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Abstract
Chern-Simons theory is a gauge theory in $2+1$ dimensional spaceime. This theory does not depend on
additional structures, like a metric structure, thus it is a topological quantum theory that measures
topological invariants like linking numbers, Jones polynomial, and other quantum invariants for knots and
3-manifolds. The equations of motion of Chern-Simons action is vanishing of the curvature $F = 0$. No
metric is used in forming the action principle. One might expect the path integral to be a topological
invariant of $3$ manifolds. The difference for the equation of motion with the Maxwell theory is that the
Maxwell theory has non-trivial solution of curvature $F\ne0$ in absence of matter, while the Chern-
Simons theory has solution only with $F=0$. The Chern-Simons theory has non-trivial solution with $F
\ne0$ only when the gauge field couples with matter. Since the action functional of the Chern-Simons
theory is first order in space-time derivatives, its Legendre transform gives the trivial Hamiltonian $H=0$.
So there is no dynamics, and the only dynamics would be inherited from coupling to dynamical matter
fields.

ns



10 Appendix D, Virasoro and Affine Lie Algebra 58

Introduction

Chern-Simons theory is a gauge theory in 2+1 dimensional spaceime. This theory

does not depend on additional structures, like a metric structure, thus it is a topo-

logical quantum theory that measures topological invariants like linking numbers,

Jones polynomial, and other quantum invariants for knots and 3-manifolds. The

equations of motion of Chern-Simons action is vanishing of the curvature F = 0.

No metric is used in forming the action principle. One might expect the path

integral to be a topological invariant of 3 manifolds. The difference for the equa-

tion of motion with the Maxwell theory is that the Maxwell theory has non-trivial

solution of curvature F 6= 0 in absence of matter, while the Chern-Simons theory

has solution only with F = 0. The Chern-Simons theory has non-trivial solution

with F 6= 0 only when the gauge field couples with matter. Since the action

functional of the Chern-Simons theory is first order in space-time derivatives, its

Legendre transform gives the trivial Hamiltonian H = 0. So there is no dynam-

ics, and the only dynamics would be inherited from coupling to dynamical matter

fields. Another fact about the pure Chern-Simons system is that the components

of the gauge field Ai are canonically conjugate to one another [Ai, Aj ] ∼ εij , this

is strange type of fields theory, with the components of fields not commuting with

one another ([1]).

We can use the Chern-Simons theory with U(1)-gauge group for interpretation

of linking numbers in knot theory, this number is topological invariant for links

in 3-manifolds. The non-trivial linking numbers of link arise from non-trivial

flat connections in Chern-Simons for which the spatial surface to have non-trivial

topology.

Since the Chern-Simons action does not depend on the metric, its energy-

momentum tensor is zero,

Tµν = −2
δSCS
δgµν

= 0.
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The sourceless stress energy tensor therefore vanishes, so this theory is completely

invariant under space-time diffeomorphisms and can therefore be called topological

theory, i.e. independent of local geometry. But if we couple the gauge field with

particles, then the energy levels and spins of particles can be shifted from their

classical values.

1 Chern-Simons theory of U(1)

Let P = M4 × U(1) be the trivial principal U(1)-bundle on a compact oriented

smooth 4-manifold M4 with boundary M3 = ∂M4. Since P is trivial, we may

regard the connection A as u(1)-valued 1-form over M4. In this case, U(1) group,

we can easily obtain the Chern-Simons term
∫

M3
A ∧ dA by using Stokes theorem

from the topological action
∫

M4
F ∧F with the curvature F of a connection A on

P . The equation of motion of the Chern-Simons action requires flat connections

on the boundaryM3, so that the restriction P |M3
of P toM3 is flat principal U(1)-

bundle. (But in over the bounding 4-manifold M4, this topological term depends

only on the boundary value of the curvature and in particular not flat solutions

over the interior of M4, and so we have the boundary condition F (A)|∂M4
= 0.

This condition is precisely the equation of motion of Chern-Simons action on the

boundary M3 = ∂M4). We start with the topological term
∫

M4

F ∧ F =

∫

M4

dA ∧ dA =

∫

M4

d (A ∧ dA) .

This term is gauge invariant since F is invariant under U(1)-gauge transforma-

tions, and the cohomology class [F ∧ F ] ∈ H2
DR(M) is also invariant under one-

parameter family of diffeormorphisms since dF = 0 and so it changes by addition

of an exact form under diffeomorphisms. By integrating it overM4 with boundary

M3 = ∂M4, we get
∫

M4

F ∧ F =

∫

M4

d (A ∧ dA) =

∫

M3

A ∧ dA.

Definition 1.1. Let A be the space of all smooth U(1)-connections on the trivial

principal U(1)-bundle P = M3 × U(1) → M3. Then the U(1)-Chern-Simons
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functional SCS : A → R is defined to be

SCS(A) =
k

2π

∫

M3

A ∧ dA =
k

2π

∫

M3

A ∧ F , (1)

where k is some constant factor which will be discussed later for non-abelian gauge

group.

Let G be the group of all U(1)-gauge transformations g : P → P . Now the

U(1)-gauge transformation can be identified with a map g ∈ Map(M3, U(1)).

Then G acts on A by g∗A = g−1Ag + g−1dg.

Proposition 1.1. The U(1)-Chern-Simons functional SCS : A → R is invariant

under U(1)-gauge transformations, SCS(g
∗A) = SCS(A) for all A ∈ A and g ∈ G.

Proof. Under infinitesimal gauge transformations, A→ A+dλ, with λ ∈ Ω0(M3;u(1)),

by using dF = 0, we obtain

SCS(A+dλ) =
k

2π

∫

M3

(A+ dλ) ∧ d(A+ dλ) =
k

2π

∫

M3

A ∧ F+
k

2π

∫

M3

(dλ) ∧ F

=
k

2π

∫

M3

A ∧ F +
k

2π

∫

M3

d(λF ).

If ∂M3 = ∅, we have
∫

M3
d(λF ) = 0, therefore SCS(A + dλ) = SCS(A) for

infinitesimal gauge transformations in which A′ − A = dλ is exact. In large

gauge transformations, g∗A = g−1Ag + ω for not necessarily exact ω = g−1dg ∈

Ω1(M3;u(1)) with g :M3 → U(1), the action changes as (F is gauge invariant)

SCS(g
∗A) = SCS(A) +

k

2π

∫

M3

ω ∧ F ,

we write
∫

M3

ω ∧ F =

∫

M3

ω ∧ dA = −

∫

M3

d(ω ∧ A) = −

∫

∂M3

ω ∧ A = 0.

Proposition 1.2. The critical points set of SCS : A → R is precisely the set F of

all flat connections A. In fact A is given by A = g−1dg over a contractible open

set U for some smooth map g : U → U(1) called pure gauge solution.
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Proof. From the action (1), we obtain ( by ignoring the boundary, or take ∂M3 =

∅)

d

dt

∣

∣

∣

∣

t=0

SCS(A+ tα) =
k

2π

d

dt

∣

∣

∣

∣

t=0

∫

M3

(A+ tα) ∧ FA+tα

=
k

2π

∫

M3

d

dt

∣

∣

∣

∣

t=0

(A+ tα) ∧ (FA + tdα)

=
k

2π

∫

M3

d

dt

∣

∣

∣

∣

t=0

(A ∧ FA + tA ∧ dα + tα ∧ FA + t2α ∧ dα)

=
k

2π

∫

M3

(α ∧ FA + A ∧ dα),

then we use d(A ∧ α) = dA ∧ α− A ∧ dα and FA = dA to get

d

dt

∣

∣

∣

∣

t=0

SCS(A+ tα) =
k

π

∫

M3

α ∧ FA,

and therefore

d

dt

∣

∣

∣

∣

t=0

SCS(A+ tα) = 0 for all α ∈ Ω1(M3; g) implies FA = 0,

thus we have flat connection, FA = 0. Then the A-parallel transport give a

trivialization P |U ∼= U × U(1) and let g : U → U(1) be the transition function to

the original trivialization P |U = U × U(1) then A = g∗0 = g−1dg.

The holonomy Holγ(A) = exp
∫

γ

A of the flat connection A on M3 depends

only on the homology class [γ] ∈ H1(M3;Z) of loops γ based at x0 inducing a

homomorphim ρ : H1(M3;Z) → U(1). In fact if [γ1] = [γ2] ∈ H1(M3;Z), then

there exist a 2-chain S such that
∫

γ2

A−

∫

γ1

A =

∫

∂S

A =

∫

S

dA =

∫

S

FA = 0.

Conversely, if a representation ρ : H1(M3;Z) → U(1) is given, let M̃3 be the

universal covering π : M̃3 → M3 of M3, and P̃ → M̃3 be the pullback bundle
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P̃ = π∗P → M3, then P = P̃ /H1(M3;Z), where the acting of the homology

group H1(M3;Z) on M̃3 × U(1) is given by

[γ] · (x̃, g) = (γ · x̃, ρ(γ)g) , for x̃ ∈ M̃3, [γ] ∈ H1(M3;Z).

Since the parallel transport gives a trivialization P̃ ∼= M̃3 ×U(1), the trivial con-

nection on P̃ induces a flat connection A on P .

Now we introduce a current J ∈ Ω2(M3;u(1)) to add a source term to SCS(A)

as follows ([1])

SCS(A, J) =
k

2π

∫

M3

A ∧ dA+

∫

M3

A ∧ J. (2)

Then the equation of motion becomes

δ

δA(x)
SCS(A, J) =

k

π
F (x) + J(x) = 0 ⇒ F = −

π

k
J,

this is linear relation between the curvature F and the source J ∈ Ω2(M3;u(1)),

also since dF = 0, the source is also closed dJ = 0 and not necessarily exact for

non-trivial principal U(1)-bundle.

The Chern-Simons theory is used for interpretation or definition of topological

invariants, like Wilson loops, Jones polynomial, or other quantum invariants for

knots or 3-manifolds. We see this by using the path integral of Chern-Simons

theory to calculate the topological invariants ([2]). We give an example about

calculating the linking numbers of Wilson loops.

Let γ be an oriented loop in M3 and N be a tubular neighborhood of γ with

a trivialization ϕ : N ∼= γ×D2 called framing of γ. Let J ∈ Ω2(M3) be a smooth

2-form with support supp J ⊂ N of the form J = ϕ∗(frdr ∧ dθ) with an oriented

coordinates t of γ and polar coordinates (r, θ) of D2 for a smooth function f of

supp f ⊂ D2 satisfying
∫

D2 frdr ∧ dθ = 1. This 2-form J is called a flux tube of

γ with framing ϕ. Then we have the following
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Theorem 1.1. Let M3 be a closed oriented 3-manifold with H1(M3;Z) = {0}.

Let {γα} be a mutually disjoint oriented loops in M3 with framings. Let J =
∑

α nαJα ∈ Ω2(M3) be a smooth 2-form on M3 associated with a 1-cycle γ =
∑

α nαγα in M3 for flux tubes Jα of γα with mutually disjoint supports each other.

If A is a solution of the equation F = −π
kJ , then

∫

M3
A ∧ dA = π2

k2
∑

α,β nβnαL(γα, γβ).

Proof. Here for simplicity we replace the flux tubes Jα with de Rham currents of

degree 2 on M3. Let {γα} be a set of loops in M3, γα : [0, 1] → M3, the Wilson

operator(gauge invariant) on the loop γα is

W (nα, γα) = exp inα

∫

γα

A,

where nα ∈ Z is charge. Now the action becomes

SCS(A, J) =
k

2π

∫

M3

A ∧ dA+
∑

α
nα

∫

γα

A.

Let Jα ∈ Ω(M3) be the closed current of degree 2 representing the loop γα ⊂M3,

given by

Jα(x) =
1

2
dxidxjεijk

∮

γα

dxk(t)

dt
δ3 (x− x(t)),

where
dxk(t)
dt is the tangent vector to γα at the point x(t).

Since
∫

γα

A =
∫

M3

A ∧ J , the equation of motion becomes

F (x) = −
π

k

∑

α
nαJα = −

π

k

∑

α
nα

1

2
dxidxjεijk

∮

γα

dt
dxk(t)

dt
δ3 (x− x(t)),

so

dA(x) = −
π

k

∑

α
nα

1

2
dxidxjεijk

∮

γα

dt
dxk(t)

dt
δ3 (x− x(t)).

Let {γβ} be a set of mutually disjoint loops γβ in M3. Since H1(M3;Z) = {0},

there exists a compact oriented surface Dβ with boundary ∂Dβ = γβ embedded
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in M3 and we can calculate Wilson link of {γβ} as follows

W ({γβ}) = exp i
∑

β
nβ

∫

γβ

A = exp i
∑

β
nβ

∫

Dβ

dA = exp
−iπ

k

∑

α,β
nβnα

∫

Dβ

Jα.

Since Jα is a δ-function valued 2-form in the direction normal to
dxk(t)
dt , the in-

tegration
∫

Dβ

Jα is the linking number L(γα, γβ) of the two loops γα and γβ, and

therefore

W ({γβ}) = exp
−iπ

k

∑

α,β
nαnβL(γα, γβ).

Here we have a problem of defining self-linking L(γα, γα). To treat the self-linking

properly, we need to discuss with flux tubes.

Doing same thing,
∫

M3

A ∧ dA =

∫

M3

A ∧
(−π

k

∑

α
nαJα

)

=
−π

k

∑

α
nα

∫

M3

A ∧ Jα

=
−π

k

∑

α
nα

∫

γα

A =
−π

k

∑

α
nα

∫

Dα

dA

=
−π

k

∑

α
nα

∫

Dα

−π

k

∑

β
nβJβ

=
π2

k2

∑

α
nα

∑

β
nβ

∫

Dα

Jβ =
π2

k2

∑

α,β
nαnβL

(

γα, γβ
)

.

We find that
∫

M3

AdA also depends linearly on the linking number L(γα, γβ) when

A satisfies the equation of motion F = −π
kJ .

We can define a nonabelian version of the Chern-Simons action on a compact

connected smooth oriented 3-manifold M3 ([3]). Let G be a Lie group and P =

M3 × G → M3 be the trivial principal G-bundle. The gauge field A on P takes

values in the Lie algebra g = Lie(G) of G. We write A = AaT a ∈ Ω1(M3, g)

where the {T a} are the generators of g, for a = 1, · · · , dim(g), satisfying the
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commutation relations [T a, T b] = ifabcT
c, and the normalization Tr(T aT b) = ηab,

where ηab is the Killing form on the Lie algebra of G. The Chern-Simons action

is defined as follows.

Definition 1.2. Let A be the space of all smooth G-connections on the trivial

principal G-bundle P =M3×G→M3. Then the Chern-Simons action functional

SCS : A → R is defined to be

SCS(A) =
k

2π

∫

M3

Tr
(

A ∧ dA+
2

3
A ∧ A ∧ A

)

, (3)

for any A ∈ A ∼= Ω1(M3, g).

Then we have the following.

Proposition 1.3. The critical point set of SCS : A → R is the set F of all

flat connections A on P . A is locally given by A = g−1
U dgU for smooth map

gU : U → G on a contractible open set U in M3.

Proof. The variation of SCS(A) under arbitrary δA ∈ Ω1(M3; g) is

δSCS(A) =
k

2π

∫

M3

Tr((δA) ∧ dA+ A ∧ dδA+
2

3
δA ∧ A ∧ A

+
2

3
A ∧ δA ∧ A+

2

3
A ∧ A ∧ δA),

by using properties of the trace, this gives

δSCS(A) =
k

2π

∫

M3

Tr (d(δA ∧ A) + 2δA ∧ dA+ 2δA ∧ A ∧ A) .

The first term is boundary term
∫

∂M3
Tr(δA ∧ A), (it relates to sympletic form

∫

∂M3
Tr(δA∧ δA)), so it does not contribute to the equation of motion under the

condition of variation δA|∂M3
= 0. Thus we obtain

δSCS(A) =
k

2π

∫

M3

Tr (2δA ∧ (dA+ A ∧ A)) =
k

2π

∫

M3

Tr (2δA ∧ F (A)) .

