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Abstract
Chern-Simons theory is a gauge theory in $2+1$ dimensional spaceime. This theory does not depend on
additional structures, like a metric structure, thus it is a topological quantum theory that measures
topological invariants like linking numbers, Jones polynomial, and other quantum invariants for knots and
3-manifolds. The equations of motion of Chern-Simons action is vanishing of the curvature $F = 0$. No
metric is used in forming the action principle. One might expect the path integral to be a topological
invariant of $3$ manifolds. The difference for the equation of motion with the Maxwell theory is that the
Maxwell theory has non-trivial solution of curvature $F\ne0$ in absence of matter, while the Chern-
Simons theory has solution only with $F=0$. The Chern-Simons theory has non-trivial solution with $F
\ne0$ only when the gauge field couples with matter. Since the action functional of the Chern-Simons
theory is first order in space-time derivatives, its Legendre transform gives the trivial Hamiltonian $H=08.
So there is no dynamics, and the only dynamics would be inherited from coupling to dynamical matter
fields.
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Introduction

Chern-Simons theory is a gauge theory in 241 dimensional spaceime. This theory
does not depend on additional structures, like a metric structure, thus it is a topo-
logical quantum theory that measures topological invariants like linking numbers,
Jones polynomial, and other quantum invariants for knots and 3-manifolds. The
equations of motion of Chern-Simons action is vanishing of the curvature F' = 0.
No metric is used in forming the action principle. One might expect the path
integral to be a topological invariant of 3 manifolds. The difference for the equa-
tion of motion with the Maxwell theory is that the Maxwell theory has non-trivial
solution of curvature F' # 0 in absence of matter, while the Chern-Simons theory
has solution only with F' = 0. The Chern-Simons theory has non-trivial solution
with F # 0 only when the gauge field couples with matter. Since the action
functional of the Chern-Simons theory is first order in space-time derivatives, its
Legendre transform gives the trivial Hamiltonian H = 0. So there is no dynam-
ics, and the only dynamics would be inherited from coupling to dynamical matter
fields. Another fact about the pure Chern-Simons system is that the components
of the gauge field A; are canonically conjugate to one another [A;, A;] ~ &;;, this
is strange type of fields theory, with the components of fields not commuting with
one another ([1]).

We can use the Chern-Simons theory with U(1)-gauge group for interpretation
of linking numbers in knot theory, this number is topological invariant for links
in 3-manifolds. The non-trivial linking numbers of link arise from non-trivial
flat connections in Chern-Simons for which the spatial surface to have non-trivial
topology.

Since the Chern-Simons action does not depend on the metric, its energy-
momentum tensor is zero,
0Scs B
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The sourceless stress energy tensor therefore vanishes, so this theory is completely
invariant under space-time diffeomorphisms and can therefore be called topological
theory, i.e. independent of local geometry. But if we couple the gauge field with
particles, then the energy levels and spins of particles can be shifted from their

classical values.

1  Chern-Simons theory of U(1)

Let P = My x U(1) be the trivial principal U(1)-bundle on a compact oriented
smooth 4-manifold My with boundary Ms = 9My. Since P is trivial, we may
regard the connection A as u(1)-valued 1-form over My. In this case, U(1) group,
we can easily obtain the Chern-Simons term f M A A dA by using Stokes theorem
from the topological action f M, F A F with the curvature F' of a connection A on
P. The equation of motion of the Chern-Simons action requires flat connections
on the boundary Ms, so that the restriction Py, of P to M3 is flat principal U(1)-
bundle. (But in over the bounding 4-manifold My, this topological term depends
only on the boundary value of the curvature and in particular not flat solutions
over the interior of My, and so we have the boundary condition F(A)|g;, = 0.
This condition is precisely the equation of motion of Chern-Simons action on the

boundary Mz = dMy). We start with the topological term

/F/\F:/ dA/\dA:/ d(ANdA).
M4 M4 M4

This term is gauge invariant since F' is invariant under U(1)-gauge transforma-
tions, and the cohomology class [F' A F| € H? (M) is also invariant under one-
parameter family of diffeormorphisms since dF' = 0 and so it changes by addition
of an exact form under diffeomorphisms. By integrating it over M4 with boundary

M3 = OMy, we get

/F/\F:/ d(A/\dA)z/ ANdA,
My My M3

Definition 1.1. Let A be the space of all smooth U(1)-connections on the trivial
principal U(1)-bundle P = M3 x U(1) — Ms. Then the U(1)-Chern-Simons
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functional Scg : A — R is defined to be

™

SCS(A):;/ A/\dA:%/ ANF, (1)
M3 M3

where k is some constant factor which will be discussed later for non-abelian gauge

group.

Let G be the group of all U(1)-gauge transformations g : P — P. Now the
U(1)-gauge transformation can be identified with a map g € Map(Ms,U(1)).
Then G acts on A by ¢g*A = g 1 Ag + g~ 'dg.

Proposition 1.1. The U(1)-Chern-Simons functional Scs : A — R is invariant
under U(1)-gauge transformations, Scs(g*A) = Scs(A) for all A€ A and g € G.

Proof. Under infinitesimal gauge transformations, A — A+d\, with A € QY(M3z;u(1)),
by using dF' = (0, we obtain

™ ™

SCS(AJFd/\):Qﬁ/ (A+d)\)/\d(A+d)\):2£/ A/\F+2ﬁ/ (AN ANF
M; M; T J My

k k
= — ANF + — d(AF).

2 J g, 2T S,
If OM3s = (), we have st d(AF) = 0, therefore Sgs(A + d\) = Scg(A) for
infinitesimal gauge transformations in which A" — A = d\ is exact. In large
gauge transformations, g*A = ¢~ 'Ag + w for not necessarily exact w = ¢~ 'dg €
QY (M3;u(1)) with g : M3 — U(1), the action changes as (F is gauge invariant)

. k
Scs(g™A) = Scs(A) + 2—/ wAF,
M3

™

we write

/w/\F:/ w/\dA:—/ d(w/\A):—/ wAA=0.
Ms3 M3 M3 OM3

Proposition 1.2. The critical points set of Scg : A — R is precisely the set F of

]

all flat connections A. In fact A is given by A = ¢~ 'dg over a contractible open

set U for some smooth map g : U — U(1) called pure gauge solution.
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Proof. From the action (1), we obtain ( by ignoring the boundary, or take M3 =
0)

d k d
- A+ ta) = — — A+t F
i t:OSCS( +ta) or a1 tzo/( +ta) A Fayia
3
k d
= — [ = A+ta) N (F td
or dttfo( ia) A (Fat tda)
Ms B
k d 2
=5 | = (ANFyp+tANda+ta N Faq+taAda)
7TM t=0
3

k
= — Fy+ A
o (@ NFg+ ANda),

M3
then we use d(AAa) =dANo—ANda and Fy = dA to get
d

dt

e
M3

k
Scs(A+ta) = —/aAFA,
t=0

and therefore

d

o Scs(A+ta) =0 for all a € QY(Ms; g) implies Fy = 0,

t=0

thus we have flat connection, F/4 = 0. Then the A-parallel transport give a
trivialization Ply = U x U(1) and let g : U — U(1) be the transition function to
the original trivialization Pl = U x U(1) then A = ¢*0 = g~ 'dy. O

The holonomy Hol,(A) = exp [ A of the flat connection A on M3z depends

5
only on the homology class [y] € Hj(Msz;Z) of loops v based at zp inducing a
homomorphim p : Hy(Ms;Z) — U(1). In fact if [y1] = [y2] € H1(M3;Z), then
there exist a 2-chain S such that

/A—/A:/A:/dA:/FAZO.

V2 71 oS S S

Conversely, if a representation p : Hy(Ms;Z) — U(1) is given, let Mz be the
universal covering 7 : ]\2/3 — M3 of Ms, and P — Mg be the pullback bundle
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P = 7*P — Ms, then P = P/Hy(M3;7Z), where the acting of the homology
group Hi(Ms;Z) on M3 x U(1) is given by

0] - (%,9) = (v-&p(7)g), for & € M3, [y] € Hy(Ms;Z).

Since the parallel transport gives a trivialization P = My x U (1), the trivial con-

nection on P induces a flat connection A on P.

Now we introduce a current J € Q%(Msz;u(1)) to add a source term to Sog(A)
as follows ([1])

k
Scs(A,J)—Q—/ A/\dA+/ AN (2)
Ms Ms

™

Then the equation of motion becomes

) k T
A Scs(A,J) - () + J(z) =0= kJ,

this is linear relation between the curvature F and the source J € Q?(Ms;u(1)),
also since dF' = 0, the source is also closed dJ = 0 and not necessarily exact for

non-trivial principal U(1)-bundle.

The Chern-Simons theory is used for interpretation or definition of topological
invariants, like Wilson loops, Jones polynomial, or other quantum invariants for
knots or 3-manifolds. We see this by using the path integral of Chern-Simons
theory to calculate the topological invariants ([2]). We give an example about

calculating the linking numbers of Wilson loops.

Let v be an oriented loop in M3 and N be a tubular neighborhood of v with
a trivialization ¢ : N = v x D? called framing of . Let J € Q?(M3) be a smooth
2-form with support supp J C N of the form J = ¢*(frdr A df) with an oriented
coordinates ¢ of v and polar coordinates (r,0) of D? for a smooth function f of
supp f C D? satisfying f pe Jrdr Ndf = 1. This 2-form J is called a flux tube of
~v with framing ¢. Then we have the following



Theorem 1.1. Let M3 be a closed oriented 3-manifold with Hy(Ms;Z) = {0}.
Let {va} be a mutually disjoint oriented loops in Ms with framings. Let J =
Za Nada € QQ(Mg) be a smooth 2-form on Ms associated with a I1-cycle v =
> o Maa in Ms for flux tubes Jo of vo with mutually disjoint supports each other.
If A is a solution of the equation F' = —7.J, then st ANdA = Z—; Za’ﬁ ngnaL(Va, V)

Proof. Here for simplicity we replace the flux tubes J, with de Rham currents of
degree 2 on M3. Let {74} be a set of loops in M3, 7, : [0, 1] — M3, the Wilson

operator(gauge invariant) on the loop 7, is

W (na,va) = expina/A,
Yo

where n, € Z is charge. Now the action becomes
k
A J)=— ANdA A.
Scs(A ) = o /M3 Ad +Zana/
Yo

Let J, € Q(Ms3) be the closed current of degree 2 representing the loop 7, C M3,
given by

. . k
Jo(z) = %dxldxjaijk j{ dxdt(t)53 (x —x(t)),

Y

da* (1)

where == is the tangent vector to v, at the point x(t).

Since f A= f AN J, the equation of motion becomes
Ve M3

1 . dz(t
Fla) = 1 3, o = 1 32, etttz f a0 a0

Ya

SO

7 1, da®(t
dA(z) = - Za na§dx’d:c]€ijk7{dt dt( )53 (x —x(t)).
Yo
Let {73} be a set of mutually disjoint loops vg in M3. Since Hi(M3;Z) = {0},
there exists a compact oriented surface Dg with boundary dDg = 5 embedded
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in M3 and we can calculate Wilson link of {y3} as follows
—im
W({{vs}) —expzz ng/ —expzz ng/dA—exp ﬂngna/Ja.

Since J, is a d-function valued 2-form in the direction normal to x ( ) , the in-

tegration f Jo is the linking number L(va,73) of the two loops 74 and Vg, and
Dy
therefore

—iT
<{7,3}> = eXp —— 2 aﬁnanﬂL(fYaa’Y,B)-

I

Here we have a problem of defining self-linking L(v4, 7). To treat the self-linking

properly, we need to discuss with flux tubes.

Doing same thing,

M3 M5 M3

We find that f AdA also depends linearly on the linking number L(va,v5) when
M3

A satisfies the equation of motion F' = —2.J. m

We can define a nonabelian version of the Chern-Simons action on a compact
connected smooth oriented 3-manifold M3 ([3]). Let G be a Lie group and P =
Ms x G — M3 be the trivial principal G-bundle. The gauge field A on P takes
values in the Lie algebra g = Lie(G) of G. We write A = AT € QY(Ms, g)
where the {T%} are the generators of g, for a = 1,---  dim(g), satisfying the
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commutation relations [T, T%] = i f%.T¢, and the normalization Tr(T%T?) = n?,
where n® is the Killing form on the Lie algebra of G. The Chern-Simons action

is defined as follows.

Definition 1.2. Let A be the space of all smooth GG-connections on the trivial
principal G-bundle P = M3 x G — Mj3. Then the Chern-Simons action functional
Scs : A — R is defined to be

2
SCS(A):£/ Tr(ANdA+SANANA), (3)
M3

for any A € A= QY (Ms, g).
Then we have the following.

Proposition 1.3. The critical point set of Scg : A — R is the set F of all
flat connections A on P. A is locally given by A = g[;lng for smooth map
gu - U — G on a contractible open set U in Ms.

Proof. The variation of Sgg(A) under arbitrary §A € Q' (Ms; g) is
dScs(A) = ; / Tr((0A) NdA+ ANdOA + §5A NANA
T Jar,

+§A/\6A/\A+§A/\A/\6A),

by using properties of the trace, this gives

5SCS(A)=2£/ Tr(d(SANA) +26ANdA+25AN AN A).
M3

™

The first term is boundary term |, o, TT(0A N A), (it relates to sympletic form
/. o, Tr(0ANGA)), so it does not contribute to the equation of motion under the

condition of variation dA|;,,, = 0. Thus we obtain

5Scs(A) ZZE/M Tr(25AA(dA+AAA)):2ﬁ/M Tr (26A A F(A)).

