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Abstract

Following our recently published book (F. Lev, Finite mathematics as the
foundation of classical mathematics and quantum theory. With application to
gravity and particle theory. Springer (2020)), we discuss different aspects of
classical and finite mathematics and explain why classical mathematics is a
special degenerate case of finite one.
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1 Problems with describing nature by classical

mathematics

Mathematical education at physics departments develops a belief that clas-
sical mathematics (involving infinitesimals, limits, continuity etc.) is the most fun-
damental mathematics, while finite mathematics is something inferior what is used
only in special applications. And many mathematicians have a similar belief.

Historically it happened so because more than 300 years ago Newton and
Leibniz proposed the calculus of infinitesimals, and since that time a titanic work
has been done on foundation of classical mathematics. This problem has not been
solved till the present time (see below) but for the majority of physicists and many
mathematicians the most important thing is not whether a rigorous foundation exists
but that in many cases standard mathematical technique works with a very high
accuracy.

The idea of infinitesimals was in the spirit of existed experience that any
macroscopic object can be divided into arbitrarily large number of arbitrarily small
parts, and even in the 19th century people did not know about atoms and elementary
particles. But now we know that when we reach the level of atoms and elementary
particles then standard division loses its usual meaning and in nature there are no
arbitrarily small parts and no continuity.

For example, typical energies of electrons in modern accelerators are mil-
lions of times greater than the electron rest energy, and such electrons experience
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many collisions with different particles. If it were possible to break the electron into
parts, then it would have been noticed long ago.

Another example is that if we draw a line on a sheet of paper and look
at this line by a microscope then we will see that the line is strongly discontinuous
because it consists of atoms. That is why standard geometry (the concepts of contin-
uous lines and surfaces) can work well only in the approximation when sizes of atoms
are neglected, standard macroscopic theory can work well only in this approximation
etc.

Of course, when we consider water in the ocean and describe it by differ-
ential equations of hydrodynamics, this works well but this is only an approximation
since water consists of atoms. However, it seems unnatural that even quantum the-
ory is based on continuous mathematics. Even the name ”quantum theory” reflects
a belief that nature is quantized, i.e., discrete, and this name has arisen because in
quantum theory some quantities have discrete spectrum (i.e., the spectrum of the
angular momentum operator, the energy spectrum of the hydrogen atom etc.). But
this discrete spectrum has appeared in the framework of classical mathematics.

I asked physicists and mathematicians whether in their opinion the indivis-
ibility of the electron shows that in nature there are no infinitesimals, and standard
division does not work always. Some mathematicians say that sooner or later the
electron will be divided. On the other hand, as a rule, physicists agree that the
electron is indivisible and in nature there are no infinitesimals. They say that, for
example, dx/dt should be understood as ∆x/∆t where ∆x and ∆t are small but not
infinitesimal. I ask them: but you work with dx/dt, not ∆x/∆t. They reply that
since mathematics with derivatives works well then there is no need to philosophize
and develop something else (and they are not familiar with finite mathematics).

One of the key problems of modern quantum theory is the problem of
infinities: the theory gives divergent expressions for the S-matrix in perturbation
theory. In the so-called renormalized theories, the divergencies can be eliminated by
subtracting one infinity from another. Although this is not a well founded mathe-
matical operation, in some cases it results in excellent agreement with experiment.
Probably the most famous case is that the results for the electron and muon mag-
netic moments obtained in quantum electrodynamics at the end of the 40th agree
with experiment at least with the accuracy of eight decimal digits (see, however, a
discussion in Ref. [1]). In view of this and other successes of quantum theory, the
majority of physicists believe that agreement with the data is much more important
than the rigorous mathematical substantiation.

At the same time, in the so called nonrenormalized theories, infinities can-
not be eliminated by the renormalization procedure, and this a great obstacle for
constructing quantum gravity. As the famous physicist and the Nobel Prize laureate
Steven Weinberg writes in his book [2]: ”Disappointingly this problem appeared with
even greater severity in the early days of quantum theory, and although greatly ame-
liorated by subsequent improvements in the theory, it remains with us to the present
day”. The title of Weinberg’s paper [3] is ”Living with infinities”.

