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Abstract
In this work, we give the modern version of Euler’s derivation
of equations governing rigid body rotations. This derivation helps
understand the rigid body rotations.
Keywords: Rigid body, Euler equations, rotational motion

1 Introduction

Since Euler’s derivation of Euler equations, we have been studying rigid body
rotations by using them [1, 2, 3]. However, nearly all classical mechanics
books use another derivation to get Euler equations [4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17]. Since Euler did his derivation a few centuries ago, his
notation is not so easy to understand by students. One can find historical
details of Euler’s derivation in recent work [18].

In this work, we will present a derivation in modern fashion. This deriva-
tion can help understand rigid body rotations and inertia products. We will
start by explaining the general structure and continue by giving derivations
of Euler equations in the stationary reference frame and in the body reference
frame.

Euler first derived equations in the stationary reference frame, and then
he realized that moments of inertia and inertia products are time-dependent.
Then, he derived equations in the body reference frame. We will also follow
the same path.

*Substantial part of the derivations in this work is submitted to Eur. J. Phys. as a
part of the comment on the work written by Marquina et al.



2 Governing equations of rigid body rotations

In figure 1, one can see a rigid body, statlonary reference frame (x v, 2,
body reference frame (z, v, z), applied force F, and position vector [ showing
acting position of the force. In the figure, the rigid body is represented
by a stone to emphasize that it can have any shape, and it should be solid.
Euler defines a rigid body with the usage of solid instead of rigid by following
statement ” A body is called solid whose interior is not subject to any change,
or which is such that all its parts constantly maintain the same relative
position, whatever motion the whole body may have.” [1].

Figure 1: A rigid body (stone), stationary reference frame (z’,y’, 2"), body
reference frame (z,y, ), applied force F, and position vector .

In general, a rigid body can make both translational and rotational mo-
tion. In this work, we will follow Euler and will consider only the rotational
part of the motion. In figure 1, the origins of reference frames are fixed to
the (approximate) center of mass.

We assume that the axes of the body reference frame lie on the princi-
pal axes of the rigid body. This assumption will provide simplicities in the
calculations in the body reference frame by letting inertia products equal to
zZero.

An applied force F, acting on the rigid body can cause changes in its
angular momentum. We will follow Euler and consider an infinitesimal part



of the rigid body to find how applied force changes the rigid body’s angular
momentum. This infinitesimal part should not lie on the rotation axis for
the sake of generality.

2.1 Derivation in the stationary reference frame

In this section, we will follow the steps of Euler’s derivation for the rotation
of a rigid body in a stationary or inertial reference frame.

Like Euler, we will consider an infinitesimal part of the rotating rigid
body. We can write its position in a stationary reference frame as

7=t +y'y + 22 (1)
We can write the angular velocity of this infinitesimal part as
W= wpd' + wy§ + w2 (2)
Then, we can obtain its velocity from the cross product v = w X 7 as
U= (Z'wy — y'w)t' — (Zwy — 2'w)§ + (Y'wy — 2wy )z (3)

As a result, we can write the components of velocity as

dz’ , ,

o Wy — Y Wyt

d /

d_yt = Jdwy — 2wy, (4)
dz’' o ,

E = YWy — T Wy

If we take the derivative of these with respect to time and use them in
derivatives, we can get components of acceleration as

2,/
d°x 9

/ - / - / / / /
= ZWy — YWy + Y WpWy — T W —xwg,+zwzlwx/,

!
dt2 Y
d2y/
! . ! / /2 /2 /
—r = Ty — 2 + Zwypwy — yw; —y'wy + t'wyw,y, (5)
2.
d Z _ /. /. / /2 /2 /
o YWy — T Wy + T Wy Wyt — 2 Wy — 2 Wy + Y wyw,.

By multiplying components of acceleration with the mass of the infinites-
imal part, p, we can get components of force f = f @'+ f,9'+ f. 2" according
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to Newton’s second law F' = ma. Then by using the force f and equations
(5), we can obtain moments of the force n, =y f, —2'f, ny = 2/ fo —2' fu
and ny = 2'f,, — Y fr as

12 12y . 10 ol /0 I
ny = ply" + 2Ny — 2y, — 22y + 2y wpw, — 2’ wew,

—y’z’(wi, —w?) + wy/wz/(y’2 — z’g)],

12 12N - 11 Il i I
ny = p[(a"” + 2Ny — Y wy —y' iy + Yy wpw, — Yy wpw,
I (2 2 /2 12
—x'Z (w5 — w5)) + wpw (27 — 27, (6)
2 2\ . . .
ny = pl(@” +y Ny — ' 2wy —y' 2wy + 2 wpw — Y2 wpw,

—a'y (Wl —wl) + wpwy (2 —y'?)].