™ ™

The condition 0Scs(A) = 0 implies F/(A) = 0, this is just vanishing the curvature
(there is no dynamics in Sgg(A)). The source-free equations F/(A) = 0 has pure
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gauge solutions (flat connections) A = galng, for gy : U — @G, since A-parallel
transport gives a trivialization of P over a contractible open set U C M3 and the
transition function gy to the original trivialization gives A = g;;0 = g&l U -

O

Let G be the group of all smooth automorphisms(gauge transformation) ¢ :
P — P of the G-bundle P. Since the bundle P is trivial P = M3 x G, we can
write g : M3 — G. G acts on A by g*A = g1 Ag + g~ 'dg, for g € G, A € A.

Then we have the next.

Proposition 1.4. Sgg : A — R behaves Scs(9*A) = Scs(A) — drkw(g) under
the action of g € G, where w(g) = fM3 ﬁTr ((g_ldg)?’) is the winding number

of g : M3 — G, M3 is a compact connected smooth oriented closed 3-manifold.

Proof. The gauge transformation A9 = g~'Ag + ¢~ 'dg in Scg(A) produces a

boundary term on @M. This boundary term makes ¢5cs(4)

not gauge invariant.
In order to get an invariance we add WZW actions on the boundary term of the

Chern-Simons action.

To calculate Scg(AY), set ¢g-'dg = o and g~ 'Ag = w to calculate the La-
grangian of Sog(w + ),

L(AY) = Llw+a)=Tr ((w + a)d(w + a) + ;(w + a)3)

=Tr(w+ a)d(w + o) + gTT ((w+a)?*).

we use trace cyclic properties, and since the three form tr(AAA) is also invariant
under cyclic reordering, T'r ((w + a)3) behaves as commuting between one-forms

w and «. Thus we get

2
L(AY) = Tr(wdw + wda + adw + ada) + gTr(w?’ + o + 3wla + 3wa?)

2 2
= Tr(wdw)+Tr(wda)—l—Tr(ozdw)—FTr(ozdoz)+§Tr(w3)+§Tr(oz3)+2Tr(w2a)+2Tr(wa2).
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Using w = ¢~ 'Ag, we obtain
L(AY9) =Tr (g_lAgd(g_lAg)) +Tr (g_lAgdoz) +Tr (ad(g_lAg)) + Tr(ada)
2 1y N3, 2 3 —14.\2 -1 2
+ §Tr (g Ag) + gTT(O& )+ 2T'r ((g Ag) a) +2Tr ((g Ag)a ) .
This becomes (Appendix B (8))

L(A%) = L(A) + L(a) — dTr (ag™' Ag) ,
therefore
L(AY) — L(A) = L(o) — dT'r (ag_lAg) :
The first term of the right hand side is
L(a) = Tr(ada) + %Tr(o;’) =Tr (g_ldgd(g_ldg)) + gTT ((g_ldg)3)
= —%TT ((g~"dg)®) .

Therefore the changing of Scg(A) under the gauge transformation g : M3 — G is

scs (4) = 5 [ 370 ((6700") - o [ a(Triag~a0).

o | 3
M3 M3

and using
Tr (ozg_lAg) =Tr (g_ldgg_lAg) =Tr (dgg_lA) =-Tr (A(dg)g_l) ,
this becomes

0Scs (A) = —% / %Tr ((g_ldg)?’) + % /d (TTAdgg_l) :

The winding number of the group valued g : M3 — G is

w(g)z/M - ((g7dg)®) € Z,

2472

SO
ko1 1, 43
o [ 37 (a7 a0) = aabuty),
M3
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Therefore it must be k € %Z in order to keep the contribution of the first term
in exp(idScyg) trivial. But exp(iScg) is not invariant when the manifold M3 has
boundary ¥ = 9M3z. We will see the term TrA(dg)g~' in exponential solution of
F(A)Y(A) =0 on X, where ¢(A) is quantum state. O

2  Chern-Simons theory over the torus 7

We study the Chern-Simons theory of group U(1) on space-time 7% x R, with
torus 72 = S! x S, and its quantization. In the following discussion we will
see that the corresponding Hilbert space is a complex vector space of dimension
2k. By taking a gauge transformation on P — T2 x R if necessary, we may

assume that the dt-component of the connection A is zero, so it is in the form
A(t,z) = ay(t, 2)dat + as(t, v)dz?, a;(t,x) € O°(T? x R;u(1)) ([4, 5]).

Let (2!, 2%) be the standard coordinate on R?. Then the coordinate (z!,z?)

gives a local coordinate on torus 72 = R? /Z? through the map
¢:R? = T2 =R?*/72, ¢zt 2%) = [(«1,2?)],

with the class [(z1,2%)] = [(z! + m!, 22 + m?)], (m!, m?) € Z2.

There are two generators of m; and we can take a representatives
a:[0,1] - T? =R?*/Z?,  aft) = [t,0],
B:00,1] = T? =R?*/Z?  B(t) =[0,1].
Remark 2.1. The gauge equivalence classes of flat G-connections on a manifold M

are in one-to-one correspondence with the conjugancy classes of homomorphisms
1 (M ) — G.

Let v5(t) be a homotopy of loops from ~o(t) to v1(¢) based on xp, and 0 < s < 1.
Take a connection A € A, then consider the A-holonomy map from space of all

loops €, (M) based on xg € M to the group G,
Hol(A) : Qg (M) — G,
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given by

Hol, (A) = Pexp/A,
Vs

where P is path ordered. If the connection A is flat, F(A) = 0, we have
d%H oly,(A) =0, and hence Hol,(A) depends only on the homotopy class of ~. It
follows that Hol(A) induces a group homomorphism Hol(A) : (M, z9) — G ([6]).

Therefore, the gauge equivalence classes of flat U(1)-connections are described
by homomorphisms 71 (7?) — U(1), and these are given by the holonomies around

the «a, 5 cycles
if A i$A
U1:HOZQ(A):GG , UQZHOZ5<A):€B ,
from which we can define logarithms

Ui = €%, |ai(t,z)] € R/2nZ.

Let Aytemyp be the space of all smooth U(1)-connections on P =R x T2 x U(1) —

R x T2 in temporal gauge
A(t,z) = a1 (t, z)dzt + as(t, x)dz® € QYR x T?;u(1)),

and let Giemp be the group of gauge transformation Map(R x T?:U(1)) which are
constant along R, in order that Gienp acts on Agemp. Let g = exp 2mi(myzt +

m2$2) € gtempa then

g- A=A+ g tdg = arde’ + apdx® + ¢ ' 01gdat + g Dagda?
2

= (a1 + 2mimy)da’ + (ag + 2mims)da?.
If the connection A on R x T2 is flat, then
0=dA=dtNOA+ F(Ay),
so that

0A =0, and F(A) =0,
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in the temporal gauge.

We regard Aiemp/Gremp as Map(R, A/G), where A is the space of U(1)-
connections on P — T2 and G = Map(T?,U(1)). We write the U(1)-connection
Ael (T*T2 ® u(l)) with respect to the trivialization P = T? x U(1) as

A = ay(z)dat + ag(z)da?,
where we must identify
A = ay(z)de' +ag(x)de? ~ A" = d'1(v)da! +d'o(x)de?, if and only if o/;(2)—a;(2) € 277,

because of large gauge transformations g - A = A + g~ 'dg over T?. This identifi-
cation is necessary for quantization of states C°°(A/G) on T?. We consider such
connections in Chern-Simons action of U(1) with temporal gauge Ag = 0. Then

the Chern-Simons action reduces to

CS(A):; / A/\dA:; / a;ajda’ A dt A da?
m

T
RxT? RxT?
k . i j k 0ij - 1.2
= —— a;ajdt Adx' N\ da) = —— e Yaajdtdr dx
2T 2T
RxT? RxT?
i B (4)
= e9aza;dtdr  da® = ——— (—ayag + agay )dtdx da?
2T 2T
RxT? RxT?
k
= 2— (aldg — agdl)dtdxldl‘Q.
T
RxT?
We used the Levi-Civita anti-symmetric tensor ¥ = —gi? on T? with €2 = 1

and €% = ¢%. We need to find a symplectic form on the space A of connections A.

In general, we find a symplectic form on a manifold M, by finding a map
w: TpyM — Ty M,

if we let w € Q?(M), then for every v € I'(T, M), we have a pairing w(v) € Q1 (M).

When H},,(M) = 0, every one-form is exact, so that w(v) = df for some scalar
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function f € QY(M).

In our case the scalar function is an action. To find a symplectic form, we take
the action with a Hamiltonian H(p’,¢’) € C°° (T*M). The variables (¢!, ..., ¢")
are coordinates on M and z = (¢', ..., ¢", p1, ..., pn) are coordinates on T*M. Let

v:I— M and 7 : 1 — T*M be a smooth paths with o5 = ~.

Proposition 2.1. The action

SH) = /pidqi — H(pi,qi)dt eR, 7:[ti,to] > T"M (5)

Y

15 stationary on the path v if and only if the trajectory v satisfies the Hamiltonian

equation.

Proof. Take a variation of S(%) the path 4. Let {Js}scs be the one-parameter
family of paths 45 : [ — T*M,

Vs(t) = (¢'(t) + s8¢ (), pi(t) + sopi(t)),

with d¢'(t1) = d¢'(t2) = 0. Then
l2

5(7)—/((5%)(1 + pidg 9p; opi o dq" |dt,

t1

where ¢’ is the time derivative of ¢*. Integrating the second term by parts, we
obtain
to

to
. 0H(pi,q") OH (pi, q") d
0pi)q 0" — ————>0p; — —————=0q; |dt ;0q")dt,
/( (6pi)q" — pidq oo P oy 4 + dt(p q")dt

t1

or

to

to
g OHpid) . (. 0HDi,d) . d, o
/(( op; )51% (pﬂr 90 oq" ) dt+ dt(pﬁq)dt-
t1
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This vanishes on the path 7, on which d¢‘(t2) = d¢’(t1) = 0, when

dp’ dH d¢ dH
— =—— and — = —,
dt dq* dt dp*
these are the equations of motion. O

We see that H(p;,q') has a constant value on the path 7, this is d(H o 7) =
A*(dH) = 0. From

OH OH
H = 2 dp :
d apidp + g q

(T*M) ?

we obtain

(6)

ONI) 5 5% (dH) = (aH Opi | OH 00 > dt,

o Ot g ot

dp; _  dH
i = T dg

H we find that v*(dH) =

by using the equations of motion gpi

0.
We have the boundary term

to

S(3) = / (pida')d / Apidg’) = pilt2)d () — i) (1),

t1 ot

from which we conclude that the 2-form w = dp; Adq' € Q*(T*M) is a symplectic
form, since S = 0 on the path 7 of constant H(p’, ¢*) and so w(vy) = 0, where vy
is vector field on H(p' q') = constant, that is (dH)(vg) = 0. From the equations

dp* d d¢* _ d
(ﬂ :_dé{ q :df){ we find
opt 0 O¢* 0 OH 0 OH 0
=2 % I T° 9 T (1T M),

ot opt Ot 0¢* oq* Op*  Op* O¢*

and

dp’ = dH,

: OH 0 0H 0 OH OH
w(vy) = (dpi Adq') (— >

aq* Op* - op* 0q* oq* Pt op*

so ¥*(dH) = 0 according to (6).
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We define the symplectic form associated with the action Scg(A) (4) by com-
paring it with the action , we find that H = 0 in Chern-Simons action (4). The
moduli space F/G of flat U(1)-connection on P can be identified by the torus as

follows.
F/G = Hpp(T?)/Hpr(T?)ins
= {aldxl + agda:2\a1, as € R}/{mldarl + mgda:2\m1,m2 eL}= R2/Z2.
Let (a1, as) be the standard coordinates on the universal covering R? — R?/Z2,
define the symplectic form w on the moduli space F/G of flat connections by
comparing (4) with (5) to be
k
w = —daj A day. (7)
T

therefore w = %wzjdai A da? with wig = w!?

ij Of 99
aai 8aj'

In our case, we get

= % The Poisson brackets are

{f9} =w

T
T

The canonical quantization procedure lets us to define the commutation relation

{a1, a2} =

A oA LT
[a1,a0] = —i—

=
for some corresponding operators aj, as on a Hilbert space. Let us choose ap
to be the canonical coordinate, so that p,, = ag is the corresponding canonical
momentum. Then a wavefunction 1(a;) is a smooth function ¢ : R — C which
comes from the pull-back of a smooth function ¢ : R/Z — C by the covering map
7 :R? = R?/Z?. A wavefunction v(a1) must be periodic under a; ~ aj + 27n,

n € Z. From the commutation relation, we have

. T 0
ag = 1——.
2 k 8@1
This is translation operator on the coordinate aq, it can be written in exponential

form with some real parameter « as
—ikadz

e = 5

17



this acts on ¥(aj) and translates it to ¥ (a; + «), we can see this by the Taylor

expansion of ¢ around a; formally,
kA
e "= (ar) = Y(ar + ).

The wavefunction 1) (a;) must be periodic under a; ~ a; + 27, therefore

e F024h(ay) = Y(ay).

By taking the Fourier transform on L*(R) 3 ¢(a;) « ¥(a2) € L*(R*) with the

ik . .
kernel e7 "= we get the eigenvalues equation

e~ M2 (az) = U (az).