The condition δSCS(A) = 0 implies F (A) = 0, this is just vanishing the curvature

(there is no dynamics in SCS(A)). The source-free equations F (A) = 0 has pure
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gauge solutions (flat connections) A = g−1
U dgU , for gU : U → G, since A-parallel

transport gives a trivialization of P over a contractible open set U ⊂M3 and the

transition function gU to the original trivialization gives A = g∗U0 = g−1
U gU .

Let G be the group of all smooth automorphisms(gauge transformation) g :

P → P of the G-bundle P . Since the bundle P is trivial P = M3 × G, we can

write g : M3 → G. G acts on A by g∗A = g−1Ag + g−1dg, for g ∈ G, A ∈ A.

Then we have the next.

Proposition 1.4. SCS : A → R behaves SCS(g
∗A) = SCS(A) − 4πkw(g) under

the action of g ∈ G, where w(g) =
∫

M3

1
24π2Tr

(

(g−1dg)3
)

is the winding number

of g :M3 → G, M3 is a compact connected smooth oriented closed 3-manifold.

Proof. The gauge transformation Ag = g−1Ag + g−1dg in SCS(A) produces a

boundary term on ∂M . This boundary term makes eiSCS(A) not gauge invariant.

In order to get an invariance we add WZW actions on the boundary term of the

Chern-Simons action.

To calculate SCS(A
g), set g−1dg = α and g−1Ag = w to calculate the La-

grangian of SCS(w + α),

L(Ag) = L(w + α) = Tr
(

(w + α)d(w + α) +
2

3
(w + α)3

)

= Tr(w + α)d(w + α) +
2

3
Tr

(

(w + α)3
)

,

we use trace cyclic properties, and since the three form tr(AAA) is also invariant

under cyclic reordering, Tr
(

(w + α)3
)

behaves as commuting between one-forms

w and α. Thus we get

L(Ag) = Tr(wdw + wdα + αdw + αdα) +
2

3
Tr(w3 + α3 + 3w2α + 3wα2)

= Tr(wdw)+Tr(wdα)+Tr(αdw)+Tr(αdα)+
2

3
Tr(w3)+

2

3
Tr(α3)+2Tr(w2α)+2Tr(wα2).
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Using w = g−1Ag, we obtain

L(Ag) =Tr
(

g−1Agd(g−1Ag)
)

+ Tr
(

g−1Agdα
)

+ Tr
(

αd(g−1Ag)
)

+ Tr(αdα)

+
2

3
Tr

(

g−1Ag
)3

+
2

3
Tr(α3) + 2Tr

(

(g−1Ag)2α
)

+ 2Tr
(

(g−1Ag)α2
)

.

This becomes (Appendix B (8))

L(Ag) = L(A) + L(α)− dTr
(

αg−1Ag
)

,

therefore

L(Ag)− L(A) = L(α)− dTr
(

αg−1Ag
)

.

The first term of the right hand side is

L(α) = Tr(αdα) +
2

3
Tr(α3) = Tr

(

g−1dgd(g−1dg)
)

+
2

3
Tr

(

(g−1dg)3
)

= −
1

3
Tr

(

(g−1dg)3
)

.

Therefore the changing of SCS(A) under the gauge transformation g :M3 → G is

δSCS (A) = −
k

2π

∫

M3

1

3
Tr

(

(g−1dg)3
)

−
k

2π

∫

M3

d
(

Tr(αg−1Ag)
)

,

and using

Tr
(

αg−1Ag
)

= Tr
(

g−1dgg−1Ag
)

= Tr
(

dgg−1A
)

= −Tr
(

A(dg)g−1
)

,

this becomes

δSCS (A) = −
k

2π

∫

M3

1

3
Tr

(

(g−1dg)3
)

+
k

2π

∫

M3

d
(

TrAdgg−1
)

.

The winding number of the group valued g :M3 → G is

w(g) =

∫

M3

1

24π2
Tr

(

(g−1dg)3
)

∈ Z,

so

−
k

2π

∫

M3

1

3
Tr

(

(g−1dg)3
)

= −4πkw(g),
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Therefore it must be k ∈ 1
2Z in order to keep the contribution of the first term

in exp(iδSCS) trivial. But exp(iSCS) is not invariant when the manifold M3 has

boundary Σ = ∂M3. We will see the term TrA(dg)g−1 in exponential solution of

F (A)ψ(A) = 0 on Σ, where ψ(A) is quantum state.

2 Chern-Simons theory over the torus T 2

We study the Chern-Simons theory of group U(1) on space-time T 2 × R, with

torus T 2 = S1 × S1, and its quantization. In the following discussion we will

see that the corresponding Hilbert space is a complex vector space of dimension

2k. By taking a gauge transformation on P → T 2 × R if necessary, we may

assume that the dt-component of the connection A is zero, so it is in the form

A(t, x) = a1(t, x)dx
1 + a2(t, x)dx

2, ai(t, x) ∈ C∞(T 2 ×R;u(1)) ([4, 5]).

Let (x1, x2) be the standard coordinate on R2. Then the coordinate (x1, x2)

gives a local coordinate on torus T 2 = R2/Z2 through the map

φ : R2 → T 2 = R2/Z2, φ(x1, x2) = [(x1, x2)],

with the class [(x1, x2)] = [(x1 +m1, x2 +m2)], (m1,m2) ∈ Z2.

There are two generators of π1 and we can take a representatives

α : [0, 1] → T 2 = R2/Z2, α(t) = [t, 0],

β : [0, 1] → T 2 = R2/Z2, β(t) = [0, t].

Remark 2.1. The gauge equivalence classes of flat G-connections on a manifoldM

are in one-to-one correspondence with the conjugancy classes of homomorphisms

π1(M) → G.

Let γs(t) be a homotopy of loops from γ0(t) to γ1(t) based on x0, and 0 ≤ s ≤ 1.

Take a connection A ∈ A, then consider the A-holonomy map from space of all

loops Ωx0(M) based on x0 ∈M to the group G,

Hol(A) : Ωx0(M) → G,
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given by

Holγs(A) = P exp

∫

γs

A,

where P is path ordered. If the connection A is flat, F (A) = 0, we have
d
dsHolγs(A) = 0, and hence Holγ(A) depends only on the homotopy class of γ. It

follows thatHol(A) induces a group homomorphismHol(A) : π(M,x0) → G ([6]).

Therefore, the gauge equivalence classes of flat U(1)-connections are described

by homomorphisms π1(T
2) → U(1), and these are given by the holonomies around

the α, β cycles

U1 = Holα(A) = e
i
∮

α

A
, U2 = Holβ(A) = e

i
∮

β

A

,

from which we can define logarithms

Ui = eiai , [ai(t, x)] ∈ R/2πZ.

Let Atemp be the space of all smooth U(1)-connections on P = R× T 2 ×U(1) →

R× T 2 in temporal gauge

A(t, x) = a1(t, x)dx
1 + a2(t, x)dx

2 ∈ Ω1(R× T 2;u(1)),

and let Gtemp be the group of gauge transformation Map(R×T 2;U(1)) which are

constant along R, in order that Gtemp acts on Atemp. Let g = exp 2πi(m1x
1 +

m2x
2) ∈ Gtemp, then

g · A = A+ g−1dg = a1dx
1 + a2dx

2 + g−1∂1gdx
1 + g−1∂2gdx

2

= (a1 + 2πim1)dx
1 + (a2 + 2πim2)dx

2.

If the connection A on R× T 2 is flat, then

0 = dA = dt ∧ ∂tA+ F (A2),

so that

∂tA = 0, and F (A2) = 0,

13



in the temporal gauge.

We regard Atemp/Gtemp as Map(R,A/G), where A is the space of U(1)-

connections on P → T 2 and G = Map(T 2, U(1)). We write the U(1)-connection

A ∈ Γ
(

T ∗T 2 ⊗ u(1)
)

with respect to the trivialization P = T 2 × U(1) as

A = a1(x)dx
1 + a2(x)dx

2,

where we must identify

A = a1(x)dx
1+a2(x)dx

2 ∼ A′ = a′1(x)dx
1+a′2(x)dx

2, if and only if a′i(x)−ai(x) ∈ 2πZ,

because of large gauge transformations g · A = A+ g−1dg over T 2. This identifi-

cation is necessary for quantization of states C∞(A/G) on T 2. We consider such

connections in Chern-Simons action of U(1) with temporal gauge A0 = 0. Then

the Chern-Simons action reduces to

CS (A) =
k

2π

∫

R×T 2

A ∧ dA =
k

2π

∫

R×T 2

aiȧjdx
i ∧ dt ∧ dxj

= −
k

2π

∫

R×T 2

aiȧjdt ∧ dx
i ∧ dxj = −

k

2π

∫

R×T 2

ε0ijaiȧjdtdx
1dx2

= −
k

2π

∫

R×T 2

εijaiȧjdtdx
1dx2 = −

k

2π

∫

R×T 2

(−a1ȧ2 + a2ȧ1)dtdx
1dx2

=
k

2π

∫

R×T 2

(a1ȧ2 − a2ȧ1)dtdx
1dx2.

(4)

We used the Levi-Civita anti-symmetric tensor εij = −εji on T 2 with ε12 = 1

and ε0ij = εij . We need to find a symplectic form on the space A of connections A.

In general, we find a symplectic form on a manifold M , by finding a map

ω : TpM → T ∗
pM,

if we let ω ∈ Ω2(M), then for every v ∈ Γ(TpM), we have a pairing ω(v) ∈ Ω1(M).

When H1
DR(M) = 0, every one-form is exact, so that ω(v) = df for some scalar

14



function f ∈ Ω0(M).

In our case the scalar function is an action. To find a symplectic form, we take

the action with a Hamiltonian H(pi, qi) ∈ C∞ (T ∗M). The variables (q1, ..., qn)

are coordinates on M and z = (q1, ..., qn, p1, ..., pn) are coordinates on T ∗M . Let

γ : I →M and γ̃ : I → T ∗M be a smooth paths with π ◦ γ̃ = γ.

Proposition 2.1. The action

S(γ̃) =

∫

γ̃

pidq
i −H(pi, q

i)dt ∈ R, γ̃ : [t1, t2] → T ∗M (5)

is stationary on the path γ̃ if and only if the trajectory γ̃ satisfies the Hamiltonian

equation.

Proof. Take a variation of S(γ̃) the path γ̃. Let {γ̃s}s∈I be the one-parameter

family of paths γ̃s : I → T ∗M ,

γs(t) = (qi(t) + sδqi(t), pi(t) + sδpi(t)),

with δqi(t1) = δqi(t2) = 0. Then

d

ds

∣

∣

∣

∣

s=0

S(γ̃) =

t2
∫

t1

(

(δpi)q̇
i + piδq̇

i −
∂H(pi, q

i)

∂pi
δpi −

∂H(pi, q
i)

∂qi
δqi

)

dt,

where q̇i is the time derivative of qi. Integrating the second term by parts, we

obtain

d

ds

∣

∣

∣

∣

s=0

S(γ̃) =

t2
∫

t1

(

(δpi)q̇
i − ṗiδq

i −
∂H(pi, q

i)

∂pi
δpi −

∂H(pi, q
i)

∂qi
δqi

)

dt+

t2
∫

t1

d

dt
(piδq

i)dt,

or

d

ds

∣

∣

∣

∣

s=0

S(γ̃) =

t2
∫

t1

((

q̇i −
∂H(pi, q

i)

∂pi

)

δpi −

(

ṗi +
∂H(pi, q

i)

∂qi

)

δqi
)

dt+

t2
∫

t1

d

dt
(piδq

i)dt.

15



This vanishes on the path γ̃, on which δqi(t2) = δqi(t1) = 0, when

dpi

dt
= −

dH

dqi
and

dqi

dt
=
dH

dpi
,

these are the equations of motion.

We see that H(pi, q
i) has a constant value on the path γ̃, this is d(H ◦ γ̃) =

γ̃∗(dH) = 0. From

dH =
∂H

∂pi
dpi +

∂H

∂qi
dqi ∈ Ω1(T ∗M),

we obtain

Ω1(I) ∋ γ̃∗(dH) =

(

∂H

∂pi

∂pi
∂t

+
∂H

∂qi
∂qi

∂t

)

dt, (6)

by using the equations of motion dpi
dt = −dH

dqi and
dqi

dt = dH
dpi

, we find that γ∗(dH) =

0.

We have the boundary term

d

ds

∣

∣

∣

∣

s=0

S(γ̃) =

t2
∫

t1

d

dt
(piδq

i)dt =

∫

γ̃

d(piδq
i) = pi(t2)δq

i(t2)− pi(t1)δq
i(t1),

from which we conclude that the 2-form ω = dpi∧dq
i ∈ Ω2(T ∗M) is a symplectic

form, since δS = 0 on the path γ̃ of constant H(pi, qi) and so ω(vH) = 0, where vH

is vector field on H(pi, qi) = constant, that is (dH)(vH) = 0. From the equations
dpi

dt = −dH
dqi and dqi

dt = dH
dpi on γ̃, we find

vH =
∂pi

∂t

∂

∂pi
+
∂qi

∂t

∂

∂qi
= −

∂H

∂qi
∂

∂pi
+
∂H

∂pi
∂

∂qi
∈ Γ (T (T ∗M)) ,

and

ω(vH) =
(

dpi ∧ dq
i
)

(

−
∂H

∂qi
∂

∂pi
+
∂H

∂pi
∂

∂qi

)

=
∂H

∂qi
dpi +

∂H

∂pi
dpi = dH,

so γ̃∗(dH) = 0 according to (6).
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We define the symplectic form associated with the action SCS(A) (4) by com-

paring it with the action , we find that H = 0 in Chern-Simons action (4). The

moduli space F/G of flat U(1)-connection on P can be identified by the torus as

follows.

F/G ∼= H1
DR(T

2)/H1
DR(T

2)int

∼= {a1dx
1 + a2dx

2|a1, a2 ∈ R}/{m1dx
1 +m2dx

2|m1,m2 ∈ Z} ∼= R2/Z2.

Let (a1, a2) be the standard coordinates on the universal covering R2 → R2/Z2,

define the symplectic form ω on the moduli space F/G of flat connections by

comparing (4) with (5) to be

ω =
k

π
da1 ∧ da2. (7)

therefore ω = 1
2ωijda

i ∧ daj with ω12 = ω12 = π
k . The Poisson brackets are

{f, g} = ωij
∂f

∂ai

∂g

∂aj
.

In our case, we get

{a1, a2} =
π

k
.

The canonical quantization procedure lets us to define the commutation relation

[â1, â2] = −i
π

k
,

for some corresponding operators â1, â2 on a Hilbert space. Let us choose a1

to be the canonical coordinate, so that pa1 = a2 is the corresponding canonical

momentum. Then a wavefunction ψ(a1) is a smooth function ψ : R → C which

comes from the pull-back of a smooth function ψ̃ : R/Z → C by the covering map

π : R2 → R2/Z2. A wavefunction ψ(a1) must be periodic under a1 ∼ a1 + 2πn,

n ∈ Z. From the commutation relation, we have

â2 = i
π

k

∂

∂a1
.

This is translation operator on the coordinate a1, it can be written in exponential

form with some real parameter α as

e−i
k
π
αâ2 ,

17



this acts on ψ(a1) and translates it to ψ(a1 + α), we can see this by the Taylor

expansion of ψ around a1 formally,

e−i
k
π
αâ2ψ(a1) = ψ(a1 + α).

The wavefunction ψ(a1) must be periodic under a1 ∼ a1 + 2π, therefore

e−i2kâ2ψ(a1) = ψ(a1).

By taking the Fourier transform on L2(R) ∋ ψ(a1) ↔ ψ̃(a2) ∈ L2(R∗) with the

kernel e−i
k
π
a1a2 , we get the eigenvalues equation

e−i2ka2ψ̃(a2) = ψ̃(a2).

ψ̃(a2) 6= 0 if and only if a2 = nπ/k for some n ∈ Z. But k is an integer and

a2 ∼ a2 + 2πn, so we choose a2(n) = (nπ/k) mod (2πZ), these are

a2 = 0,
π

k
,
2π

k
, ...,

(2k − 1)π

k
.

Therefore the general wavefunction on the momentum coordinate a2 is of the form

ψ̃(a2) =

2k−1
∑

n=0

cn
∑

m∈Z

δ
(

a2 −
πn

k
− 2πm

)

, cn ∈ C.

