational result is smaller than a kind of 15+12c/19+12c, and that it first appears at an operational route of 15+12c/19+12c, then term the operational result "No1 satisfactory operational result".

Hereby infer 3 kinds of 15+12c derived from No1 satisfactory operational results at the bunch of operational routes of 15+12c to suit the conjecture.

1. From c=2d+1 and d=2e+1, get c=2d+1=2(2e+1)+1=4e+3, so it has 15+12c= 51+48e=51+3×2⁴e \rightarrow 154+3²×2⁴e \rightarrow 77+3²×2³e \rightarrow 232+3³×2³e \rightarrow 116+3³×2²e \rightarrow 58+3³×2e \rightarrow 29+27e where mark (1), and 29+27e<51+48e, thus, if it is *n*+1 \in 51+48e, then 51+48e and *n*+1 suit the conjecture according to Theorem 1.

2. From c=2d+1, d=2e and e=2f+1, get c=2d+1=4e+1=4(2f+1)+1=8f+5, so it has $15+12c=75+96f=75+3\times2^{5}f\rightarrow226+3^{2}\times2^{5}f\rightarrow113+3^{2}\times2^{4}f\rightarrow340+3^{3}\times2^{4}f\rightarrow170+3^{3}\times2^{3}f\rightarrow$ $85+3^{3}\times2^{2}f\rightarrow256+3^{4}\times2^{2}f\rightarrow128+3^{4}\times2^{1}f\rightarrow64+81f$ where mark (2), and 64+81f<75+96f, thus, if there is $n+1 \in 75+96f$, then 75+96f and n+1 suit the conjecture according to Theorem 1.

3. From c=2d, d=2e+1 and e=2f+1, get c=2d=4e+2=4(2f+1)+2=8f+6, so it has $15+12c=87+96f=87+3\times2^{5}f\rightarrow262+3^{2}\times2^{5}f\rightarrow131+3^{2}\times2^{4}f\rightarrow394+3^{3}\times2^{4}f\rightarrow197+3^{3}\times2^{3}f$ $\rightarrow 592+3^{4}\times2^{3}f\rightarrow296+3^{4}\times2^{2}f\rightarrow148+3^{4}\times2^{1}f\rightarrow74+81f$ where mark (**3**), and 74+81f<87+96f, thus, if it is $n+1 \in 87+96f$, then 87+96f and n+1 suit the conjecture according to Theorem 1.

Like that, each reader oneself can likewise figure out following these:

For 15+12c=315+384h, operate it to 200+243h where mark (4) at the bunch of operational routes of 15+12c;

For 15+12c=135+384h, operate it to 86+243h where mark (5) at the bunch of operational routes of 15+12c;

For 15+12c=15+384h, operate it to 10+243h where mark (6) at the bunch of operational routes of 15+12c.

Thus it can be seen, if $n+1 \in$ a kind of 15+12c derived from a No1 satisfactory operational result, then the kind and n+1 suit the conjecture.

Secondly, operate 19+12c by the operational rule successively, as follows. $19+12c \rightarrow 58+36c \rightarrow 29+18c \rightarrow 88+54c \rightarrow 44+27c \clubsuit$

 $\begin{array}{c} d=2e:\ 11+27e\ (\alpha) & e=2f:37+81f\ (\beta) \\ \bigstar\ 44+27c\downarrow \rightarrow c=2d:\ 22+27d\uparrow \rightarrow d=2e+1:148+162e \rightarrow 74+81e\uparrow \rightarrow e=2f+1:466+486f\ \checkmark \\ c=2d+1:\ 214+162d \rightarrow 107+81d\downarrow \rightarrow d=2e:322+486e\ \bigstar \\ d=2e+1:94+81e\downarrow \rightarrow e=2f:47+81f\ (\gamma) \\ e=2f+1:526+486f\ \diamond \\ \end{array}$

13 May 2020 07:54:07 EDT8Algebra+NT+Comb+LogiVersion 1 - Submitted to Proc. Amer. Math. Soc.8

$$g=2h+1:172+243h (\varepsilon)$$

f=2g: 101+243g $\uparrow \rightarrow g=2h: 304+1458h \rightarrow ...$
e=2f+1:202+243f $\uparrow \rightarrow f=2g+1:1336+1458g \rightarrow ...$
\$322+486e $\rightarrow 161+243e \uparrow \rightarrow e=2f:484+1458f \rightarrow ...$

As listed above, the author likewise first infers 3 kinds of 19+12c derived from No1 satisfactory operational results at the bunch of operational routes of 19+12c to suit the conjecture.