In view of efforts to describe discrete nature by continuous mathematics,
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my friend told me the following joke: ”A group of monkeys is ordered to reach the
Moon. For solving this problem each monkey climbs a tree. The monkey who has
reached the highest point believes that he has made the greatest progress and is
closer to the goal than the other monkeys”. Is it reasonable to treat this joke as
a hint on some aspects of the modern science? Indeed, people invented continuity
and infinitesimals which do not exist in nature, created problems for themselves and
now apply titanic efforts for solving those problems. Below it will be explained on
popular level (and the rigorous proof is given in Ref. [4]) that classical mathematics
is a special degenerate case of finite mathematics.

The founders of quantum theory and scientists who essentially contributed
to it were highly educated. But they used only classical mathematics, and even now fi-
nite mathematics is not a part of standard education for physicists. The development
of quantum theory has shown that the theory contains anomalies and divergences.
Physicists persistently try to solve those problems in the framework of classical math-
ematics and refuse to acknowledge that they arise just because this mathematics is
applied. Nevertheless, several famous scientists, e.g., the Nobel Prize laureates Gross,
Nambu and Schwinger discussed the idea that the ultimate quantum theory will be
based on finite mathematics (see e.g., Ref. [5]).

2 Why finite mathematics is more natural than

classical one

We will now discuss whether it is justified to use mathematics with infinites-
imals although in nature there are no infinitesimals. First we note that a
typical situation in physics is that there are two theories, A and B, and the problem
arises when B can be treated as a special degenerate case of A. In Ref. [4] we have
proposed the following

Definition: Let theory A contain a finite parameter and theory B be ob-
tained from theory A in the formal limit when the parameter goes to zero or infinity.
Suppose that, with any desired accuracy, A can reproduce any result of B by choosing
a value of the parameter. On the contrary, when the limit is already taken then one
cannot return back to A and B cannot reproduce all results of A. Then A is more
general than B and B is a special degenerate case of A. Known examples are that:

1) nonrelativistic theory (NT) is a special degenerate case of relativistic one (RT) in
the special case c→∞ (where c is the speed of light);

2) classical theory is a special degenerate case of quantum one (QT) in the special
case h̄→ 0 (where h̄ is the Planck constant);

3) RT is a special degenerate case of de Sitter invariant theories in the special case
R→∞ where R is the parameter of contraction from the de Sitter groups or Lie
algebras to the Poincare group or Lie algebra, respectively.

In the literature those facts are explained from physical considerations but,
as shown e.g., in the famous Dyson’s paper ”Missed Opportunities” [6], 1) follows from
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the pure mathematical fact that the Galilei group can be obtained from the Poincare
one by contraction c→∞, and 3) follows from the pure mathematical fact that the
Poincare group can be obtained from the de Sitter groups by contraction R → ∞.
However, as argued in Ref. [4], on quantum level symmetry should be defined not
by groups but by the corresponding Lie algebras, and as shown in Ref. [4], the
statements 1)-3) follow from the facts that the Galilei Lie algebra can be obtained
from the Poincare one by contraction c → ∞, classical Lie algebra can be obtained
from the quantum one by contraction h̄ → 0 and the Poincare Lie algebra can be
obtained from the de Sitter Lie algebras by contraction R → ∞. So, in general,
theory B is a special degenerate case of theory A if the symmetry algebra for theory
B can be obtained from the symmetry algebra for theory A by contraction.

Let us consider in more details that NT is a special degenerate case of
RT in the special case c → ∞. According to Definition, this implies that RT can
reproduce any result of NT with any accuracy if c is chosen to be sufficiently large.
However, NT cannot reproduce all results of RT because RT also describes phenomena
where it is important that c is finite. From the naive point of view, one might think
that NT is more general than RT because NT corresponds to the case c = ∞, i.e.,
one might think that NT describes more cases than RT where c is finite. However,
NT gives the same results as RT only when speeds are much less than c, but when
they are comparable to c then NT does not work.

Since in many cases speeds are much less than c then, for describing those
cases, NT works with a very high accuracy and there is no need to apply RT: although
in principle RT describes those cases, typically describing them by RT involves un-
necessary complications. In particular, there is no need to apply RT for describing
everyday life. At the same time, when speeds are comparable to c, it is important
that c is not infinitely large but finite, and only RT can be applied.