Then we take the inverse Fourier transform back to obtain

ψ̃n = ψ̃ (a2(n)) =
1

2π

2π
∫

0

e−i
k
π
a2(n)a1ψ(a1)da1 =

1

2π

2π
∫

0

e−ina1ψ(a1)da1,

with

ψ(a1) =

2k−1
∑

n=0

eina1ψ̃n =

2k−1
∑

n=0

cne
ina1 , cn ∈ C. (8)

This is the physical Hilbert space Hphy = L2(R/Z) of states of U(1) flat connec-

tions F/G = R2/Z2 on the torus T 2, its dimension is 2k, k is integer as we saw
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in previous section. We can choose other canonical coordinate and its momentum

(a′1, a
′
2) on the universal cover R2 → R2/Z2 = F/G by the transformation

(

a′1

a′2

)

=

(

a b

c d

)(

a1

a2

)

,

with
(

a b

c d

)

∈ SL (2,Z) .

This transformation preserves ai ∼ ai + 2πn, since the sums and multiplying by

an integer preserve this equivalence relation. This gives another representations

for the solutions (8).

3 Quantizing Chern-Simons and WZW model

For the canonical quantization of a system on the space R × Σ, we first find the

phase space (the canonical variables ”coordinates” and ”momenta”) which is in-

dependent of time. The phase spae can be obtained by requiring the Lagrangian

be invariant under the time reparametrizion, and this gives both phase space

variables and constraint equations. Then we find a sympletic form to construct

a Poisson brackets. The quantum states are obtained by converting the Poisson

brackets to commutators and can be used in solving the constraint equations. In

general, the constraints generate a canonical transformations of the phase space,

called the constraint group. Therefore the physical phase space of a constrained

system is the space of solutions of the constraint equations modulo the action of

the constraint group. In Chern-Simons theory, the constraints are vanishing of the

curvatures on the principal G-bundle over the space M3 ([7, 8]). The solutions of

the constraint equation F (A) = 0 are flat connections on P . The flat connections

on P →M3 are controlled by homomorhisms π1(M3) → G.
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The Chern-Simons action of G is ([9])

SCS(A) =
k

2π

∫

M3

Tr
(

A ∧ dA+
2

3
A ∧ A ∧ A

)

,

where the connection A = AiT i ∈ Ω1(g) takes values in Lie algebra g of G, {T i}

are generators of g with normalization Tr(T iT j) = δij . Let M3 be the product of

the real line R with a two dimensional closed oriented manifold Σ. Take a local

coordinates (t, x1, x2) on R×Σ. By writing the connection as A = A0dt+Aadx
a,

where (xa)a=1,2 are coordinates on Σ, we obtain

2

3
Tr (A ∧ A ∧ A) =

2

3
Tr (A0dt ∧ A ∧ A+ A ∧ A0dt ∧ A+ A ∧ A ∧ A0dt)

By using the circlic property of the trace, we obtain

2

3
Tr (A ∧ A ∧ A) = 2Tr (A0dt ∧ A ∧ A) , (9)

and

Tr (A ∧ dA) = Tr (A0dt ∧ dA+ A ∧ dt ∧ ∂0A+ A ∧ dA0 ∧ dt)

= dt ∧ Tr (A0dA− A ∧ ∂0A+ A ∧ dA0) .

Then we integrate the third term on Σ by parts, and since Σ is closed, the bound-

ary term vanishes
∫

M3

Tr (A ∧ dA) =

∫

M3

dt ∧ Tr (A0dA− A ∧ ∂0A+ A0dA)

=

∫

M3

dt ∧ Tr (−A ∧ ∂0A+ 2A0dA) .

(10)

From (9) and (10), we obtain

SCS(A) =
k

2π

∫

M3

dt ∧ Tr (−A ∧ ∂0A+ 2A0dA+ 2A0A ∧ A)

=
k

2π

∫

M3

dt ∧ Tr (−A ∧ ∂0A+ 2A0(dA+ A ∧ A))

=
k

2π

∫

R×Σ

dt ∧ Tr
(

−A ∧ ∂0A+ 2A0F (A(2))
)

,
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where F (A(2)) = dA(2) + A(2) ∧ A(2) = (∂aAb + AaAb)dx
a ∧ dxb is the curvature

of the connection A(2) = A1(t, x)dx
1 + A2(t, x)dx

2 on P |{t}×Σ. We have

Tr(−dt ∧ A ∧ ∂0A) = Tr(A ∧ dt ∧ ∂0A) = Tr(εa0bAa∂0Ab)dx
1 ∧ dt ∧ dx2

= Tr(ε0abAa∂0Ab)dt ∧ dx
1 ∧ dx2 = Tr(εabAa∂0Ab)dt ∧ dx

1 ∧ dx2,

where εab is inverse of the Levi-Civita anti-symmetric tensor εab on Σ. By com-

paring with the discussion in (4) and (7), we conclude that A(2) = (Aa)a=1,2 ∈

A(P |{t}×Σ) are the variables of the phase space and F (A(2)) = (Fab)a,b=1,2 = 0 is

the constraint which satisfies the gauge invariance since F (g · A(2)) = g−1F (A(2))g.

The Poisson brackets are

{Aia(x), A
j
b(y)} =

2π

k
εabδ

ijδ2(x− y), (x, y) ∈ Σ.

For the canonical quantization, let Âia(x) (x ∈ Σ) be a linear operator on a Hilbert

space over the space of connectionsA(P |{t}×Σ). Then replace the Poisson brackets

with the commutator

[Âia(x), Â
j
b(y)] = −i

2π

k
εabδ

ijδ2(x− y).

Let E = P ×ρ C
r → Σ be complex vector bundle associates with the principle

G-bundle and a representation ρ : G → GL(r,C). It is suitable to assume a

complex structure on the base space Σ with a complex local coordinates z = x+iy

and z̄ = x − iy. That is Σ is assumed to be Riemann surface and consider the

complexification GC of the structure group G so that the vector bundle E → Σ

is assumed to be a holomorphic vector bundle over Σ. Let A(E) be the space of

all Hermitian connections on E → Σ compatible with the holomorphic structure

on E. By writing the connection as A = Azdz + Az̄dz̄, the commutators become

[Âiz(x), Â
j
z̄(y)] =

π

k
δijδ2(x− y).

If we choose Az as the canonical coordinates on the connection space A(E), and

let Az̄ be canonical momenta, then by the canonical quantization procedure,

Âiz̄(z, z̄) = −
π

k

δ

δAiz(z, z̄)
.
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The curvature is F iz̄z = ∂z̄A
i
z − ∂zAz̄ + [Az̄, Az], we regard it as operator, so

F̂ izz̄ = ∂z̄A
i
z(z, z̄) + ∂z

(

π

k

δ

δAiz(z, z̄)

)

−

[

π

k

δ

δAiz(z, z̄)
, Az(z, z̄)

]

.

Since we have chosen Az as coordinates, then the wave function (state) ψ is

written as ψ(Az) ∈ C∞(A), thus we have the constraint equation F̂Aψ(A) = 0

as requirement for the quantization. The equation FA = 0 is invariant under

gauge transformation, the equation F̂Aψ(A) = 0 is also required to be invariant

under gauge transformation A 7→ g∗A, therefore ψ(Az) 7→ ψ(Agz) = U(g)ψ(Az),

for U : G→ C. We have the constraint equation

F̂ iz̄zψ(Az) = ∂z̄A
i
zψ(Az) + ∂z

(

π

k

δψ(Az)

δAiz

)

−

[

π

k

δψ(Az)

δAiz
, Az

]

= 0.

If we regard ∂z

(

δψ(Az)
δAi

z

)

+
[

Az,
δψ(Az)
δAi

z

]

as covariant derivative of
δψ(Az)
δAi

z
, the last

equation becomes

∂z̄A
i
zψ(Az) +

π

k
Dz

(

δψ(Az)

δAiz

)

= 0.

The infinitesimal gauge transformation of ψ(Az) under infinitesimal parameter

ε ∈ Ω0(g) is

ψ (Az +Dzε) = ψ (Az) +

∫

Σ

Tr

(

(Dzε) ∧
δ

δAz(x)
ψ (Az)

)

+ · · ·

= ψ (Az)−

∫

Σ

Tr

(

εDz
δ

δAz(x)
ψ (Az)

)

+ · · ·,

where we integrated by parts and used the fact that Σ is closed. We can write

this transformation in exponential form with parameter ε ∈ Ω0(g) corresponding

to g ∈ G, g = eε, we get

ψ (Agz) = e−
∫
Σ
Tr(εDz

δ
δAz

)ψ (Az) ,

then using π
kDz

(

δ
δAi

z(x)

)

= −∂z̄A
i
z(x), we obtain

ψ (Agz) = e
k
π

∫
Σ
Tr(ε∂z̄Ai

z)ψ (Az) .
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The surface Σ is closed, so integrating by parts, it becomes

ψ (Agz) = e−
k
π

∫
Σ
Tr(∂z̄ε∧Ai

z)ψ (Az) = e
k
π

∫
Σ
Tr(Ai

z∧∂z̄ε)ψ (Az) .

But g−1∂z̄g = ε+O(ε2), therefore

ψ (Agz) = e
k
π

∫
Σ
Tr(Ai

z∧g
−1∂z̄g+O(ε2))ψ (Az) .

Let us write k
π

∫

Σ
Tr

(

Aiz ∧ g
−1∂z̄g +O(ε2)

)

= f(A, g), the function f(A, g) has

to satisfy

f(Az, g1) + f(Ag1 , g2) = f(Az, g1g2) mod (2πiZ), (11)

in order to get U(g2)U(g1)ψ = U(g2g1)ψ, where (U(g)ψ) (Az) = ψ(Agz) with

Ag = g−1Ag + g−1dg and (Ag1)g2 = Ag1g2 . We find that

f(Az, g) =
k

2π

∫

Σ

TrA1,0(∂̄g)g−1 + kS±
WZW (g),

satisfies (11), where S±
WZW : Map(Σ, G) → R is called WZW action defined to

be

S±
WZW (g) =

c

4π

∫

Σ

Tr(g−1∂gg−1∂̄g)±
c

12π

∫

M

Tr(g−1dg)3, (12)

with ∂M = Σ, and c is constant. The condition (11) follows from the fact that

the WZW action S± := S±
WZW satisfies ([7])

S±(g1g2) = S±(g1) + S±(g2) +
1

π

∫

Σ

Tr(g−1
1 ∂g1g

−1
2 ∂̄g2).

Finally, we have

f+(Az, g) = −kS+(g) +
k

2π

∫

Σ

Tr(A1,0g−1∂̄g),

and

f−(Az, g) = +kS−(g) +
k

2π

∫

Σ

Tr(A1,0∂̄gg−1).

These two functions satisfy (11). Thus we obtain the path integral of a two-

dimensional WZW action for the group G with the source term k
2πTr(A

1,0∂̄gg−1).

We get classical solutions Map(Σ, G) by requiring δ
δgf(A

1,0, g) = 0.
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Theorem 3.1. WZW action (12) for the group G has a conformal symmetries

GL ×GR, the corresponding currents are holomorphic and anti-holomorphic cur-

rents.

We see this clearly when we consider the transformation functions Λ ∈ G as

holomorphic or anti-holomorphic functions on the coordinates (z, z̄), these func-

tions act on g leading to conformal transformations of WZW action (12). The

inavariance of WZW action under the transformations g 7→ Λ(z)g and g 7→ Λ(z̄)g

gives conserved holomorphic and anti-holomorphic currents (Appendix C (9)).

4 WZW model on 3d SU(2) algebra and on 4d

Heisenberg algebra

As we saw, WZW model is a solution of Chern-Simons on 2d surface Σ with-

out boundary immersed in manifold MG of Lie group G. Here we see that the

WZW model induces metric on group manifold MG by using the Killing form on

Lie algebra of G and the metric on Σ. In some groups, like Heisenberg group,

that metric is Lorentz metric. While in other groups that metric is Taub–NUT

metric, like SU(2) group ([10]). We apply WZW model on SU(2) algebra which

has 3 dimensions, three generators and on Heisenberg algebra which has 4 di-

mensions, four generators ([11]). The WZW model for a group G depends on the

metric on Lie(G) ∼= TeG and metric on 2d surface that immersed in manifoldMG.

Definition 4.1. The Heisenberg group H4 is generated by {a, a+, N = a+a, I},

with the commutation relations

[a, a+] = I,

[N, a+] = a+,

[N, a] = −a.
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Let t1 = a+, t2 = a, t3 = N , t4 = I, then the commutation relations becomes

[t1, t2] = −t4, so f12
4 = −1

[t3, t1] = t1, so f31
1 = 1

[t3, t2] = −t2, so f32
2 = −1.

A Killing form η is invariant so it has to satisfy

ηcdfab
d + ηbdfac

d = 0, so fabc + facb = 0,

where we use η for raising and lowering indices in adjoint representation. This

has to keep fabc anti-symmetric tensor, it can given by non-degenerate, like

(ηab) =













0 a 0 0

a 0 0 0

0 0 b −a

0 0 −a 0













,
(

ηab
)

=













0 a−1 0 0

a−1 0 0 0

0 0 0 −a−1

0 0 −a−1 −ba−2













.

Therefore

f123 = η34f12
4 = a× 1 = a, f321 = η12f32

2 = −a, f312 = η21f31
1 = a.

The elements of H4 are written as

g = eiqa+iq̄a
+

eiuN+ivI ,

q and q̄ are complex coordinates and u and v are real coordinates on the manifold

of Heisenberg group H4. We have the relations

eiqa+iq̄a
+

= eiqaeiq̄a
+

e−[iqa,iq̄a+]/2 = eiqaeiq̄a
+

e(qq̄)/2

e−iuNaeiuN =

(

∞
Π
i=0
e−iuiN

)

a

(

∞
Π
i=0
eiuiN

)

= eiua,

e−iq̄a
+

aeiq̄a
+

=

(

∞
Π
i=0
e−iq̄ia

+

)

a

(

∞
Π
i=0
eiq̄ia

+

)

= a+ i
1

2
q̄I,

(13)

with |ui| ≺≺ 1 and u
∞
∑

i=0

ui = u, same thing for q̄. The one-form θ = g−1dg is

g−1dg = e−iuN−ivIe−iqa−iq̄a
+

d
(

eiqa+iq̄a
+

eiuN+ivI
)

= e−iuN−ivIe−iqa−iq̄a
+

(iadq + ia+dq̄)eiqa+iq̄a
+

eiuN+ivI

+ e−iuN−ivIe−iqa−iq̄a
+

eiqa+iq̄a
+

(iNdu+ iIdv)eiuN+ivI ,
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this gives

g−1dg = e−iuN−ivIe−iqa−iq̄a
+

(iadq + ia+dq̄)eiqa+iq̄a
+

eiuN+ivI

+ e−iuN−ivI(iNdu+ iIdv)eiuN+ivI ,

= e−iuN−ivI
(

i(a+ i
1

2
q̄I)dq + i(a+ − i

1

2
qI)dq̄

)

eiuN+ivI + (iNdu+ iIdv)

= e−iuN−ivI i
(

a+ i
1

2
q̄I
)

dqeiuN+ivI + e−iuN−ivI i
(

a+ − i
1

2
qI
)

dq̄eiuN+ivI

+ (iNdu+ iIdv)

= i
(

eiua+ i
1

2
q̄I
)

dq + i
(

e−iua+ − i
1

2
qI
)

dq̄ + (iNdu+ iIdv),

therefore

g−1dg = ieiudqa−
1

2
q̄dqI + ie−iudq̄a+ +

1

2
qdq̄I + iNdu+ iIdv

= ieiudqa+ ie−iudq̄a+ + iduN +
(

−
1

2
q̄dq +

1

2
qdq̄ + idv

)

I

= e1 + e2 + e3 + e4.

We define one-forms flat connections Ω1(M)⊗ Lie(G)

e1 = ieiudq,

e2 = ie−iudq̄,

e3 = idu,

e4 = i
(

i

2
q̄dq −

i

2
qdq̄ + dv

)

.

