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Abstract

Riemann Hypothesis has been the unsolved conjecture for 170
years. This conjecture is the last one of conjectures without proof in
”Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse”(B.
Riemann). The statement is the real part of the non-trivial zero points
of the Riemann Zeta function is 1/2. Very famous and difficult this
conjecture has not been solved by many mathematicians for many
years. In this paper, I try to solve the proposition about the Mobius
function equivalent to the Riemann Hypothesis. First, the non-trivial
formula for Mobius function is proved in theorem1. In theorem3, I
think this formula into 2 parts. By calculation for the latter part, I
get upper bound for the sum of the mobius functions (for meaning of
R.H. See theorem3).

1

Handles propositions equivalent to the Riemann Hypothesis. I express
the Riemann Hypothesis as R.H, and the Mobius function as µ(n).

Next theorem is well-known

Theorem .
m∑

n=1

µ(n) = O(m
1
2
+ϵ) ⇔ R.H

I will prove Left hand formula.

Lemma 1. ∑
n|m

µ(n) = 1(m = 1),
∑
n|m

µ(n) = 0(m ̸= 1)
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Proof. First, if m = 1, it is
∑

n|m µ(n) = µ(1) = 1. Second case. There is a
little explanation for this. Letm’s prime factorization bem = pn1

1 pn2
2 pn3

3 · · · pnk
k .

Then it becomes
∑

n|m µ(n) =k C0 −k C1 +k C2 −k C3 + · · ·k Ck = (1− 1)k =
0.

Theorem 1. ∑
n≤m

µ(n)[
m

n
] = 1

Proof.
∑m

m′=1

∑
n|m′ µ(n) = 1 is from Lemma1

1 =
m∑

m′=1

∑
n|m′

µ(n) = (µ(1)) + (µ(1) + µ(2)) + (µ(1) + µ(3))

+(µ(1) + µ(2) + µ(4)) + · · ·

See µ(n) in this expression as a character. µ(1) appears m times in the
expression. µ(2) appears [m

2
] times that is a multiple of 2 less than m. In

general, the number of occurrences of µ(n)(n < m) in this expression is the
number

[
m
n

]
that is a multiple of n below m. I get

∑
n≤m µ(n)[m

n
] = 1.

example
m = 10 case, 10 − 5 − 3 − 2 + 1 − 1 + 1 = 1.m = 13 case, 13− 6 − 4 − 2 +
2− 1 + 1− 1− 1 = 1 etc..

Theorem 2.

x∑
n=1

µ(n) changes sign at n0 ∈ [m
1
2
(1−ϵ′),m

1
2 ](m > ∃mϵ

x∑
n=1

m

n
µ(n) changes sign at n′ ∈ [m′(1−ϵ′),m′](m > m′ > ∃mϵ′)

Proof.
∑x

n=1 µ(n) changes sign in the interval [m
1
2
(1−ϵ′),m

1
2 ],m > ∃mϵ′ ([11]).∑x

n=1mnµ(n) changes sign in the interval [m′(1−ϵ′),m′],m > m′ > ∃mϵ′

([11]).
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Theorem 3.

|
m∑

n=1

µ(n)| < Km
1
2
+ϵ

R.H. is got.

Proof. From theorem1∑
n≤n0

µ(n)[
m

n
] +

∑
n0<n≤m

µ(n)[
m

n
] = 1

By theorem2 m
1
2
(1−ϵ′) < n0 < m

1
2 is the point satisfies

∑
n≤n0

µ(n) = 0. I

take ϵ as ϵ ≈ 1
2
ϵ′.

The following is obtained by calculation for
∑

n0<n≤m µ(n)[m
n
]. This rep-

resents the terms coresponds to [
√
m] are

√
m to m/(

√
m − 1), the terms

coresponds to [
√
m] − 1 are m/(

√
m − 1) to m/(

√
m − 2) and the terms

corresponds to 1 are m
2
to m.

[
√
m] term is sum of all terms satisfy [m

n
] = [

√
m] − 1, m/

√
m =

√
m ≥

[
√
m] and m/(m/(

√
m−1)) =

√
m−1 ≥ [

√
m−1], (m/(m/(

√
m−1)+1) =

m(
√
m−1)/(m+

√
m−1) <

√
m−1,) so the range is

√
m tom/(

√
m−1). Next

term is sum of all terms satisfy [m
n
] = [

√
m]−2, m/(m/(

√
m−2)) ≥ [

√
m−2].