U(ag) # 0 if and only if ay = nw/k for some n € Z. But k is an integer and

as ~ ag + 2mn, so we choose az(n) = (nw/k) mod (27Z), these are

2 2k —1
L i Y
k' k k
Therefore the general wavefunction on the momentum coordinate as is of the form

2k—1

ZC”Z (ag———me) cn € C.

me”Z

Then we take the inverse Fourier transform back to obtain

2 T
7 5 1 -k 1 .
Uy = (as(n)) = 2_/€_Z"a2(n)al¢(a1)dal - /6—’Lna1,¢(a1)da17
T 2
0 0
with
2k—1 2k—1
Y(ay) = Z e Mahy = Z cpe™™ . ¢, € C, (8)
n=0 n=0

This is the physical Hilbert space Hyp, = L*(R/Z) of states of U(1) flat connec-

tions F/G = R?/Z? on the torus T2, its dimension is 2k, k is integer as we saw
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in previous section. We can choose other canonical coordinate and its momentum

(a’1,a’s) on the universal cover R? — R?/Z? = F/G by the transformation

al fab ai

al c d as |
with

‘ € SL(2,Z).

c d

This transformation preserves a; ~ a; + 2mn, since the sums and multiplying by
an integer preserve this equivalence relation. This gives another representations

for the solutions (8).

3 Quantizing Chern-Simons and WZW model

For the canonical quantization of a system on the space R x X, we first find the
phase space (the canonical variables ”coordinates” and "momenta”) which is in-
dependent of time. The phase spae can be obtained by requiring the Lagrangian
be invariant under the time reparametrizion, and this gives both phase space
variables and constraint equations. Then we find a sympletic form to construct
a Poisson brackets. The quantum states are obtained by converting the Poisson
brackets to commutators and can be used in solving the constraint equations. In
general, the constraints generate a canonical transformations of the phase space,
called the constraint group. Therefore the physical phase space of a constrained
system is the space of solutions of the constraint equations modulo the action of
the constraint group. In Chern-Simons theory, the constraints are vanishing of the
curvatures on the principal G-bundle over the space M3 ([7, 8]). The solutions of
the constraint equation F(A) = 0 are flat connections on P. The flat connections

on P — Ms are controlled by homomorhisms m(M3) — G.
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The Chern-Simons action of G is ([9])

Ses(A) = %/TT (AAdA+§AAAAA) ,
Ms
where the connection A = A'T" € Q!(g) takes values in Lie algebra g of G, {17}
are generators of g with normalization Tr(T"T7) = 6%, Let M3 be the product of
the real line R with a two dimensional closed oriented manifold ¥. Take a local
coordinates (¢, 2, 2%) on R x ¥. By writing the connection as A = Agdt + A,dz?,

where (z%)4=12 are coordinates on X, we obtain
gTr(A/\A/\A) = %Tr(Aodt/\A/\A+A/\A0dt/\A+A/\A/\Aodt)
By using the circlic property of the trace, we obtain
;TT(A/\A/\A):QTT(Aodt/\A/\A), (9)

and
Tr(ANdA) =Tr (Aogdt N\dA+ ANdtNOgA+ ANdAy A dt)
=dt NTr (AgdA — ANIgA+ ANdAy).

Then we integrate the third term on X by parts, and since ¥ is closed, the bound-

ary term vanishes

/Tr (AAdA) = /dt ATr (AgdA — AN BpA + AgdA)

Ms Ms (10)

- /dt ATr (—A N SpA +2A0dA).
Ms

From (9) and (10), we obtain

Ses(A) = % / dt ATr (—A A OpA + 2A0dA + 2A0A A A)

M3
_ 2ﬁ dt ATr (—A N BpA + 240(dA + AN A))
T
M3
’
=g dt NT'r (—A N OgA + 2AOF(A(2))) )
RxX
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where F(A(g)) = dAg) + Ap) A Ay = (0adAp + AgAp)dz® A da? is the curvature
of the connection Ay = Ax(t, r)dx! 4+ As(t, z)dr? on Plgyxx. We have

Tr(—dt N AN gA) = Tr(ANdt AyA) = Tr(eCA,d0Ay)dat A dt A da?
= Tr(e% A,00Ap)dt A dat A da® = Tr(e®AudoAp)dt A dat A da?,

@ s inverse of the Levi-Civita anti-symmetric tensor 4, on ¥. By com-

where ¢
paring with the discussion in (4) and (7), we conclude that Ay = (Ag)a=12 €
A(P\{t}xg) are the variables of the phase space and F(A(g)) = (Fup)ap=1,2 =0 is
the constraint which satisfies the gauge invariance since F'(g - Ar)) = g 'F (A2))g-

The Poisson brackets are

(AL0), A 0)) = T8z ), (r.9) €S

For the canonical quantization, let A% () (z € ) be a linear operator on a Hilbert
space over the space of connections A(P|(}x). Then replace the Poisson brackets

with the commutator

Ay @), A )] = i I8z — ).
Let E = P x, C" — X be complex vector bundle associates with the principle
G-bundle and a representation p : G — GL(r,C). Tt is suitable to assume a
complex structure on the base space X with a complex local coordinates z = x+1y
and Z = x — iy. That is X is assumed to be Riemann surface and consider the
complexification G of the structure group G so that the vector bundle E — %
is assumed to be a holomorphic vector bundle over ¥. Let A(FE) be the space of
all Hermitian connections on £ — Y compatible with the holomorphic structure

on E. By writing the connection as A = A,dz + Azdz, the commutators become

(AL (2), AL(y)] = 20798 (@ — ).

If we choose A, as the canonical coordinates on the connection space A(FE), and
let Az be canonical momenta, then by the canonical quantization procedure,

T )

AT
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The curvature is FL, = 9;AL — 0, A5 + [Az, A,], we regard it as operator, so

. : i ) T o

Floo=0A0:2)+0, | ———— | — | T—7——,4:(%, 2
Since we have chosen A, as coordinates, then the wave function (state) ¢ is
written as (A,) € C*®(A), thus we have the constraint equation F,t(A) = 0
as requirement for the quantization. The equation Fy = 0 is invariant under
gauge transformation, the equation F 'AP(A) = 0 is also required to be invariant
under gauge transformation A — g*A, therefore ¢(A,) — (A%) = U(g)y(A,),
for U : G — C. We have the constraint equation

T oY(A,) wo(A,) B
k OAL >_lE 5AL ’Azl_o'

FL(A,) = 0:AL(A,) + 0, <

If we regard 0, (&g(ﬁz)) + [Az, %} as covariant derivative of 51[(;%2)7 the last

equation becomes

i T oP(Az) ) _
0:A (A, + EDZ ( SAL ) =0.

The infinitesimal gauge transformation of ¢)(A,) under infinitesimal parameter
e € Qg) is

64+ D) = () + [ 1 ((Dza N A <Az>> =

=1 (A,) — /ETT (EDZ%(Q;)T’D (Az)) +

where we integrated by parts and used the fact that ¥ is closed. We can write
this transformation in exponential form with parameter ¢ € Q°(g) corresponding

to g€ G, g=e°, we get
b (A9) = e o Tr(eD=5 )y (A,)

then using 7D, (ﬁ(m)) = —0;A% (), we obtain
¥ (A2) = ex Ty (4,)
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The surface ¥ is closed, so integrating by parts, it becomes

¥ (A9) = e n B[ Tr(0zenAL )w(Az) —or s Tr(Ai/\aga)w (A,).
But g710:g9 = ¢ + O(e?), therefore

0 (49) = ex o TN 0000y (4)

Let us write £ fz Tr (AZ ANg1ozg + Ol )) = f(A,g), the function f(A,g) has
to satisfy

f(A27gl) + f(Agl792) = f(Az,g1gz) mod (27TZZ>a (11)

in order to get Ulg2)U(g1) = Ulgagn b, where (U(g)e) (As) = $(A) with
A9 = gt Ag + g 'dg and (A9)% = A992. We find that

k 5\ —
Fdng) = 5 [ TrAY (@)™ + kS 0),
b

satisfies (11), where SWZW Map(%,G) — R is called WZW action defined to
be

C C _
Stan0) = 1 [ Tra 007100 & 35 [ Tg a0 12)

with M = X, and ¢ is constant. The condition (11) follows from the fact that
the WZW action S* := S%VZW satisfies ([7])

1 - e
SE(g192) = SE(g1) + SF(g2) + = / Tr(g; '0g195 '0g2).
>
Finally, we have
F(Aerg) = —kS*(g) + - / Tr(A475g).
2w 5
and
L _
7 (Aerg) = +ES(g) + - / Tr(403057).
2w »

These two functions satisfy (11). Thus we obtain the path integral of a two-
dimensional WZW action for the group GG with the source term %Tr(Al’Oéggfl).
We get classical solutions Map(X, G) by requiring % f(AY0 g) = 0.
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Theorem 3.1. WZW action (12) for the group G has a conformal symmetries
G, X GR, the corresponding currents are holomorphic and anti-holomorphic cur-

rents.

We see this clearly when we consider the transformation functions A € G as
holomorphic or anti-holomorphic functions on the coordinates (z, z), these func-
tions act on ¢ leading to conformal transformations of WZW action (12). The
inavariance of WZW action under the transformations g — A(z)g and g — A(Z)g

gives conserved holomorphic and anti-holomorphic currents (Appendix C (9)).

4  WZW model on 3d SU(2) algebra and on 4d

Heisenberg algebra

As we saw, WZW model is a solution of Chern-Simons on 2d surface Y with-
out boundary immersed in manifold Mg of Lie group GG. Here we see that the
WZW model induces metric on group manifold Mg by using the Killing form on
Lie algebra of G and the metric on ¥. In some groups, like Heisenberg group,
that metric is Lorentz metric. While in other groups that metric is Taub-NUT
metric, like SU(2) group ([10]). We apply WZW model on SU(2) algebra which
has 3 dimensions, three generators and on Heisenberg algebra which has 4 di-
mensions, four generators ([11]). The WZW model for a group G depends on the

metric on Lie(G) = TG and metric on 2d surface that immersed in manifold M.

Definition 4.1. The Heisenberg group Hy is generated by {a,a™, N = a*a, I},

with the commutation relations

[ava+] =1,
[N,a™] =a™,
[N,a] = —a.
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Let t1 =a™, to = a, t3 = N, t4 = I, then the commutation relations becomes
(t1,ta] = —t4, so frot=-1
ts,t1] =t1, so fa'l=1
[t3,ta] = —t2, so f3zo? = —1.

A Killing form 7 is invariant so it has to satisfy

ncdfabd + nbdfacd - 07 S0 fabc + facb - 07

where we use n for raising and lowering indices in adjoint representation. This

has to keep fup. anti-symmetric tensor, it can given by non-degenerate, like

0a 0 0 0 at* 0 0
a 0 0 0 al 0 0 0
() = (™) = »
0 b —a 0 0 0 —a
00 —a 0 0 0 —at —pa2
Therefore
fios =maafiet =ax1=a, fao1 =mafs®=—a, fa2="m1fn'=a

The elements of Hy are written as

ezqa+zqa ezuN—HUI

9= )
q and ¢ are complex coordinates and u and v are real coordinates on the manifold
of Heisenberg group H4. We have the relations

. .o — + . - + _ . - + . - + —
glaatiqa™ _ jiqaiqa” [iga,iga™]/2 _ 140 iqa 6(qq)/2

e—zuNaezuN _ I e—zuiN a I ezu,-N _ ezua7
i=0 i=0 (13)
e~ getda” Oﬁ emiat ) g oﬁ e ) — gt ilq’],
i=0 i=0 2
oo
with |u;] << 1 and u ) u; = u, same thing for g. The one-form 6 = g tdg is
=0

_ s i s i + . . + - -
q 1dg —e ulN w[e iga—iga” g (ezqa—i—zqa ezuN—i—w[)
s o s - + . . . . . + . .
— e iuN wIe iqa—iqa (zadq + Zaerq)ezanrzqa ewNerI

i o i i + . . + . . . .
+e iuN w[e iqa—iqa ezqa+zqa (ZNdU+ZIdU)€ZUN+ZUI7
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this gives
_ 7. 7. 7. 7.7 + . . . . - + . .
q 1dg:6 iulN w[e iqa—iqa (zadq—i—zaerq)e’q““q“ ezuNerI
+ efz'uNfifuI@Ndu + ildv>eiu]\7+iv[’

. ) 1 1 ; i
— o~ uN—ivl (z(a + zﬁq’])dq + i(a+ — Z§q])d(]) gtulN+ivl + (szu + Zfdv)

) . 1 ) ) . ) 1 . .
_ ewawa,l» (a + 2567[) dqewN+wI + efzuwaIZ- (aJr o 2§q[) dqezuNerI
+ (iNdu + il dv)
, 1 ’ 1
— (ewa + iéql) dg+ i (e—wcﬁ . quI) dg + (iNdu + ildv),

therefore
g ldg = ie™dga — %qdq[ +ie”Mdgat + %qdq[ + iNdu + ildv
= ie"dga + ie"™dgat + iduN + (—%qdq + %qdq‘ + idv) I
—el 4 e?+ e et
We define one-forms flat connections Q' (M) ® Lie(G)

el = ie'dy,
e = ie ™dg,

e = idu,

4 (1 (.
e*=1|=qdq— =qd dv) :
(2Q q 2q q+
These are one-forms connections, if we use the metric n on lie algebra, and metric

g on 2d dimensions, we obtain

tr (g_ldg A *g_ldg) —

and anti-symmetric term is

g 1 . 1 .
tr (gfldg)3 %eljke?eg’-e%tr(TaTbTC) = §ezjke?e§eitr([Ta,Tb]Tc) = ie”ke?e?eifabetr(TeTC)

1 .. 1 .. 1 .. y
ijk ja b _c e ijk a b _c ijk 1.2 3 ijk 1.2 3
= 56] eie ek fabMec = 56‘7 faveeiejey, = 56] 6 fi23e; ejey = 3ae’"e; ejey,

= —Saieijkﬁiq(‘?jcj@ku = —3aieijkak(u8iqajq_).
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The SWZW is

1 1 1 1 1,3
SWZW:%/tT(g dg)/\*(g dg)+a/tr(g dg),
b X
the Wedge star operator is with respect to metric on ¥. This becomes

Swazw = ;— / 2ag Jazqajq — 2ag <%q8iq - %q@i(j + 8{0) dju + bgijaiuaju>

ijk
. / O uazanQ)
X

then
Swazw =
5 d*c (Qag”&-qajq — 2ag¥ (§q_(9¢q — §q8¢g7 + &'v) dju + bg" Ojudju + ;ewuaiqajq_) ,

b
or

Swaw =

i i b ' )
- d’o (g”@iqﬁjq —g¥ <§q8¢q — §q8¢q + 8iv) dju + %g”aiuﬁju + %e”uﬁiqajq) ,
by

The background space-time metric, in the coordinate (q, g, u,v) is
ds® = dqdg — (%qdq — %qdq - dv) du + (du?,

with 4% = b/2a. And antisymmetric field is B = iudg A dg/2.