Let us consider, for example, the following problem. Suppose that some
reference frame moves relative to us with the speed V = 0.6c, and in this frame a
body moves in the same direction with the same speed. Then the speed of the body
relative to us is not v = 1.2c, as one might think from naive considerations, but
v ≈ 0.882c, and if, for example, V = 0.99c then v ≈ 0.9999495c, i.e., there is no way
to get v > c.

Analogously, for describing almost all phenomena on macroscopic level,
there is no need to apply QT. In particular, there is no need to describe the motion
of the Moon by the Schrödinger equation. In principle this is possible but results
in unnecessary complications. At the same time, microscopic phenomena can be
correctly described only in the framework of QT.

In view of those examples, the following problem arises: is it justified to
always use mathematics with infinitesimals for describing nature in which infinites-
imals do not exist? There is no doubt that the technique of classical mathematics
is very powerful, and in many cases describes physical phenomena with a very high
accuracy. However, a problem arises whether there are phenomena which cannot be
correctly described by mathematics involving infinitesimals.

Some facts of classical mathematics seem to be unnatural from the point
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of view of common sense. For example, tg(x) is one-to-one reflection of (−π/2, π/2)
onto (−∞,∞), i.e. the impression might arise that the both intervals have the same
numbers of elements although the first interval is a nontrivial part of the second one.
Another example is the Hilbert paradox with an infinite hotel. But mathematicians
even treat those facts as pretty ones. For example, Hilbert said: ”No one shall expel
us from the paradise that Cantor has created for us”. And this is in spite of the fact
that the problem of foundation of classical mathematics has not been solved yet.

This problem has been investigated by many great mathematicians: Can-
tor, Fraenkel, Gödel, Hilbert, Kronecker, Russell, Zermelo and others. Their philos-
ophy was based on macroscopic experience in which the concepts of infinitesimals,
continuity and standard division are natural. However, as noted above, those con-
cepts contradict the existence of elementary particles and are not natural in quantum
theory. The illusion of continuity arises when one neglects the discrete structure of
matter.

The fact that foundational problems of classical mathematics cannot be
resolved, follows, in particular, from Gödel’s incompleteness theorems which state that
no system of axioms can ensure that all facts about natural numbers can be proved.
Moreover, the system of axioms in classical mathematics cannot demonstrate its own
consistency. The theorems are written in highly technical terms of mathematical
logics. However, simple arguments in Ref. [4] show that foundational problems of
classical mathematics follow from simple considerations, and below we give those
arguments.

In the 20s of the 20th century, the Viennese circle of philosophers under
the leadership of Schlick developed an approach called logical positivism which con-
tains verification principle: A proposition is only cognitively meaningful if it can be
definitively and conclusively determined to be either true or false (see e.g., Refs. [7]).
However, this principle does not work in standard classical mathematics. For exam-
ple, it cannot be determined whether the statement that a+ b = b+ a for all natural
numbers a and b is true or false.

As noted by Grayling [8], ”The general laws of science are not, even in
principle, verifiable, if verifying means furnishing conclusive proof of their truth. They
can be strongly supported by repeated experiments and accumulated evidence but they
cannot be verified completely”. So, from the point of view of classical mathematics
and classical physics, verification principle is too strong.

Popper proposed the concept of falsificationism [9]: If no cases where a
claim is false can be found, then the hypothesis is accepted as provisionally true. In
particular, the statement that a + b = b + a for all natural numbers a and b can be
treated as provisionally true until one has found some numbers a and b for which
a+ b 6= b+ a.

Before discussing the foundation of mathematics and physics in greater
details, I would like to make several remarks about problems in accepting new theories.

I think that the main problem is probably the following. Our experience
is based on generally acknowledged theories and everything not in the spirit of this
experience is treated as contradicting common sense. A known example is that, from
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the point of view of classical mechanics, it seems unreasonable that the speed 0.999c
is possible while the speed 1.001c is not. The reason of this judgement is that the
experience based on everyday life works only for speeds which are much less than c
and extrapolating this experience to cases where speeds are comparable to c is not
correct.

One of the examples is the paradox of twins in the theory of relativity:
one of the brothers flew to a distant star, and when he returned being 10 years
older, he found that 1000 years had passed on Earth. From the point of view of
”common sense” this seems meaningless, but this seems so because our experience
based on everyday life is extrapolated to the case of speeds comparable to c and this
experience does not work there.

