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Introduction 

This examination of reality is running like an exciting detective novel. 

The research uses a hierarchy of spaces that show varying degrees of 

complexity. Finding more complicated spaces is not a big problem. This 

turns out to be quite simple. The move to a more complicated form is 

always accompanied by several significant limitations and 

understanding where these limitations come from is a much bigger 

problem. Today's mathematics is only just able to explain the limitations 

of the Hilbert space. This no longer applies to the system of Hilbert 

spaces, which in this document is called the Hilbert repository. Current 

math cannot explain the restrictions and the extra features of the 

Hilbert repository. This fact will particularly interest those who are 

curious about the structure and behavior of physical reality. The 

approach is quite different from the usual path and provides other 

insights. The usual way tries to deduce new insights from what we know 

about classical physics. The story makes it clear that only mathematics 

cannot provide a complete picture of reality, while experiments alone 

also cannot expose physical reality. The combination of mathematics 

and experimentation produces the best results. 

1 The research 

If you have plenty of time to think, you often come to areas that 

intrigue you greatly. The coronavirus makes us lock ourselves up and 

causes that we have a lot of time to think deeply about all sorts of 

things. What intrigues me greatly is the way our living environment has 

come about and how it works in the way that we can perceive. It is why 
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I went to study physics. Let us name what we live in physical reality. 

Physical reality apparently possesses all kinds of structures and 

mechanisms from which we can experience the effects through our 

senses and through tools.  People, especially mathematicians and 

physicists, have also devised such structures and mechanisms. 

2 Vector space 

What is striking is that physical reality applies many kinds of space. 

Mathematicians and physicists have given the simplest form of space 

the name vector space. With combinations of simple numbers and 

vectors, you can use simple calculation procedures to get from a chosen 

position to reach all positions in the vector space. The vectors have a 

starting position and an end position. That gives them a direction and a 

length. The length is characterized with a number. Multiplying vectors 

by numbers shortens or elongates the vector. Multiplying with a 

negative scalar reverses the direction of the vector. Two vectors are 

added by shifting one of the vectors parallel so that its endpoint and the 

starting point of the other vector coincide. The starting point of the first 

vector and the endpoint of the second vector are now the sum vector. 

There are many different number systems. The simplest number 

systems arrange their elements along a straight line. The numbers we 

have learned to count with are called natural numbers. If we add the 

number zero and let negative numbers appear, then the integers are 

created. If we add all the fractions, the rational numbers are created. 

With those numbers, we can approach all points on a straight line 

randomly close. However, that does not mean that we can end up on 

that line at all locations. The root of two is a location that cannot be 

represented with a fraction. For example, there are infinite many 

numbers that do not belong to the rational numbers. We call those 

numbers irrational. All rational numbers can be enumerated with a 
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different natural number. That does not apply to the irrational 

numbers. That set of numbers is not countable. Merging the rational 

numbers and the irrational numbers provides the set of real numbers.  

The amalgamation results in a continuum. The continuum has different 

properties than the countable set. Continuums have more consistency.  

This is particularly important in the more complicated number systems 

that do not fit on a straight line. 

The roots of the negative numbers do not fit on the same straight line. 

We place the roots of the negative numbers on an independent line 

that crosses at the position of the number zero with the line of the real 

numbers. The flat plane that spans the two lines now includes all the 

combinations of the real numbers and the roots of the negative real 

numbers.  The combined numbers are called complex numbers. The axis 

of the roots of negative real numbers is called the imaginary axis. This 

naming is unfortunately confusing.  The word imaginary also has other 

meanings. 

The two lines represent independent vectors. The image of the first line 

on the second line has zero length. We can also say that the lines are 

perpendicular to each other, but that is a dangerous step, because both 

the human brain and physical reality do not allow more than three lines 

or vectors to be perpendicular to each other. However, vector spaces 

can exist in which more than three vectors are independent among 

themselves. The maximum number of independent vectors is called the 

dimension of the vector space. The vector space taken up by the 

complex numbers is thus two-dimensional. Complex numbers can be 

considered as the aggregation of two real numbers, each of which has 

one of the axes as domicile. Similarly, two complex numbers can be 

merged into one four-dimensional number. In this way, new numbers 

emerge, with which we can also calculate and which the discoverer 
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more than two centuries ago has called quaternions.  Quaternions 

consist of a real part and an imaginary part. The real part covers one 

dimension. The imaginary part covers the remaining three dimensions. 