We will integrate equations (6) to find the effect of applied force on the
rigid body. Integration of the left-hand side gives the moment of the applied
force relevant to that axis, e.g., Ny = [nldv’. By using integrals at the
right-hand side, we can define components of moments of inertia tensor as

Ix’x’ = fp(y,2 + 2,2)dvl7 [I/yl = [le/ == fp:v’y’dv’,
Iy/y/ = fp($/2 + Z/Z)dv/v Ly = Loy = — fp$/zldvl> (7>
L, = fp(:L‘lQ + y/Q)dU/, [y’z’ = Iz’y’ = — fpy'z’dv'.

Inertia products are not equal to zero since the principal axes of the rigid

body does not lie on the axes of the stationary reference frame. Then from
the integration of equations (6), we can obtain the following equations

Nz’ = ]x’x’wx’ + Iaz’y’wy’ + ]x’z’wz’ - ]x’y’wz’wz’ + ]:v’Z’wCC/wy'
+[y,2,(w§, — wg,) +wyw (Lo — Lyy),
Ny/ = [y/y/wy/ + Ix/y/wz/ + Iy’z’wz’ - [y’z’wx’wy’ + [x/y/wy/wzl
Lo (W) — w2 + W (Lpwr — L), (8)
No = Loy + Loty + Lyady — Lyywywy + Iyywyws

Ly (W}, — w;’) + wywy (lyy — Lya).

These equations describe the rotation of a rigid body in the stationary ref-
erence frame by the effect of the moment of force, N=1I0xF,.

One should be careful while using these equations since moments of inertia
and inertia products are time dependent.



2.2 Derivation in the body reference frame

In this section, we will follow Euler’s method in the stationary reference
frame to get equations of rigid body rotations in the body reference frame
under the influence of torque. We will consider an infinitesimal part of the
rigid body to see the effect of torque on the rotation of that infinitesimal
part. The axes of the body reference frame are chosen as the principal axes
of the body.

In the body reference frame, we can show the position of an infinitesimal
part of the rigid body by

=y

= xi + Yy + 22. (9)
We can write the components of angular velocity as
W = W& + wyy + w,2. (10)

Then, we can get the velocity of the infinitesimal part from cross-product
U= X T as

U= (2w, —yw,)T — (2w, — 2w,)Y + (Yyw, — xw,)z. (11)

As a result, we can write the components of the velocity as

dx

pr s L

d

d—i = Tw, — 2w, (12)
dz

% = YWz — TWy.

By taking the time derivative of equations (12) and using them, we can find
the components of acceleration as

Az ) ) 2 2

W = ,Zwy — Yw, + ywx'l,Uy - xwy — TWw, + ZW Wy,

d?y . . 2 2

w = W, — W, + RFWyW, — YW, — Yw, + LWy Wy, <13>
d?z . . 2 2

dt? = YWp — TWy + W Wy — 2W, — 2Wy, + YWy W,



where dots over w;’s represent time derivatives. According to Newton’s sec-
ond law, F' = md, by multiplying equations (13) with mass of the infinitesi-
mal part, p, we can get components of the force f: pd%x /dt*3 + pd?y /dt* ) +
pd?z/dt*2. This force is responsible for the acceleration of the rigid body’s
infinitesimal part and different than the applied force. It results from the
combination of applied force and rigidity of the object.

Figure 2: f, and f. components of force f acting on the infinitesimal part.

In figure 2, we see f, and f, components of the force acting on the in-
finitesimal part on yz-plane. y component of the force will cause a moment
2 f, in the clockwise direction, and z component of the force will cause a mo-
ment y f, in the counter-clockwise direction. The counter-clockwise direction
is the positive direction according to the right-hand rule, then, the moment
around z-axis will be equal to yf, — zf,, which is # component of the cross
product 7 X f We can similarly obtain the other moments, zf, — xf, and
xfy, — yfz, and they are also consistent with the cross product. Hence, by
considering cross-product 7 x f, we can write the moment of the force on the
infinitesimal part of the rigid body as

N = Ngd +n,Y+n,2

= (yfz_zfy)i_(xfz_zfm>g+(xfy_yfx)2' (14>

Then by using the force f, equations (13) and (14), we can obtain the
effects of moments of the force on angular accelerations and angular velocities



as

ne = plly*+ 22w, — TYWy — T2W, + TYWLW, — TZWLW,

—yz(wy — w?) + wyw.(y* — 2%,
n, = p[(a*+ 2, — Ty, — Y2, + yrw,w, — yrw,w,

—zz(w? — w?) + wyw,(2* — 2?)], (15)
n, = pl(z®+y* )i, — 21, — y2ib, + T2WW, — Y2WW,