Another example is the following. If we accept that physics in our world is
described by finite mathematics with characteristics p then this can be treated as the
statement that p is the greatest possible number in nature. The argument attributed
to Euclid is that there can be no greatest number because if p is such a number than
p + 1 is greater than p. This is again an example where our experience based on
rather small numbers is extrapolated to numbers where it does not work.

According to the philosophy of quantum theory, there should be no state-
ments accepted without proof and based on belief in their correctness (i.e. axioms).
The theory should contain only those statements that can be verified, where by ”ver-
ified” physicists mean an experiment involving only a finite number of steps. This
philosophy is the result of the fact that quantum theory describes phenomena which,
from the point of view of “common sense”, seem meaningless but they have been
experimentally verified.

So the philosophy of quantum theory is similar to verificationism, not
falsificationism. Note that Popper was a strong opponent of quantum theory and
supported Einstein in his dispute with Bohr.

From the point of view of verificationism and the philosophy of quantum
theory, classical mathematics is not well defined not only because it contains an
infinite number of numbers. Consider, for example, whether the rules of standard
arithmetic can be justified.

We can verify that 10+10=20 and 100+100=200, but can we verify that,
say 101000000 + 101000000 = 2 · 101000000? One might think that this is obvious, but this
is only a belief because based on extrapolating our everyday experience to numbers
where it is not clear whether the experience still works.

According to principles of quantum theory, the statement that 101000000 +
101000000 = 2 · 101000000 is true or false depends on whether this statement can be
verified. Is there a computer which can verify this statement? Any computing device
can operate only with a finite number of resources and can perform calculations only
modulo some number p. If our universe is finite and contains only N elementary
particles, then there is no way to verify that N + N = 2N . So, if, for example,
our universe is finite, then in principle it is not possible to verify that the rules of
arithmetic are valid for any numbers.

That’s why the statement a+b=c is ambiguous because it does not contain
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information on the computing device which will verify this statement. For example,
let us pose a problem whether 10+20 equals 30. Suppose that our computing devise
is such that p = 40. Then the experiment will confirm that 10+20=30 while if p = 25
then we will get that 10+20=5.

So the statements that 10+20=30 and even that 2 · 2 = 4 are ambiguous
because they do not contain information on how they should be verified. On the other
hand, the statements

10 + 20 = 30 (mod 40), 10 + 20 = 5 (mod 25),

2 · 2 = 4 (mod 5), 2 · 2 = 2 (mod 2)

are well defined because they do contain such an information. So only operations
modulo a number are well defined.

I believe the following observation is very important: although classical
mathematics (including its constructive version) is a part of our everyday life, people
typically do not realize that classical mathematics is implicitly based on the assump-
tion that one can have any desired amount of resources. So, classical mathematics
is based on the implicit assumption that we can consider an idealized case when a
computing device can operate with an infinite number of resources. In other words,
standard operations with natural numbers are implicitly treated as limits of opera-
tions modulo p when p → ∞. As a rule, every limit in mathematics is thoroughly
investigated but, in the case of standard operations with natural numbers, it is not
even mentioned that those operations are limits of operations modulo p. In real life
such limits even might not exist if, for example, the universe contains a finite number
of elementary particles.

3 A sketch of the proof that finite mathematics is

more general than classical one

In the technique of classical mathematics there is no number∞, infinity is understood
only as a limit (i.e. as a potential infinity) and, as a rule, legitimacy of every limit is
thoroughly investigated. However, the basis of classical mathematics involves actual
infinity from the very beginning. For example, the ring of integers Z is involved from
the very beginning and, even in standard textbooks, it is not even posed a problem
whether Z should be treated as a limit of finite rings. Moreover, Z is the starting
point for constructing the sets of rational, real and complex numbers and the sets
with greater and greater cardinalities.