The square of the imaginary part delivers a negative real number just as 

with the complex numbers. The product of two different imaginary 

quaternions delivers a new imaginary quaternion and a real number 

that together produce a new quaternion. The imaginary subspace of the 

quaternions acts as a three-dimensional vector space. The imaginary 

parts are three-dimensional vectors. 

The product c= a b of two quaternions a and b consists thereby of five 

terms. 

c = c + c = a b ≡ (ar + a) (br + b) = ar br − !a,b"  +  a br + ar b  ±  a×b 

cr = ar br − !a,b"!

c = a br+ ar b ± a×b 

 a b = − !a,b"!±  a×b 

#$= cr − c is the conjugated of c!

%c% is the norm of c. !

c c*=%c%2!

In these equations, the real part ar of quaternion a is indicated by a 

suffix r   

The imaginary and thus vectorial part a of this quaternion is 

represented with a bold font. 

!a,b" is the inner vector product of a and b.  It is a real number.!

a×b is the outer vector product of a and b. It is a vector that is 

perpendicular to a and perpendicular to b. 
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In the quaternionic number system, the scalar real part can simply be 

added to the vectorial and therefore imaginary part. 

The product of two quaternions is not always commutative. a b is not 

always equal to b a. This is because a×b = −b×a 

The formula indicates that there are right-handed quaternions and left-

handed quaternions. The user must make a choice in advance.  

Two quaternions can form one octonion. Thus, the number systems of 

the octonions cover an eight-dimensional vector space that divides into 

a one-dimensional real part and a seven-dimensional imaginary part.  It 

seems that physical reality does use quaternions but no octonions. That 

is because the product of octonions is not always associative. For 

octonions, (a b) c is not always equal to a (b c).   

Apart from in different dimensions, number systems exist in a large 

number of versions and these versions differ in the way in which a 

Cartesian and a polar coordinate system specify the order of the 

elements. This choice determines the geometric symmetry of the 

version. 

2.1 Inner products 

Inner products play a major role in vector spaces that have more than 

one dimension. Inner vector products of independent vectors are 

always zero. The number of independent vectors determines the 

dimension of the vector space. Various sets of independent vectors can 

span the same vector space. If all participating vectors have length 1, 

then we call such a system a base. By depicting a chosen vector with 

length 1 on all members of such a base and determining the length and 

direction of the image, a row of numbers is created that precisely 

captures the direction of the chosen vector.  In some forms of vector 

spaces, the image of the chosen vector on the base vector is 

characterized by a more general number than a simple length size, 
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Instead, a complex number or a quaternion characterizes the scaling 

number. 

The inner product of two vectors α and β is indicated as 

!α, β"!= !β, α"* =∑ αi βi
*!

Here are αi and βi the image numbers that belong to base component ei.  

The superfix* marks the conjugate of the number. 

3 Other spaces 

3.1 The Hilbert spaces 

The possibilities of physical reality do not stop at the number systems 

described above. The vector space can also be applied in other ways. It 

is possible to map vector spaces onto themselves. In this way some 

vectors can be mapped on their own direction line. A scale factor then 

indicates what the image does to the vector.  After correcting for the 

length of the original vector, the inner product of the original vector 

and the map provides the scale factor. The vectors in which this 

happens are called eigenvectors. The scale factors are designated to be 

eigenvalues of the map. In a simple vector space, this scale factor is a 

rational number. A Hilbert space provides each vector pair with an inner 

product. The number value of the inner product can be a real number, 

or it can be a complex number, or it can be a quaternion. The 

eigenvalues of an image together form the eigenspace of the map. 

Because the map manages the eigenspace, the name operator is also 

used for the map. David Hilbert and others discovered this curious 

behavior of this type of vector space. John von Neumann, David 

Hilbert's assistant, ensured that this vector space was given the name 

Hilbert space.  The fact that the Hilbert space can only use a small 

number of number systems for the number value of the inner product 

was assumed early on but was only supported by hard mathematical 

evidence many decades later. 
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The Hilbert space acts as an abstract structured archive for collections 

of elements of a chosen type of number system. For example, the 

reference operator manages the chosen version of the number system 

that the Hilbert space applies to specify the inner products of vector 

pairs in its eigenspace. This gives the Hilbert space a private parameter 

space. An entire category of operators shares the reference operator's 

eigenvectors and replaces the corresponding eigenvalue with the target 

value of a chosen function corresponding to the parameter. In this way, 

eigenspaces are created that are described by functions. The parameter 

space therefore plays the role of the root geometry of the Hilbert space. 