By introducing polar coordinates ¢ = Re'?, § = Re ™" the metric turns out
to be
ds® = dR® + R*d6* — (dv — R*df) du + (*du’
— (dv — R*df) du + dR* + R*df” + *du’.

The signature of this metric in the orthonormal basis

e’ = 55 (dv — R%d#) du

el =dR

e? = Rdf

e3 = fdu — e’
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is (— 4 ++), this is Lorentzain metric on the manifold of Heisenberg group Hy.

We apply WZW-model on SU(2). We parametrize an element of SU(2) by

Euler angles,

Ts 01> xT:
g:etp 3012 0X 3

[0 cos(0/2)  sin(6/2) exX/2
T 0 e 2 —sin(6/2) cos(0/2) 0 e x/2 |’

0<x=<4m, 0<6O0<m 0<p<2m.

and

The commutation relations of the generators {77, T, T3} are
13, Tj] = i Te, ()" =T

This then means that 6, ¢ are the usual angular coordinates describing the unit
radius sphere S?, and y describes some circle S'. The parametrization expresses
the fact that topologically SU(2) is S?, which due to a mapping devised by Hopf,
is equal to a S? fibered by and S'. By writing

. 1 :
g Ydg = i0'T; — o' = Ztr (Tlgfldg) :
i
this gives

U= cos(¢)df + sin(¢) sin(0)dy,
2= —sin(¢)df + cos(¢) sin(0)dx,
3 = d¢ + cos(0)dy.

o
o
o

From the commutation relations, the metric on su(2) is just Kronecker’s delta.
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The symmetric term in Sy zyw is

1 e 1 o
%/tr(g dg) :%/5@701@0‘7

X X

(dx + d6?+dp*+2 cos (6 )dxd¢)

|,_. [_\_\]')»—
>

((dx + cos(0)de)? + d6* + sin®(0)de?) .

O
3

X

This is induced metric on manifold S? of the group SU(2), it has form of so-called
Taub-NUT metric. Usually Taub-NUT metrics will contain a factor f(r,t) like

(dt + N f(r,t) cos(0)d)?

where N is the so-called Taub-NUT charge which has the interpretation of a

gravitational instanton. The anti-symmetric term in Sy zp is

o 1 o
—/tr 1dg = G—W/tr (UZ’EUJT-Uka) = 6—7T/azajaktr (LT;Ty)
X X

1 1 -

= — /U oo kt?’ Tl,T 1Ty) = /UZUJOké“Z'thT‘ (TyTy,)
3T 37

X X

/ 1

ololah Eij T]gk =3

i’le

o 2
olajakgijk =2 [ c130t Ao AP
T
X X

X
/sm d@/\dx/\d(b—_—Q/d(cos(e)/\dx/\dgb)

>1|w

™
X

X
S / cos(0)dx N do,
T
by

the anti-symmetric form of Sy zw is =2cos(0)dx A d¢.

5 Chern-Simons theory of gravity

In (241)-dimensional spacetime there are reasons for the simplicity of general

relativity, one of them is that the curvature tensor R, is written in terms of a
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scalar curvature R, and Ricci tensor Ry, as ([12])

1
Ruvpo = GupBRuvo + GvoRyp — GupRuo — GuoRup — 2 (Iup9ve = Guogvp) R,

where (z#) = (2%, 2!, 2?) with g = g,,da”daz” is type (—, +, +). This implies that

any solution of the vacuum Einstein field equations is a flat metric, and that any

solution of the field equations with a cosmological constant,
R = 2Ag,,

has a solution of a metric of constant curvature. Physically, a (241)-dimensional
spacetime has no local degrees of freedom: there are no gravitational waves in the

classical theory, and no gravitons in the quantum theory.

The vanishing of the curvature implies that M can be covered by a set of
contractible coordinate patches U;, each isometric to the Minkowski space M?!
of dimension 2 + 1 with the standard Minkowski metric 7,,. In general these
patches must be glued together by coordinate transform ¢;; on the intersections
U; N Uj, which determine how points are identified. Since the metrics on U; and
U; are identical, these transition functions must be isometries for the metric 17,
that is, elements of the Poincaré group 150(2,1). Also global isometries of the
(241)-dimensional spacetime M can be given in terms of in the local Lorentz

transformations and translations.

Let M be a connected compact oriented smooth 3-manifold possibly with

boundary. A flat geometry on M determines a holonomy space M
M = Hom(m (M), 150(2,1))/~,

where p; ~ po for two representations py, pa : 71 (M) = [SO(2,1) if pg = gilplg
for some g € 1SO(2,1). Conversely, we can get flat geometry on M by acting an
150(2, 1)-representation p : w1 (M) — I50(2,1) of the fundamental group w1 (M)
acting properly discontinuously on a region W C M?! of Minkowski space, since

a flat metric is determined by its holonomies. In fact M is isometric to W/~,
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where x ~ y for z,y € W if y = p([y])x for a homotopy class [y] of path ~. This is
a generalization of quotient construction for the flat torus. And if M = R x X, the
fundamental group 71 (M) is isomorphic to m1(X). If the cosmological constant A
is nonzero, then the (2+1)-dimensional spacetime has constant curvature, and the
coordinate patches U; will be isometric to de Sitter space (for A > 0) or anti-de
Sitter space (for A < 0). The gluing isometries become elements of SO(3,1) (for
A > 0) or SO(2,2) (for A < 0 ), and the holonomies are now elements of one of
these groups.

In order to construct a gravity theory in a formulation without using a met-
ric, Palatini considered the variables (ef,w!”) instead of (g, ). To construct
a gauge theory of gravity, the variable e is supposed to be a component of a
connection in the Poincaré group in addition to the Lorentz group connection
w!’. Using the Chern-Simons theory for the Poincaré group in 2 4+ 1 dimensions
we recover the Einstein-Hilbert action and the same equations of motion for the
gravity. Since we have the same equations of motion, this theory regarding the
gravitational field e/ as a connection is identical to Einstein’s theory of general
relativity in (2+1)-dimension at the classical level. In this way we have a gravity
theory, with only connections e!, w!’ as variables, which depends only on the

topology of the manifold M.

In general we can obtain Chern-Simons theory by integrating the Pontryagin
topological term T'r(F A F'A---) over a contractible manifold My with boundary
My_1 = OMy and by using the Poincaré lemma, dTr(F A F A---) = 0 so there
is non-closed d — 1 form @ satisfying Tr(F AN F A ---) = df. Since the Pontryagin
topological term T'r(F A F'A --+) is even form, the manifold M, should be even
dimensional with odd dimensional boundary manifold M;_; = dM,. Thus the
Chern-Simons theory is formulated on odd dimensional manifold, and the theory
in three dimensions with the structure group 1.50(2, 1) is identical to the gravity
theory for (2 4 1)-dimensions ([13]).

Let M be a flat three dimensional spacetime manifold and M be its universal
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cover. Then M is the Minkowski space M>! with the symmetry group 150(2, 1),
let I' € 1S0O(2,1) be a discrete subgroup with I' & 71 (M) acting properly discon-
tinuously on M1, This amounts to give a representation p : 71 (M) — ISO(2,1)
up to conjugation. Since the group ISO(2,1) preserves the flat structure of
M, the quotient space M = M /T also has flat structure and its tangent space
can be identified with the Minkowski space M*!. The corresponding connection

on the principal 1SO(2,1)-bundle is flat and induces a holonomy representation
p:m(M)— I1SO(2,1).

Let us consider the 2+ 1-spacetime M = R x 3, where X is a connected oriented
closed surface of genus g, and R be the real line (time). Since R is contractible,
(R x 2) = 1(%), and ¥ = %/m(¥). Thus the flat structures on M = R x &
correspond to representations p : m(X) — G := 1S0O(2,1).

The fundamental group 71 (M) of M is naturally described with 2¢g generators

{ai, bi}1,... g and one relation alblal_lai_l e agbgagla*1 = 1. Hom(m(M),G) can

g
g
be identified with the subspace of G*9 defined by the equation || (AiBiAi_lBi_l) =
=1
1, (A;, B; € G) whose dimension is (2g — 1) dim(G), we have the following identi-

fication as the quotient space

g
Hom(m1(M),G)/~ = {(Ai,Bi,--- : )€ G H (AiBiA ' BY) = 1}/@

and two homomorphisms of them are equivalent if they are conjugated by an ele-
ment of the group G. Therefore heuristically the dimension of Hom(mw (M), G)/~
is (2g — 2) dim(G). In fact G = 1S0O(2,1) is six dimensional, so the space of flat
structures has dimension (2g — 2) dim(G) = 12¢g — 12. The solutions of Einstein’s
equations in the vacuum in 3D are flat connections, F' = 0, and hence homomor-
phisms p : 71(X) — 1SO(2, 1) correspond to the solutions of Einstein’s equations,
the equation of motion of the 150(2,1)-Chern-Simons action.

The Poincaré group ISO(d — 1,1) is the group of all isometries of Minkowski

space M4~ 11 whose Lie algebra is generated by Lorentz generators J and trans-
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lations generators P%, with a,b = 1,--- /d. In 3d space-time, the Chern-Simons
Lagrangian for the gauge group ISO(d — 1,1) contains the term Tr(AdA) =
Tr(T*T?)A%dA®, so we need an invariant non-degenerate bilinear form d* =
Tr(TeT"). But a non-degenerate bilinear form on the Lie algebra of 1SO(d—1,1)
exists only in d = 3, so there would be no reasonable Chern-Simons three form for
ISO(d—1,1) for general d. In d = 3, we can define /.SO(2,1) invariant and non-
degenerate bilinear form W = eg,. P*J%. Therefore, a reasonable Chern-Simons
action in d = 3 for 150(2, 1) may exist. It is convenient to write J* = %eachbc, SO
that W = 1y, PJ? = P,J® is a non-degenerate bilinear form on the Lie algebra of
IS0(2,1), and n is Minkowski metric, so we use it in raising and lowering indices

of g :=150(2,1) in the adjoint representation. Thus the inner product on g is
(J°, Py =n®,  (J°J") = (P P") =0. (14)

We identify g* = Hom(g,R) with g in the adjoint representation by using the

Minkowski metric . The commutation relations of 1SO(2,1) are

[Ja, Jo] = €aped,  [Jas Po] = €apePC [Pa, Py] = 0. (15)
We check here that bilinear form above are invariant,
[Ja, Py J%] = PPy, Jo]+[Ja, P)J° = Pleqped “+eqpePCT" = €qpe PP T €0y PEIY = 0

[Py, PyJ?) = P[Py, Jy) + [Pa, Py I = PPeupe P = eqpeP"PC = 0.

Let Py — My be an 1SO(2,1)-principal bundle over a connected oriented
compact smooth 4-manifold My with boundary Mg = dMy. Let Argo(2,1) be the
space of all 1S0(2,1)-connections A € Q'(Py;g) on P;. Take a local coordinate
neighborhood (U, %) with a trivialization Pyl = U x G, G := 1SO(2,1). Then
the gauge field is locally a one-form with values in Lie-algebra g of G with basis
{Ja Pa},

A= elPda’ +wiJ,da' € T(T*U @ g).
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Since M?1a 15O (2,1) and 150 (2, 1)/1\\/J12’1 = 50 (2,1), the ISO(2, 1)-connection
A regarding as an i50(2, 1)-valued 1-form A € Q'(P;is0(2,1)) on P induces a
SO(2,1)-connection w € Q1(Q;50(2,1)) on the induced principal SO(2, 1)-bundle
Q= P/I\\/[[Z1 — Ms and an M>!-valued 1-form e := A —w € QY(P; M>!), where

w = mypaw for the projection myp1 @ P — P/M>!,

Let G be the group of all gauge transformations of P, i.e, automorphisms
g: P — P of G-bundles P. Then G acts on A;sp(2,1) by g°A = g YAg+ g 'dyg
locally. An infinitesimal gauge transformation will be an element of Lie algebra
of G and is u = p*P, + 7%J, € Q(g), with p®, 7% € C°°(My). The infinitesimal

gauge transformation of A; = e P, + wiJ, is

d

0A; = —
dt|,_

(ew . Ai) = —Dju,
0

where D; is the covariant derivative with respect to the connection A;
D;u = O;u + [Ai, u],
and 0A; = def Py + dw' J, is given by

§A; = 6€l Py + 0wl J, = —Dju = —D; (p* Py + 7J,)
= _ai (paPa + TaJa) - [A27 paPa + Taja]
= —0; (p"Pa + 7 Ja) — [€} Pa + wi Ja, p"Py + 70
= —0; (p"Pa + 7°J0) — €27 [P, Jy) — wip” [Ja, Py) — w70 [a, Jy)
and by using the commutation relation (15), we obtain
6A; = —0; (p“Py + 70J,) + €87%40e PE — W pPeqpe PE — wiTleqpe S
= (—5’ipc + €970 — wfpbeabc) P°— (&TC + wfrbeabc) JC.
Therefore

def = —0;p" — eepre — e Cwippe,
(16)

a a abe
dwi = =0T — € wipTe.
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Proposition 5.1. The curvature tensor F(A) of the connection A is F(A) =
De + F(w).