These are one-forms connections, if we use the metric η on lie algebra, and metric

g on 2d dimensions, we obtain

tr
(

g−1dg ∧ ∗g−1dg
)

→

gijeai e
b
jηab = −

(

2agij∂iq∂j q̄ − 2agij
(

i

2
q̄∂iq −

i

2
q∂iq̄ + ∂iv

)

∂ju+ bgij∂iu∂ju
)

,

and anti-symmetric term is

tr
(

g−1dg
)3

→ǫijkeai e
b
je
c
ktr(TaTbTc) =

1

2
ǫijkeai e

b
je
c
ktr([Ta, Tb]Tc) =

1

2
ǫijkeai e

b
je
c
kfab

etr(TeTc)

=
1

2
ǫijkeai e

b
je
c
kfab

eηec =
1

2
ǫijkfabce

a
i e
b
je
c
k =

1

2
ǫijk6f123e

1
i e

2
je

3
k = 3aǫijke1i e

2
je

3
k

= −3aiǫijk∂iq∂j q̄∂ku = −3aiǫijk∂k(u∂iq∂j q̄).
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The SWZW is

SWZW =
1

2π

∫

Σ

tr
(

g−1dg
)

∧ ∗
(

g−1dg
)

+
1

6π

∫

X

tr
(

g−1dg
)3
,

the Wedge star operator is with respect to metric on Σ. This becomes

SWZW =
−1

2π

∫

Σ

d2σ
(

2agij∂iq∂j q̄ − 2agij
(

i

2
q̄∂iq −

i

2
q∂iq̄ + ∂iv

)

∂ju+ bgij∂iu∂ju
)

−
ai

2π

∫

X

ǫijk∂k(u∂iq∂j q̄),

then

SWZW =

−1

2π

∫

Σ

d2σ
(

2agij∂iq∂j q̄ − 2agij
(

i

2
q̄∂iq −

i

2
q∂iq̄ + ∂iv

)

∂ju+ bgij∂iu∂ju+
ai

π
ǫiju∂iq∂j q̄

)

,

or

SWZW =

−a

π

∫

Σ

d2σ

(

gij∂iq∂j q̄ − gij
(

i

2
q̄∂iq −

i

2
q∂iq̄ + ∂iv

)

∂ju+
b

2a
gij∂iu∂ju+

i

2π
ǫiju∂iq∂j q̄

)

,

The background space-time metric, in the coordinate (q, q̄, u, v) is

ds2 = dqdq̄ −
(

i

2
q̄dq −

i

2
qdq̄ + dv

)

du+ β2du2,

with β2 = b/2a. And antisymmetric field is B = iudq ∧ dq̄/2.

By introducing polar coordinates q = Reiθ, q̄ = Re−iθ, the metric turns out

to be

ds2 = dR2 +R2dθ2 −
(

dv −R2dθ
)

du+ β2du2

= −
(

dv −R2dθ
)

du+ dR2 +R2dθ2 + β2du2.

The signature of this metric in the orthonormal basis

e0 = 1
2θ

(

dv −R2dθ
)

du

e1 = dR

e2 = Rdθ

e3 = βdu− e0
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is (−+++), this is Lorentzain metric on the manifold of Heisenberg group H4.

We apply WZW-model on SU(2). We parametrize an element of SU(2) by

Euler angles,

g = eϕT3eθT2eχT3 ,

and

g =

(

eiφ/2 0

0 e−iφ/2

)(

cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)(

eiχ/2 0

0 e−iχ/2

)

,

with

0 ≤ χ ≺ 4π, 0 ≤ θ ≺ π, 0 ≤ ϕ ≺ 2π.

The commutation relations of the generators {T1, T2, T3} are

[Ti, Tj ] = iεijkTk, (Ti)
+ = Ti.

This then means that θ, ϕ are the usual angular coordinates describing the unit

radius sphere S2, and χ describes some circle S1. The parametrization expresses

the fact that topologically SU(2) is S3, which due to a mapping devised by Hopf,

is equal to a S2 fibered by and S1. By writing

g−1dg = iσiTi → σi =
1

i
tr
(

T ig−1dg
)

,

this gives

σ1 = cos(φ)dθ + sin(φ) sin(θ)dχ,

σ2 = − sin (φ)dθ + cos(φ) sin(θ)dχ,

σ3 = dφ+ cos(θ)dχ.

From the commutation relations, the metric on su(2) is just Kronecker’s delta.
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The symmetric term in SWZW is

1

2π

∫

X

tr
(

g−1dg
)2

=
1

2π

∫

X

δijσ
i ⊗ σj

=
1

2π

∫

X

(

dχ2 + dθ2+dφ2+2 cos(θ)dχdφ
)

=
1

2π

∫

X

(

(dχ+ cos(θ)dφ)2 + dθ2 + sin2(θ)dφ2
)

.

This is induced metric on manifold S3 of the group SU(2), it has form of so-called

Taub-NUT metric. Usually Taub-NUT metrics will contain a factor f(r, t) like

(dt+Nf(r, t) cos(θ)dφ)2 ,

where N is the so-called Taub-NUT charge which has the interpretation of a

gravitational instanton. The anti-symmetric term in SWZW is

1

6π

∫

X

tr
(

g−1dg
)3

=
1

6π

∫

X

tr
(

σiTiσ
jTjσ

kTk
)

=
1

6π

∫

X

σiσjσktr (TiTjTk)

=
1

3π

∫

X

σiσjσktr ([Ti, Tj ]Tk) =
1

3π

∫

X

σiσjσkεij
ℓtr (TℓTk)

=
1

3π

∫

X

σiσjσkεij
ℓηℓk =

1

3π

∫

X

σiσjσkεijk =
2

π

∫

X

ε123σ
1 ∧ σ2 ∧ σ3

=
2

π

∫

X

sin(θ)dθ ∧ dχ ∧ dφ =
−2

π

∫

X

d (cos(θ) ∧ dχ ∧ dφ)

=
−2

π

∫

Σ

cos(θ)dχ ∧ dφ,

the anti-symmetric form of SWZW is −2
π cos(θ)dχ ∧ dφ.

5 Chern-Simons theory of gravity

In (2+1)-dimensional spacetime there are reasons for the simplicity of general

relativity, one of them is that the curvature tensor Rµνρσ is written in terms of a
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scalar curvature R, and Ricci tensor Rµν as ([12])

Rµνρσ = gµρRνσ + gνσRµρ − gνρRµσ − gµσRνρ −
1

2
(gµρgνσ − gµσgνρ)R,

where (xµ) = (x0, x1, x2) with g = gµνdx
µdxν is type (−,+,+). This implies that

any solution of the vacuum Einstein field equations is a flat metric, and that any

solution of the field equations with a cosmological constant,

Rµν = 2Λgµν

has a solution of a metric of constant curvature. Physically, a (2+1)-dimensional

spacetime has no local degrees of freedom: there are no gravitational waves in the

classical theory, and no gravitons in the quantum theory.

The vanishing of the curvature implies that M can be covered by a set of

contractible coordinate patches Ui, each isometric to the Minkowski space M2,1

of dimension 2 + 1 with the standard Minkowski metric ηµν . In general these

patches must be glued together by coordinate transform φij on the intersections

Ui ∩ Uj , which determine how points are identified. Since the metrics on Ui and

Uj are identical, these transition functions must be isometries for the metric ηµν ,

that is, elements of the Poincaré group ISO(2, 1). Also global isometries of the

(2+1)-dimensional spacetime M can be given in terms of in the local Lorentz

transformations and translations.

Let M be a connected compact oriented smooth 3-manifold possibly with

boundary. A flat geometry on M determines a holonomy space M

M = Hom(π1(M), ISO(2, 1))/∼,

where ρ1 ∼ ρ2 for two representations ρ1, ρ2 : π1(M) → ISO(2, 1) if ρ2 = g−1ρ1g

for some g ∈ ISO(2, 1). Conversely, we can get flat geometry on M by acting an

ISO(2, 1)-representation ρ : π1(M) → ISO(2, 1) of the fundamental group π1(M)

acting properly discontinuously on a region W ⊂ M2,1 of Minkowski space, since

a flat metric is determined by its holonomies. In fact M is isometric to W/∼,
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where x ∼ y for x, y ∈ W if y = ρ([γ])x for a homotopy class [γ] of path γ. This is

a generalization of quotient construction for the flat torus. And ifM ∼= R×Σ, the

fundamental group π1(M) is isomorphic to π1(Σ). If the cosmological constant Λ

is nonzero, then the (2+1)-dimensional spacetime has constant curvature, and the

coordinate patches Ui will be isometric to de Sitter space (for Λ > 0) or anti-de

Sitter space (for Λ < 0). The gluing isometries become elements of SO(3, 1) (for

Λ > 0) or SO(2, 2) (for Λ < 0 ), and the holonomies are now elements of one of

these groups.

In order to construct a gravity theory in a formulation without using a met-

ric, Palatini considered the variables (eI , ωIJ) instead of (gµν ,Γ
ρ
µν). To construct

a gauge theory of gravity, the variable eI is supposed to be a component of a

connection in the Poincaré group in addition to the Lorentz group connection

ωIJ . Using the Chern-Simons theory for the Poincaré group in 2 + 1 dimensions

we recover the Einstein-Hilbert action and the same equations of motion for the

gravity. Since we have the same equations of motion, this theory regarding the

gravitational field eI as a connection is identical to Einstein’s theory of general

relativity in (2+1)-dimension at the classical level. In this way we have a gravity

theory, with only connections eI , ωIJ as variables, which depends only on the

topology of the manifold M .

In general we can obtain Chern-Simons theory by integrating the Pontryagin

topological term Tr(F ∧F ∧ · · · ) over a contractible manifold Md with boundary

Md−1 = ∂Md and by using the Poincaré lemma, dTr(F ∧ F ∧ · · · ) = 0 so there

is non-closed d− 1 form θ satisfying Tr(F ∧ F ∧ · · · ) = dθ. Since the Pontryagin

topological term Tr(F ∧ F ∧ · · · ) is even form, the manifold Md should be even

dimensional with odd dimensional boundary manifold Md−1 = ∂Md. Thus the

Chern-Simons theory is formulated on odd dimensional manifold, and the theory

in three dimensions with the structure group ISO(2, 1) is identical to the gravity

theory for (2 + 1)-dimensions ([13]).

Let M be a flat three dimensional spacetime manifold and M̃ be its universal
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cover. Then M̃ is the Minkowski space M2,1 with the symmetry group ISO(2, 1),

let Γ ⊂ ISO(2, 1) be a discrete subgroup with Γ ∼= π1(M) acting properly discon-

tinuously on M2,1. This amounts to give a representation ρ : π1(M) → ISO(2, 1)

up to conjugation. Since the group ISO(2, 1) preserves the flat structure of

M̃ , the quotient space M = M̃/Γ also has flat structure and its tangent space

can be identified with the Minkowski space M2,1. The corresponding connection

on the principal ISO(2, 1)-bundle is flat and induces a holonomy representation

ρ : π1(M) → ISO(2, 1).

Let us consider the 2+1-spacetimeM = R×Σ, where Σ is a connected oriented

closed surface of genus g, and R be the real line (time). Since R is contractible,

π1(R × Σ) = π1(Σ), and Σ = Σ̃/π1(Σ). Thus the flat structures on M = R × Σ

correspond to representations ρ : π1(Σ) → G := ISO(2, 1).

The fundamental group π1(M) of M is naturally described with 2g generators

{ai, bi}1,··· ,g and one relation a1b1a
−1
1 a−1

i · · · agbga
−1
g a−1

g = 1. Hom(π1(M), G) can

be identified with the subspace ofG2g defined by the equation
g
∏

i=1

(

AiBiA
−1
i B−1

i

)

=

1, (Ai, Bi ∈ G) whose dimension is (2g− 1) dim(G), we have the following identi-

fication as the quotient space

Hom(π1(M), G)/∼ ∼=

{

(Ai, Bi, · · · , Ag, Bg) ∈ G2g

∣

∣

∣

∣

∣

g
∏

i=1

(

AiBiA
−1
i B−1

i

)

= 1

}/

G

and two homomorphisms of them are equivalent if they are conjugated by an ele-

ment of the group G. Therefore heuristically the dimension of Hom(π1(M), G)/∼

is (2g − 2) dim(G). In fact G = ISO(2, 1) is six dimensional, so the space of flat

structures has dimension (2g− 2) dim(G) = 12g− 12. The solutions of Einstein’s

equations in the vacuum in 3D are flat connections, F = 0, and hence homomor-

phisms ρ : π1(Σ) → ISO(2, 1) correspond to the solutions of Einstein’s equations,

the equation of motion of the ISO(2, 1)-Chern-Simons action.

The Poincaré group ISO(d− 1, 1) is the group of all isometries of Minkowski

spaceMd−1,1, whose Lie algebra is generated by Lorentz generators Jab and trans-
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lations generators P a, with a, b = 1, · · · , d. In 3d space-time, the Chern-Simons

Lagrangian for the gauge group ISO(d − 1, 1) contains the term Tr(AdA) =

Tr(T aT b)AadAb, so we need an invariant non-degenerate bilinear form dab =

Tr(T aT b). But a non-degenerate bilinear form on the Lie algebra of ISO(d−1, 1)

exists only in d = 3, so there would be no reasonable Chern-Simons three form for

ISO(d− 1, 1) for general d. In d = 3, we can define ISO(2, 1) invariant and non-

degenerate bilinear form W = ǫabcP
aJbc. Therefore, a reasonable Chern-Simons

action in d = 3 for ISO(2, 1) may exist. It is convenient to write Ja = 1
2ǫ
abcJbc, so

thatW = ηabP
aJb = PaJ

a is a non-degenerate bilinear form on the Lie algebra of

ISO(2, 1), and η is Minkowski metric, so we use it in raising and lowering indices

of g := iso(2, 1) in the adjoint representation. Thus the inner product on g is

〈

Ja, P b
〉

= ηab,
〈

Ja, Jb
〉

=
〈

P a, P b
〉

= 0. (14)

We identify g∗ = Hom(g,R) with g in the adjoint representation by using the

Minkowski metric η. The commutation relations of ISO(2, 1) are

[Ja, Jb] = ǫabcJ
c, [Ja, Pb] = ǫabcP

c [Pa, Pb] = 0. (15)

We check here that bilinear form above are invariant,

[Ja, PbJ
b] = P b[Ja, Jb]+[Ja, Pb]J

b = P bǫabcJ
c+ǫabcP

cJb = ǫabcP
bJc−ǫacbP

cJb = 0

[Pa, PbJ
b] = P b[Pa, Jb] + [Pa, Pb]J

b = P bǫabcP
c = ǫabcP

bP c = 0.

Let P4 → M4 be an ISO(2, 1)-principal bundle over a connected oriented

compact smooth 4-manifold M4 with boundary M3 = ∂M4. Let AISO(2,1) be the

space of all ISO(2, 1)-connections A ∈ Ω1(P4; g) on P4. Take a local coordinate

neighborhood (U, xi) with a trivialization P4|U ∼= U × G, G := ISO(2, 1). Then

the gauge field is locally a one-form with values in Lie-algebra g of G with basis

{Ja, Pa},

A = eaiPadx
i + ωai Jadx

i ∈ Γ(T ∗U ⊗ g).
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SinceM2,1⊳ ISO (2, 1) and ISO (2, 1)
/

M2,1 ∼= SO (2, 1), the ISO(2, 1)-connection

A regarding as an iso(2, 1)-valued 1-form A ∈ Ω1(P ; iso(2, 1)) on P induces a

SO(2, 1)-connection ω ∈ Ω1(Q; so(2, 1)) on the induced principal SO(2, 1)-bundle

Q = P
/

M2,1 →M3 and an M2,1-valued 1-form e := A−ω ∈ Ω1(P ;M2,1), where

ω = π∗
M2,1ω for the projection πM2,1 : P → P/M2,1.