For solving the problem of infinities, different kinds of arithmetic have
been proposed, e.g., Peano arithmetic, Robinson arithmetic, finitistic arithmetic and
others. The latter deals with all natural numbers but only finite sets are allowed.
However, finite mathematics rejects infinities from the beginning. This mathematics
starts from the ring Rp = (0, 1, 2, ...p − 1) where addition, subtraction and multipli-
cation are performed as usual but modulo p, and p is called the characteristic of the
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ring. In the literature the ring Rp is usually denoted as Z/(pZ). In my opinion, this
notation is not adequate even because finite mathematics should not involve infinite
sets. The notation may give a wrong impression that finite mathematics starts from
the infinite set Z and that Z is more general than Rp. However, although Z has more
elements than Rp, Z cannot be more general than Rp because Z does not contain op-
erations modulo a number. We will see below that, although Rp has a lesser number
of elements than Z, but the concept of Rp is more general than the concept of Z, and
Z is a special degenerate case of Rp in the formal limit p→∞.

In the above discussion of the relation between NT and RT, we noted that
those theories give close results when speeds are much less than c, but the results are
considerably different when speeds are comparable to c, and in RT it is not possible
to get v > c. Analogously, the results in finite and classical mathematics are the same
if the numbers in question are much less than p but, since in finite mathematics all
operations are modulo p, it is not possible to get the result greater than p. Physicists
might think that calculations modulo a number are nonphysical but, as noted above,
just such calculations are more physical than calculations in classical mathematics.

One can rigorously prove [4] that any result in Z can be reproduced in Rp

if p is chosen to be sufficiently large, and that is why Z can be treated as a limit of
Rp when p → ∞. This result looks natural from the following considerations. Since
all operations in Rp are modulo p, then Rp can be treated as a set (−(p− 1)/2, ...−
1, 0, 1, ...(p − 1)/2) if p is odd and as a set (−p/2 + 1, ... − 1, 0, 1, ...p/2) if p is even.
In this representation, for numbers with the absolute values much less than p, the
results of addition, subtraction and multiplication are the same in Rp and in Z, i.e.
for such numbers it is not manifested that in Rp operations are modulo p.

These results are natural from the following graphical representation of
the sets Z and Rp. If elements of Z are depicted as integer points on the x axis of the
xy plane then, if p is odd, the elements of Rp can be depicted as points of the circle
in Figure 1 and analogously if p is even.

This figure is natural from the following historical analogy. For many
years people believed that the Earth was flat and infinite, and only after a long
period of time they realized that it was finite and curved. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature. Analogously, when we deal with numbers the modulus of which is much
less than p then the results are the same in Z and Rp, i.e. we do not notice the
”curvature” of Rp. This ”curvature” is manifested only when we deal with numbers
the modulus of which is comparable to p.

As noted above, Dyson’s idea [6] is that theory A is more general than
theory B if the symmetry in B can be obtained from the symmetry in A by contraction.
It is clear from Figure 1 that Rp has a higher symmetry than Z. Mathematically this
follows from the following facts. When we take an element a ∈ Rp and successively
add 1 to it then sooner or later we will get all elements of Rp by analogy with the
fact that when we move along a circle in the same direction then sooner or later we
will return to the starting point. However, all elements of Z can be obtained from an
element a ∈ Z only in two infinite stages when the fist stage is successively adding 1
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Figure 1: Relation between Rp and Z

to a and the second stage is successively adding -1 to a.
It is seen from Figure 1 that in Rp the elements (p−1)/2 and −(p−1)/2 are

close to each other, and mathematically this follows from the fact that (p−1)/2+1 =
(p + 1)/2 = −(p − 1)/2 (mod p). The set Z can be treated as obtained from Rp as
follows. First we break the circle in Figure 1 at the top and move the points (p−1)/2
and −(p−1)/2 a great distance from each other. Then in the formal limit p→∞ the
part (1, 2, ...(p − 1)/2) of the circle becomes the part (1, 2, ...∞) of the straight line,
and the part (−1,−2, ...− (p− 1)/2) of the circle becomes the part (−1,−2, ...−∞)
of the straight line. Finally, by adding 0 we obtain the set Z.

This observation can be treated as an illustration of Dyson’s idea because
it becomes clear why Rp has a higher symmetry than Z. In Z it is not possible to
reproduce all results in Rp since in Z there are no operations modulo a number. As
proved in Ref. [4], it follows from Definition that the theory with Rp is more general
than the theory with Z, and the latter is a special degenerate case of the former in the
formal limit p → ∞. This is in spite of the fact that Rp contains less elements than
Z. This situation is analogous to that discussed above that RT is more general than
NT and to other cases discussed above when theory A is more general than theory B.