Proof.

[w, w]

F(A)=dA+ = [A Al = de+dw+%[e,e]+[e,w]+%
= (de®) Py + (dw®) J, + %e“ A€ [Py, Py] + e* AW [Py, Jy] + %wa A WP [Ja, Jy]
= (de") Py + () T+ A g+ 50 A e

= (de“ + e%ew? A ec) P, + (dwa + %Eabcwb A wc) Ja

= (de+ [wAe€])+ (dw+ [wAwW]/2),

(17)
the components Fj; on My are
Fij(A) = (aie — ;e + ™ epwie + wibejc)) P,
+ (&wj — Ojw; + € Cwibch) g
O

If My is closed, 9My = (), the de Rham cohomology class [(Fa A Fa)] €

H},»(My) does not depend on choice of the connection A.

We study 1S0O(2,1) gauge field on a My using integral of Pontryagin form
(FANF) = F*A Fdy, on My, where dy, is an invariant quadratic form on the
Lie algebra of 1SO(2,1). By using the quadratic form dg; defined in (14) and the

curvature (17), we obtain the invariant

/ / ) = [ (et o ne) A + [ nl/2)

My

1
— / (de“ + %ew? A ec> A (dwb + iebefwe A wf) dap
My

ikl b d
= /e” (81'6?- — 0jef + € (wipejc + epwie) ) (Okwia — OlWka + €adeWiwy ).
My
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(18)

In Palatini formalism of gravity theory in 3d spacetime, we regard e = e?dmi
as gravitational field, not a connection. We define the gravitational field as local

trivialization map of T'My,
e:UxR=TU,

over a coordinate neighborhood of U in My. This sends the Minkowski met-

ric = (— + ++) of R* to a metric g on M by g(u,v) = n (eil(u),efl(v))),

1
i

termined by mapping sections p — (p,ey) € I’ (U X R4>, I =0,1,2,3 to sections

uw,v € TU, or gy = T]Ue/ﬂei, the components e, are inverse of e’; which are de-

e(p,er) in TU, by e(p, er) = €(dy)p, where {er}=1.... 4 is the standard frame of
R*.

Therefore the transformation generated by {P*} in I50(2,1) correspond to
diffeomorphisms, and the covariant derivative with respect to connection wy cor-
responds to local Lorentz symmetry SO(2, 1) with generators {J“}, this covariant
derivative is D := D,, = d + w. Therefore the second part of the curvature (17)
is a curvature with respect to the connection w, so it has to satisfy the Bianchi

identity:

DF%(w) = dF*(w) + €®°wyFo(w) = 0.
In fact,

a 1 abc abc 2 a 1 abc abc 1 d, e
d(dw® + 7€ wpwe) + €CwpF = d*w® + 2 d(wpwe) + € wp(dwe + 5 Cede W )

1 1

= P + éeabcd(wbwc) + e®Cupdw, + eabcwbﬁecdewdwe,
using d?w® = 0 and

abc 1 abc 1 abc 1 abc 1 abc

e wpdw,. = 3¢ wpdw,e + 7€ wpdwe = =" “dw.wy + € wpdw

2

1 1 1 1
= —§e“dewcwb + §eabcwbdwc = _§€abc ((dwp)we + wpdw,) = —§eabcd(wbw0)
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also

€pe g w® = €Cupwdin® = (0208 — 656 )wpww® = 0,

we find
DF%w) = dF*(w) + e™wyF.(w) = 0.

We can show that U := F® A F’d,;, is an exact form, F* A Fbd,, = dV for
some V € Q3(My). Therefore, if the four manifold My has a boundary three
manifold M3, (18) reduces to an integral on Ms. Using the covariant derivative

D := D, = d+ w, we write the curvature (17) of A =e +w as

F(A) = (de + [wAe]) + (dw + [w Aw]/2) = De + F(w),

therefore
U= | (F(A)ANF(A)) = | ((Dye+ F(w)) A (Dye+ F(w)))
! !
= [wenrwy= [aenrwy = [enre
My M,y M;

where we used DF (w) = 0, and Mg = 0Mj.
Let Py = Py|pr, — M3 be an 1S0O(2, 1)-principal bundle over Mz = dMy, and
Arso(2,1)(F3) be the space of all 1SO(2, 1)-connections A € QY (Ps3;g) on Ps.

Definition 5.1. The 1.50(2, 1)-Chern-Simons action functional Ics : Ajso(e,1)(F3) —
R is defined to be

]CS:/M <A/\dA+§A/\A/\A>:/<e/\F(w))

M3
a1 abe
= /ea A (dw® + 56w A we) (19)
M
— /eijkeia(éjwka — OpWjq + eabcw?wz).
M;
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Theorem 5.1. The Chern-Simons action Iog of the connection A = e + w can

be identical to the Finstein-Hilbert action in 2 + 1 spacetime.

We see this clearly if we regard e® as a gravitational field(tensor) and w® as
connection of Lorentz gauge group in 2 + 1 spacetime, but we have to verify that

this action is both Lorentz and diffeomorphism invariant ([13]).

Since S(A) = [ F*AFbdy, is gauge invariant, S(g- A) = S(A), so the bound-
My
ary integral [ (e A F(w)) is gauge invaraint. The action (19) is gravity in 3d
M3
spacetime. This means that the gravity in 3d spacetime is a Chern-Simons gauge

theory of group 150(2, 1), but not only Lorentz symmetry which is generated by
7%J, but also there is symmetry generated by p®P, in (16). But the gravity is de-
scribed by local Lorentz symmetry, and a gravitational field e is an isomorphism

between tangent spaces on M3 at each fixed p € M3,
e:T,M3 — R",

which maps arbitrary metric g(p) on 7}, M3 to the Minkowski metric n = (—+---+)
on R™. Thus we relate the transformation def in (16) to a diffeomorphism and
so regarding e® as gravitational field (tensor). We can see this by taking the

transformations (16) generated by p®P, with 7J, = 0:
de = —dp — [w,p], Odw=0,
or
¢ = 0. (20)

ded = —0ip" — e wippe, Ow

We compare this transformation with the transformations under an infinitesimal
diffeomorphism generated by a vector field v = v’0;. The field e® = e?d:ti is a

one-form, so it changes under a diffeomorphism is the derivative:

Spe = Ly(e) = iy(de) + d(iy(e)),
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or
dpet = c%e?iv(dxidxj) + d(iy(e?)).
Then we use i,(dz'd2’) = i,(dz)dz? — iy(da?)dx’, and i,(dx’) = v*, we obtain

dpe = Ly(e") = 81-6?(Uidxj—vjdxi)—l—(()i(vje?)dxi = @e?vjdxi—@ie?vjdxi—i—@i(vje?)dxi.

Suef = Ly(e”) = (9jef — Die’ + 0 (v/e). (21)
Same thing we do for the connection w, to get

o = Lo(w) = iy(dw) + d(iy(w)),
or

Sowf = (Ojwf — Oiw)v? + 05 (vIw]).

We need to identical (20) with (21), we let p® = v/ e and replace v by —v, this is

dpey = Ly(e") = —(0jef — 8ie?)vj — 0;p".
Then we take the difference d,ef — def,

dpef — def = —(0jef — 8ie?)vj — 0;p® + 0;p® + €™ wippe (22)
= —(0;ef — 8ie§9)vj + eugriese,
or

dvef — dej = —(0jef — Ojeff + eCwpeic — €Pwpeje)v] (23)

+ (eabcwjbeic — eabcwibejc)vj + eabcwibvjejc.

The 0jef + e“bcwjbeic = Djef is covariant derivative with respect to Lorentz con-

nection w?®, so
a a a ay,,j abc j
dvef — dej = —(Djef — Dief)v? + (e wjpeic)v?.
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The first terms vanish by the equation of motion De® = 0, which we get from

F(w+ tow) = F(w) + tD (dw) + g [dw A dw] ,

for

% t_O/(e/\F(w—i—t&u)) = / (e N D (dw)) = /d(e/\ (&u))—/ (De) A dw) =0,
M3 M3 M3 M3

we get De = 0, where M3 is closed. The second term in d,ef — def is eabcwjbeicvj

we can relate it to local Lorentz transformation generated by 7, = wjbvj :

Proposition 5.2. Ios : Arso,1)(F3) — R is invariant under the action of

one-parameter family of diffeomorphisms.

Proof. We need to verify that Iog in (19) is invariant under arbitrary infinitesimal
diffeomorphism generated by a vector field v on Ms. Let {¢}ier be the one-
parameter family of diffeomorphisms ¢; : M3 — M3 generated by a vector field
v e (TMs), %gpt = v o ;. Then the derivative of Chern-Simons action is

d
5vICS = %

1
Ies (90;14> = /‘Cv (ea A (dwa + §€abcwb A\ WC)) : (24)
M3

t=0

Note that 0 = e, A (dw® + %e“bcwb A we) is a 3-form in 3d manifold M3, so that

df = 0, and its Lie derivative is
L,(0) = iy(dO) + d(iy(0)) = d(iy(0)) = d(2-form),

the integration over d(2-form) term vanishes since M3 has no boundary by as-

sumption. So d,Icg = 0, and I¢g is a diffeomorphism invariant as required. [

We can include a cosmological constant A using gauge groups SO(2,2) or
SO(3,1), but the universal covering space is not the Minkowski space since the
condition [P?, PP # 0 is necessary to include cosmological constant in the La-

grangian, whilst [P%, P?] # 0 is not true in the Minkowski space. This space is
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the de Sitter or the anti-de Sitter space, depending on the sign of \. We include

A in the commutation relations of the generators {J%, P} as
[Jaa Jb] = 6abc']C> [Jav Pb] = Eabcpc [Paa Pb] = )\Eabct]ca (25)

these are the same commutation relations of generators of the groups SO(2,2)
and SO(3,1), so the gravity with cosmological constant in 3d spacetime is Chern-
Simons with gauge groups SO(2,2) and SO(3,1). We check the invariance of the
bilinear form P,J° of the Lie algebra (25),
[Jay Py J?) = PP Ja, J)+[Jas Py T = PPeupe “HeapePCT" = eqpeP? T —€qey PCJ" = 0,
and
[Py, PyJ?) = P[Py, Jy) + [Pay Py J* = —Peyac P° + Neape T T
1 1
= ape PP P° — Negep J° I = 5eabc[Pb, P = S A6aeh| J"
1 1 1 1
= —eabAF T — = Xeaan€PE T = Zepea N"F T — = Nepae P T
2 2 2 2
= Xk g, =Nk, = 0.

Therefore bilinear form P,.J? is invariant under the adjoint action of SO(3,1), and

thus we have the invariant quadratic form on the Lie algebra of SO(3,1),
(J*, P") =y, (J*J") = (P", P") =0. (26)

Let Py — My be a principal SO(3,1)-bundle over a connected oriented manifold
M, with boundary Mj. The gauge field is a connection A on Py, and for a local
trivialization Pyl = U x G over a coordinate neighborhood (U, z), A is locally
1-form with values in the Lie-algebra g of SO(3,1) with generators {.J,, P,} (note
that {J,} is closed subalgebra),

A=e+w=elPds’ + wlJdi' € T(T*U ® g).

Note that SO(3,1) acts on hyperboloid H C M*! transitively and the stabilizer
SO(3,1), at a point p € H is isomorphic to SO(2,1), so that

#2250 (3,1) /SO (3,1), 2 SO (3,1) /SO (2,1).
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Then a SO(3,1)-connection A on the SO(3,1)-principal P; induces a connec-
tion e on the induced H-bundle Py/SO(2,1) — M, and s0(2,1) valued 1-form
w=A—ecQY(Ps50(2,1)), where e := W;O(Zl)g for projection Tgo (1) + P1 —
Py/SO(2,1).

Let G = Aut(Py) be the group of all gauge transformations g : Py — Py. Then
G acts on Agp(s,1)- An infinitesimal gauge transformation is u = p*FP, + 7%J, €
Q%g), with p% 7¢ € C°°(My). The infinitesimal gauge transformation of the

connection A is
0A = —D4u,

where D 4 is covariant derivative with respect to the connection A defined by
Dju = du+ [A,ul.