The range is m/(
√
m − 1) to m/(

√
m − 2). The last term satisfy [m

n
] = 1,

that is m
2
to m.∑

n0<n≤m

µ(n)[
m

n
] = ([m/(n0)]− 1)×

∑
m/([m/(n0)])<n≤m/([m/(n0)]−1)

µ(n) + · · ·+

([
√
m])×

∑
m/(

√
m+1)<n≤m/

√
m

µ(n)+([
√
m]−1)×

∑
√
m<n≤m/(

√
m−1)

µ(n)+([
√
m]−2)×

∑
m/(

√
m−1)<n≤m/(

√
m−2)

µ(n) + · · ·+ 1×
∑

m/2<n≤m

µ(n)

By induction for Riemann Hypothesis, |
∑

n≤m/N µ(n)| < K(m
N
)
1
2
+ϵ. I get

|
∑

m/(N+1)<n≤m/N µ(n)| < K( m
N+1

)
1
2
+ϵ +K(m

N
)
1
2
+ϵ,

I want to calculate some terms. |
∑

m/2≤n≤m µ(n)| < K(m− 1)
1
2
+ϵ + 1 +

K(m
2
)
1
2
+ϵ, |

∑
m/3≤n≤m/2 µ(n)|is less than K(m

3
)
1
2
+ϵ +K(m

2
)
1
2
+ϵ.

|
∑

√
m<n≤m/(

√
m−1) µ(n)| is less than K( m

[
√
m]
)
1
2
+ϵ +K( m

[
√
m]−1

)
1
2
+ϵ
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Later, I calculate in the real examples.
example:m = 100 case.

−6 = 10− 9 + 0 + 0 + 6− 5× 2− 4− 3 + 2 + 1× 4

1×4−4+2−3 , 4−1+1−1 = 3 give the almost value of
∑

[100/n0]<n≤100 µ(n).

Actualy,
∑

9<n≤100 µ(n) = 2. This gives |
∑

[100/n0]<n≤100 µ(n)| < K[100/n0] =
K × 10,
example:m = 10000 case.

−95 = · · ·+ 3× 18− 2× 15− 1× 25

−1× 25+ 3× 8− 2× 15+ 3× 10 ,−25+ 8− 15+ 10 = −22 gives the almost
value of

∑
93<n≤10000 µ(n) = −23. This gives |

∑
[10000/n0]<n≤10000 µ(n)| <

K[10000/n0] = K × 107.
Why does the value coinside? By theorem2,

∑
n0≤n≤n1

µ(n) = 0 ⇔
∑

n0≤n≤n1 [
m
n
]µ(n) ≈ 0, n1 << m.

3 terms case cover all patern of all possible case about. At first,

@�
�
�

-B-C B
A

(C > 0,A < K(m − 1)
1
2
+ϵ + 1,B < (m

2
)
1
2
+ϵ) case. I get A < K(m − 1)

1
2
+ϵ +

1− C < Km
1
2
+ϵ . C ≤ 0case, I retake B + C as B. Next 3 cases and 1 case

can be occur.
For example, 26× 1− 10× 2− 2× 3 case. +−− = 0 case.

@�
�
�

-B B
A

(A < K(m− 1)
1
2
+ϵ + 1,B < (m

2
)
1
2
+ϵ)

A + B = (2α+3β)
α+β

B holds. This is A = (α+2β)
α+β

B. I supose α ̸= 0 and A <
√
3 β
α+β

B, ( α
α+β

< 1√
2
− 1√

3
). A = |

∑
n0<n≤m µ(n)| << Km

1
2
+ϵ. Later, I see

α = 0 case.
For example, 17× 1 + 5× 2− 9× 3 case. + +− = 0 case.

@�
�
�

-B B
A

(A + B) (α+2β)
α+β

= 3B holds. This is A = B(3 (α+β)
α+2β

− 1). I supose β ̸= 0 and

A <
√
3B. A = |

∑
n0<n≤m µ(n)| << Km

1
2
+ϵ.

β = 0 or the former α = 0 case.
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@�
�
�

-B B
2B

|
∑

n≤m µ(n)| < 2K(m
3
)
1
2
+ϵ at best. +−− = 0 case is almost same as other

cases. I treat 3 cases similarlly. In this case, for example, I prove temporaly
|
∑

n≤ 3
4
m µ(n)| < K(3

4
m)

1
2
+ϵ. |

∑
n≤ 3

4
m µ(n)| is about less than K 3

2
(m
3
)
1
2
+ϵ.