The fact that the theory with Rp is more general than the theory with
Z implies that, even from purely mathematical point of view, the concept of infinity
cannot be fundamental since when we introduce infinity, we get the degenerate theory
where all operations modulo a number disappear.

The proof that Rp → Z when p→∞ is analogous to standard proof that
a sequence (an) of natural numbers goes to infinity when n→∞ if ∀M > 0 ∃n0 such
that an > M ∀n > n0. Therefore the proof in Ref. [4] that Rp → Z when p → ∞
does not involve actual infinity.
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At the same time, the fact that Rp → Z when p → ∞ can be proved
in the framework of the theory of ultraproducts described in a vast literature. As
noted by Zelmanov [10], infinite fields of zero characteristic (and Z) can be embedded
in ultraproducts of finite fields. This approach is in the spirit of belief of many
mathematicians that sets of characteristic 0 are more general that finite sets, and for
investigating infinite sets it might be convenient to use properties of simpler sets of
positive characteristics.

The theory of ultraproducts is essentially based on classical results on
infinite sets involving actual infinity. In particular, the theory is based on  Loŝ’ theorem
involving the axiom of choice. Therefore the theory of ultraproducts cannot be used
in proving that finite mathematics is more general than classical one.

Let us also note that standard terminology that Z and the fields con-
structed from Z (e.g. the fields of rational, real and complex numbers) are sets of
characteristic 0 reflects the usual spirit that classical mathematics is more fundamen-
tal than finite one. I think it is natural to say that Z is the ring of characteristic ∞
because it is a limit of rings of characteristic p when p→∞. The characteristic of the
ring p is understood such that all operations in the ring are modulo p but operations
modulo 0 are meaningless. Usually the characteristic n of the ring is defined as the
smallest positive number n such that the sum of n units 1 + 1 + 1... in the ring equals
zero if such a number exists and 0 otherwise. However, this sum can be written as
1 · n and the equality 1 · 0 = 0 takes place in any ring.

Consider now the following question. Does the fact that Rp is more general
than Z mean that in applications finite mathematics is more general (fundamental)
than classical one? Indeed, in applications not only rings are used but also fields
which contain division. For example, if p is prime then Rp becomes the Galois field
Fp in which division is defined as usual but modulo p.

As note above, for numbers with the absolute values much less than p,
the results of summation, subtraction and multiplication are the same in Rp and Z.
That is why if an experiment deals only with such numbers, and the theory describing
this experiment involves only sums, subtractions and multiplications then the results
of the experiment cannot answer the question what mathematics is more adequate
for describing this experiment: classical or finite. However, in the case of division
the difference is essential. For example, 1/2 in Fp equals (p + 1)/2, i.e. a very large
number if p is large. That is why an impression may arise that finite mathematics is
not adequate for describing experimental data. Let us consider this problem in more
details.

Now it is accepted that the most general physical theory is quantum one,
i.e., any classical theory is a special case of quantum one. This fact has been already
mentioned above. Therefore the problem arises whether quantum theory based on
real and complex numbers containing division (and also quantum theories based on
their generalizations, e.g., p-adic numbers or quaternions) can be a special case of a
quantum theory based on finite mathematics.

In standard quantum theory (SQT) a state of a system is described by the
wave function Ψ = c1e1+c2e2+ ... where the ej (j = 1, 2, ...∞) are the elements of the
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basis of the Hilbert space, and the cj are complex coefficients. Usually basis elements
are normalized to one: ||ej|| = 1 and then the probability for a system to be in the
state ej is |cj|2. However, normalization to one is only the question of convention
but not the question of principle. The matter is that not the probability itself but
only relative probabilities of different events have a physical meaning. That is why
spaces in quantum theory are projective: const · Ψ and Ψ describe the same state if
const 6= 0.

Hence one can choose the basis where all the ||ej|| are positive integers.
Then we use the theorem proved in standard textbooks on Hilbert spaces: any element
of the Hilbert space can be approximated with any desired accuracy by a finite linear
combination Ψ = c1e1 + c2e2 + ...cnen where the coefficients are rational numbers.
Finally, using the fact that spaces in quantum theory are projective, one can multiply
Ψ by the common denominator of all the coefficients and get the case when all the
complex coefficients cj = aj + ibj are such that all the numbers aj and bj are integers.