This root geometry has a fixed Cartesian coordinate system, that 

provides the geometric center and geometric symmetry of the Hilbert 

space. This symmetry characterizes all the eigenspaces of the Hilbert 

space in question. 

The Hilbert spaces described so far have a countable number of 

dimensions and therefore the eigenspaces of their operators can also 

be counted. It can be inferred from the existence of the category of 

operators who share the reference operator's eigenvectors that each 

Hilbert space that has countable infinite dimensions owns a unique 

companion Hilbert space that is non-separable and embeds its 

separable partner. The non-separable Hilbert space also supports 

operators who have a continuum eigenspace. Often these eigenspaces 

can be described by continuous functions. 

The collection of the closed subspaces of a Hilbert space forms a 

relational set that mathematicians call an orthomodular lattice. 
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3.2 The Hilbert repository 

The definition of a Hilbert space subtly differs from the more basic 

vector space. The Hilbert space is a vector space that defines an inner 

vector product for each vector pair. Moreover, a Hilbert space is 

complete.  

The difference with the underlying vector space allows many separable 

Hilbert spaces to share the same underlying vector space. This imposes 

major restrictions on the Hilbert spaces that can participate in the 

system of Hilbert spaces. Only Hilbert spaces whose axes of the 

Cartesian coordinate system run parallel to each other can participate in 

the system. In addition, it must be quaternionic Hilbert spaces. There 

are plenty of Hilbert spaces left. One of the Hilbert spaces plays the role 

of background platform and provides the background parameter space 

and the background symmetry. The dimension of this Hilbert space is 

infinite, and its non-separable partner is also part of the background 

platform. The combined storage capacity is enormous. We call the 

result a Hilbert repository.   If the Hilbert repository is used to store 

physical objects in it, then this storage medium can store all the 

dynamic geometric data of all objects that ever appear in the universe. 

In addition, the system has storage space for the fields that appear in 

the universe and that includes the universe field itself. The restrictions 

mentioned also lead to additional properties. All participating separable 

Hilbert spaces glide with their geometric center over the background 

parameter space. The difference in geometric symmetry between the 

participating Hilbert spaces and the background symmetry leads to the 

presence of a source or a sink at the location of the geometric center of 

the sliding participant. This source or sink corresponds to a symmetry-

related charge that generates a symmetry-related field. The value of the 

charge can be zero.  
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4 Elementary particles 

These special features do not follow from the mathematics known to 

us. We can deduce them from measurements made to physical reality. 

The Hilbert repository has a complicated structure and a special 

behavior reminiscent of the particle collection described in the Standard 

Model of the experimental physicists. The sliding platforms behave like 

elementary particles. In addition, they divide into categories 

distinguished by their electrical charge. The categories are indicated by 

type designations. For example, electrons, neutrinos, and quarks form 

together the elementary fermions.  The quarks form a subset and are 

again divided into types. 

This is a promising result, but elementary particles have something that 

in the offered description the sliding platforms do not yet possess. All 

elementary particles show a footprint that deforms the surrounding 

field. Let us assume that the sliding platforms support an operator who 

takes care of the footprint. The elementary particles have a wave 

function whose square of its modulus results in a detection probability 

density distribution.  The operators of the sliding platform cannot store 

this continuous detection probability density distribution in its 

eigenspace. However, it is possible to store a cord of quaternions 

consisting of combinations of time stamps and hop landing locations 

that describe an ever-continuing hop path that regularly regenerates a 

coherent swarm of hop landing locations.  If the hopping object is point-

shaped, then this swarm is described by a stable location density 

distribution that corresponds to the mentioned detection probability 

density distribution. 