Let G be the group of all gauge transformations of P , i.e, automorphisms

g : P → P of G-bundles P . Then G acts on AISO(2,1) by g
∗A = g−1Ag + g−1dg

locally. An infinitesimal gauge transformation will be an element of Lie algebra

of G and is u = ρaPa + τaJa ∈ Ω0(g), with ρa, τa ∈ C∞(M4). The infinitesimal

gauge transformation of Ai = eaiPa + ωai Ja is

δAi :=
d

dt

∣

∣

∣

∣

t=0

(

etu · Ai
)

= −Diu,

where Di is the covariant derivative with respect to the connection Ai

Diu = ∂iu+ [Ai, u],

and δAi = δeaiPa + δωai Ja is given by

δAi = δeaiPa + δωai Ja = −Diu = −Di (ρ
aPa + τaJa)

= −∂i (ρ
aPa + τaJa)− [Ai, ρ

aPa + τaJa]

= −∂i (ρ
aPa + τaJa)−

[

eaiPa + ωai Ja, ρ
bPb + τ bJb

]

= −∂i (ρ
aPa + τaJa)− eai τ

b [Pa, Jb]− ωai ρ
b [Ja, Pb]− ωai τ

b [Ja, Jb]

and by using the commutation relation (15), we obtain

δAi = −∂i (ρ
aPa + τaJa) + eai τ

bǫbacP
c − ωai ρ

bǫabcP
c − ωai τ

bǫabcJ
c

=
(

−∂iρc + eai τ
bǫbac − ωai ρ

bǫabc
)

P c −
(

∂iτc + ωai τ
bǫabc

)

Jc.

Therefore

δeai = −∂iρ
a − ǫabceibτc − ǫabcωibρc,

δωai = −∂iτ
a − ǫabcωibτc.

(16)
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Proposition 5.1. The curvature tensor F (A) of the connection A is F (A) =

De+ F (ω).

Proof.

F (A) = dA+
1

2
[A,A] = de+ dω +

1

2
[e, e] + [e, ω] +

1

2
[ω, ω]

= (dea)Pa + (dωa) Ja +
1

2
ea ∧ eb [Pa, Pb] + ea ∧ ωb [Pa, Jb] +

1

2
ωa ∧ ωb [Ja, Jb]

= (dea)Pa + (dωa) Ja + ωa ∧ ebǫabcP
c +

1

2
ωa ∧ ωbǫabcJ

c

=
(

dea + ǫabcω
b ∧ ec

)

Pa +
(

dωa +
1

2
ǫabcω

b ∧ ωc
)

Ja

= (de+ [ω ∧ e]) + (dω + [ω ∧ ω]/2) ,

(17)

the components Fij on M4 are

Fij(A) =
(

∂ie
a
j − ∂je

a
i + ǫabc(eibωjc + ωibejc)

)

Pa

+
(

∂iω
a
j − ∂jω

a
i + ǫabcωibωjc

)

Ja.

If M4 is closed, ∂M4 = ∅, the de Rham cohomology class [〈FA ∧ FA〉] ∈

H4
DR(M4) does not depend on choice of the connection A.

We study ISO(2, 1) gauge field on a M4 using integral of Pontryagin form

〈F ∧ F 〉 = F a ∧ F bdab on M4, where dab is an invariant quadratic form on the

Lie algebra of ISO(2, 1). By using the quadratic form dab defined in (14) and the

curvature (17), we obtain the invariant

∫

M4

U =

∫

M4

〈F (A) ∧ F (A)〉 =

∫

M4

〈(de+ [ω ∧ e]) ∧ (dω + [ω ∧ ω]/2)〉

=

∫

M4

(

dea + ǫabcω
b ∧ ec

)

∧
(

dωb +
1

2
ǫbefω

e ∧ ωf
)

dab

=

∫

M4

ǫijkl(∂ie
a
j − ∂je

a
i + ǫabc(ωibejc + eibωjc))(∂kωla − ∂lωka + ǫadeω

d
kω

e
l ).
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(18)

In Palatini formalism of gravity theory in 3d spacetime, we regard ea = eai dx
i

as gravitational field, not a connection. We define the gravitational field as local

trivialization map of TM4,

e : U ×R4 → TU,

over a coordinate neighborhood of U in M4. This sends the Minkowski met-

ric η = (− + ++) of R4 to a metric g on M by g(u, v) = η
(

e−1(u), e−1(v))
)

,

u, v ∈ TU , or gµν = ηIJe
I
µe
J
ν , the components eIµ are inverse of eµI which are de-

termined by mapping sections p 7→ (p, eI) ∈ Γ
(

U ×R4
)

, I = 0, 1, 2, 3 to sections

e(p, eI) in TU , by e(p, eI) = eµI (∂µ)p, where {eI}I=1,··· ,4 is the standard frame of

R4.

Therefore the transformation generated by {P a} in ISO(2, 1) correspond to

diffeomorphisms, and the covariant derivative with respect to connection ωai cor-

responds to local Lorentz symmetry SO(2, 1) with generators {Ja}, this covariant

derivative is D := Dω = d + ω. Therefore the second part of the curvature (17)

is a curvature with respect to the connection ω, so it has to satisfy the Bianchi

identity:

DF a(ω) = dF a(ω) + ǫabcωbFc(ω) = 0.

In fact,

d(dωa +
1

2
ǫabcωbωc) + ǫabcωbFc = d2ωa +

1

2
ǫabcd(ωbωc) + ǫabcωb(dωc +

1

2
ǫcdeω

dωe)

= d2ωa +
1

2
ǫabcd(ωbωc) + ǫabcωbdωc + ǫabcωb

1

2
ǫcdeω

dωe,

using d2ωa = 0 and

ǫabcωbdωc =
1

2
ǫabcωbdωc +

1

2
ǫabcωbdωc =

1

2
ǫabcdωcωb +

1

2
ǫabcωbdωc

= −
1

2
ǫacbdωcωb +

1

2
ǫabcωbdωc = −

1

2
ǫabc ((dωb)ωc + ωbdωc) = −

1

2
ǫabcd(ωbωc)
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also

ǫabcωbǫcdeω
dωe = ǫabccdeωbω

dωe = (δadδ
b
e − δbdδ

a
e )ωbω

dωe = 0,

we find

DF a(ω) = dF a(ω) + ǫabcωbFc(ω) = 0.

We can show that U := F a ∧ F bdab is an exact form, F a ∧ F bdab = dV for

some V ∈ Ω3(M4). Therefore, if the four manifold M4 has a boundary three

manifold M3, (18) reduces to an integral on M3. Using the covariant derivative

D := Dω = d+ ω, we write the curvature (17) of A = e+ ω as

F (A) = (de+ [ω ∧ e]) + (dω + [ω ∧ ω]/2) = De+ F (ω),

therefore

U =

∫

M4

〈F (A) ∧ F (A)〉 =

∫

M4

〈(Dωe+ F (ω)) ∧ (Dωe+ F (ω))〉

=

∫

M4

〈De ∧ F (ω)〉 =

∫

M4

d 〈e ∧ F (ω)〉 =

∫

M3

〈e ∧ F (ω)〉,

where we used DF (ω) = 0, and M3 = ∂M4.

Let P3 = P4|M3
→M3 be an ISO(2, 1)-principal bundle over M3 = ∂M4, and

AISO(2,1)(P3) be the space of all ISO(2, 1)-connections A ∈ Ω1(P3; g) on P3.

Definition 5.1. The ISO(2, 1)-Chern-Simons action functional ICS : AISO(2,1)(P3) →

R is defined to be

ICS =

∫

M3

〈

A ∧ dA+
2

3
A ∧ A ∧ A

〉

=

∫

M3

〈e ∧ F (ω)〉

=

∫

M3

ea ∧ (dωa +
1

2
ǫabcωb ∧ ωc)

=

∫

M3

ǫijkeia(∂jωka − ∂kωja + ǫabcω
b
jω

c
k).

(19)
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Theorem 5.1. The Chern-Simons action ICS of the connection A = e + ω can

be identical to the Einstein-Hilbert action in 2 + 1 spacetime.

We see this clearly if we regard ea as a gravitational field(tensor) and ωab as

connection of Lorentz gauge group in 2 + 1 spacetime, but we have to verify that

this action is both Lorentz and diffeomorphism invariant ([13]).

Since S(A) =
∫

M4

F a∧F bdab is gauge invariant, S(g ·A) = S(A), so the bound-

ary integral
∫

M3

〈e ∧ F (ω)〉 is gauge invaraint. The action (19) is gravity in 3d

spacetime. This means that the gravity in 3d spacetime is a Chern-Simons gauge

theory of group ISO(2, 1), but not only Lorentz symmetry which is generated by

τaJa but also there is symmetry generated by ρaPa in (16). But the gravity is de-

scribed by local Lorentz symmetry, and a gravitational field eai is an isomorphism

between tangent spaces on M3 at each fixed p ∈M3,

e : TpM3 → Rn,

which maps arbitrary metric g(p) on TpM3 to the Minkowski metric η = (−+· · ·+)

on Rn. Thus we relate the transformation δeai in (16) to a diffeomorphism and

so regarding ea as gravitational field (tensor). We can see this by taking the

transformations (16) generated by ρaPa with τaJa = 0:

δe = −dρ− [ω, ρ], δω = 0,

or

δeai = −∂iρ
a − ǫabcωibρc, δωai = 0. (20)

We compare this transformation with the transformations under an infinitesimal

diffeomorphism generated by a vector field v = vi∂i. The field ea = eai dx
i is a

one-form, so it changes under a diffeomorphism is the derivative:

δve = Lv(e) = iv(de) + d(iv(e)),
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or

δve
a = ∂ie

a
j iv(dx

idxj) + d(iv(e
a)).

Then we use iv(dx
idxj) = iv(dx

i)dxj − iv(dx
j)dxi, and iv(dx

i) = vi, we obtain

δve
a = Lv(e

a) = ∂ie
a
j (v

idxj−vjdxi)+∂i(v
jeaj )dx

i = ∂je
a
i v
jdxi−∂ie

a
jv
jdxi+∂i(v

jeaj )dx
i.

Thus

δve
a
i = Lv(e

a) = (∂je
a
i − ∂ie

a
j )v

j + ∂i(v
jeaj ). (21)

Same thing we do for the connection ωai , to get

δvω = Lv(ω) = iv(dω) + d(iv(ω)),

or

δvω
a
i = (∂jω

a
i − ∂iω

a
j )v

j + ∂i(v
jωaj ).

We need to identical (20) with (21), we let ρa = vjeaj and replace v by −v, this is

δve
a
i = Lv(e

a) = −(∂je
a
i − ∂ie

a
j )v

j − ∂iρ
a.

Then we take the difference δve
a
i − δeai ,

δve
a
i − δeai = −(∂je

a
i − ∂ie

a
j )v

j − ∂iρ
a + ∂iρ

a + ǫabcωibρc

= −(∂je
a
i − ∂ie

a
j )v

j + ǫabcωibv
jejc,

(22)

or

δve
a
i − δeai = −(∂je

a
i − ∂ie

a
j + ǫabcωjbeic − ǫabcωibejc)v

j

+ (ǫabcωjbeic − ǫabcωibejc)v
j + ǫabcωibv

jejc.
(23)

The ∂je
a
i + ǫabcωjbeic = Dje

a
i is covariant derivative with respect to Lorentz con-

nection ωa, so

δve
a
i − δeai = −(Dje

a
i −Die

a
j )v

j + (ǫabcωjbeic)v
j .
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The first terms vanish by the equation of motion Dea = 0, which we get from

F (ω + tδω) = F (ω) + tD (δω) +
t2

2
[δω ∧ δω] ,

for

d

dt

∣

∣

∣

∣

t=0

∫

M3

〈e ∧ F (ω + tδω)〉 =

∫

M3

〈e ∧D (δω)〉 =

∫

M3

d 〈e ∧ (δω)〉−

∫

M3

〈(De) ∧ δω〉 = 0,

we get De = 0, where M3 is closed. The second term in δve
a
i − δeai is ǫabcωjbeicv

j

we can relate it to local Lorentz transformation generated by τb = ωjbv
j .

Proposition 5.2. ICS : AISO(2,1)(P3) → R is invariant under the action of

one-parameter family of diffeomorphisms.

Proof. We need to verify that ICS in (19) is invariant under arbitrary infinitesimal

diffeomorphism generated by a vector field v on M3. Let {ϕt}t∈I be the one-

parameter family of diffeomorphisms ϕt : M3 → M3 generated by a vector field

v ∈ Γ(TM3),
d
dtϕt = v ◦ ϕt. Then the derivative of Chern-Simons action is

δvICS =
d

dt

∣

∣

∣

∣

t=0

ICS (ϕ
∗
tA) =

∫

M3

Lv

(

ea ∧ (dωa +
1

2
ǫabcωb ∧ ωc)

)

. (24)

Note that θ = ea ∧ (dωa + 1
2ǫ
abcωb ∧ ωc) is a 3-form in 3d manifold M3, so that

dθ = 0, and its Lie derivative is

Lv(θ) = iv(dθ) + d(iv(θ)) = d(iv(θ)) = d(2-form),

the integration over d(2-form) term vanishes since M3 has no boundary by as-

sumption. So δvICS = 0, and ICS is a diffeomorphism invariant as required.

We can include a cosmological constant λ using gauge groups SO(2, 2) or

SO(3, 1), but the universal covering space is not the Minkowski space since the

condition [P a, P b] 6= 0 is necessary to include cosmological constant in the La-

grangian, whilst [P a, P b] 6= 0 is not true in the Minkowski space. This space is
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the de Sitter or the anti-de Sitter space, depending on the sign of λ. We include

λ in the commutation relations of the generators {Ja, P a} as

[Ja, Jb] = ǫabcJ
c, [Ja, Pb] = ǫabcP

c [Pa, Pb] = λǫabcJ
c, (25)

these are the same commutation relations of generators of the groups SO(2, 2)

and SO(3, 1), so the gravity with cosmological constant in 3d spacetime is Chern-

Simons with gauge groups SO(2, 2) and SO(3, 1). We check the invariance of the

bilinear form PbJ
b of the Lie algebra (25),

[Ja, PbJ
b] = P b[Ja, Jb]+[Ja, Pb]J

b = P bǫabcJ
c+ǫabcP

cJb = ǫabcP
bJc−ǫacbP

cJb = 0,

and

[Pa, PbJ
b] = P b[Pa, Jb] + [Pa, Pb]J

b = −P bǫbacP
c + λǫabcJ

cJb

= ǫabcP
bP c − λǫacbJ

cJb =
1

2
ǫabc[P

b, P c]−
1

2
λǫacb[J

c, Jb]

=
1

2
ǫabcλǫ

bckJk −
1

2
λǫacbǫ

cbkJk =
1

2
ǫbcaλǫ

bckJk −
1

2
λǫcbaǫ

cbkJk

= λδkaJk − λδkaJk = 0.

Therefore bilinear form PbJ
b is invariant under the adjoint action of SO(3, 1), and

thus we have the invariant quadratic form on the Lie algebra of SO(3, 1),

〈

Ja, P b
〉

= ηab,
〈

Ja, Jb
〉

=
〈

P a, P b
〉

= 0. (26)

Let P4 → M4 be a principal SO(3, 1)-bundle over a connected oriented manifold

M4 with boundary M3. The gauge field is a connection A on P4, and for a local

trivialization P4|U ∼= U × G over a coordinate neighborhood (U, x), A is locally

1-form with values in the Lie-algebra g of SO(3, 1) with generators {Ja, Pa} (note

that {Ja} is closed subalgebra),

A = e+ ω = eaiPadx
i + ωai Jadx

i ∈ Γ(T ∗U ⊗ g).

Note that SO(3, 1) acts on hyperboloid H ⊂ M3,1 transitively and the stabilizer

SO(3, 1)p at a point p ∈ H is isomorphic to SO(2, 1), so that

H ∼= SO (3, 1) /SO (3, 1)p
∼= SO (3, 1) /SO (2, 1) .
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Then a SO(3, 1)-connection A on the SO(3, 1)-principal P4 induces a connec-

tion e on the induced H-bundle P4/SO(2, 1) → M4 and so(2, 1) valued 1-form

ω = A− e ∈ Ω1(P4; so(2, 1)), where e := π∗SO(2,1)e for projection πSO(2,1) : P4 →

P4/SO(2, 1).

Let G = Aut(P4) be the group of all gauge transformations g : P4 → P4. Then

G acts on ASO(3,1). An infinitesimal gauge transformation is u = ρaPa + τaJa ∈

Ω0(g), with ρa, τa ∈ C∞(M4). The infinitesimal gauge transformation of the

connection A is

δA = −DAu,

where DA is covariant derivative with respect to the connection A defined by

DAu = du+ [A, u].

