The Meaning of 4 Berylium Being Followed By 9 Fluorine in the Periodic Table Rather Than 6 Carbon

George R. Briggs

Abstract: In the periodic table of the elements 4 berylium (no isotopes) holds the 2nd even position. The 3rd and 4th even positions, 6 carbon and 8 oxygen, are skipped in favor of the odd position 9 fluorine; why?
stable isotopes abundance(s) duplications density
1 hydrogen $\quad 1,2 \quad 99.98 \%, 0.02 \quad \mathrm{~g} / \mathrm{cm}^{\wedge} 30.07$
2 helium $\quad 3,4 \quad 0.0002 \%, 99.9998 \quad 0.14$
3 lithium $6,7 \quad 7.5 \%, 92.5 \quad 0.53$

4 berylium 9 100\%, 1.85
5 boron
10, 11 20\%, $80.0 \quad 2.08$
6 carbon
12, 13
98.7\%, $1.1 \quad 2.27$

7 nitrogen
14, 15
8 oxygen
16, 17, 18
99.6\%, 0.4
0.80

9 fluorine
19 100\%
1.14

10 neon $\quad 20,21,22 \quad 90.4 \%, 0.27,9.25 \quad 1.21$
11 sodium $23 \quad 100 \%$ 0.96

12 magnesium $\quad 24,25,26 \quad 79.0 \%, 10.0,11.0, \quad 1.73$
13 aluminium $27 \quad 100 \% \quad 2.70$
14 silicon 28,29,30 92.2\%,4.7,3.1 2.33
15 phosphorus 31 100\% 2.34
16 sulfur $\quad 32,33,34,36 \quad 94.99 \%, 0.75,4.25,0.01 \quad 1.84$
17 chlorine $35,37 \quad 1.56$

18 argon $\quad 36,38,40 \quad 0.33 \%, 0.06,99.6 \quad 1.39$
19 potassium $39,41 \quad 93.25 \%, 6.73 \quad 0.86$
20 calcium 40,42,43,44,46 96.9\%,0.65,0.135,2.09,0.004 1. 55
21 scandium $45 \quad 100 \% \quad 2.98$
22 titanium 46, 47, 48, 49, 50 8.2\%,7.4,73.7,5.3,5.18 4.51

23 vanadium	51	99.75%	6.11
24 chromium	$\mathbf{5 0}, 52,53,54$	$4.34 \%, 83.7,9.50,2.36$	7.19
25 manganese	55	100%	7.21
26 iron	$\mathbf{5 4}, 56,57, \mathbf{5 8}$	$5.85 \%, 91.75,2.12,0.28$	7.87
27 cobalt	59	100%	8.90
28 nickel $\mathbf{5 8}, 60,61,62, \mathbf{6 4}$	$68.1 \%, 26.2,1.14,3.63,0.93$	8.90	

Starting with the nickel isotopes 60 and 62 which are even and the strongest bound of the periodic table, we have 4 noisotope odd elements and then potassium and chlorine odd elenents of 2 elements each followed again (starting at phosporus) by 4 no-isotope odd elements ending with 9 fluorine. Taking (see my previous ViXra paper 2007.0229) odd periodic table elements for all stable elements up to 83, we get 4 groupings of 4 elements each: 19, 23, 27, 31 and $45,51,55$, 59 and 75 (arsenic), 83 (rubdium), 89, 93 and 103, 113, 127, 133 then 1 grouping of 8 elements: 139 (lanthanum), 141, 153, $159,165,169,175,185$ then finally 1 grouping of 4 elements: 197 (gold), 203, 205 (thallium), 209(bismuth - see Wikipedia), end of stable isotopes. We note that the groupings are alerting us first to the importance of MHCE8S theory (4 groups of 4 elements), then life (1 group of 8 elements) and finally the universe (1 group of 4 elements).

Returning to the question at hand, why are the positions 6 carbon and 8 oxygen skipped? - the answer is simple; nature does not want elements basic to life to be classified in the same group as elements such as fluorine (decorative etchant for glass) or cobalt (blue decorative color) or manganese and vanadium (alloys to make better swords for war), etc. On the other hand, in more recent years many of the group, phosphorus (fertilizer) and aluminum (airplanes) for example have become highly beneficial but only after science been has been applied to improve the materials.