—xy(wi - w;) + wxwy<x2 - 92)]'

We can integrate equations (15) over the volume of the rigid body. If we
consider the torque on different infinitesimal parts, it changes as the distance
from the rotation axis changes, and the moments of force are distributed over
the rigid body to satisfy the rotation of the rigid body as a whole with the
help of atomic interactions. This is the result of the object’s rigidity. Then,
the integration of the left-hand side gives torque relevant to that axis, e.g.,
N, = [n,dv. Integrals at the right-hand side are related to moments of
inertia and inertia products, and they are defined as

low = fp(yZ + ZQ)dU, [:cy = ]yx = - fpxydv =0,
[yy = fp($2 + Z2>d1}, I.=1,=— fpl'ZdU =0, (16)
Izz == fp(x2 —+ yQ)d'U7 ]yz =1y = — fpyzdzv = 0.

We choose the body axes as principal axes, then terms in the second column,
inertia products, are equal to zero since the definition of principal axes is
based on this.

Then the integration of equations (15) over the volume of the rigid body
gives

N:v - ];L’zw:v - wywz(jyy - ]zz)a
N, = Iy, — wowe(Ls — L), (17)
N, = L., —wyw,(Lyy — Iy).

These are Euler equations for rigid bodies describing the change of the an-
gular momentum under the influence of torque, N =1x ﬁa, in the body
reference frame.

In these equations, moments of inertia and inertia products are indepen-
dent of time.



3 Summary and Conclusion

By following Euler’s ideas, we have obtained equations describing the rotation
of a rigid body. We have used Euler’'s method to obtain equations in the
stationary reference frame. While obtaining equations in the body reference
frame, we have followed Euler’s method in the stationary reference frame
and have not use direction cosines though Euler used them. Our derivation
gives the same equations as equations in the body reference frame, known as
Euler equations. The equations in the stationary reference frame are more
complicated than the ones in the body reference frame due to non-zero inertia
products. In addition to this, it should be remembered that inertia products
and moments of inertia change in the stationary reference frame during the
rotation.

If we rotate a rigid body with an initial effect, it will rotate around one of
its principal axes provided that there is not any disturbing effect. We have
seen during the derivation that studying rotation of a rigid body by using
principal axes provides simplifications since inertia products become zero.
In formal definition, principal axes are defined by using inertia products: if
we choose an axis passing through the center of mass and if inertia products
related to that axis are zero then that axis is principal axes. As we mentioned
this axis is physically exist and the rigid body naturally rotates around it,
if an initial rotation is given. If we try to define the rotation of a rigid
body by using axes other than principal axes, we need to consider inertia
products. Moments of inertia and inertia products play a similar role to
mass in translational motion, in which mass is related to inertia against the
change in linear momentum. Moment of inertia corresponds to the inertia
of the rigid body against the change in angular momentum around rotation
axis, and inertia product is the inertia of the rigid body against the change
in angular momentum around rotation axis due to effects of other rotations
and asymmetries in mass distribution.

During the derivation, we considered that the fixed point is the center
of mass of the rigid body. However, this derivation is also valid if the fixed
point of the rigid body is different than the center of mass. In such cases,
the origins should be set to that fixed point, and moments of inertia in the
body reference frame should be calculated by considering rotations around
the fixed point. This calculation can be done with the help of Steiner’s
parallel-axis theorem [5].

During the derivation, we considered an applied force. Any force that



can change atomic interactions will deform the object, and it can not be con-
sidered as a rigid body anymore. Hence, the force that will be considered in
Euler equations should not change the atomic structure. If it changes, other
physical interactions should be considered, and such cases are not subject to
rigid body rotations.

During the derivation, we have considered an infinitesimal part and the
force f, which provides acceleration to that infinitesimal part. This force f is
the result of the combination of atomic forces or internal effects and applied
force F,. After the integration, internal effects are simplified and the net
torque N =1x F remains. This torque is natural result of applied force F

The body reference frame is a non-inertial reference frame, and in non-
inertial reference frames, there can be some fictitious effects. One can see
that the second terms at the right-hand side of equations (17) are extra,
and they are fictitious effects. We should note that the centrifugal force is
simplified by the rigidity of the object.

One can also consider the situation that the applied force is equal to zero.
In that case, external torque becomes zero, and Euler equations describe
rotations without it.
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