Mechanisms that produce such coherent swarms with stable location 

density distributions are common in nature and optical experts often 

use them. This does not mean that science knows how and why these 



 

10 

 

mechanisms work. I describe these mechanisms as stochastic processes 

that have a characteristic function. Another description is a process in 

which a Poisson process combines with a binomial process. The 

binomial process is implemented by a spatial point spread function. The 

point spread function plays the role of the location density distribution. 

The characteristic function of the process equals the Fourier transform 

of the location density distribution. In optics, this characteristic function 

is called the Optical Transfer Function. 

4.1 Two episodes 

The footprint operator is already present at the time of the creation of 

the Hilbert repository and determines the behavior of the elementary 

particle throughout its existence. This fact is a great mystery. The math 

does not offer an explanation yet. However, the existence of the 

footprint operator makes it possible to divide the model of physical 

reality into a preparatory episode in which there is no flowing time and 

an ongoing episode in which a continuing step-by-step embedding of 

the hop landing locations mimics the activities of the stochastic 

processes. The embedding process uses the stored and ordered time 

stamps to realize the corresponding hop landings. The range of running 

time is equal to the range of the archived time stamps. At the beginning 

of the running time, the field that represents our universe is still virginal 

and corresponds to the background parameter space. After the first 

footprints completed, the relevant elementary particles can start to 

form composite objects. 

 

5 Deformation of the embedding field 

With the hop path we are not there yet, because the hop landing only 

causes a deformation of the embedding field if the difference between 

the symmetry of the sliding platform and the background symmetry is 



 

11 

 

isotropic. We know this from the results of field equations that describe 

field excitations. In quarks, the difference in symmetry is not isotropic. 

They must first combine into isotropic hadrons to be able to cause 

deformation of the embedding field. The hop landings of all other 

elementary particles can easily produce pulses that produce spherical 

pulse responses. These spherical pulse responses behave like spherical 

shock fronts.  The front moves at the speed of light away in all 

directions from the location of the pulse. The amplitude of the pulse 

decreases proportionally with the distance to the starting location. 

Integrated over time, the spherical shock front results in the Green’s 

function of the field. The pulse injects the volume of the Green’s 

function into the field and that volume remains in the field. Initially, the 

pulse deforms the field around the location of the pulse, but the front 

spreads this deformation throughout the field. This quickly blurs the 

deformation. To get a permanent deformation, the hop landings in the 

area must be carried out continuously. The hop path takes care of that. 

Far from the center at distance r from the footprint, the gravitational 

potential is equal to V(r)=MG/r. This defines the mass M of the 

elementary particle. 

To be able to say anything about the shape of the gravitational potential 

near the elementary particle, we need to know the location density 

distribution. If this is a Gaussian distribution, the gravitational potential 

equals V(r)=MG ERF(r)/r. For large values of r, this approaches the 

previously mentioned form. The formula given here is also an approach 

because part of the deformation fades away early. This new shape is a 

smooth function and does not show the singularity that the earlier 

formula shows. The new formula shows how the universe shows near 

an elementary particle. Far enough away from the particle, the universe 

is virtually undistorted. 
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6 Photons 

The above story says nothing about photons. Photons are not 

elementary particles and have a completely different structure. They 

also move in the universe, but they do not deform that dynamic field. 

As a result, they do not possess mass. Photons are one-dimensional 

beaded cords in which each bead is formed by an energy package. 

These energy packages move at an equal distance from each other.  The 

distance between them determines the color of the photon. The 

packages are also one-dimensional, and they behave like shock fronts 

that move at the speed of light. The fronts retain their shape and their 

amplitude. Photons have no mass and no symmetry-related charge. 

Each energy package owns a vector that determines the polarization of 

the photon.   

7 Elementary modules 

Elementary particles can behave as elementary modules. Together, the 

elementary modules form all the modules that occur in the universe. 

Some modules form modular systems. 

Stochastic processes that own a characteristic function, control the 

definition of composed modules. This characteristic function is the 

dynamic superposition of the characteristic functions of the 

components. 

In Fourier space where these characteristic functions reside the 

dynamic superposition coefficients have a different function than in 

configuration space. They act as displacement generators and 

determine the internal positions of the components. 

In addition to the elementary particles and the modules and modular 

systems that are assembled, black holes also possess a quantity of mass. 
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Symmetry-related charges occur only on the geometric centers of 

elementary particles. 

 

This describes an important part of physical reality. 
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