Then the infinitesimal gauge transformation of A = e +w € QY(U;g) by u =
p+7€0%g) (p=p*P T =1%,) is

JA =de+ 0w =—Dy(p+1).
regarding the commutation relations (25), we obtain
de=—dp— e, 7] — [w,p], Ow=—dr—|w,7]—Ale,pl, (27)

Now we calculate the curvature tensor of the connection A with respect to the
Lie algebra (25),

1 A 1
F(A) =dA+ 3 [A, A] = de + dw + 5 le,e] + [e,w] + 3 [w, w]

1 1

= (de) Py + (dw®) J, + 56(1 A e [Py, Py] + e A WP [Py, Jy] + 5@0“ Awl [Ja, Jp)]
1 1

= (de®) P, + (dw®) Jo, + 5)\6“ A Pt + w A eleqpePC + iwa A wPegpeJ”

a a b c a 1 a b c 1 a b c
= (de + €“pew’ Ne )Pa—i— (dw —I—§)\e pe€ N € +§e bew” A W ) Ja
= (de + [w, €]) + (dw + [w,w]/2 + Ne, €] /2) € D*(gp,),
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(28)
its components on My are

Fij = (D, Dj] :(01'6? — @e? + Eabc(wibejc + eibch))Pa

+ (0iw? — D8 + € (wpwic + Aeieie)) Ja-

J
The topological invariant Pontryagin form T'r (F/(A) A F/(A)), with using quadratic
form (26), is

1
U= (F(A)ANF(A) = <(de+[w/\e])/\ (dw+§[wAw]+%[eAe]>>
1 A (29)
= (de“ + e A ec) A (dwe + §eefkwf Awh + §eefkef A ek> Nae-

As we did before, in 3d spacetime, we need to regard the connection e as grav-
itational field (tensor), not connection. Therefore we relate the transformation
which generated by {P“} to diffeomorphism, and produce a covariant derivative
with respect to local Lorentz symmetry SO(2, 1) with generators {J}, the corre-
sponding connection is w, and the covariant derivative is D = de®+w. The second

part of the curvature (28) is a curvature and so satisfies the Bianchi identity

We write (29) as

= <(De)/\ (F(w)—i—%[e/\e])> (De A F(w))

Note that

U:<(de+[w/\e])/\(dw+%[w/\w e/\e)>
+

2(De/\[e/\e]>.

(DeNlene])) = %d((e NleNel])), and DF(w) =0,
we obtain

Uzd(e/\F(w))—i—éd(e/\[e/\eD.
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Using the quadratic form (26), we get

Pa,Jb + d(e Ae /\e) s [Posy P,

Nab + )\gbc (e /\eb/\e) (P, Py) .

(¢ NP (w)) {
(¢ AP (w)
:d(ea/\Fb )nab‘l’ Agbc (6 /\eb/\e)nad
1
( )nab+6>\abca (e Aebne).
(

By integration on the 4d manifold M, with boundary M3, we obtain

1
/U = /d (e“ A Fb(w)nab - gAeabcea Ael A ec)
M,y My

1
— / (e“ A Fb(w)nab + éAeabce“ Ael A ec>,

M;3
SO
a 1a b c 1 a b c
U= [ eg N |dw +§ebcw Aw +6)\€bc€ ANec).
My Ms

Definition 5.2. Let Ago(3,1)(F3) be the space of all SO(3,1)-connections on the
trivial principal SO(3,1)-bundle P3 — Ms. Let A > 0 be a constant. Then the
Chern-Simons action functional Ios : Agos1)(F3) — R is defined to be

2
ICS(A):/<A/\dA+§A/\A/\A>

M3
1
= Ilcs(e+w) :/<e/\F(w) —1—66/\ [e/\e]>
M3
ijk a a abc 1 abc
= | €'eiq | Ojwy, — Opw§ + € wjpwie + 5)\6 ejpere | dV.
M3

For A < 0, we define the corresponding Chern-Simons action functional Iog

by replacing SO(3,1) with SO(2,2). This is gravity Lagrangian in 3d spacetime
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manifold when we consider only the Lorentz SO(2,1) symmetry. But also by
regarding e® and w® as connections of the gauge group SO(3, 1), this Lagrangian

is Chern-Simons.

Thus we obtain the following.

Theorem 5.2. Let Iog : Ag(P3) — R be the Chern-Simons action functional
defined in Definition 5.1 for G = 1SO(2,1),\ = 0 or Definition 5.2 for G =
SO(3,1),A >0, and G = SO(2,2), A < 0.

(1) The critical points of the action Icg are flat G-connections, and the space
F/G of all gauge equivalent classes of G-connections can be identified with the
space of all conjugacy classes of G-representations of the fundamental group m1(Ms3),
F/G = Hom(m(Ms3),G)/~, where G = 1SO(2,1) for A =0, G = SO(3,1) for
A >0, and G = S0O(2,2) for A <O0.

(2) The equations of motion F(A) = 0 for A = w + e of the action Icg give
the constraints De = 0 and F(w) + A[e, e]/2 = 0.

In quantum theory, e is regarded as the conjugate momentum of w in the spa-
tial part ¥ of the spacetime Mz = R x ¥ and the state ¢ (w) € H(F/G) which
solves Fih(w) = 0 depends only on the topology of Ms.

For the quantization of the system we need to find the phase space of the
system and the constraints which generate symmetry transformations of a three
manifold M3 =R x 3. Since M3 = R x ¥ is contractible to ¥, the solutions will
depend on the topology of 3. On M3 =R x X, the action becomes

) 1
I = /dt /eojkeoa (ébw,‘; — Opwy + eabcwjbwkc + g/\eabcejbekc)

R b
, 1
+ €%, (80002 — Opwi + ePCuwppwie + g)\e“bcegbekc)
170 9:w8 — Ohw? abc 1)\ abc
+ €77 eiq | djwy — ow; + € wipwoe + § €7 €ejpe0c | -
0jk — ik

Now we introduce € the invariant anti-symmetric Levi-Civita tensor on

45



2d surface X to obtain

g 1
I = /dt /eoae” (@w? — Ojw;i’ + eabcwibch + g/\eabceibejc)
R by

y 1
— ey (&w? — Ojwg + eabchbij + g)\e“bce()bejc)

g 1
+ eYeq (ang — Qowj + eabcwjbwoc + g/\eabcejbegc) )

Note that sum over the three A terms give \e%’ e“bceoaeibejc, and since X is closed,
we have
i a ij, a ij, a
/6 Jemajwo = — / € onajem = /6 onaieja,
b)) b)) b))

using it in / and and reordering, we get

:—2/dt/(—: emﬁow
R

+/dt
R

dt

60a€ Zw

G — Ojwy + eabcwibch + )\eabceibejc)

+ Woa € (&e? — ;€8 + e (wipeje + €z'bch)) :

B
M U~

The term —2dte” emﬁow;-‘ does not depends on time parametrization for some
diffeomorphism ¢ : R — R, ¢t = ¢(t). Therefore the fields e} and w{" can be
regarded as a canonical coordinate and momenta of the phase space on a slice of

constant time {t} x 3. To obtain the Poisson brackets, we recall that the term
dtpidoq’

in the Lagrangian gives the Poisson brackets {¢’, pi} = 5; Now our first term in

the Lagrangian
—2dtee;q (z)0ow§ ()
gives the Poisson brackets
(W (@). —2e*eq(y)} = 85570%(x — ).
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Then multiply €y to both sides and using egpe'* = (52, it becomes
1
(W2(0),enly)} = 5003w — ).
Thus we obtain the Poisson brackets
1
{wf (), e}(y)} = §6ijn“b52(x—y), {ef(2),¢j(y)} =0 {wf(x),w](y)} = 0. (30)
Since the fields efj and w( do not have the time derivative, they are not dynamical,

and their equation of motion are constraints,

ol y
5 = e (32'6? — 8]‘6? + EGbC(wibejc + eibch» =0, (31)
Woa

or _ 2 ((9w“ — O:w® 4+ €™ i+ Ne®Ceie ) =0
560a_ 1wy JWq ibWjc 1b€jc) = Y.

The first equation of (31) is the standard torsion-free condition that determines
w in terms of e. If A = 0 then the second equation implies that the connection w
is flat, F(w) = dw + [w Aw]/2 = 0.

If we regard e! as a component of a connection A = e+w, these constraints are
the vanishing of the curvature Fy = 0, gauge connections which locally are gauge
A = ¢g7ldg, for g € G. The only gauge-invariant observables that do not van-
ish when the constraints are imposed are global observables, such as holonomies
around possible non-contractible loops in M. The Poisson brackets (30) suggest
either w or e are the canonical coordinates, so we need to choose one of them.
Then the quantum state is either (w) € L2(F/G) or ¥(e) € L*(F/G). If we
choose ¢ (ef) then the infinitesimal gauge transformation of A =e +w for A =0
are

b

a a abc abc
oej = —0ip" — € eiqTe — € wippe,

ow?

7

(32)

a abe
= —0;7" — € wipTe,

which implies that def contains not only ef but also w’, so we can not choose

a

el as a coordinates. But w{' transforms only to wf, thus we can choose w;' as a

canonical coordinates. The physical state is a state that annihilates the operator

corresponds to the curvature of A = e + w,
. . . besn o
F;;- (e) = 82‘6? — 8je§‘ + € C(wibejc + €ibch),
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and

nll) ~a ~a abc A abcy 4
Fii(w) = 0i0f — 0,07 + € pwiec + A" Epéjc.

To do this we replace the Poisson brackets (30) by commutators such

[0 (2), €} (y)] = %6¢jn“b52($ —y), [8@), W] =0 [f@),&5y)] =0,

by this we define e by

. 1 p O

6? = égijna ﬂ
J

The physical state is solution of the quantization of equations of the motion,

Fe(e)y(w) = 0 and F&(w)y(w) = 0.

The constraint FZ‘; (w) = 0 generates diffeomophism invariance of 1 (w), the
infinitesimal transformation of the connection w under the infinitesimal diffeo-

mophism generated by a vector field v is
pwi = Lyws = ijZ-‘;- (w).

Then the derivative of the state function ¢ (w) with respect to this infinitesimal

diffeomophism is

)
()

2

(W) = P(w + pwy) = P(w) + 5«)%@%@%&(&)) = P(w) + v/ Ff (w)

Therefore if F i = 0, the state 1 (w) is invariant under this transformation. There-
fore the state 1)(w) depends only on the homotopy class [y] € 71 (X). Let Q(X, z0)
be the space of all smooth loops v : I — ¥ based on xg, then we have the holonomy

map
hol(w) : (X, z9) = SO(2,1)

with respect to a connection w, and ([6])
(7 ~ 7' = holy(w) = holwl(w)) & F=0.

48



Note that F(A) =0 (A = e + w) if and only if F(w) = 0 and De = 0, and the
gauge equivalence classes of flat connections A = e 4+ w are completely character-

ized by conjugacy classes of holonomy representation hol(A) : m1(X) — 150(2,1).

Now we define the state 1(w) by 1 (w) = Trhol, (w). If the connection w is
flat, the holonomy of w is determined by the holonomy of A = e + w, and w is

determined by e by De = 0, then we have
Y Hom (m(%),50(2,1)) — C.

This state satisfies FZ‘]‘ (w)h(w) = 0 as required for the quantization. We give the
states 1(w) physical aspects by making them eigenstates of hermitan operator
that measure some physical quantities, such as area, volume, etc. Therefore for
two distinct eigenvalues correspond to orthonormal eigenstates with respect to
an inner product which keeps the eigenvalues invariant. We can define the states
¥ (w) using a spin network basis ([14]), in which the eigenvalues of area and volume
are invariant under gauge transformations and diffeomorphisms, and hence both
of them are unitary operators that keep the inner product invariant. Therefore

the states 1 (w) on a loop v depends on the homotopy classes [y] of that loop.

6 Summary

We have seen that the Chern-Simons theory is a gauge theory that measures the
topological invariants, like the abelian Chern-Simons theory measures a of linking
and self-linking numbers of a knot. The non-Abelian Chern-Simons measures link
invariants, like Jones polynomial which associates with spin 1/2 representation in
an SU(2) Chern-Simons theory. Also we have seen that the solution of equation
of motion of Chern-Simons action give a theory, it is WZW theory. We have
given two examples in which the WZW action induces Minkowski and Taub-NUT
metrics on the group manifolds. We saw that by using the Chern-Simons theory
in describing the gravity in 3 + 1 dimension gives a solutions depends only on

global measurements of the manifold, like the holonomy of flat connections.
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7 Appendix A

A principal fibre bundle consists of the following data: - a manifold P, called the
total space; - a Lie group G acting freely on P on the right:

PxG—P, (pg)— pg.

The free action means that the stabilizer of every point is trivial, that every
element of G (except the identity) moves every point in P. We assume that the
space of orbits ¥ = P/G is a manifold (the base space). With projection 7 : P —
3 and for every p € X, the submanifold 7—!(p) C P is fibre over . Let {U,} be

open cover of ¥, the local trivialization is G-equivariant diffeomorphisms
Vo : T HUy) = Uy x G,

given by 1o (p) = (7(p), ga(p)) for some G-equivariant map g, : 71 (Uy) — G.
Equivariance means that go(pg) = ga(p)g. We say that the bundle is trivial if
there exists a diffeomorphism ¢ : P — ¥ x G such that ¢ (p) = (7(p), ¥ (p)) and
such that 1 (pg) = 1 (p)g. This last condition is simply the G-equivariance of .
We separate T, P to vertical and horizontal vector spaces at each point p € P,

we get the vertical vector fields by acting of group G on P by

d
7(X) = 55 ()] -

for every vector X € g, this satisfies

mop(X) = 5 (7 (06)) | Ly = 5 (7 (0l =0,

thus o, (X) is vertical vector field at p € P.

In this bundle the connection is defined as a map
A:T(TP) - T'(T.G),
and since P is locally product, then T' P|;; = TU®T,.G, so the connection becomes
A:T(TYE) = I(T.G).
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We can get this map by letting A be in T*¥ ® T.G and so this map is pairing
TM with T*M. Since A is flat, it can be given in

A=gldg e (TS @ T.G).
Then

d(g~'dg) = d(g")dg = —g "dg A g~ dg — d(g~'dg) + g~ 'dg A g~ dg =0,
SO

F(A)=dA+ANA=0.