Next picture corresponds.

@�
�
�◦

-B B
A’

Generally, I think the case |
∑

n≤km µ(n)| < K(km)
1
2
+ϵ, (1

2
<< k << 1).

|
∑

n≤km µ(n)| is about less than K
√
3k(m

3
)
1
2
+ϵ. This condition holds for

enough small k. The proof for m (in the before 3 cases) is got by using large
M > m. I can take m < M < 2m. I only use the term less than m. It
does not contradivt to induction for m. For M , I think 3 terms’ case. For
m < M , I can lead |

∑
n≤m µ(n)| < Km

1
2
+ϵ. I write down the step just in

case.

For example, 12× 1− 12× 2 + 4× 3 case. +−+ = 0 case.

max{(K(
m

2
)
1
2
+ϵ+K(m−1)

1
2
+ϵ+1)(1− 1

2
),−(−K(

m

3
)
1
2
+ϵ−K(

m

2
)
1
2
+ϵ)(1− 2

3
)}

= (K(
m

2
)
1
2
+ϵ +K(m− 1)

1
2
+ϵ + 1)(1− 1

2
) < Km

1
2
+ϵ

I can take 4 or more terms.
example:m=15000

−25 + 13× 2 + 9× 3− 1× 4− 5× 5 ≈ 0

But,
−25 + 13× 2 + 0× 3

give almost value
∑

n≤m µ(n). And latter terms are opposite sign. If +−+ =
0’s first plus is 3 term, 1,2,3 terms’ sum is minus. 1,2,3 terms’ sum and rest
of 3 and 4,5 terms’ sum take opposite sign. If 6 terms case and in 1,2,3 terms∑

n<x[
m
n
]µ(n) is 0 case, them the 4th term and the first term take opposite

sign about. Because
∑

n<x[
m
n
]µ(n) is + − − = 0 case, there is change sign

point, so the 4th term is minus. 1,2,3 terms’ sum and 4,5,6 terms’ sum take
opposite sign. These cases cover all cases. So |

∑
n≤m µ(n)| < Km

1
2
+ϵ is got.

By calculation result, 4 or more latter terms’ influence are gradually small.
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First some (≥ 3) terms decide all value.
The calculation kee is +−+ = 0 or −+− = 0. By theorem2,

∑x
n=1

m
n
µ(n)

takes 0 frequently. This suport the calculation.

example
m=10000 case.

−95 = 107+106+105+0−103+0+0+0−99−98−97+0−95+94−93+0−91

+0 + 0− 88− 87 + 86 + 0 + 0 + 84× 2 + 0 + 0 + 81× 2 +−0 + 0− 78 + 77

−76×2+75+74+0−72×2−71+70×2+69+68×2−67−66+0+0+0

+62×2−61+0−59−58−57×2+56×2−55×2+54+0−52×2−51−50×2

+49×3+48×2+47+46×4+45×2−44−43×3+0−41×2+40+0−38

+0−36×2−35×3−34+33×6−32−31+30×4+29×3−28×4−27+0

+25×3+0−23×6+22−21×2+0+19×4+18×7+17−16×9−15×9+14×9

+0+0+11×2+10×3−9×15+8×10+7×12−6×20+5×16−4×6+3×18−2×15

−1× 25

By calculation, (mobius function’s property, I vanish some terms.)

−1× 25− 2× 15 + 3× 18

I get −25− 15 + 18 = −22. −+− = 0 is well taken as,

−4× 6 + 5× 16− 6× 10

This part’s the sum of mobius function is −6+ 16− 10 = 0.Next, +−+ = 0
is well taken as

7× 2 + 8× 10− 9× 15 + 10× 4

This part’s the sum of mobius function is 2+10−15+4 = 1. Next −+− = 0
is well taken as

−16× 8 + 17 + 18× 7 + 19× 4− 21× 4

This part’s the sum of mobius function is −8 + 1 + 7 + 4 − 4 = 0. Mobius
function’s partial sum is gradually small.
Mobius function’s partial sum is −22 + 1 = −21. It is the 3 terms’ case.
I get enough result.

|
∑
n≤m

µ(n)| < 0 +Km
1
2
+ϵ

R.H. is got.

Special thanks: I was very grateful to my friend H. Tokitu for translating in
English. I would like to express my gratitude to him.
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in Erdős, Paul, Studies in pure mathematics. To the memory of Paul
Turán, Basel, Boston, Berlin: Birkhäuser(1983)497-506
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