1. From c=2d and d=2e, get c=2d=4e, so it has $19+12c=19+48e=19+3\times 2^{4}e \rightarrow 58+$ $3^{2}\times 2^{4}e \rightarrow 29+3^{2}\times 2^{3}e \rightarrow 88+3^{3}\times 2^{3}e \rightarrow 44+3^{3}\times 2^{2}e \rightarrow 22+3^{3}\times 2e \rightarrow 11+27e$ where mark (α), and 11+27e<19+48e, thus, if it is $n+1 \in 19+48e$, then 19+48e and n+1 suit the conjecture according to Theorem 1.

2. From c=2d, d=2e+1 and e=2f, get c=2d=2(2e+1)=4e+2=8f+2, so it has 19+12c= 43+96f=43+3×2⁵f \rightarrow 130+3²×2⁵f \rightarrow 65+3²×2⁴f \rightarrow 196+3³×2⁴f \rightarrow 98+3³×2³f \rightarrow 49+3³×2²f \rightarrow 148+3⁴×2²f \rightarrow 74+3⁴×2¹f \rightarrow 37+81f where mark (β), and 37+81f <43+96f, thus, if it is *n*+1 \in 43+96f, then 43+96f and *n*+1 suit the conjecture according to Theorem 1.

3. From c=2d+1, d=2e+1 and e=2f, get c=2d+1=4e+3=8f+3, so it has 19+12c= $55+96f=55+3\times2^{5}f \rightarrow 166+3^{2}\times2^{5}f \rightarrow 83+3^{2}\times2^{4}f \rightarrow 250+3^{3}\times2^{4}f \rightarrow 125+3^{3}\times2^{3}f \rightarrow 376+3^{4}\times2^{3}f$ $\rightarrow 188+3^{4}\times2^{2}f \rightarrow 94+3^{4}\times2^{1}f \rightarrow 47+81f$ where mark (γ), and 47+81f < 55+96f, thus, if it is $n+1 \in 55+96f$, then 55+96f and n+1 suit the conjecture according to Theorem 1.

Like that, each reader oneself can likewise figure out following these:

For 19+12c=187+384h, operate it to 119+243h where mark (δ) at the bunch of operational routes of 19+12c;

For 19+12c=271+384h, operate it to 172+243h where mark (ε) at the bunch of operational routes of 19+12c;

For 19+12c=391+384h, operate it to 248+243h where mark (ζ) at the bunch of operational routes of 19+12c.

Thus it can be seen, if $n+1 \in$ a kind of 19+12c derived from a No1 satisfactory operational result, then the kind and n+1 suit the conjecture.

Overall, if $n+1 \in any$ kind of 15+12c/19+12c derived from a No1 satisfactory operational result, then the kind of 15+12c/19+12c and n+1 suit the conjecture.

Undoubtedly, there is always an operational route from each kind of 15+12c/19+12c operating to a No1 satisfactory operational result, whether it is a proved kind of 15+12c/19+12c, or an unproved kind of 15+12c/19+12c.

Each kind of 15+12c/19+12c corresponding to a No1 satisfactory operational result, yet a No1 satisfactory operational result can derive many kinds of 15+12c/19+12c at operational routes of 15+12c/19+12c. Begin with 15+12c/19+12c to operate by the operational rule on and on, along continuation of operations, it will continuously educe more and more No1 satisfactory operational results, hereby derive more and more kinds of 15+12c/19+12c be proved, even there are infinitely many satisfactory operational results and infinitely many kinds of 15+12c/19+12c because there are $c \ge 1$.

In any case, all No1 satisfactory operational results exist at the bunch of operational routes of 15+12c/19+12c inevitably.

In addition, 3 operational routes of proved 3 kinds of 15+12c/19+12cexist also at the bunch of operational routes of 15+12c/19+12c.

Thus, for each operational route from an unproved kind of 15+12c/19+12c to a No1 satisfactory operational result and an operational route from any proved kind of 15+12c/19+12c to a No1 satisfactory operational result, they either intersect directly or connect indirectly, therefore each unproved kind of 15+12c/19+12c is proved to suit the conjecture according to Theorem 2 or the Lemma.

In consequence, if $n+l \in$ any kind of 15+12c/19+12c, then the kind of 15+12c/19+12c and n+l suit the conjecture.

7. Make a Summary and Reach the Conclusion

To sum up, n+1 has been proved to suit the conjecture, whether n+1 belongs within which genus, which sort or which kind of odd numbers, or it is exactly an even number.

We can also prove positive integers n+2, n+3 etc. up to every positive integer to suit the conjecture in the light of the old way of doing the thing. The proof was thus brought to a close. As a consequence, the Collatz conjecture is tenable.

References

[1] WolframMathworld, Collatz Problem, URL: http://mathworld.wolfram.com/CollatzProblem.html

[2] MATHEMATICS, What is the importance of the Collatz conjecture? URL: https://math.stackexchange.com/questions/2694/what-is-the-importance-of-the-collatz-conjecture

[3] Encyclopedia of Mathematics, Mathematical induction, URL:

https://www.encyclopediaofmath.org/index.php/Mathematical_induction