Then the infinitesimal gauge transformation of A = e + ω ∈ Ω1(U ; g) by u =

ρ+ τ ∈ Ω0(g) (ρ = ρaPa, τ = τaJa) is

δA = δe+ δω = −DA(ρ+ τ).

regarding the commutation relations (25), we obtain

δe = −dρ− [e, τ ]− [ω, ρ] , δω = −dτ − [ω, τ ]− λ [e, ρ] , (27)

Now we calculate the curvature tensor of the connection A with respect to the

Lie algebra (25),

F (A) = dA+
1

2
[A,A] = de+ dω +

λ

2
[e, e] + [e, ω] +

1

2
[ω, ω]

= (dea)Pa + (dωa) Ja +
1

2
ea ∧ eb [Pa, Pb] + ea ∧ ωb [Pa, Jb] +

1

2
ωa ∧ ωb [Ja, Jb]

= (dea)Pa + (dωa) Ja +
1

2
λea ∧ ebǫabcJ

c + ωa ∧ ebǫabcP
c +

1

2
ωa ∧ ωbǫabcJ

c

=
(

dea + ǫabcω
b ∧ ec

)

Pa +
(

dωa +
1

2
λǫabce

b ∧ ec +
1

2
ǫabcω

b ∧ ωc
)

Ja

= (de+ [ω, e]) + (dω + [ω, ω]/2 + λ[e, e]/2) ∈ Ω2(gP4
),
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(28)

its components on M4 are

Fij = [Di, Dj ] =(∂ie
a
j − ∂je

a
i + ǫabc(ωibejc + eibωjc))Pa

+ (∂iω
a
j − ∂jω

a
i + ǫabc(ωibωjc + λeibejc))Ja.

The topological invariant Pontryagin form Tr (F (A) ∧ F (A)), with using quadratic

form (26), is

U = 〈F (A) ∧ F (A)〉 =

〈

(de+ [ω ∧ e]) ∧

(

dω +
1

2
[ω ∧ ω] +

λ

2
[e ∧ e]

)〉

=
(

dea + ǫabcω
b ∧ ec

)

∧

(

dωe +
1

2
ǫefkω

f ∧ ωk +
λ

2
ǫefke

f ∧ ek
)

ηae.

(29)

As we did before, in 3d spacetime, we need to regard the connection ea as grav-

itational field (tensor), not connection. Therefore we relate the transformation

which generated by {P a} to diffeomorphism, and produce a covariant derivative

with respect to local Lorentz symmetry SO(2, 1) with generators {Ja}, the corre-

sponding connection is ω, and the covariant derivative is D = dea+ω. The second

part of the curvature (28) is a curvature and so satisfies the Bianchi identity

DF (ω) = dF (ω) + [ω, F (ω)] = 0.

We write (29) as

U =
〈

(de+ [ω ∧ e]) ∧
(

dω +
1

2
[ω ∧ ω] +

1

2
[e ∧ e]

)〉

=
〈

(De) ∧
(

F (ω) +
1

2
[e ∧ e]

)〉

= 〈De ∧ F (ω)〉+
1

2
〈De ∧ [e ∧ e]〉 .

Note that

〈(De ∧ [e ∧ e])〉 =
1

3
d 〈(e ∧ [e ∧ e])〉 , and DF (ω) = 0,

we obtain

U = d 〈e ∧ F (ω)〉+
1

6
d 〈e ∧ [e ∧ e]〉 .
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Using the quadratic form (26), we get

U = d
(

ea ∧ F b(ω)
)

〈Pa, Jb〉+
1

6
d
(

ea ∧ eb ∧ ec
)

〈Pa, [Pb, Pc]〉

= d
(

ea ∧ F b(ω)
)

ηab +
1

6
λεdbcd

(

ea ∧ eb ∧ ec
)

〈Pa, Pd〉 .

= d
(

ea ∧ F b(ω)
)

ηab +
1

6
λεdbcd

(

ea ∧ eb ∧ ec
)

ηad

= d
(

ea ∧ F b(ω)
)

ηab +
1

6
λεbcad

(

ea ∧ eb ∧ ec
)

.

= d
(

ea ∧ F b(ω)
)

ηab +
1

6
λεabcd

(

ea ∧ eb ∧ ec
)

.

By integration on the 4d manifold M4 with boundary M3, we obtain
∫

M4

U =

∫

M4

d
(

ea ∧ F b(ω)ηab +
1

6
λǫabce

a ∧ eb ∧ ec
)

=

∫

M3

(

ea ∧ F b(ω)ηab +
1

6
λǫabce

a ∧ eb ∧ ec
)

,

so
∫

M4

U =

∫

M3

ea ∧
(

dωa +
1

2
ǫabcω

b ∧ ωc +
1

6
λǫabce

b ∧ ec
)

.

Definition 5.2. Let ASO(3,1)(P3) be the space of all SO(3, 1)-connections on the

trivial principal SO(3, 1)-bundle P3 → M3. Let λ > 0 be a constant. Then the

Chern-Simons action functional ICS : ASO(3,1)(P3) → R is defined to be

ICS(A) =

∫

M3

〈

A ∧ dA+
2

3
A ∧ A ∧ A

〉

= ICS(e+ ω) =

∫

M3

〈

e ∧ F (ω) +
1

6
e ∧ [e ∧ e]

〉

=

∫

M3

ǫijkeia

(

∂jω
a
k − ∂kω

a
j + ǫabcωjbωkc +

1

3
λǫabcejbekc

)

dV.

For λ < 0, we define the corresponding Chern-Simons action functional ICS

by replacing SO(3, 1) with SO(2, 2). This is gravity Lagrangian in 3d spacetime
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manifold when we consider only the Lorentz SO(2, 1) symmetry. But also by

regarding ea and ωa as connections of the gauge group SO(3, 1), this Lagrangian

is Chern-Simons.

Thus we obtain the following.

Theorem 5.2. Let ICS : AG(P3) → R be the Chern-Simons action functional

defined in Definition 5.1 for G = ISO(2, 1), λ = 0 or Definition 5.2 for G =

SO(3, 1), λ > 0, and G = SO(2, 2), λ < 0.

(1) The critical points of the action ICS are flat G-connections, and the space

F/G of all gauge equivalent classes of G-connections can be identified with the

space of all conjugacy classes of G-representations of the fundamental group π1(M3),

F/G ∼= Hom(π1(M3), G)/∼, where G = ISO(2, 1) for λ = 0, G = SO(3, 1) for

λ > 0, and G = SO(2, 2) for λ < 0.

(2) The equations of motion F (A) = 0 for A = ω + e of the action ICS give

the constraints De = 0 and F (ω) + λ[e, e]/2 = 0.

In quantum theory, e is regarded as the conjugate momentum of ω in the spa-

tial part Σ of the spacetime M3 = R × Σ and the state ψ̂(ω) ∈ H(F/G) which

solves F̂ψ(ω) = 0 depends only on the topology of M3.

For the quantization of the system we need to find the phase space of the

system and the constraints which generate symmetry transformations of a three

manifold M3 = R× Σ. Since M3 = R× Σ is contractible to Σ, the solutions will

depend on the topology of Σ. On M3 = R× Σ, the action becomes

I =

∫

R

dt

∫

Σ

ǫ0jke0a

(

∂jω
a
k − ∂kω

a
j + ǫabcωjbωkc +

1

3
λǫabcejbekc

)

+ ǫi0keia

(

∂0ω
a
k − ∂kω

a
0 + ǫabcω0bωkc +

1

3
λǫabce0bekc

)

+ ǫij0eia

(

∂jω
a
0 − ∂0ω

a
j + ǫabcωjbω0c +

1

3
λǫabcejbe0c

)

.

Now we introduce ǫ0jk ≡ ǫjk the invariant anti-symmetric Levi-Civita tensor on
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2d surface Σ to obtain

I =

∫

R

dt

∫

Σ

e0aǫ
ij
(

∂iω
a
j − ∂jω

a
i + ǫabcωibωjc +

1

3
λǫabceibejc

)

− ǫijeia

(

∂0ω
a
j − ∂jω

a
0 + ǫabcω0bωjc +

1

3
λǫabce0bejc

)

+ ǫijeia

(

∂jω
a
0 − ∂0ω

a
j + ǫabcωjbω0c +

1

3
λǫabcejbe0c

)

.

Note that sum over the three λ terms give λǫijǫabce0aeibejc, and since Σ is closed,

we have
∫

Σ

ǫijeia∂jω
a
0 = −

∫

Σ

ǫijωa0∂jeia =

∫

Σ

ǫijωa0∂ieja,

using it in I and and reordering, we get

I =− 2

∫

R

dt

∫

Σ

ǫijeia∂0ω
a
j

+

∫

R

dt

∫

Σ

e0aǫ
ij
(

∂iω
a
j − ∂jω

a
i + ǫabcωibωjc + λǫabceibejc

)

+

∫

R

dt

∫

Σ

ω0aǫ
ij
(

∂ie
a
j − ∂je

a
i + ǫabc(ωibejc + eibωjc)

)

.

The term −2dtǫijeia∂0ω
a
j does not depends on time parametrization for some

diffeomorphism φ : R → R, t 7→ φ(t). Therefore the fields eai and ωai can be

regarded as a canonical coordinate and momenta of the phase space on a slice of

constant time {t} × Σ. To obtain the Poisson brackets, we recall that the term

dtpi∂0q
i

in the Lagrangian gives the Poisson brackets {qi, pj} = δij . Now our first term in

the Lagrangian

−2dtǫijeia(x)∂0ω
a
j (x)

gives the Poisson brackets

{ωaj (x),−2ǫikeib(y)} = δkj δ
a
b δ

2(x− y).
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Then multiply ǫℓk to both sides and using ǫℓkǫ
ik = δiℓ, it becomes

{ωaj (x), eℓb(y)} =
1

2
ǫjℓδ

a
b δ

2(x− y).

Thus we obtain the Poisson brackets

{ωai (x), e
b
j(y)} =

1

2
ǫijη

abδ2(x−y), {eai (x), e
b
j(y)} = 0 {ωai (x), ω

b
j(y)} = 0. (30)

Since the fields ea0 and ω
a
0 do not have the time derivative, they are not dynamical,

and their equation of motion are constraints,

δI

δω0a
= ǫij

(

∂ie
a
j − ∂je

a
i + ǫabc(ωibejc + eibωjc)

)

= 0, (31)

δI

δe0a
= ǫij

(

∂iω
a
j − ∂jω

a
i + ǫabcωibωjc + λǫabceibejc

)

= 0.

The first equation of (31) is the standard torsion-free condition that determines

ω in terms of e. If λ = 0 then the second equation implies that the connection ω

is flat, F (ω) = dω + [ω ∧ ω]/2 = 0.

If we regard eI as a component of a connection A = e+ω, these constraints are

the vanishing of the curvature FA = 0, gauge connections which locally are gauge

A = g−1dg, for g ∈ G. The only gauge-invariant observables that do not van-

ish when the constraints are imposed are global observables, such as holonomies

around possible non-contractible loops in M . The Poisson brackets (30) suggest

either ω or e are the canonical coordinates, so we need to choose one of them.

Then the quantum state is either ψ(ω) ∈ L2(F/G) or ψ(e) ∈ L2(F/G). If we

choose ψ(eai ) then the infinitesimal gauge transformation of A = e + ω for λ = 0

are

δeai = −∂iρ
a − ǫabceiaτc − ǫabcωibρc,

δωai = −∂iτ
a − ǫabcωibτc,

(32)

which implies that δeai contains not only eai but also ωai , so we can not choose

eai as a coordinates. But ωai transforms only to ωai , thus we can choose ωai as a

canonical coordinates. The physical state is a state that annihilates the operator

corresponds to the curvature of A = e+ ω,

F̂ aij(e) = ∂iê
a
j − ∂j ê

a
i + ǫabc(ω̂ibêjc + êibω̂jc),
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and

F̂ aij(ω) = ∂iω̂
a
j − ∂jω̂

a
i + ǫabcω̂ibω̂jc + λǫabcêibêjc.

To do this we replace the Poisson brackets (30) by commutators such

[ω̂ai (x), ê
b
j(y)] =

1

2
ǫijη

abδ2(x− y), [êai (x), ê
b
j(y)] = 0 [ω̂ai (x), ω̂

b
j(y)] = 0,

by this we define êai by

êai =
1

2
εijη

ab δ

δωbj
.

The physical state is solution of the quantization of equations of the motion,

F̂ aij(e)ψ(ω) = 0 and F̂ aij(ω)ψ(ω) = 0.

The constraint F̂ aijψ(ω) = 0 generates diffeomophism invariance of ψ(ω), the

infinitesimal transformation of the connection ω under the infinitesimal diffeo-

mophism generated by a vector field v is

δvω
a
i = Lvω

a
i = vjF aij (ω) .

Then the derivative of the state function ψ(ω) with respect to this infinitesimal

diffeomophism is

ψ(ω) 7→ ψ(ω + δvω
a
i ) = ψ(ω) + δvω

a
i
δ

δωai
ψ(ω) = ψ(ω) + vjF aij (ω)

δ

δωai
ψ(ω).

Therefore if F aij = 0, the state ψ(ω) is invariant under this transformation. There-

fore the state ψ(ω) depends only on the homotopy class [γ] ∈ π1(Σ). Let Ω(Σ, x0)

be the space of all smooth loops γ : I → Σ based on x0, then we have the holonomy

map

hol(ω) : Ω(Σ, x0) → SO(2, 1)

with respect to a connection ω, and ([6])

(

γ ≃ γ′ ⇒ holγ(ω) = holγ′(ω)
)

⇔ F = 0.
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Note that F (A) = 0 (A = e + ω) if and only if F (ω) = 0 and De = 0, and the

gauge equivalence classes of flat connections A = e+ ω are completely character-

ized by conjugacy classes of holonomy representation hol(A) : π1(Σ) → ISO(2, 1).

Now we define the state ψ(ω) by ψγ(ω) = Trholγ (ω). If the connection ω is

flat, the holonomy of ω is determined by the holonomy of A = e + ω, and ω is

determined by e by De = 0, then we have

ψ : Hom (π1(Σ), SO(2, 1)) → C.

This state satisfies F̂ aij(ω)ψ(ω) = 0 as required for the quantization. We give the

states ψ(ω) physical aspects by making them eigenstates of hermitan operator

that measure some physical quantities, such as area, volume, etc. Therefore for

two distinct eigenvalues correspond to orthonormal eigenstates with respect to

an inner product which keeps the eigenvalues invariant. We can define the states

ψ(ω) using a spin network basis ([14]), in which the eigenvalues of area and volume

are invariant under gauge transformations and diffeomorphisms, and hence both

of them are unitary operators that keep the inner product invariant. Therefore

the states ψ(ω) on a loop γ depends on the homotopy classes [γ] of that loop.

6 Summary

We have seen that the Chern-Simons theory is a gauge theory that measures the

topological invariants, like the abelian Chern-Simons theory measures a of linking

and self-linking numbers of a knot. The non-Abelian Chern-Simons measures link

invariants, like Jones polynomial which associates with spin 1/2 representation in

an SU(2) Chern-Simons theory. Also we have seen that the solution of equation

of motion of Chern-Simons action give a theory, it is WZW theory. We have

given two examples in which the WZW action induces Minkowski and Taub-NUT

metrics on the group manifolds. We saw that by using the Chern-Simons theory

in describing the gravity in 3 + 1 dimension gives a solutions depends only on

global measurements of the manifold, like the holonomy of flat connections.
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7 Appendix A

A principal fibre bundle consists of the following data: - a manifold P , called the

total space; - a Lie group G acting freely on P on the right:

P ×G→ P, (p, g) 7→ pg.

The free action means that the stabilizer of every point is trivial, that every

element of G (except the identity) moves every point in P. We assume that the

space of orbits Σ = P/G is a manifold (the base space). With projection π : P →

Σ and for every p ∈ Σ, the submanifold π−1(p) ⊂ P is fibre over Σ. Let {Uα} be

open cover of Σ, the local trivialization is G-equivariant diffeomorphisms

ψα : π−1(Uα) → Uα ×G,

given by ψα(p) = (π(p), gα(p)) for some G-equivariant map gα : π−1(Uα) → G.