8 Appendix B

We calculate the change of Chern-Simons action under gauge transformations, we
use A — g1 Ag + g 'dg in L(A) = Tr (AdA - %AB), this gives

L(AY) == Tr (g7 Agg~ " (dg)g~" Ag)) + Tr (9~ Agg™(dA)g) — Tr (g~ ' Agg~" Adyg)

2
+Tr (g_lAgda) +Tr (ad(g_lAg)) + Tr(ada) + gTT (g_lAg)3

+ %T r(a®) 4+ 2Tr (97" Ag)?g~'dg) + 2Tr ((9~ " Ag)g ™ (dg)g~'dg)
—Tr (A(dg)g_lA)) +Tr(A(dA)) —Tr (g_lAng) +Tr (g_lAgdoz)
+Tr (ad(g_lAg))

=
L(A9)=—"Tr (A(dg)gilA» +Tr (A(dA)) —Tr (g’1A2dg) +Tr (gflAgda)
+Tr (ad(g™' Ag)) + Tr(ada) + gTr (A)% + ;Tr(ozg)
+2Tr (g’lAggflAggfldg) +2Tr (g’lAggfl(dg)gfldg)
=

L(A%) = —Tr (A%(dg)g™ ") + Tr (AdA) — Tr (g~ 'A%dg) + Tr (g~ Agda)
+Tr (Ozd(g_lAg)) + Tr(ada) + ;Tr (A)* + gTr(ag’)
+2Tr (g_lAAdg) +2Tr (g_lA(dg)g_ldg)
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L(AY) =Tr (AdA) + ;Tr (A)? + Tr(ado) + gTr(oz3) —Tr (Az(dg)g_l)
—Tr (g’1A2dg) +Tr (gflAgda) +Tr ((xd(gflAg))
+2Tr (gilAAdg) +2Tr (gilA(dg)gfldg)

L(AY) =L(A) + L(a) = T'r (gflAzdg) —Tr (g’lAzdg) +Tr (gflAgda)
+Tr (ocd(gilAg)) +2Tr (gilAng) +2Tr (gilA(dg)gfldg)

L(AY) = L(A)+L()+Tr (9" Agda)+Tr (ad(g~ Ag))+2Tr ((9~ ' Ag)g™ " (dg)g~'dg) .
By using ¢~ (dg)g~'dg = —d (g_ldg), this becomes
L) = LAV L(@)+Tr (g™ Agda) ¢ (ad(g™ Ag)) 2T (g Aq)d(y o)

=

L(A9) = L(A)+ L(a) + Tr (g_lAgdoz) +Tr (ozd(g_lAg)) —2Tr ((g_lAg)da)
=L(A)+ L(a) +Tr (ozd(g_lAg)) —Tr ((g_lAg)doz) :

And using
d (ag™'Ag) = (da)g~' Ag — ad(g~"' Ag),
we obtain
L(A%) = L(A) + L(a) — dtr (ag ™' Ag) ,
therefore
L(AY) — L(A) = L(«) — dtr (ag_lAg) :
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9 Appendix C, WZW model

As we saw, WZW model has been obtained from required of gauge invariance of
wave function of solution of (F41(A) = 0) in Chern-Simons theory with a group
G on 2d space-like surface Y. In this section we discuss the symmetries in WZW
model, the Gr x Gi symmetry and conformal symmetry, the conserved currents
satisfy the Kac-Moody algebra ([15, 16]). Let X be compact oriented smooth
(2n + 1)-manifold with boundary OM = ¥. We construct trivial principle bundle
P=YxG—=X.
The WZW actions for g € Map(M, G) are

SE(g) = —/Tr(g_lagg‘lgg)ii/ Tr(g'dg)®. (33)
T Jx 127 X

We write the WZ term in 2n + 1 dimensional space M as

c B
Swz(g) = m/ Tr(gtdg)*,
M

the variation of this term depends only on fields on the 2n dimensional boundary
OM = ¥, we see this by using the fact that Maurer-Cartan form 77 (g~ 'dg)*"*! is
closed on contractible space like the cylindrical space B = I x M (with I = [0, 1]).

Let dg, d and dj; be the exterior derivatives on B, I and M, we have
dpTr(g~'dpg)* ' =0,

and let dg = dp; + 9, so
(dar +6)Tr(g~ " (dar +6)g)*" ' =0,

its component of type (1, 2n + 1) is
0Tr(g™ darg) ™ ™ + 20+ 1)duTr(g~ ' 69) (g™ dug)*" = 0,

by using fI(SfMdM:—fMdeI(S, we get

C

0Swz(g9) = (2n+1) Tor

/ dyTr(g 1 09) (g darg)™™,
M
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5Swz(g) = (2n + 1)& /E Tr(g~"o9)(g " dg)*". (34)

Therefore the varying of Sy z(g) depends only on Map(3 — G).

We use the Killing form on Lie(G) and metric on ¥ to construct the first term

in (33):

/ Tr(g '0gg~'0g),
b

but in order to write it in arbitrary n dimensional surface >, we write it using

Hodge star as

1

—/Tr(g_ldgA*g_ldg),
2 >

and so

c 1 c
SE = —~ | Tr(g Ydg A ¢ dg) = — | Tr(g 'dg)" .
wazw'(9) e /Z r(g”dg A *g ™ "dg) 27/, r(g~ " dg)

In two dimensions, the first term reads

1 1 »
—/Tr(g_ldg/\*g_ldg) = —/Tr(g”@ié’j)d2x, (35)
2 ¥ 2 >

we write = ¢~ 'dg, and g% is metric on X.

The WZW actions can be written as

+ c 1 ij 2 c —17.1\3
SWZW(g):Eg/ZTT(QJGin)d xiﬁ/XTr(g dg)°.

The variation of first term under 66 is
1 . .
—(5/ Tr(g”0:0,)d*x = / Tr(g" (560;)0;)d*x = / Tr(66 = 0),
2 Jy ¥ b
and
60 = 6(g~ ' dg) = d(g"69) + [¢g~ ' dg, g7 59],
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the second term vanish in tracing, so

%6/2Tr(gij9¢9j)d2x:/ETr (d(g_1(5g)>k(9) :—/TT((g_l(Sg)d(*O)). (36)

b))

Using (34) and (36), the variation of WZW actions under dg is

55312/21/1/(9)

1
) Tr(gtdg A xg~tdg) £ ) Tr(g tdg)>.
A2 |5 27 [y

™

c _ 3¢ _ _
= / Tr((g~"0g)d(x0)) + - / Tr(g~'0g)(g™"dg)*.
T s 127 Js,
The equations of motion are
& 3¢
——d(xg  dg) £ — (¢~ 'dg)? =
1A dg) £ o (97 dg)” =0,
or
—d(xg~"dg) + (g~ "dg)* = 0.
Using d(g~'dg) = —(g~'dg)(g~'dg), these equations becomes
d(xg~'dg) = d(g~"dg) =0,
o
d(xg~tdg + g~ 'dg) = 0.

In the coordinates (z, z), it becomes

dz0, (gfl(?gg(*dz) + gilaggdi) =0, and dz0s (gfl&zg(*dz) + gilazgdz) = 0.
(37)

We can derive the Hodge operator for complex coordinates (z,z) from the cor-
responding Euclidean coordinates (x,y) with Euclidean metric. *dzr = dy and

xdy = —dx, so by linearity of Hodge operator we obtain

xdz = *(dr + 1dy) = dy — ide = —i(dx + idy) = —idz,
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and

xdz = *(dz — idy) = dy + idx = i(dv — idy) = idZ.
Using this in (37), we get

dz0, (ig_lﬁgg + g_lﬁgg) dz =0, and dz0s (—ig_lf)zg + g_lﬁzg) dz =0,
or

0, (g_lﬁgg) =0, and 03 (g_lazg) =0. (38)

Therefore we have two conserved currents J; = _1859 and .J, = g_lazg on X, so
there is two symmetries corresponding to these currents, to find that symmetries
we test the WZW Lagrangian under a global transformations like z — fz and
zZ — gz, where f and g are constants. The group elements transform as g(z, z) —

g(fz,z) and g(z,2z) — g(z,gZ) which can be written as
g9(z,2) — e““(f)g(z, z), and ¢(z,2) — ee‘(g)g(z,f),

the functions €4 (f) and e_(g) have to satisfy e4+(0) = 0 and e_(0) = 0. The
WZW actions

+ c -1 ~15 c —17.\3
S*(g) = I /27 r(g~ 099~ "0g) 1on /X r(g~ dg)

are invariant under ¢(z,z) — e+(g(z,,2) and g(z, 2) — e g(z, Z) separately,
that is, they neither require a relation between the functions e_ and e, nor be-
tween the constants f and g, this changes the metric dzdz by scaling it in addition
to rotation. Therefore we have two global conformal symmetries, left and right.
To get local symmetry, we let the functions f and ¢ and so e and e_ depend
on the coordinates (z,z) with requiring the action be invariant up to boundary

terms, like

5Ssz(g) = /ETT’((?MB“).
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For infinitesimal transformation g(z,z) — e+ (g (z, zZ), e+(2) &~ 14 €+(z), we use

the property

1 _ =
S (010) = 5 (00) + %) + - | Trlar 0000y,
by

by setting g1 = e+(*) and gy = g(z, Z), and ignore ST (e+) = O(€2), we obtain

35 (0) = S*(1+ 1)) - 5*(9) = 3 [ Tre+Poee 913y
Dy

™

~ 1 [ 1roente o0 = = [ Triesot ).

T X
As we saw before, the term 9(g~'0g) vanishes by the equation of motion (38),
therefore 6S*(g) = 0, and same thing we find for g(z,z) — e~ g(z, ). Thus

the WZW action is invariant under conformal transformation.

We call the current J5(Z, z) = g~ '0sg left current, since it is relates to left
conformal transformation g(z, z) — e“+(*)g(z, z). We find the right current from

the relation

0:(g7'0z9) = g7 (92(0:997")) 4,

and so 0,(97'0zg9) = 0 implies 05(d,99~!) = 0. We call the current J,(2,z) =
(0,9)g~! right current, since it is invariant under right conformal transformation

9(z,2) = g(z,2)ec~ ).
J(2,2) = (0:9)97" = (g )e™ g7 = Dagg ™t = J(2,2).
Therefore the WZW actions has the symmetry Gr(z) x G(z) groups:
Gr = Map(¥ — G) such z — h,(2),
G = Map(¥ — G) such z — hy(2).
These act on g(z,z) € G by
9(2,2) = lu(2)g(Z, 2)h:(2).
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When ¥ = S! x R, we can change the metric dzZdz to Minkowski metric

drtdr™ = —dt? + dz? so we change the coordinates like 2 — 27 = z +t and
Z = x~ =z —t. The conformal transformations become
gla®,a7) = hy(a)g(x ™, 27 )by (a7), (39)

with currents

Jp(zt a7y = Jy(z,27) = (0,9)g L and Jr(zT, 27 ) = J_(zF,27) = g t0_g.
(40)

The left and right currents defines Kac-Moody algebra.

10 Appendix D, Virasoro and Affine Lie Alge-

bra

We have seen that the WZW action on X is invariant under local conformal
transformations with acting G x G of the group G, where G = Map(X — G),
2+ hy(2). And Ggr = Map(¥X — G), Z +— hy(2). The corresponding currents are
0.J(z, z) = 0(holomorphic) and 0.J(z, z) = 0(anti-holomorphic). We find that the
algebra of these currents is the affine Lie algebra of the group G on X, but when we
use Sugawara construction for that algebra, we obtain Virasoro algebra, where we
use the fact that in quantum theory the currents are regarded as operators that
generate the corresponding transformations (conformal transformations) ([10]).
Since the current J(Zz, z) € g is holomorphic, we can consider its Laurent expansion

around the origin (z # 0):
J(z) = Z Jpz L

and write J(2) as

J(z) =Y Juz "

nez
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We study the commutation relations of these currents on a circle S € ¥ in

equal time with respect to the coordinates (z*,27) = (x + it,z — i7), with
transformation

o 627Tin$+7 5 _ p2minz”
The corresponding metric is

rtem =2 +7% g =g =1,9.=9 =0 (41)

on Y. Different values of 7 associate with different circles radiuses in >. We define

loop group of G as set of all maps S* — G-
LG = maps(St, G).

Thus the WZW actions have the symmetry (LG)7 x (LG)p on St C X.
The group (LG) x (LG)p is given by the maps

+ +

(LG)L _ Map(Sl N G), 627rin:r — g<€2m’nx )’

(LG)R _ Map(Sl N G), eZm’nx* — 9(627rinx7)’
at 7 = constant. The Lie algebra Lie(LG) = Lg, is vector space of maps S' — g.
If {7}, a = 1,...,dim(G) is basis of Lie(G), with bilinear skew-symmetric map
g x g — g defined by [T¢,T% = f.T¢, and Killing form Tr(T°T?) = §?°. We
can describe the maps S' — g using Fourier expansion

1 2minz® a/ .+ a 1 arma 2minz® .
S e HZaJ (x5)T _§Za%J”T e € Lg, 7 = constant,
ne

SO

1 .
HESEEDS Jag2mina™ (42)

nez

We regard {J%(z%)} as a basis for Lie algebra of the loop group LG with the
same commutation relations of {7%}. The fact that J is anti-hermitian operator

asserts that (J)T = —J . Therefore
[T (@), I (@5)] = e (@), (43)
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and so

) 1 . 1 ‘
4 Z Ja Jb 2mi(n4m)zt _ 5fcabz J6062m€xi _ Z_lfcab Z Jécl+£2e27rz(€1+€2)xi’

n,mez Le b1 0o

this gives
L5, To) = L& T
This is bilinear map Lg x Lg — Lg.
The construction (J)T = —J¢  defines an antilinear involution on Lg, this is
the map w: Lg — Lg defined by w(J}) = —J¢,,, it satisfies
wow =1, (44)
w(ar) = a*w(z), x€Lg, acC,

w(z), wly)] = wlz, y].
There is a nontrivial central extension of Lg by C, generated by the map @ :

Lg x Lg — R,
O(JL, JL) = icdndy m, cER

By this the Lie algebra of Lg extends to affine Lie algebra g with bilinear map
gxg—4g
[J8, T8 = fTC , +icd™nén, —m. (45)

We show that WZW theory has conformal symmetry with affine Lie algebra (45),

that is the currents
JL(x+,m_) = J+(x+,:v_) = (0+g)g_1 and JR(m+,m_) = J_(ZE+,$_) = g_lﬁ_g

have the algebra (45) when we regard these currents as generators of the conformal

transformations. The left and right conformal transformations are (39)
9@, 27) = hy(a M) gz, a7 )y (27).
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If we write hy(z) = e@") s0 g(a, 27) = <@ g(at, 27), the current Jo (z,27) =
(049)g~! transforms as
9 yg-le—cah)

Jr=(019)g = I = (006 Ng)g

46)
_ (T —e(at + +y d + (
= @) Jem@) 1 d(zh), (x )——dere(a: ).

