
A solution to the black hole information paradoxTom Fuchstomfuchs@gmail.comThis  paper  shows  that  the  Schwarzschild  metric’s  prediction  of  black  holesviolates the equivalence principle. Rindler horizons, which are used to supportthe  idea  of  black  holes,  are  shown  to  work  differently  according  to  specialrelativity than is generally accepted today. New equations are derived for escapevelocity and gravitational time dilation. A problem is shown in the derivation ofthe Schwarzschild metric, and solved to derive a new metric for Schwarzschildgeometry.  The  new metric  doesn’t  predict  black  holes,  yet  is  experimentallyconfirmed, including by the famous picture that’s reportedly of a black hole.
1 The Schwarzschild metric violates the equivalence principleA formal statement of the Einstein equivalence principle (EP) isIn any and every locally Lorentz (inertial) frame, the laws of special relativitymust hold.Experiment #1: A free-falling ball is just below the event horizon of a supermassive static blackhole, and directly below a rocket that hovers just above the event horizon. The ball is at rest ina local inertial frame (LIF) that contains the rocket.The EP tells us that only special relativity (SR) is needed to calculate the ball’s motion relativeto the rocket. See the equations of SR at The Relativistic Rocket, for a rocket having a constantproper acceleration 𝑎 > 0. They work in reverse as well, like for a rocket decelerating to dock ata spaceport. The ball can reach the rocket in principle, in the time given by (1)This equation gives the time taken for a decelerating rocket to arrive at a free-falling destination(like a spaceport or the ball) at relative rest. Both 𝑡 and the initial distance 𝑑 between them aremeasured in the destination’s LIF that contains the rocket. The speed of light is 𝑐. Their initialvelocity toward each other in the destination’s LIF is found by plugging that value for 𝑡 into (2)We can let the initial  distance  𝑑 between the ball and the rocket be arbitrarily small.  Theacceleration 𝑎 that a rocket needs to hover ever more closely above an event horizon approachesinfinity, hence (1) shows the ball can reach the rocket in an arbitrarily short time 𝑡 in principle.But the  Schwarzschild metric  predicts  that  the  ball  can’t  pass  outward through the eventhorizon to reach the rocket at all. The metric violates the EP by disagreeing with SR in a LIF.
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2The laws of physics are the same in all inertial frames, according to SR. Therefore, an argumentthat the ball can’t reach the rocket must  find the same  in an inertial frame in an idealized,gravity-free universe,  while letting the ball approach the rocket at any speed < 𝑐 initially, orelse it violates the EP. But (1) shows that’s impossible. The case in which the ball reaches therocket at relative rest is the reverse of the case (when we “run the film backward”) in which theball had simply dropped from the rocket. The Relativistic Rocket equations apply to both cases.The rocket’s Rindler horizon, a plane from below which nothing can reach the rocket, includinglight,  is at the  distance   below the rocket (see the section “Below the rocket, somethingstrange is happening” at The Relativistic Rocket). As a rocket hovers ever more closely abovean event  horizon,   approaches zero. This prediction is used to support the idea of blackholes. The thinking is that, in the limit where a rocket hovers at the event horizon, its Rindlerhorizon would be there too, so that the EP is obeyed in a LIF that straddles an event horizon.But (1) shows that the ball can reach the rocket in principle, and the EP requires that this iscorrect. Let’s understand this better. See the “general formula” at The Relativistic Rocket: (3)This equation gives the aging of  a rocket’s crew during a trip that covers a distance  𝑑 asmeasured in the LIF in which they started, at an acceleration 𝑎 that’s negated at the midpointso that the rocket brakes to arrive at its destination at relative rest. For example, it predictsthat a rocket can launch from Earth and accelerate and decelerate at 1 𝑔 to arrive at theAndromeda galaxy,  𝑑 = 2 million light years away from Earth as we measure, while its crewages just  𝑇 ≈ 28 years (use  𝑐 = 1 ly/yr and  𝑎 = 1.03   𝑔).  Notice that Andromedareaches the rocket that’s decelerating toward it, starting from the midpoint that’s 1 million lightyears away as measured in Andromeda’s frame, even though the rocket’s Rindler horizon is 0.97 light years below the rocket. The equation from the site for the acceleration ordeceleration half of the rocket’s trip is (4)Compare (4) to (3). See that (3) just doubles the time returned by (4) for either half of the trip.For the deceleration half of the trip to Andromeda, (4) returns 𝑇 ≈ 14 years. Or use (1) for thetime  𝑡 taken in the destination’s LIF. Both (1) and (4) show that a free-falling object (likeAndromeda or the ball) can in principle reach a rocket having any acceleration 𝑎, starting fromany distance 𝑑 below the rocket.The distance  between a rocket and its Rindler horizon applies only in the rocket’s frame.When the ball approaches the rocket fast enough initially, then the initial distance 𝑑 is lengthcontracted in the rocket’s frame to 𝑑/𝛾 <  (where 𝛾 is the gamma   factor  ), so that the ball isabove the rocket’s Rindler horizon initially and thus able to reach the rocket. That’s also howAndromeda  reaches  any  rocket  that  decelerates  to  it.  (Calculate  𝑑/𝛾 for  when  the  rocket
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3launched from Earth starts braking toward Andromeda, to see that it’s slightly < .) In thecurrent generally accepted view, the distance  would be applied in the ball’s frame in error.Since the ball can reach the rocket in principle, where the escape velocity is < 𝑐 (and so escapeis possible), the escape velocity at the ball’s initial location must also be < 𝑐.Experiment #2: Modify the barn-pole paradox experiment to replace the near and far doors ofthe barn with the rockets Achilles and Tortoise, respectively. In the barn’s frame, when theswitch is thrown, the rockets start their engines and accelerate in the direction that the runnermoves. Tortoise has a constant proper acceleration high enough that Achilles starts behind itsRindler horizon and so can’t reach it.The runner passes Achilles before it blasts off, so might be able to reach Tortoise. Relativity ofsimultaneity helps explain how the runner or  a free-falling object (like the ball in experiment#1) can in principle reach a rocket having any acceleration  𝑎, starting from any distance  𝑑below the rocket.

