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Abstract. In this paper we use a new method to study problems in the

additive number theory (see [1]). With the notion of circle of partition as a set
of points whose weights are natural numbers of a particular subset under an

additive condition we be able to prove that infinitely many natural numbers

≥ 6 have at least one representation as the sum of two prime numbers. This
means a statement nearby the original binary Goldbach conjecture.

1. Introduction

The Goldbach conjecture dates from 1742 out of the correspondence between
the Swiss mathematician Leonard Euler and the German mathematician Christian
Goldbach. The problem has two folds, namely the binary case and the ternary
case. The binary case ask if every even number ≥ 6 can be written as a sum of two
primes, where as the ternary case ask if every odd number ≥ 7 can be written as
a sum of three prime numbers. The ternary case has, however, been solved quite
recently in the preprint [2] culminating several works. Though the binary problem
remains unsolved as of now there has been substantive progress as well as on its
variants. The first milestone in this direction can be found in (see [6]), where it
is shown that every even number can be written as the sum of at most C primes,
where C is an effectively computable constant. In the early twentieth century, G.H
Hardy and J.E Littlewood assuming the Generalized Riemann hypothesis (see [9]),
showed that the number of even numbers ≤ X and violating the binary Goldbach
conjecture is much less than X

1
2+c, where c is a small positive constant. Jing-run

Chen [4], using the methods of sieve theory, showed that every even number can
either be written as a sum of two prime numbers or a prime number and a number
which is a product of two primes. It also known that almost all even numbers can
be written as the sum of two prime numbers, in the sense that the density of even
numbers representable in this manner is one [8], [7]. It is also known that there
exist a constant K such that every even number can be written as the sum of two
prime numbers and at most K powers of two, where we can take K = 13 [5].
In [1] we have developed a method which we feel might be a valuable resource and a
recipe for studying problems concerning partition of numbers in specified subsets of
N. The method is very elementary in nature and has parallels with configurations
of points on the geometric circle.
Let us suppose that for any n ∈ N we can write n = u+v where u, v ∈M ⊂ N then
the new method associate each of this summands to points on the circle generated
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in a certain manner by n > 2 and a line joining any such associated points on the
circle. This geometric correspondence turns out to useful in our development, as
the results obtained in this setting are then transformed back to results concerning
the partition of integers.

2. The Circle of Partition

Here we repeat the base results of the method of circles of partition developed
in [1].

Definition 2.1. Let n ∈ N and M ⊆ N. We denote with

C(n,M) = {[x] | x, y ∈M, n = x + y}

the Circle of Partition generated by n with respect to the subset M. We will
abbreviate this in the further text as CoP. We call members of C(n,M) as points
and denote them by [x]. For the special case M = N we denote the CoP shortly as
C(n). We denote with ‖[x]‖ := x the weight of the point [x] and correspondingly
the weight set of points in the CoP C(n,M) as ‖C(n,M)‖. Obviously holds

‖C(n)‖ = {1, 2, . . . , n− 1}.

Definition 2.2. We denote the line L[x],[y] joining the point [x] and [y] as an axis
of the CoP C(n,M) if and only if x + y = n. We say the axis point [y] is an axis
partner of the axis point [x] and vice versa. We do not distinguish between L[x],[y]

and L[y],[x], since it is essentially the the same axis. The point [x] ∈ C(n,M) such
that 2x = n is the center of the CoP. If it exists then we call it as a degenerated
axis L[x] in comparison to the real axes L[x],[y]. We denote the assignment of an
axis L[x],[y] to a CoP C(n,M) as

L[x],[y] ∈̂ C(n,M) which means [x], [y] ∈ C(n,M) with x + y = n.

Proposition 2.3. Each axis is uniquely determined by points [x] ∈ C(n,M).

Proof. Let L[x],[y] be an axis of the CoP C(n,M). Suppose as well that L[x],[z] is
also an axis with z 6= y. Then it follows by Definition 2.2 that we must have
n = x + y = x + z and therefore y = z. This cannot be and the claim follows
immediately. �

Corollary 2.4. Each point of a CoP C(n,M) except its center has exactly one axis
partner.

