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This paper shows that the Schwarzschild metric’s prediction of black holes
violates the equivalence principle. Rindler horizons, which are used to support
the idea of black holes, are shown to work differently according to special
relativity than is generally accepted today. New equations are derived for escape
velocity and gravitational time dilation. A problem is shown in the derivation of
the Schwarzschild metric, and solved to derive a new metric for Schwarzschild
geometry. The new metric doesn’t predict black holes, yet is experimentally
confirmed, including by the famous picture that’s reportedly of a black hole.

1 The Schwarzschild metric violates the equivalence principle
A formal statement of the Einstein equivalence principle (EP) is

In any and every locally Lorentz (inertial) frame, the laws of special relativity
must hold.

Experiment #1: A free-falling ball is just below the event horizon of a supermassive static black
hole, and directly below a rocket that hovers just above the event horizon. The ball is at rest in
a local inertial frame (LIF) that contains the rocket.

The EP tells us that only special relativity (SR) is needed to calculate the ball’s motion relative
to the rocket. See the equations of SR at The Relativistic Rocket, for a rocket having a constant
proper acceleration a > 0. They work in reverse as well, like for a rocket decelerating to dock at
a spaceport. The ball can reach the rocket in principle, in the time given by

t = /(d/c)2 + 2d/a (1)

This equation gives the time taken for a decelerating rocket to arrive at a free-falling destination
(like a spaceport or the ball) at relative rest. Both ¢ and the initial distance d between them are
measured in the destination’s LIF that contains the rocket. The speed of light is ¢. Their initial
velocity toward each other in the destination’s LIF is found by plugging that value for ¢ into

at
U it (atjo2 (2)

We can let the initial distance d between the ball and the rocket be arbitrarily small. The
acceleration a that a rocket needs to hover ever more closely above an event horizon approaches
infinity, hence (1) shows the ball can reach the rocket in an arbitrarily short time ¢ in principle.
But the Schwarzschild metric predicts that the ball can’t pass outward through the event
horizon to reach the rocket at all. The metric violates the EP by disagreeing with SR in a LIF.


https://www.npl.washington.edu/eotwash/equivalence-principle
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The laws of physics are the same in all inertial frames, according to SR. Therefore, an argument
that the ball can’t reach the rocket must find the same in an inertial frame in an idealized,
gravity-free universe, while letting the ball approach the rocket at any speed < ¢ initially, or
else it violates the EP. But (1) shows that’s impossible. The case in which the ball reaches the
rocket at relative rest is the reverse of the case (when we “run the film backward”) in which the
ball had simply dropped from the rocket. The Relativistic Rocket equations apply to both cases.

The rocket’s Rindler horizon, a plane from below which nothing can reach the rocket, including
light, is at the distance c?/a below the rocket (see the section “Below the rocket, something
strange is happening” at The Relativistic Rocket). As a rocket hovers ever more closely above
an event horizon, ¢?/a approaches zero. This prediction is used to support the idea of black
holes. The thinking is that, in the limit where a rocket hovers at the event horizon, its Rindler
horizon would be there too, so that the EP is obeyed in a LIF that straddles an event horizon.

But (1) shows that the ball can reach the rocket in principle, and the EP requires that this is
correct. Let’s understand this better. See the “general formula” at The Relativistic Rocket:
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This equation gives the aging of a rocket’s crew during a trip that covers a distance d as
measured in the LIF in which they started, at an acceleration a that’s negated at the midpoint
so that the rocket brakes to arrive at its destination at relative rest. For example, it predicts
that a rocket can launch from Earth and accelerate and decelerate at 1 g to arrive at the
Andromeda galaxy, d = 2 million light years away from Earth as we measure, while its crew
ages just T~ 28 years (use ¢ = 1 ly/yr and a = 1.03 ly/yr®* ~ g). Notice that Andromeda
reaches the rocket that’s decelerating toward it, starting from the midpoint that’s 1 million light
years away as measured in Andromeda’s frame, even though the rocket’s Rindler horizon is
c?/a ~ 0.97 light years below the rocket. The equation from the site for the acceleration or

deceleration half of the rocket’s trip is
c
T = —acosh(ad/c* + 1
_acos (ad/c* +1) (4)

Compare (4) to (3). See that (3) just doubles the time returned by (4) for either half of the trip.
For the deceleration half of the trip to Andromeda, (4) returns 7'~ 14 years. Or use (1) for the
time ¢ taken in the destination’s LIF. Both (1) and (4) show that a free-falling object (like
Andromeda or the ball) can in principle reach a rocket having any acceleration a, starting from
any distance d below the rocket.

The distance ¢®/a between a rocket and its Rindler horizon applies only in the rocket’s frame.
When the ball approaches the rocket fast enough initially, then the initial distance d is length
contracted in the rocket’s frame to d/y < c?/a (where 7 is the gamma factor), so that the ball is
above the rocket’s Rindler horizon initially and thus able to reach the rocket. That’s also how
Andromeda reaches any rocket that decelerates to it. (Calculate d/v for when the rocket
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launched from Earth starts braking toward Andromeda, to see that it’s slightly < ¢?/a.) In the
current generally accepted view, the distance ¢?/a would be applied in the ball’s frame in error.
Since the ball can reach the rocket in principle, where the escape velocity is < ¢ (and so escape
is possible), the escape velocity at the ball’s initial location must also be < c.