Equivariance means that gα(pg) = gα(p)g. We say that the bundle is trivial if

there exists a diffeomorphism ψ : P → Σ × G such that ψ(p) = (π(p), ψ(p)) and

such that ψ(pg) = ψ(p)g. This last condition is simply the G-equivariance of ψ.

We separate TpP to vertical and horizontal vector spaces at each point p ∈ P ,

we get the vertical vector fields by acting of group G on P by

σp(X) =
d

dt

(

petX
)∣

∣

t=0
,

for every vector X ∈ g, this satisfies

π∗σp(X) =
d

dt

(

π
(

petX
))∣

∣

t=0
=

d

dt
(π (p))|t=0 = 0,

thus σp(X) is vertical vector field at p ∈ P .

In this bundle the connection is defined as a map

A : Γ(TP ) → Γ(TeG),

and since P is locally product, then T P |U = TU⊗TeG, so the connection becomes

A : Γ(TΣ) → Γ(TeG).
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We can get this map by letting A be in T ∗Σ ⊗ TeG and so this map is pairing

TM with T ∗M . Since A is flat, it can be given in

A = g−1dg ∈ Γ(T ∗Σ⊗ TeG).

Then

d(g−1dg) = d(g−1)dg = −g−1dg ∧ g−1dg → d(g−1dg) + g−1dg ∧ g−1dg = 0,

so

F (A) = dA+ A ∧ A = 0.

8 Appendix B

We calculate the change of Chern-Simons action under gauge transformations, we

use A→ g−1Ag + g−1dg in L(A) = Tr
(

AdA+ 2
3A

3
)

, this gives

L(Ag) =− Tr
(

g−1Agg−1(dg)g−1Ag)
)

+ Tr
(

g−1Agg−1(dA)g
)

− Tr
(

g−1Agg−1Adg
)

+ Tr
(

g−1Agdα
)

+ Tr
(

αd(g−1Ag)
)

+ Tr(αdα) +
2

3
Tr

(

g−1Ag
)3

+
2

3
Tr(α3) + 2Tr

(

(g−1Ag)2g−1dg
)

+ 2Tr
(

(g−1Ag)g−1(dg)g−1dg
)

− Tr
(

A(dg)g−1A)
)

+ Tr (A(dA))− Tr
(

g−1A2dg
)

+ Tr
(

g−1Agdα
)

+ Tr
(

αd(g−1Ag)
)

⇒

L(Ag) =− Tr
(

A(dg)g−1A)
)

+ Tr (A(dA))− Tr
(

g−1A2dg
)

+ Tr
(

g−1Agdα
)

+ Tr
(

αd(g−1Ag)
)

+ Tr(αdα) +
2

3
Tr (A)3 +

2

3
Tr(α3)

+ 2Tr
(

g−1Agg−1Agg−1dg
)

+ 2Tr
(

g−1Agg−1(dg)g−1dg
)

⇒

L(Ag) =− Tr
(

A2(dg)g−1
)

+ Tr (AdA)− Tr
(

g−1A2dg
)

+ Tr
(

g−1Agdα
)

+ Tr
(

αd(g−1Ag)
)

+ Tr(αdα) +
2

3
Tr (A)3 +

2

3
Tr(α3)

+ 2Tr
(

g−1AAdg
)

+ 2Tr
(

g−1A(dg)g−1dg
)

51



⇒

L(Ag) =Tr (AdA) +
2

3
Tr (A)3 + Tr(αdα) +

2

3
Tr(α3)− Tr

(

A2(dg)g−1
)

− Tr
(

g−1A2dg
)

+ Tr
(

g−1Agdα
)

+ Tr
(

αd(g−1Ag)
)

+ 2Tr
(

g−1AAdg
)

+ 2Tr
(

g−1A(dg)g−1dg
)

⇒

L(Ag) =L(A) + L(α)− Tr
(

g−1A2dg
)

− Tr
(

g−1A2dg
)

+ Tr
(

g−1Agdα
)

+ Tr
(

αd(g−1Ag)
)

+ 2Tr
(

g−1A2dg
)

+ 2Tr
(

g−1A(dg)g−1dg
)

⇒

L(Ag) = L(A)+L(α)+Tr
(

g−1Agdα
)

+Tr
(

αd(g−1Ag)
)

+2Tr
(

(g−1Ag)g−1(dg)g−1dg
)

.

By using g−1(dg)g−1dg = −d
(

g−1dg
)

, this becomes

L(Ag) = L(A)+L(α)+Tr
(

g−1Agdα
)

+Tr
(

αd(g−1Ag)
)

−2Tr
(

(g−1Ag)d(g−1dg)
)

⇒

L(Ag) = L(A) + L(α) + Tr
(

g−1Agdα
)

+ Tr
(

αd(g−1Ag)
)

− 2Tr
(

(g−1Ag)dα
)

= L(A) + L(α) + Tr
(

αd(g−1Ag)
)

− Tr
(

(g−1Ag)dα
)

.

And using

d
(

αg−1Ag
)

= (dα)g−1Ag − αd(g−1Ag),

we obtain

L(Ag) = L(A) + L(α)− dtr
(

αg−1Ag
)

,

therefore

L(Ag)− L(A) = L(α)− dtr
(

αg−1Ag
)

.
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9 Appendix C, WZW model

As we saw, WZW model has been obtained from required of gauge invariance of

wave function of solution of (FAψ(A) = 0) in Chern-Simons theory with a group

G on 2d space-like surface Σ. In this section we discuss the symmetries in WZW

model, the GR ×GR symmetry and conformal symmetry, the conserved currents

satisfy the Kac-Moody algebra ([15, 16]). Let X be compact oriented smooth

(2n+ 1)-manifold with boundary ∂M = Σ. We construct trivial principle bundle

P = Σ×G→ Σ.

The WZW actions for g ∈Map(M,G) are

S±(g) =
c

4π

∫

Σ

Tr(g−1∂gg−1∂̄g)±
c

12π

∫

X

Tr(g−1dg)3. (33)

We write the WZ term in 2n+ 1 dimensional space M as

SWZ(g) =
c

12π

∫

M

Tr(g−1dg)2n+1,

the variation of this term depends only on fields on the 2n dimensional boundary

∂M = Σ, we see this by using the fact that Maurer-Cartan form Tr(g−1dg)2n+1 is

closed on contractible space like the cylindrical space B = I×M (with I = [0, 1]).

Let dB, δ and dM be the exterior derivatives on B, I and M , we have

dBTr(g
−1dBg)

2n+1 = 0,

and let dB = dM + δ, so

(dM + δ)Tr(g−1(dM + δ)g)2n+1 = 0,

its component of type (1, 2n + 1) is

δTr(g−1dMg)
2n+1 + (2n+ 1)dMTr(g

−1δg)(g−1dMg)
2n = 0,

by using
∫

I
δ
∫

M
dM = −

∫

M
dM

∫

I
δ, we get

δSWZ(g) = (2n+ 1)
c

12π

∫

M

dMTr(g
−1δg)(g−1dMg)

2n,
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so

δSWZ(g) = (2n+ 1)
c

12π

∫

Σ

Tr(g−1δg)(g−1dg)2n. (34)

Therefore the varying of SWZ(g) depends only on Map(Σ → G).

We use the Killing form on Lie(G) and metric on Σ to construct the first term

in (33):
∫

Σ

Tr(g−1∂gg−1∂̄g),

but in order to write it in arbitrary n dimensional surface Σ, we write it using

Hodge star as

1

2

∫

Σ

Tr(g−1dg ∧ ∗g−1dg),

and so

S±
WZW (g) =

c

4π

1

2

∫

Σ

Tr(g−1dg ∧ ∗g−1dg)±
c

12π

∫

X

Tr(g−1dg)n+1.

In two dimensions, the first term reads

1

2

∫

Σ

Tr(g−1dg ∧ ∗g−1dg) =
1

2

∫

Σ

Tr(gijθiθj)d
2x, (35)

we write θ = g−1dg, and gij is metric on Σ.

The WZW actions can be written as

S±
WZW (g) =

c

4π

1

2

∫

Σ

Tr(gijθiθj)d
2x±

c

12π

∫

X

Tr(g−1dg)3.

The variation of first term under δθ is

1

2
δ

∫

Σ

Tr(gijθiθj)d
2x =

∫

Σ

Tr(gij(δθi)θj)d
2x =

∫

Σ

Tr(δθ ∗ θ),

and

δθ = δ(g−1dg) = d(g−1δg) + [g−1dg, g−1δg],
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the second term vanish in tracing, so

1

2
δ

∫

Σ

Tr(gijθiθj)d
2x =

∫

Σ

Tr
(

d(g−1δg) ∗ θ
)

= −

∫

Σ

Tr((g−1δg)d(∗θ)). (36)

Using (34) and (36), the variation of WZW actions under δg is

δS±
WZW (g) =

c

4π

1

2
δ

∫

Σ

Tr(g−1dg ∧ ∗g−1dg)±
c

12π
δ

∫

X

Tr(g−1dg)3.

= −
c

4π

∫

Σ

Tr((g−1δg)d(∗θ))±
3c

12π

∫

Σ

Tr(g−1δg)(g−1dg)2.

The equations of motion are

−
c

4π
d(∗g−1dg)±

3c

12π
(g−1dg)2 = 0,

or

−d(∗g−1dg)± (g−1dg)2 = 0.

Using d(g−1dg) = −(g−1dg)(g−1dg), these equations becomes

d(∗g−1dg)± d(g−1dg) = 0,

so

d(∗g−1dg ± g−1dg) = 0.

In the coordinates (z̄, z), it becomes

dz∂z
(

g−1∂z̄g(∗dz̄)± g−1∂z̄gdz̄
)

= 0, and dz̄∂z̄
(

g−1∂zg(∗dz)± g−1∂zgdz
)

= 0.

(37)

We can derive the Hodge operator for complex coordinates (z̄, z) from the cor-

responding Euclidean coordinates (x, y) with Euclidean metric. ∗dx = dy and

∗dy = −dx, so by linearity of Hodge operator we obtain

∗dz = ∗(dx+ idy) = dy − idx = −i(dx+ idy) = −idz,
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and

∗dz̄ = ∗(dx− idy) = dy + idx = i(dx− idy) = idz̄.

Using this in (37), we get

dz∂z
(

ig−1∂z̄g ± g−1∂z̄g
)

dz̄ = 0, and dz̄∂z̄
(

−ig−1∂zg ± g−1∂zg
)

dz = 0,

or

∂z
(

g−1∂z̄g
)

= 0, and ∂z̄
(

g−1∂zg
)

= 0. (38)

Therefore we have two conserved currents Jz̄ = g−1∂z̄g and Jz = g−1∂zg on Σ, so

there is two symmetries corresponding to these currents, to find that symmetries

we test the WZW Lagrangian under a global transformations like z → fz and

z̄ → gz̄, where f and g are constants. The group elements transform as g(z, z̄) →

g(fz, z̄) and g(z, z̄) → g(z, gz̄) which can be written as

g(z, z̄) → eǫ+(f)g(z, z̄), and g(z, z̄) → eǫ−(g)g(z, z̄),

the functions ǫ+(f) and ǫ−(g) have to satisfy ǫ+(0) = 0 and ǫ−(0) = 0. The

WZW actions

S±(g) =
c

4π

∫

Σ

Tr(g−1∂gg−1∂̄g)±
c

12π

∫

X

Tr(g−1dg)3

are invariant under g(z, z̄) → eǫ+(f)g(z, , z̄) and g(z, z̄) → eǫ−(g)g(z, z̄) separately,

that is, they neither require a relation between the functions ǫ− and ǫ+ nor be-

tween the constants f and g, this changes the metric dz̄dz by scaling it in addition

to rotation. Therefore we have two global conformal symmetries, left and right.

To get local symmetry, we let the functions f and g and so ǫ+ and ǫ− depend

on the coordinates (z̄, z) with requiring the action be invariant up to boundary

terms, like

δSWZW (g) =

∫

Σ

Tr(∂µB
µ).
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For infinitesimal transformation g(z, z̄) → eǫ+(z)g(z, z̄), eǫ+(z) ≈ 1+ ǫ+(z), we use

the property

S±(g1g2) = S±(g1) + S±(g2) +
1

π

∫

Σ

Tr(g−1
1 ∂g1)(g

−1
2 ∂̄g2),

by setting g1 = eǫ+(z) and g2 = g(z, z̄), and ignore S±(eǫ+) = O(ǫ2+), we obtain

δS±(g) = S±((1 + ǫ+)g)− S±(g) =
1

π

∫

Σ

Tr(e−ǫ+(z)∂eǫ+(z)g−1∂̄g)

≈
1

π

∫

Σ

Tr(∂ǫ+)(g
−1∂̄g) = −

1

π

∫

Σ

Tr(ǫ+∂(g
−1∂̄g)).

As we saw before, the term ∂(g−1∂̄g) vanishes by the equation of motion (38),

therefore δS±(g) = 0, and same thing we find for g(z, z̄) → eǫ−(z̄)g(z, z̄). Thus

the WZW action is invariant under conformal transformation.

We call the current Jz̄(z̄, z) = g−1∂z̄g left current, since it is relates to left

conformal transformation g(z̄, z) → eǫ+(z)g(z̄, z). We find the right current from

the relation

∂z(g
−1∂z̄g) = g−1

(

∂z̄(∂zgg
−1)

)

g,

and so ∂z(g
−1∂z̄g) = 0 implies ∂z̄(∂zgg

−1) = 0. We call the current Jz(z̄, z) =

(∂zg)g
−1 right current, since it is invariant under right conformal transformation

g(z̄, z) → g(z̄, z)eǫ−(z̄):

Jz(z̄, z) = (∂zg)g
−1 → ∂z(ge

ǫ−)e−ǫ−g−1 = ∂zgg
−1 = Jz(z̄, z).

Therefore the WZW actions has the symmetry GR(z̄)×GL(z) groups:

GR =Map(Σ → G) such z̄ 7→ hr(z̄),

GL =Map(Σ → G) such z 7→ hl(z).

These act on g(z̄, z) ∈ G by

g(z̄, z) → hl(z)g(z̄, z)hr(z̄).
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When Σ = S1 × R, we can change the metric dz̄dz to Minkowski metric

dx+dx− = −dt2 + dx2 so we change the coordinates like z → x+ = x + t and

z̄ → x− = x− t. The conformal transformations become

g(x+, x−) → hl(x
+)g(x+, x−)hr(x

−), (39)

with currents

JL(x
+, x−) = J+(x

+, x−) = (∂+g)g
−1 and JR(x

+, x−) = J−(x
+, x−) = g−1∂−g.

(40)

The left and right currents defines Kac-Moody algebra.

10 Appendix D, Virasoro and Affine Lie Alge-

bra

We have seen that the WZW action on Σ is invariant under local conformal

transformations with acting GL×GR of the group G, where GL =Map(Σ → G),

z 7→ hl(z). And GR =Map(Σ → G), z̄ 7→ hr(z̄). The corresponding currents are

∂̄J(z, z̄) = 0(holomorphic) and ∂J̄(z̄, z) = 0(anti-holomorphic). We find that the

algebra of these currents is the affine Lie algebra of the group G on Σ, but when we

use Sugawara construction for that algebra, we obtain Virasoro algebra, where we

use the fact that in quantum theory the currents are regarded as operators that

generate the corresponding transformations (conformal transformations) ([10]).

Since the current J(z̄, z) ∈ g is holomorphic, we can consider its Laurent expansion

around the origin (z 6= 0):

J(z) =
∑

n∈Z

Jnz
−n−1,

and write J̄(z̄) as

J̄(z̄) =
∑

n∈Z

J̄nz̄
−n−1.
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We study the commutation relations of these currents on a circle S1 ⊂ Σ in

equal time with respect to the coordinates (x+, x−) = (x + iτ, x − iτ), with

transformation

z = e2πinx
+

, z̄ = e2πinx
−

.

The corresponding metric is

x+x− = x2 + τ2, g+− = g−+ = 1, g++ = g−− = 0 (41)

on Σ. Different values of τ associate with different circles radiuses in Σ. We define

loop group of G as set of all maps S1 → G:

LG = maps(S1, G).