Figure 1: Spacetime diagram showing a uniformly accelerated particle, P, and an event E.The event’s  future light cone never intersects the particle’s world line.  By ChristopherThomas     / tiZom  , CC     BY-SA 1.0  , via Wikimedia Commons.Let P in Fig. 1 be the rocket in experiment #1. Then the diagram is for a LIF that momentarilyco-moves with the rocket at 𝑡 = 0 (as if the rocket blasts off then). Let the proper distance EPbe , so that E occurs at the rocket’s Rindler horizon. SR lets the ball be between E and P at𝑡 = 0 in this frame, above the rocket’s Rindler horizon, like how the runner in experiment #2 isbetween Achilles and Tortoise in the barn’s frame when the switch is thrown. This is trueregardless of the initial distance 𝑑 between the ball and the rocket, like how the runner couldmeasure any initial distance to Tortoise. The ball can always fit between E and P in principle,due to length contraction, like how the pole fits in the barn in the barn’s frame.The Schwarzschild metric is invalidated by violating the EP, a postulate of  general relativity(GR).  Moreover,  a theory of  gravity that obeys the EP can’t  predict black holes.  The EPrequires that escape velocity is < 𝑐 everywhere.
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2 A new equation for escape velocityEquations for a falling body has the  velocity of  a free-falling object that  was dropped in auniform gravitational field (ignoring air resistance) as (5)where 𝑎 is the acceleration of gravity and 𝑡 is the elapsed time. We call this  since it can be≥ 𝑐.The EP shows that The Relativistic Rocket’s (2) supplants (5):

Figure 2: Ball falling to the floor in an accelerating rocket (left) and on Earth (right). ByPbroks13     / Markus Poessel (Mapos)  , CC     BY-SA 3.0  , via Wikimedia Commons.According  to the  EP,  SR’s  laws  hold  in both  scenarios  in  Fig.  2.  The  Relativistic  Rocketequations describe the ball’s motion  relative to the rocket. Then  those  equations describe theball’s motion relative to the room on Earth as well, where 𝑎 is the acceleration of gravity. Thetime 𝑡 in (2) is measured in the ball’s LIF, which momentarily co-moves with the rocket or roomwhen the ball is dropped at 𝑡 = 0 (as if the rocket or room blasts off then).Substituting the two terms 𝑎𝑡 in (2) with the  from (5) gives the conversion formula (6)This is the same as dividing  by its gamma factor 𝛾, as shown by (7)from The Relativistic Rocket. That is, a Newtonian speed  converts to a relativistic speed 𝑣by dividing it by its gamma factor, using (7), which accepts a Newtonian speed.The equation for escape velocity in both Newtonian mechanics and GR is
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5(8)The new equation for escape velocity, derived by converting (8) using (6), is (9)This  equation  returns  a  value  <  𝑐 for  an  𝑟-coordinate  (radial  coordinate  or  reducedcircumference) 𝑟 > 0. So it doesn’t predict black holes, or give reason to think a star or othermassive body can collapse to a singularity.  GR’s escape velocity (8) better approximates  thenew escape velocity (9) as gravity weakens.