Experiment #2: Modify the barn-pole paradox experiment to replace the near and far doors of

the barn with the rockets Achilles and Tortoise, respectively. In the barn’s frame, when the
switch is thrown, the rockets start their engines and accelerate in the direction that the runner
moves. Tortoise has a constant proper acceleration high enough that Achilles starts behind its
Rindler horizon and so can’t reach it.

The runner passes Achilles before it blasts off, so might be able to reach Tortoise. Relativity of
simultaneity helps explain how the runner or a free-falling object (like the ball in experiment
#1) can in principle reach a rocket having any acceleration a, starting from any distance d
below the rocket.

Figure 1: Spacetime diagram showing a uniformly accelerated particle, P, and an event E.
The event’s future light cone never intersects the particle’s world line. By Christopher
Thomas / tiZom, CC BY-SA 1.0, via Wikimedia Commons.

Let P in Fig. 1 be the rocket in experiment #1. Then the diagram is for a LIF that momentarily
co-moves with the rocket at t = 0 (as if the rocket blasts off then). Let the proper distance EP
be ¢?/a, so that E occurs at the rocket’s Rindler horizon. SR lets the ball be between E and P at
t = 0 in this frame, above the rocket’s Rindler horizon, like how the runner in experiment #2 is
between Achilles and Tortoise in the barn’s frame when the switch is thrown. This is true
regardless of the initial distance d between the ball and the rocket, like how the runner could
measure any initial distance to Tortoise. The ball can always fit between E and P in principle,
due to length contraction, like how the pole fits in the barn in the barn’s frame.

The Schwarzschild metric is invalidated by violating the EP, a postulate of general relativity
(GR). Moreover, a theory of gravity that obeys the EP can’t predict black holes. The EP
requires that escape velocity is < ¢ everywhere.
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2 A new equation for escape velocity

Equations for a falling body has the velocity of a free-falling object that was dropped in a
uniform gravitational field (ignoring air resistance) as

Vold = at (5)

where a is the acceleration of gravity and t is the elapsed time. We call this vg)q since it can be
> c.

The EP shows that The Relativistic Rocket’s (2) supplants (5):
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Figure 2: Ball falling to the floor in an accelerating rocket (left) and on Earth (right). By

Pbroks13 / Markus Poessel (Mapos), CC BY-SA 3.0, via Wikimedia Commons.

According to the EP, SR’s laws hold in both scenarios in Fig. 2. The Relativistic Rocket
equations describe the ball’s motion relative to the rocket. Then those equations describe the
ball’s motion relative to the room on Earth as well, where a is the acceleration of gravity. The
time ¢ in (2) is measured in the ball’s LIF, which momentarily co-moves with the rocket or room
when the ball is dropped at ¢t = 0 (as if the rocket or room blasts off then).
Substituting the two terms at in (2) with the voq from (5) gives the conversion formula

Vold

v V14 (voa/c)? (6)

This is the same as dividing vqq by its gamma factor v, as shown by
v =1+ (at/c)? (7)

from The Relativistic Rocket. That is, a Newtonian speed v,q converts to a relativistic speed v
by dividing it by its gamma factor, using (7), which accepts a Newtonian speed.

The equation for escape velocity in both Newtonian mechanics and GR is
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The new equation for escape velocity, derived by converting (8) using (6), is

2GM

c2r +2GM (9)

Ve = C
This equation returns a value < ¢ for an r-coordinate (radial coordinate or reduced
circumference) r > 0. So it doesn’t predict black holes, or give reason to think a star or other
massive body can collapse to a singularity. GR’s escape velocity (8) better approximates the
new escape velocity (9) as gravity weakens.

3 A new equation for gravitational time dilation

Imagine nested spherical shells concentric to a massive body. An observer drops from an infinite
distance, falling freely toward the ground while measuring, as a fraction x of their own rate of
time, the rate of clocks at each shell as they pass right by. Escape speed is also the speed of an
object that was dropped from an infinite distance, so each shell passes at the escape velocity v,
there. SR tells us that inputting that velocity into the reciprocal of the gamma factor equation
gets the value x for that shell. The ground accelerates like a rocket toward the observer, so the
observer’s rate of time remains the rate of time at an infinite distance, as if they’re the
stationary twin in a twin paradox experiment.” Then the gravitational time dilation factor, the
time to between two events as measured at an r-coordinate r, as a fraction of the time ¢;
between the events as measured at an infinite distance (i.e. by a faraway observer), is given by

—1
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te C ) <\/1—v§/c2> / (10

We verify this equation by deriving GR’s equation for gravitational time dilation from it, using