Thus the WZW actions have the symmetry (LG)L × (LG)R on S1 ⊂ Σ.

The group (LG)L × (LG)R is given by the maps

(LG)L =Map(S1 → G), e2πinx
+

7→ g(e2πinx
+

),

(LG)R =Map(S1 → G), e2πinx
−

7→ g(e2πinx
−

),

at τ = constant. The Lie algebra Lie(LG) = Lg, is vector space of maps S1 → g.

If {T a}, a = 1, ..., dim(G) is basis of Lie(G), with bilinear skew-symmetric map

g × g → g defined by [T a, T b] = fabcT
c, and Killing form Tr(T aT b) = δab. We

can describe the maps S1 → g using Fourier expansion

S1 ∋ e2πinx
±

7→
∑

a
Ja(x±)T a =

1

2

∑

a

∑

n∈Z

JanT
ae2πinx

±

∈ Lg, τ = constant,

so

Ja(x±) =
1

2

∑

n∈Z

Jane
2πinx± . (42)

We regard {Ja(x±)} as a basis for Lie algebra of the loop group LG with the

same commutation relations of {T a}. The fact that Ja is anti-hermitian operator

asserts that (Jan)
† = −Ja−n. Therefore

[Ja(x±), Jb(x±)] = fabcJ
c(x±), (43)
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and so

1

4

∑

n,m∈Z

[Jan, J
b
m]e

2πi(n+m)x± =
1

2
fabc

∑

ℓ∈Z

Jcℓ e
2πiℓx± =

1

4
fabc

∑

ℓ1,ℓ2∈Z

Jcℓ1+ℓ2e
2πi(ℓ1+ℓ2)x

±

,

this gives

[Jan, J
b
m] = fabc J

c
n+m.

This is bilinear map Lg× Lg → Lg.

The construction (Jan)
† = −Ja−n defines an antilinear involution on Lg, this is

the map ω : Lg → Lg defined by ω(Jan) = −Ja−n, it satisfies

ω ◦ ω = 1, (44)

ω(ax) = a∗ω(x), x ∈ Lg, a ∈ C,

[ω(x), ω(y)] = ω[x, y].

There is a nontrivial central extension of Lg by C, generated by the map Φ :

Lg× Lg → R,

Φ(Jan, J
b
m) = icδabnδn,−m, c ∈ R.

By this the Lie algebra of Lg extends to affine Lie algebra ĝ with bilinear map

ĝ× ĝ → ĝ

[Jan, J
b
m] = fabcJ

c
n+m + icδabnδn,−m. (45)

We show that WZW theory has conformal symmetry with affine Lie algebra (45),

that is the currents

JL(x
+, x−) = J+(x

+, x−) = (∂+g)g
−1 and JR(x

+, x−) = J−(x
+, x−) = g−1∂−g

have the algebra (45) when we regard these currents as generators of the conformal

transformations. The left and right conformal transformations are (39)

g(x+, x−) 7→ hl(x
+)g(x+, x−)hr(x

−).
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If we write hl(x
+) = eǫ(x

+), so g(x+, x−) 7→ eǫ(x
+)g(x+, x−), the current J+(x

+, x−) =

(∂+g)g
−1 transforms as

J+ = (∂+g)g
−1 7→ J ′

+ = (∂+e
ǫ(x+)g)g−1e−ǫ(x

+)

= eǫ(x
+)J+e

−ǫ(x+) + ǫ′(x+), ǫ′(x+) =
d

dx+
ǫ(x+).

(46)

For small conformal transformation parameter ǫ(x+) ∈ g, this transformation

becomes

δǫJ+ = J ′
+ − J+ = [ǫ(x+), J+(x

+)] + ǫ′(x+),

expanding it in the basis {T a} of Lie(G), we obtain

δǫJ
a
+ = [ǫ(x+), Ja+(x

+)] + (ǫa)′(x+). (47)

This agree with regarding the current as anti-hermitian operator since the genera-

tors {T a} of the group G are regarded as anti-hermitian operators. The current J+

corresponds to the conformal transformation by hr(x
+), so according to the quan-

tum theory,
∑

a

∫

ǫaJa+ is a generator of this conformal transformation. Thus, we

obtain the following equation for any operator O,

δǫO =
∑

a
[

∫

ǫa(x+)Ja+(x
+),O].

Like this, the transformation (47) can be expressed by

δǫJ
b
+ =

∑

a
[

∫

ǫa(x+)Ja+(x
+), Jb+].

Combining this equation with (47), we have the equality

∑

a
[

∫

ǫa(y+)Ja(y+), Jb+(x
+)] = [ǫ(x+), Jb+(x

+)] + (ǫb)′(x+),

We solve this by expanding ǫ(x+) in the Lie algebra of (LG)L, this is ǫ(x+) =
∑

a ǫ
a(x+)Ja(x+), therefore

∑

a

∫

dy+[ǫa(y+)Ja(y+), Jb(x+)] =
∑

a
[ǫa(x+)Ja(x+), Jb(x+)]+ (ǫb)′(x+),
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or

∑

a

∫

dy+ǫa(y+)[Ja(y+), Jb(x+)] =
∑

a
ǫa(x+)[Ja(x+), Jb(x+)]+(ǫb)′(x+),

which can be solved by

[Ja(y+), Jb(x+)] = fabcJ
c(x+)δ(y+ − x+)− δab

d

dy+
δ(y+ − x+), (48)

with the commutation relation (43). We have to note that when a = b the term

ǫa(x+)[Ja(x+), Jb(x+)] does not exist because it comes from eǫ
aJa

Jbe−ǫ
aJa

in (46).

We obtain the affine algebra (45) by expanding the generators {Ja(x+)} on circle

S1, like

Ja(x+) =
∑

n∈Z

Jane
2πinx+ , δ(y+ − x+) =

∑

k∈Z

ei2πk(y
+−x+), τ1 = τ2.

Using them in (48), we get

∑

n,m∈Z

[Jan, J
b
m]e

2πi(ny++mx+)

= fabc
∑

n1,m1∈Z

Jcn1
e2πin1x

+

e2πim1(y
+−x+) − δab

d

dy+

∑

n2∈Z

e2πin2(y
+−x+),

or
∑

n,m∈Z

[Jan, J
b
m]e

2πi(ny++mx+)

= fabc
∑

n1,m1∈Z

Jcn1
e2πim1y

+

e2πi(n1−m1)x
+

− 2πiδab
∑

n2∈Z

n2e
2πin2(y

+−x+).

Identifying with respect to e2πiny
+

and e2πimx
+

separately, we obtain

[Jan, J
b
m] = fabcJ

c
n+m − 2πiδabnδn,−m,

this is same (45) for c = −2π. Thus we have seen that the Lie algebra of confor-

mal transformations in WZW theory is affine lie algebra (45) of G. Now we see

that we need Sugawara construction for this algebra in order to get finite energy

spectrum in WZW theory.
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As we saw we can use the metric dx+dx− = dτ2 + dx2 in WZW theory on

Σ, by Wick rotation τ 7→ it we obtain Lorentz metric −dt2 + dx2, that is the

changing (x+, x−) = (x+ iτ, x− iτ) 7→ (x+ t, x− t) = (y+, y−), and so

z± = e2πix
±

7→ z′
±
= e2πiy

±

,

where z± are complex coordinates on Σ, by this we have one circle (|z′| = 1) with

two opposite motions (left and right) instead of circles with different values of

radiuses in different times. There is a metric in the first term of

S±(g) =
k

4π

∫

Σ

Tr(U−1∂+U ∧ ∗U−1∂−U)±
k

12π

∫

X

Tr(U−1dU)3,

this allows us to calculate the stress-energy tensor using the formula ([17])

Tµν = −2
δ

δgµν
S.

We write Tr(U−1∂iUU
−1∂jU)g

ijd2x with respect to an arbitrary metric tensor

gij , so

Tij = −2
δ

δgij
S = −2

k

4π
Tr(U−1∂iUU

−1∂jU).

Then substituting Lorentain metric g = gijdx
idxj = −dt2+dx2, with x0 = t, this

gives

Tij = −2
δ

δgij
S = −2

k

4π
Tr(U−1∂iUU

−1∂jU).

Its components are

T00 = −
k

2π
Tr(U−1∂0UU

−1∂0U) = T 00, T11 = −
k

2π
Tr(U−1∂1UU

−1∂1U),

and T01 = −
k

2π
Tr(U−1∂0UU

−1∂1U) = T10,

The total energy is

H ∼

∮

dxT 00, t = constant,

63



in the new coordinates y+ = x + t, y− = x− t. As we have seen that WZW has

affine Lie algebra (45), therefore we write the currents using Fourier expansion on

the circle S1 ⊂ Σ (with t = constant) like

J0(y
+) = U−1∂0U =

∑

a

∑

n∈Z

JanT
ae2πiny

+

,

and

Ja1 (y
−) = U−1∂1U =

∑

a

∑

n∈Z

J ′a
nT

ae2πiny
−

.

therefore

T00 =
−k

2π

∑

n,m∈Z

JanJ
b
mTr(T

aT b)e2πi(n+m)y+ , T11 =
−k

2π

∑

n,m∈Z

J ′a
nJ

′b
mTr(T

aT b)e2πi(n+m)y− ,

and using Tr(T aT b) = δab, we get

T 00 =
−k

2π

∑

a

∑

n,m∈Z

JanJ
a
me

2πi(n+m)y+ , T11 =
−k

2π

∑

a

∑

n,m∈Z

J ′a
nJ

′a
me

2πi(n+m)y− .

The energy density is

T00 =
−k

2π
Tr

∑

n∈Z

(

∑

m∈Z

∑

a

Jan−mJ
a
m

)

e2πiny
+

=
−k

2π
Tr

∑

n∈Z

Lne
2πiny− ,

with Ln =
∑

a,m

Jan−mJ
a
m.

We use the normalization Ln = 1
2c

∑

a,m

Jan−mJ
a
m, with c is central extension real

constant in the affine Lie algebra (45)

[Jan, J
b
m] = ifabcJ

c
n+m + cδabnδn,−m, (49)

using this algebra, we find that generators {Ln} satisfies [Ln, Lm] = (n−m)Ln+m

when n+m 6= 0. The hermitian conjugate is

(Ln)
† =

∑

a,m

(

Jan−mJ
a
m

)†
=

∑

a,m

(Jam)
†(Jan−m)

†,
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using (Jan)
† = Ja−n, it becomes (Ln)

† = L−n, which defines a an antilinear invo-

lution on {Ln}, this is the map ω : {Ln} → {Ln} defined by ω(Ln) = L−n, it

satisfies

ω ◦ ω = 1,

ω(ax) = a∗ω(x), x ∈ {Ln}, a ∈ C,

[ω(x), ω(y)] = ω[y, x].

But for n 6= 0, we have ω(Ln) 6= Ln, thus the element Ln, n 6= 0, is not self-adjont

operator, it does not have real eigenvalues under any representation. But L0 is

self-adjont operator, let |h〉 be eigenstate with eigenvalue h, so L0 |h〉 = h |h〉. By

using [L0, Ln] = −nLn, we find that Ln |h〉 → |h− n〉, and L−n |h〉 → |h+ n〉,

therefore Ln and L−n are lowering and raising operators with step n. But there

is underline algebra of {Ln}, it is the algebra of {Jan}.

There is a divergence in L0 =
∑

n∈Z

Ja−nJ
a
n (this includes the sum over a), we

see this divergence when we calculate L0(J
b
m |h〉), we find L0(J

b
m |h〉) = ∞|h〉. By

using the affine algebra (45)

[Jan, J
b
m] = ifabcJ

c
n+m + cδabnδn,−m,

and using the involution map ω(Jan) = Ja−n (44), we obtain

[Jbm, L0] =
1

2c
[Jbm,

∑

n∈Z

Ja−nJ
a
n]

=
1

2c

∑

n∈Z

Ja−n[J
b
m, J

a
n]+

1

2c

∑

n∈Z

[Jbm, J
a
−n]J

a
n+

1

2c

∑

n∈Z

Ja−ncδ
abmδm,−n+

1

2c

∑

n∈Z

cδabmδm,nJ
a
n

=
1

2c

∑

n∈Z

Ja−nif
ba
c J

c
m+n +

1

2c

∑

n∈Z

if bac J
c
m−nJ

a
n +

1

2
Jbmm+

1

2
mJbm

=
1

2c

∑

n∈Z

if bac J
a
−nJ

c
m+n +

1

2c

∑

n∈Z

if bac J
c
m−nJ

a
n +mJbm
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=
1

4c

∑

n∈Z

if bac [Ja−n, J
c
m+n] +

1

4c

∑

n∈Z

if bac [Jcm−n, J
a
n] +mJbm

=
1

4c

∑

n∈Z

if bac if
ac
d J

d
m +

1

4c

∑

n∈Z

if bac if
ca
d J

d
m +mJbm

=
1

4c

∑

n∈Z

fJbm +
1

4c

∑

n∈Z

fJbm +mJbm,

where we used fabcfabd = fδcd is given by Killing form on Lie algebra
〈

Ja
∣

∣ Jb
〉

=

fδab. Therefore

[Jbm, L0] =
1

2c
f
∑

n∈Z

Jbm +mJbm.

Let it act on the eigenstate |h〉:

JbmL0 |h〉 − L0J
b
m |h〉 =

1

2c
f
∑

n∈Z

Jbm |h〉+mJbm |h〉 ,

so

hJbm |h〉 − L0J
b
m |h〉 =

1

2c
f
∑

n∈Z

Jbm |h〉+mJbm |h〉 ,

then

L0(J
b
m |h〉) = hJbm |h〉 −

1

2c
f
∑

n∈Z

Jbm |h〉 −mJbm |h〉

=

(

h−
1

2c

∑

n∈Z

f −m

)

Jbm |h〉 .

(50)

Therefore Jbm is lowering operator when m, f, c > 0, but the summing in
∑

n∈Z

f

is infinity, this is undefined, but if there is a highest number n0 > 0 satisfying

Jan0
|h〉 = 0, and since L−n(n > 0) is raising operator and Ln is lowering, the only

non-zero of
∑

n∈Z

Ja−nJ
a
n when acting on |h〉 is the ordering Ja−nJ

a
n, for 0 < n < n0,

and zero otherwise, so

∑

n∈Z

Ja−nJ
a
n |h〉 = 2

∑

0<n<n0

Ja−nJ
a
n |h〉 .
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We then get
∑

n

Jbm |h〉 = 2n0J
b
m |h〉 which is finite. Therefore we rewrite Ln using

normal ordering Ln = 1
2c

∑

m∈Z

: Jan−mJ
a
m : (Sugawara construction) defined in

: Jan−mJ
a
m :=

{

Jan−mJ
a
m, n−m ≤ m

JamJ
a
n−m, m ≤ n−m.

This gives

L0 =
1

2c

∑

n∈Z

Ja−nJ
a
n =

2

2c

∞
∑

n=0

Ja−nJ
a
n.

Therefore we obtain

1

2c
[: Ja−nJ

a
n :, Jbm] = −

1

2c
(2fn0 + 2cm)Jbm,

or

[: Ja−nJ
a
n :, Jbm] = −2(fn0 + cm)Jbm,

when m = n0, it becomes

[: Ja−nJ
a
n :, Jbn0

] = −2n0(f + c)Jbn0
.

The generators Ln = 1
2c

∑

m∈Z

: Jan−mJ
a
m : satisfies Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
h

12
(n3 − n)δn,−m, h =

c

c+ f
dimg,

these infinity number of non-commutative generators of Virasoro algebra, the

algebra of conformal symmetry in two dimensions. This Virasoro algebra is non-

trivial central extensions of Witt algebra. The solution of this algebra gives the

stress-energy tensor T00 + T11. The operator Ln, n > 0 is lowering, while L−n,

n > 0 is raising, and the involution relation between them is (Ln)
† = L−n,

therefore the only adjoint operator of them is L0 which has eigenstates, like |h〉,

with eigenvalues h as mentioned above. The spectrum of determines the energy

spectrum. As we saw, the energy must be bounded below in order to get finite

results, so if |ψ0〉 is lowest energy state, then Ln |ψ0〉 = 0, n > 0.
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