Therefore, although formally Hilbert spaces in quantum theory are com-
plex, but, with any required accuracy, any state can be described by a set of coeffi-
cients which are elements of Z. Hence the description of states by means of Hilbert
spaces is not optimal since such a description contains a big redundancy of elements
which are not needed for a full description.

Now we use that theory with Rp is more general than theory with Z and
describe quantum states not by elements of Hilbert spaces but by elements of spaces
over a finite ring Rp + iRp, i.e. now all the aj, bj and ||ej|| are elements of Rp. I call
this theory FQT - finite quantum theory. As follows from the abovementioned, FQT
is more general than SQT: when the absolute values of all the aj, bj and ||ej|| are
much less than p then both theories give the same results but if the absolute values
of some of those quantities are comparable to p then the descriptions are different
because in SQT there are no operations modulo p.

4 Examples when finite mathematics can solve prob-

lems which classical mathematics cannot

In Ref. [4] we considered phenomena where it is important that p is finite. They
cannot be described by SQT, and this is analogous to the fact that nonrelativistic
theory cannot describe phenomena in which it is important that c is finite. Below we
describe several such phenomena.

One example is as follows. As noted above, standard quantum theory can-
not describe gravity because the theory is nonrenormalizable. But in our approach,
the universal law of gravitation can be derived as a consequence of FQT in semiclas-
sical approximation [4]. In this case the gravitational constant G depends on p as
1/ln(p). By comparing the result with the experimental value, one gets that ln(p) is
of the order of 1080 or more, and therefore p is a huge number of the order of exp(1080)
or more. One might think that since p is so huge then in practice p can be treated as
an infinite number. However, since G depends on p as 1/ln(p), and ln(p) is ”only”
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of the order of 1080, gravity is observable. In the formal limit p → ∞, G becomes
zero and gravity disappears. Therefore, in our approach, gravity is a consequence of
finiteness of nature.

Another case is the famous Dirac vacuum energy problem. The vacuum
energy should be zero, but in standard theory the sum for this energy diverges. In
Sec. 8.8 of Ref. [4], I take the standard expression for this sum; then I explicitly
calculate this sum in finite mathematics without any assumptions or philosophy, and,
since all the calculations are modulo p, I get zero as it should be.

I will now consider the following interesting example. In quantum theory,
elementary particles are described by irreducible representations (IRs) of the symme-
try algebra. The algebras are such that their IRs contain either only positive energies
or only negative energies. In the first case the particles are called particles and in
the second one – antiparticles. In the first case the spectrum of energies in standard
theory contains the values (m1,m1 + 1,m1 + 2, · · ·∞), and in the second case – the
values (−m2,−m2 − 1,−m2 − 2, · · · − ∞), where m1 > 0, m2 > 0, m1 is called the
mass of a particle and m2 is called the mass of the corresponding antiparticle. Exper-
imentally m1 = m2 but in standard theory, IRs with positive and negative energies
are fully independent of each other. The usual statement is that m1 = m2 follows
from the fact that local covariant equations are CPT invariant. However, as discussed
in detail in Ref. [4], the argument x in local field functions does not have a physical
meaning because it is not associated with any operator. So, in fact standard theory
cannot explain why m1 = m2.

For understanding this problem, the following observation from particle
theory may be helpful. In the formal case when electromagnetic and weak interactions
are absent, isotopic invariance is exact, and the proton and the neutron have equal
masses simply because they are different states in the same IR of the isotopic algebra.
Therefore, the equality of the masses has nothing to do with locality.

Consider now what happens in quantum theory over finite mathematics.
For definiteness, we consider the case when p is odd, and the case when p is even can
be considered analogously. One starts constructing the IR as usual with the value m1,
and, by acting on the states by raising operators, one gets the values m1+1,m1+2, · · ·.
However, now we are moving not along the straight line but along the circle in Figure
1. When we reach the value (p − 1)/2, then, as explained above, the next value is
–(p − 1)/2, i.e. one can say that by adding 1 to a large positive number (p − 1)/2
one gets a large negative number –(p− 1)/2. By continuing this process, one gets the
numbers −(p− 1)/2 + 1 = −(p− 3)/2, −(p− 3)/2 + 1 = −(p− 5)/2 etc. The explicit
calculation shows that the procedure ends when the value −m1 is reached.