3 A new equation for gravitational time dilationImagine nested spherical shells concentric to a massive body. An observer drops from an infinitedistance, falling freely toward the ground while measuring, as a fraction 𝑥 of their own rate oftime, the rate of clocks at each shell as they pass right by. Escape speed is also the speed of anobject that was dropped from an infinite distance, so each shell passes at the escape velocity there. SR tells us that inputting that velocity into the reciprocal of the gamma factor equationgets the value 𝑥 for that shell. The ground accelerates like a rocket toward the observer, so theobserver’s  rate  of  time  remains  the  rate  of  time  at  an  infinite distance,  as  if  they’re thestationary twin in a twin paradox experiment.* Then the gravitational time dilation factor, thetime  between two events as measured  at an 𝑟-coordinate 𝑟,  as  a fraction of  the  time  between the events as measured at an infinite distance (i.e. by a faraway observer), is given by(10)We verify this equation by deriving GR’s equation for gravitational time dilation from it, usingGR’s escape velocity (8):

(11)
The new equation for gravitational time dilation, derived using (10) and the new escape velocity(9), is (12)
* See Fig.  2.  The rocket/room accelerates  to  reach  the  ball  when it  hits  the floor.  The ball  is  astationary twin; the time 𝑡 in The Relativistic Rocket equations is measured in the ball’s LIF. Theperson is a traveling twin; their aging is given by 𝑇 in those equations.
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4 A new metric for Schwarzschild geometryThere’s a problem in the derivation of the Schwarzschild metric, at the step (13)in  the  section  “Using  the  weak-field  approximation  to  find  K and  S”.  GR’s  equation  forgravitational time dilation (11) is in (13) as (14)This equation is invalid. Newton’s term   there and in the  diagram in the derivationcontains elapsed time values that are measured at that 𝑟-coordinate 𝑟, for which gravitationaltime dilation isn’t  accounted.  For example,  suppose   = −9.8  .  Nothing in theequation accounts for the fact that observers situated at varying 𝑟-coordinates measure differentelapsed  times  between  two  ticks  of  a  clock  at 𝑟,  making  the  seconds  in  bold  ambiguous.Multiplying the term by   doesn’t resolve the ambiguity. The  gravitational time dilationfactor that does that must  be dimensionless and include the mass 𝑀; the 𝑀 within the termcan’t be reused. Newton’s concept of absolute time defaults for the term, so that the equationapproximates the valid equation only in weak enough gravity, and (13) reads like (15)This dependence on Newton’s absolute time is the root cause of the EP violation shown insection 1. To fix it, first we change (14) to (16)and solve for 𝑥, the square of the gravitational time dilation factor. This standardizes the term to the faraway observer’s measurement for it, by effectively dividing each time value init by the gravitational time dilation factor  .  Alternatively, each instance of  GR’s escapevelocity (8) that’s embedded in (14) is converted to the new escape velocity (9), by effectivelydividing it by its gamma factor; see (10). Now the ground’s speed 𝑣 relative to objects fallingfreely toward it approaches an asymptote of 𝑐, in the same way a rocket’s does. This obeys theEP as depicted by Fig. 2. The square of (9) is used to build 𝑥. Solving for 𝑥 gives (17)See that the new equation for gravitational time dilation that derives from (17): (18)matches (12), as expected. The new escape velocity (9) then derives by solving (10) for .
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7Next we incorporate 𝑥 into (13): (19)This effectively changes the term   to  . (Ultimately that’s the only changemade herein.)Completing the derivation, it’s found that (20)and (21)Hence (22)and (23)So, the new metric for Schwarzschild geometry is (24)or, in geometric units: (25)
5 Experimental confirmation of the new metricThe only change made to the Schwarzschild metric was to the term for escape velocity that’sbuilt into it. The old  escape velocity (8) better approximates  the new escape velocity (9) asgravity  weakens.  So  the  Schwarzschild  metric  better  approximates  the  new metric  (24)  asgravity weakens.For the Schwarzschild precession of Mercury, both metrics predict 42.9799″ per Julian century,in agreement with observations.For the Schwarzschild precession in the orbit of the star S2 around Sgr A*, both metrics predict12.1′ per orbit, in agreement with observations. If the Schwarzschild metric predicted 12.100′per orbit for S2’s Schwarzschild precession, then the new metric would predict 12.095′ per orbit.
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8More confirmation is in Why the JWST won’t see the first galaxies. The numerical integrationprogram therein  shows  that  the  Relativistic  Rocket  equations  approximate  the  new metriclocally, as required for the metric to obey the EP. This is indirect experimental confirmationsince SR is well tested. Conversely, the Schwarzschild metric fails that test (see the section“More on the Schwarzschild metric’s violation of the equivalence principle” therein).

Figure 3: Direct image of a supermassive black hole(?) at the core of Messier 87. By theEuropean Southern Observatory (ESO), CC BY 4.0, via Wikimedia Commons.The new metric lets an object of any mass 𝑀 have any radius (reduced circumference) 𝑟 > 0.The new gravitational time dilation factor (12) goes to zero as  𝑟 goes to zero.  Gravitationalredshift indicates gravitational time dilation, so a star can look black when viewed from afar.This  explains  the  object  in  Fig.  3,  without  invoking  a  black  hole.  That  is,  the  image  isexperimental confirmation of the new metric.
Except where otherwise noted, content is available under the CC BY 4.0 license.
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