Proof. Let [x] ∈ C(n,M) be a point without an axis partner being not the center
of the CoP. Then holds for every point [y] 6= [x] except the center

x + y 6= n.

This contradicts to the Definition 2.1. Due to Proposition 2.3 the case of more than
one axis partners is impossible. This completes the proof. �
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3. The Fundamental Theorem and its Conclusion

Theorem 3.1 (Fundamental). Let n, r ∈ N, M ⊆ N and C(n,M) be a nonempty
CoP with an axis L[x],[n−x] ∈̂ C(n,M) 1 . If holds x + r ∈M then C(n + r,M) is a
nonempty CoP too.

Proof. Since L[x],[n−x] ∈̂ C(n,M), x and n− x are members of M. And due to the
premise also x + r ∈M. Then holds

n + r − (x + r) = n− x ∈M.

Ergo there is an axis L[x+r],[n+r−(x+r)] ∈̂ C(n+ r,M) and C(n+ r,M) is nonempty.
�

Corollary 3.2. Let the requirements of Theorem 3.1 be fulfilled. If the base set
M is an infinite set and there exists a nonempty CoP C(no,M) then there exist
infinitely many positive integers n > no with nonempty CoPs C(n,M).

Proof. Let L[x],[n−x] be an axis of C(no,M). Then is due to Theorem 3.1 also
C(no + r1,M) nonempty with r1 > 0 and if x + r1 ∈ M. From this CoP we can
continue this process with r2 > 0 to the nonempty CoP C(no + r1 + r2,M). Since
the base set is an infinite set this process can be repeated infinitely many. �

Lemma 3.3. It is possible to construct all CoPs C(n,P) containing a certain mem-
ber [xo] with n ≥ 2xo.

Proof. We start with the least generator no = xo + 3 of a CoP containing the axis
L[3],[xo] and yo = no−xo. Now we consider the axis L[yo],[no−yo] = L[yo],[xo] ∈̂ C(no,P).
In virtue of Theorem 3.1 holds also

L[y1],[n1−y1] = L[yo+do],[no−yo] ∈̂ C(no + do,P)

and therefore

L[yo+do],[no−yo] = L[y1],[xo] ∈̂ C(n1,P)

with y1 = yo + do and n1 = no + do, if do is the distance to the immediately
subsequent prime after yo. Thus we have found with C(no,P) and C(n1,P) two
CoPs both containing [xo]. Since y1 is the immediately subsequent prime after yo
there is no CoP C(n,P) with no < n < n1 containing [xo] because there is no axis
L[xo],[y] ∈̂ C(n,P) between

L[xo],[yo] ∈̂ C(no,P) and L[xo],[y1] ∈̂ C(n1,P).

By virtue of Lemma 3.3 we can repeat this procedure with y1, y2, . . ., d1, d2, . . .
and n1, n2, . . . infinitely many often and obtain a chain of axes

L[yo],[xo],L[y1],[xo],L[y2],[xo], . . .L[ys],[xo], . . .

of the chain of all CoPs

C(no,P), C(n1,P), C(n2,P), . . . C(ns,P), . . .

containing all the fixed point [xo]. �

1The axis can also be a degenerated axis with x = n− x = n
2

if it exists.
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Theorem 3.4 (Infinite Goldberg). There are infinitely many even positive integers
n ≥ 6 having at least one representation as sum of two primes.

Proof. As an equivalent to the claim we prove that there exist nonempty CoPs for
infinitely many generators n ≥ 6. We construct by virtue of Lemma 3.3 all chains
of nonempty CoPs starting with generators no = p + 3 for all p ≥ 3. These are
infinitely many chains with infinite lengths of each one. �

But whether each even number ≥ 6 generates a CoP in this pool, remains still
open.

Even if the statement of Theorem 3.4 seems trivially but it illustrates in a beauty
kind the application of the method of circles of partition on issues in the additive
number theory.
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