Therefore, finite mathematics gives a clear proof of the experimental fact
that m1 = m2, and this is analogous to the above observation that two states have
equal masses if they belong to the same IR of the symmetry algebra. In addition, finite
mathematics shows that, instead of two independent IRs in classical mathematics, one
gets only one IR describing both, a particle, and its antiparticle. The case described
by classical mathematics can be called degenerate because in the formal limit p→∞
one IR in finite mathematics splits into two IRs in classical mathematics. So, in the
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case p → ∞ we get symmetry breaking. This example is a beautiful illustration of
Dyson’s idea [6] that theory A is more general than theory B if the symmetry in B
can be obtained from the symmetry in A by contraction. The example is fully in the
spirit of this idea because it shows that classical mathematical can be obtained from
finite one by contraction of the symmetry in the formal limit p→∞. This example
also shows that even the very concept of particle-antiparticle is only approximate and
is approximately valid only when p is very large. Consequently, constructing complete
quantum theory based on finite mathematics will be difficult because the construction
should be based on new principles.

The above examples demonstrate that there are phenomena which can be
explained only in finite mathematics because for those phenomena it is important
that p is finite and not infinitely large. So, we have an analogy with the case that
relativistic theory can explain phenomena where c is finite while nonrelativistic theory
cannot explain such phenomena. In Ref. [4] I also consider other examples where the
results given by finite mathematics considerably differ from ones given by classical
mathematics.

5 Discussion

In the literature an idea is discussed that space and time should be quantized. How-
ever, as discussed in detail in Ref. [4], the concept of space-time has a physical
meaning only on classical level, i.e., when first FQT is approximated by SQT in the
formal limit p→∞, and then SQT is approximated by classical theory in the formal
limit h̄→ 0.

One can also pose the following problem. If the laws of physics are de-
scribed in finite mathematics with some p then a question arises whether there are
reasons for p to be as is or the value of p is a result of pure random circumstances.
As noted above, every computing device can perform mathematical operations only
modulo some number p which is defined by the number of bits this device can operate
with. It is reasonable to believe that finite mathematics describing physics in our uni-
verse is characterized by a characteristic p which depends on the current state of the
universe, i.e., the universe can be treated as a computer. Therefore, it is reasonable
to believe that the number p is different at different stages of the universe.

The problem of time is one of the most fundamental problems of quantum
theory, and this problem is discussed in a vast literature (see e.g. Ref. [4] and
references therein). In quantum theory it is not correct to operate with the time t
which is a continuous quantity belonging to the interval (−∞,+∞). In Ref. [4] it
has been discussed a conjecture that standard classical time t manifests itself because
the value of p changes, i.e. t is a function of p. We do not say that p changes over
time because classical time t cannot be present in quantum theory; we say that we
feel t because p changes. As discussed in Ref. [4] and will be discussed in more details
in a separate publication, with such an approach, the known problem of the baryon
asymmetry of the universe has a natural solution.
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Let us note that in FQT there are no infinities in principle and that is
why divergences are absent in principle. In addition, probabilistic interpretation of
FQT is only approximate: it applies only to states described by the numbers aj, bj
and ||ej|| which are much less than p.

This situation is a good illustration of the famous Kronecker’s expression:
”God made the natural numbers, all else is the work of man”. In view of the above
discussion, I propose to reformulate this expression as: ”God made only finite sets
of natural numbers, all else is the work of man”. For illustration, consider a case
when some experiment is conducted N times, the first event happens n1 times, the
second one — n2 times etc. such that n1 +n2 + ... = N . Then the experiment is fully
described by a finite set of natural numbers. But people introduce rational numbers
wi = wi(N) = ni/N , introduce the concept of limit and define probabilities as limits
of the quantities wi(N) when N →∞.

Of course, when classical and finite mathematics are considered only as
abstract sciences then the question what mathematics is more general (fundamental)
does not have a great meaning. However, the above discussion shows that, from the
point of view of applications, finite mathematics is more general (fundamental) than
classical one. The conclusion from the above consideration can be formulated as:

Mathematics describing nature at the most fundamental level
involves only a finite number of numbers, while the concepts of limit,
infinitesimals and continuity are needed only in calculations describing
nature approximately.

Acknowledgements: I am grateful to Mark Burgin who told me about
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