2
to _ 1_( 2GM) Jer = /1_2GM a1)
te r c3r

The new equation for gravitational time dilation, derived using (10) and the new escape velocity
(9), is

GR’s escape velocity (8):

to

/ r
te A er +2GM (12)

* See Fig. 2. The rocket/room accelerates to reach the ball when it hits the floor. The ball is a

stationary twin; the time ¢ in The Relativistic Rocket equations is measured in the ball’s LIF. The
person is a traveling twin; their aging is given by T in those equations.
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4 A new metric for Schwarzschild geometry

There’s a problem in the derivation of the Schwarzschild metric, at the step

1 2GM 2GM
gaa = K (1 + —) ~—ct + = (1 — ) (13)

S r c2r

in the section “Using the weak-field approximation to find K and S”. GR’s equation for
gravitational time dilation (11) is in (13) as
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This equation is invalid. Newton’s term —GM/r? there and in the diagram in the derivation

contains elapsed time values that are measured at that r-coordinate r, for which gravitational
time dilation isn’t accounted. For example, suppose —GM/r®> = —9.8 m/s?. Nothing in the
equation accounts for the fact that observers situated at varying r-coordinates measure different
elapsed times between two ticks of a clock at 7, making the seconds in bold ambiguous.
Multiplying the term by 2r/c? doesn’t resolve the ambiguity. The gravitational time dilation
factor that does that must be dimensionless and include the mass M; the M within the term
can’t be reused. Newton’s concept of absolute time defaults for the term, so that the equation
approximates the valid equation only in weak enough gravity, and (13) reads like

gas ~ —c* (invalid gravitational time dilation factor)? (15)

This dependence on Newton’s absolute time is the root cause of the EP violation shown in
section 1. To fix it, first we change (14) to

<t0)2:m:1x2GM (16)

and solve for z, the square of the gravitational time dilation factor. This standardizes the term

—GM/r? to the faraway observer’s measurement for it, by effectively dividing each time value in
it by the gravitational time dilation factor /x. Alternatively, each instance of GR’s escape
velocity (8) that’s embedded in (14) is converted to the new escape velocity (9), by effectively
dividing it by its gamma factor; see (10). Now the ground’s speed v relative to objects falling
freely toward it approaches an asymptote of ¢, in the same way a rocket’s does. This obeys the
EP as depicted by Fig. 2. The square of (9) is used to build x. Solving for = gives
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See that the new equation for gravitational time dilation that derives from (17):

to B c2r B T
te Vo= Ver 1260 ~ °\ @+ 2GM (18)

matches (12), as expected. The new escape velocity (9) then derives by solving (10) for ve.
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Next we incorporate x into (13):

1 2GM
944—K<1+S—>;u—c2 (l—x 2, ) (19)

This effectively changes the term —GM/r? to —zGM/r% (Ultimately that’s the only change

made herein.)

Completing the derivation, it’s found that

K =-¢ (20)
and
l = —x2GM 21
S - c2 ( )
Hence
2GM\ ' | Ar+26M
A(r) = (1—:v 2, ) =z =3, (22)
and
2GM Ar ctr
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So, the new metric for Schwarzschild geometry is

2 4
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ds® = Tdr +7r (d9 + sin 9d¢ ) — mdt (24)
or, in geometric units:
2M
ds? = "2 2 102 (d? + sin? 0dg?) — dt? (25)
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5 Experimental confirmation of the new metric

The only change made to the Schwarzschild metric was to the term for escape velocity that’s
built into it. The old escape velocity (8) better approximates the new escape velocity (9) as
gravity weakens. So the Schwarzschild metric better approximates the new metric (24) as
gravity weakens.

For the Schwarzschild precession of Mercury, both metrics predict 42.9799” per Julian century,

in agreement with observations.

For the Schwarzschild precession in the orbit of the star S2 around Sgr A*, both metrics predict
12.1" per orbit, in agreement with observations. If the Schwarzschild metric predicted 12.100’

per orbit for S2’s Schwarzschild precession, then the new metric would predict 12.095" per orbit.
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More confirmation is in Why the JWST won’t see the first galaxies. The numerical integration
program therein shows that the Relativistic Rocket equations approximate the new metric
locally, as required for the metric to obey the EP. This is indirect experimental confirmation
since SR is well tested. Conversely, the Schwarzschild metric fails that test (see the section

“More on the Schwarzschild metric’s violation of the equivalence principle” therein).

Figure 3: Direct image of a supermassive black hole(?) at the core of Messier 87. By the
European Southern Observatory (ESO), CC BY 4.0, via Wikimedia Commons.

The new metric lets an object of any mass M have any radius (reduced circumference) r > 0.
The new gravitational time dilation factor (12) goes to zero as r goes to zero. Gravitational
redshift indicates gravitational time dilation, so a star can look black when viewed from afar.
This explains the object in Fig. 3, without invoking a black hole. That is, the image is

experimental confirmation of the new metric.

Except where otherwise noted, content is available under the CC BY 4.0 license.
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