For small conformal transformation parameter e(x*) € g, this transformation

becomes
Sode = J's — Ty = [e(h), T ()] + (),
expanding it in the basis {7} of Lie(G), we obtain
0ct = [e(x™), JE(a )] + (€)' (z7). (47)

This agree with regarding the current as anti-hermitian operator since the genera-
tors {T*} of the group G are regarded as anti-hermitian operators. The current J
corresponds to the conformal transformation by h,.(z 1), so according to the quan-
tum theory, » f €?J¢ is a generator of this conformal transformation. Thus, we

obtain the following equation for any operator O,

_ a(+y 70 (,+
560_Za[/e (zF)J% (2 ), 0.
Like this, the transformation (47) can be expressed by
b a/ +\ ya/..+ b
oot = 30,1 ettt
Combining this equation with (47), we have the equality
S ) ] = ). 2]+ @ )
a

We solve this by expanding ¢(z") in the Lie algebra of (LG)p, this is e(xt) =
Y g €4(@™)J%(x™T), therefore

Za/dyﬂea(y*)f‘(f%Jb(l“*)] =Y (@) T @), )]+ (@) @),

a
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or

>, [ a2t = 3, ) M+ @ ),

a

which can be solved by

[Ty "), I (a™)] = fPed (@ h)o(yt — ") - 5ab@i+5(y+ —a"), (48)

with the commutation relation (43). We have to note that when a = b the term
e(zH)[J(x), JP(2)] does not exist because it comes from e/ Jbe="/" in (46).
We obtain the affine algebra (45) by expanding the generators {J%(z 1)} on circle
St like

ot ; ot
Ja(er) _ E :Jge%rmﬂc : 5(y+ B l’+) _ E :6227rk(y T )7 =T
nez keZ

Using them in (48), we get

ST 1, e

n,mez
_ fab J¢ 2minax 2mima (yT—at) 5ab d 2ming (yT—a™)
= fab, e e G e ,
n17m1€Z No€Z
or
YR +
E [Jg,’ JTI;I]€27TZ(ny +ma™)
nmez
: + — + . ; +_ .+
_ fabc E Jrc“e?mmly €2m(n1 mi)z"T 27T25ab E :n262mn2(y x )
nl,mleZ X

Identifying with respect to e2miny” and e2mima’ separately, we obtain
[J8, I8 = fOTE L, — 2mi6®ndy, i,

this is same (45) for ¢ = —27. Thus we have seen that the Lie algebra of confor-
mal transformations in WZW theory is affine lie algebra (45) of G. Now we see
that we need Sugawara construction for this algebra in order to get finite energy

spectrum in WZW theory.
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As we saw we can use the metric detde™ = dr? + do? in WZW theory on
¥, by Wick rotation 7 + it we obtain Lorentz metric —dt? + dz?, that is the
changing (z7,27) = (v + itz —iT) —~ (x + t,x —t) = (y*,y~), and so

+

. + .4
Z:I: _ eme — Z/ _ e2my 7

* are complex coordinates on ¥, by this we have one circle (|2/| = 1) with

where 2
two opposite motions (left and right) instead of circles with different values of
radiuses in different times. There is a metric in the first term of

k k
5*(9) —E/TT(Ul(?JrU/\*Ul&_U)im/ Tr(U~tau)?,
DX X

this allows us to calculate the stress-energy tensor using the formula ([17])

)
ogHv

Ty = —2

We write Tr(U19;UU10;U)g" d*x with respect to an arbitrary metric tensor
Gij, SO

5 k
S =-2—Tr(U t,UU10,U).

T = _2(59’7 47

Then substituting Lorentain metric g = gijdxidxj = —dt? +da?, with 2% = ¢, this
gives

)
dgh

Tyj = —2—=S = —2£TT(U_1<9¢UU_18]~U).

Its components are
Too = —%TT(U_laoUU_laoU) =7% T = —%Tr(U‘lalUU_lalU),
and Ty, = —%Tr(U‘lﬁoUU_lﬁlU) = Tho,

The total energy is

H ~ fda:TOO, t = constant,
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in the new coordinates y© = x +t, y~ = x —t. As we have seen that WZW has
affine Lie algebra (45), therefore we write the currents using Fourier expansion on

the circle St C X (with ¢t = constant) like

Tyt =UT'U =" gy

nez

and

R )=U"loU=73 3 JyTiem.

nez

therefore

_ —k a b arrby 2mi(n+m)y ™ _ —k ra 71b apby 2mi(n+m)y~
Too = 5 > T Tr(T e . Ti=o > ST T (T T e ,
n,mez n,mez

and using Tr(T°T") = 6%, we get
—k . . —k . _
00 __ — M a ya 27i(n+m)y _—r 10 716 2mi(n+m)y
T = Za > JiTme o Ti= o Za > ST e .
n,mez n,mez
The energy density is

Too = ;—fTr Z (Z Z ngJﬁl> 2y = ;—:Tr Z L™

neZ \meZ a nez

with L, = S Jo_, Jo.

a,m

We use the normalization L,, = 2% > Jg . JS, with ¢ is central extension real
a,m

constant in the affine Lie algebra (45)
[, Ih) =i f Ty + 606, (49)

using this algebra, we find that generators { L, } satisfies [Ly, L] = (n—m) Lytm

when n + m # 0. The hermitian conjugate is

(L) =3 (o) =St

a,m a,m
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using (Jo)F = Je f

i
lution on {Ly}, this is the map w : {L,} — {Ly} defined by w(L,) = L_y, it

satisfies

it becomes (L,)" = L_,, which defines a an antilinear invo-

wow =1,
wlar) = a*w(z),z € {Ly},a € C,

w(z),w(y)] = wly, «].
But for n # 0, we have w(Ly,) # Ly, thus the element L,, n # 0, is not self-adjont
operator, it does not have real eigenvalues under any representation. But L is
self-adjont operator, let |h) be eigenstate with eigenvalue h, so Lo |h) = h |h). By
using [Lo, L,] = —nL,, we find that L, |h) — |h—n), and L_, |h) — |h+n),
therefore L, and L_,, are lowering and raising operators with step n. But there

is underline algebra of {L,}, it is the algebra of {J2}.

There is a divergence in Ly = »_ J% J¢ (this includes the sum over a), we
nez
see this divergence when we calculate Lo(J2, |h)), we find Lo(J?, |h)) = oo |h). By

using the affine algebra (45)

[J8, I8 =i f g+ by,

and using the involution map w(J¢) = J%,, (44), we obtain

1
s Lol = -1 Y T2 T3]
nez
1 a b a 1 b a a 1 a ab 1 ab a
=522 Tl T+ > b T4 T > gt M, —nt 5 > b mby,
new nez new new

1 . R 1 1
= D T T+ 5 > ifhege e+ §anm + §mf;‘n
nez nez

1 : 1 ,
= 50 D Tt 5 D T

nez nez
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1 )
:Zczlfcba —n"]gﬂ-n 4 Z fba m n>']a]+m‘]21

nez nez

1 o L b
= o DT Y AL T m

nez nez
1 b, L b b
=22 LIt > S miy,
nez nez

where we used f®¢f,4 = f05 is given by Killing form on Lie algebra <J @ | J b> =
f6% . Therefore

[J2 Lo] = —fZJb +mJb.

nez

Let it act on the eigenstate |h):

Jb,Lo |h) — fZ ) +mdh |h),
nez
SO
1
Wl \h) = Lody \h) = oo f > o b +my |h)
nez
then

Lol 11)) = Tl ) = o f 5770, ) — T )

nez

) (50)
— (hQ_Cme> J2 |h) .

nez

Therefore J?, is lowering operator when m, f,¢ > 0, but the summing in S
nez
is infinity, this is undefined, but if there is a highest number ng > 0 satisfying

J, [h) = 0, and since L_,(n > 0) is raising operator and L, is lowering, the only

non-zero of Y J% J% when acting on |h) is the ordering J%,J¢, for 0 < n < ng,
nez
and zero otherwise, so

JO TRy =2 J JE|RY .

nez 0<n<no
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We then get Z b |h) = 2ngJ%, |h) which is finite. Therefore we rewrite L,, using

normal ordermg Ly=5 > : (Sugawara construction) defined in
mEZ

m<n-—m.

This gives

(0@
1
Lo=g. > JhTi=1 Z Je, e

nez n=
Therefore we obtain

1

1
5 —(2fng + 2cm)JL,

a ja. b1 _
Sole ST ) = o

or
[ %0 Ip) = =2(fno + cm).Jyp,,
when m = ng, it becomes

[ T, T8 TR = —2ng(f + )b

The generators L Z oy, + satisfies Virasoro algebra
meZ
[Lny L] = ( VL + (0% — )0 h= di
=(n—m —(n" —n)op,— im
ny, ~m n+m 12 n,—m, C%—f 9,

these infinity number of non-commutative generators of Virasoro algebra, the
algebra of conformal symmetry in two dimensions. This Virasoro algebra is non-
trivial central extensions of Witt algebra. The solution of this algebra gives the
stress-energy tensor Tpg + 711. The operator L,, n > 0 is lowering, while L_,,
n > 0 is raising, and the involution relation between them is (L,)! = L_,,
therefore the only adjoint operator of them is Ly which has eigenstates, like |h),
with eigenvalues h as mentioned above. The spectrum of determines the energy
spectrum. As we saw, the energy must be bounded below in order to get finite

results, so if 1)) is lowest energy state, then L, |[¢9) = 0,n > 0.

67



References

1]

[9]

Shiing-shen Chern, James Simons. Characteristic forms and geometric in-
variants. The Annals of Mathematics, Second Series, Vol. 99, No. 1 (1974).

Edward Witten. Quantum Field Theory and the Jones Polynomial Com-
mun. Math. Phys. 121 (3) (1989) 351-399. MR0990772.

Won Tae Kim, Myung Seok Yoon. Symmetrization of the Chern-Simons
Theory in the Lagrangian Formulation. Journal of the Korean Physical So-
ciety, Vol. 45, No. 6, December 2004, pp. 1460-1465.

D. Wesolowski, Y. Hosotani, C.-L. Ho. Multiple Chern-Simons
Fields on a  Torus. Int.J.Mod.Phys.A9:969-989,1994. DOI:
10.1142/S0217751X94000443. arXiv:hep-th/9302121.

Jian Qiu. Lecture Notes on Topological Field Theory. arXiv:1201.5550 [hep-
thl.

Clifford Henry Taubes. Differential Geometry:  Bundles, Connec-
tions, Metrics and Curvature. Print ISBN-13: 9780199605880.
Published to Oxford Scholarship Online: December 2013. DOI:
10.1093 /acprof:0s0/9780199605880.001.0001.

Shmuel Elitzur, Gregory Moore, Adam Schwimmer, NathanSeiberg. Re-
marks on the canonical quantization of the Chern-Simons-Witten the-
ory. Nuclear Physics B, Volume 326, Issue 1, 1989. DOI: 10.1016/0550-
3213(89)90436-7.

Julius Wess, Bruno Zumino. Consequences of anomalous Ward identities,
Phys. Lett. B 37 (1971) 95-97 (spire:67330, doi:10.1016/0370-2693(71)90582-
X).

Jan Govaerts and Bernadette Deschepper. The physical projector and topo-
logical quantum field theories: U(1) Chern-Simons theory in 2 + 1 di-

68



[13]

[14]

[15]

[16]

mensions . 2000 J. Phys. A: Math. Gen. 33 1031. DOI: 10.1088/0305-
4470/33/5/315.

P. Meessen. Strings Moving on Group Manifolds, The WZW Model.

A.A. Kehagias, P.A.A. Meessen. Exact string background from a WZW
model based on the Heisenberg group. Phys. Lett. B331(1994), 77.

Steven Carlip. Lectures in (2+41)-Dimensional Gravity. J.Korean
Phys.Soc.28:5447-5467,1995. arXiv:gr-qc/9503024.

E. Witten. Nucl. Phys. B311 (1988) 46.

Rovelli, C. Quantum Gravity. Cambridge University Pres: Cambridge, UK,
2004; ISBN:978-0521715966.

Mark Walton. Affine Kac-Moody Algebras and the Wess-Zumino-Witten
Model. arXiv:hep-th/9911187.

Bershadsky, Michael; Ooguri, Hirosi. Hidden SL(n) symmetry in con-
formal field theories. Comm. Math. Phys. 126 (1989), no. 1, 49-83.
https://projecteuclid.org/euclid.cmp/1104179723.

Michael Forger, Hartmann Romer. Currents and the Energy-Momentum
Tensor in Classical Field Theory: A fresh look at an Old Problem. An-
nals Phys. 309 (2004) 306-389. DOI: 10.1016/j.a0p.2003.08.011. arXiv:hep-
th/0307199.

69



