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The current state of the problem of the electrodynamics angular momentum, which has a long 

history, is described. Two concepts of classical electrodynamics spin, existing simultaneously 

but differing in relation to the spin tensor, are presented. By the example of radiation from a 

rotating dipole, a violation of the equivalence of vector potentials coupled by the gauge 

transformation is demonstrated when calculating the spin flux. It is shown that only the 

potentials obtained by integrating the electric field over the time gives the correct value of the 

emitted spin. So the inevitable recognition of the electrodynamics spin changes the foundations 

of classical electrodynamics and demands abandoning the fundamental gauge invariance 

principle. 
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1. Introduction 

The conceptual foundations of electromagnetic angular momentum have been revised since the 19th 

century. This article presents some overview and discussion of the rather confused matter of 

classical electrodynamics spin. The problem of the classical spin is just the serious unsolved 

problem that demands modifications of the grammar of our scientific description of the physical 

world and demands abandoning the fundamental gauge invariance principle. 

 Electromagnetic radiation of circular or elliptical polarization, no doubt, contains spin. This 

is clear already because such radiation consists of correlated photons, and photons have spin � . 

Therefore the spin density should be attributed, in particular, to a plane unbounded electromagnetic 

wave of circular polarization in the same way as the densities of photon’s energy and momentum 

are attributed to such a wave. We discuss this circumstance below. Due to the principle of 

correspondence in the transition from the quantum description to the classical one, the presence of 

spin in an electromagnetic wave should be described by classical electrodynamics. And there are 

currently two concepts of the spin of electromagnetic waves within the framework of classical 

electrodynamics. But these concepts are mutually exclusive. 

According to the common concept (for example [1-8]), the density of the spin angular 

momentum S  is proportional to the gradient of the intensity 2
u  of the electromagnetic wave [1,4] 
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This means, in particular, that a plane unbounded electromagnetic wave, which is usually 

considered as a carrier of energy and momentum density (for example, [9]), have no spin. To have 

spin, the wave must be real in the sense that it must have a boundary where the intensity drops to 

zero. There, at the boundary, according to formula (1), the spin of photons is manifested, whose 

energy and momentum are distributed over the entire region occupied by the wave. So according to 

this concept, the spin of electromagnetic radiation is separated from the energy and momentum by a 

macroscopic distance. Heitler writes about it [2]: 

“A plane wave travelling in z-direction and with infinite extension in the xy-directions 

can have no angular momentum about the z-axis. However, this is no longer the case for 

the wave with finite extension in the xy-plane. It can be shown that the wall of such a 

wave packet gives a finite contribution to the angular momentum about the z-axis”. 

An alternative concept of angular momentum of light originated in the 19th century. 

According to Sadowsky and Poynting [10, 11], there is a density of angular momentum in an 

                                                 
1
 Email: khrapko_ri@hotmail.com, khrapko_ri@mai.ru , http://khrapkori.wmsite.ru 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



electromagnetic wave of circular polarization, and this density is proportional to the energy density 

and not to the gradient of the energy density. In this case, the spatial boundary of the wave is not 

considered at all. Pointing writes:  

If we put E for the energy in unit volume and G for the torque per unit area, we have 

πλ= 2/EG ” 

According to Weyssenhoff [12], the Sadowsky-Poynting concept allows us to consider an 

electromagnetic wave of circular polarization as a “spin fluid”. Weyssenhoff writes:  

“By spin-fluid we mean a fluid each element of which possesses besides energy and 

linear momentum also a certain amount of angular momentum, proportional – just as 

energy and the linear momentum – to the volume of the element”. 

Indeed, since the time of Emma Noether, such an angular momentum density, which is not a 

moment of linear momentum, is recognized as a spin density and is described by a spin tensor 

density. The Lagrange formalism using the Lagrangian / 4F F
µν

µν= −L  leads to the canonical 

expression for the spin tensor [13-15] 
[ ]

2
c

A F
λµν λ µ νΥ = −

.                                                   (2) 

Here A
λ

 and F
µν

 are, respectively, the vector magnetic potential and the field-strength tensor.  

The spin tensor has been fruitfully used in recent decades. Calculations concerning plane 

waves and, in particular, spin transfer to a mirror are published [16-21]. Such calculations are 

impossible within the framework of the common concept. It is shown that the famous Beth 

experiment with a half-wave plate is inexplicable within the framework of the common concept and 

needs a spin tensor to explain [22-25]. The use of the spin tensor made it possible to detect the spin 

radiation of a rotating dipole [26-31]. 

The existence of the spin density, which is described by the gauge not invariant spin tensor, 

means that the potentials coupled by the gauge transformation are not equivalent to each other. The 

purpose of this article is to demonstrate, using a specific example of counting the spin radiation of a 

rotating dipole, how two different potentials, giving the same electromagnetic field, lead to different 

values of the spin flux. 

Recall that the radiation from a rotating dipole is linearly polarized in the plane of rotation 

and circularly polarized in the direction of the axis of rotation. This is depicted in Figure 1, taken 

from the encyclopedia [32].  

 
Fig. 1. Polarization of the radiation of a dipole rotating in xy-plane, observed 

from different directions. 

Fig. 2. Angular distribution of the flux of the z-component of the orbital 

angular momentum 
2/ sinzdL d dtΩ ∝ θ . 

Fig. 3. Angular distribution of the flux of the z-component of the spin angular 

momentum 
2/ coszdS d dtΩ ∝ θ  
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This field of a rotating dipole contains a flow of moment of linear momentum, the angular 

distribution of which is shown in Figure 2. It is seen that this flow is contained mainly in the 

vicinity of the plane of rotation. The angular distribution of the flux is calculated by the formula for 

the moment of force j
d� , that acts on the area 

i
da , which is an element of the spherical surface 

[33-35]: 
[ ]/ ,xy x y i j ji

i idL dt r T da d T da= � �                                        (3) 

where jiT  is the Maxwell stress tensor. The spin radiation of the rotating dipole is directed mainly 

along the axis of rotation. Its angular distribution is shown in Figure 3 and is calculated in Section 2 

Note that the emergence of the common concept is associated with the Belinfante-Rosenfeld 

procedure [36,37] and the Humblet transformation [38]. These documents was discussed in detail in 

the works [19,22,39] 

 

2. Spin radiation by a rotating dipole 

The physical meaning of the spin tensor ϒλµν  is that the 4-spin of 4-volume element dVν  is 

dS dV= ϒλµ λµν
ν . This means, for example, that the component xy

dS  of the spin passing through the 

area 
z

da  in time dt  is  
xy xyz

zdS da dt= ϒ ,                                              (4) 

and the torque acting through this area is /xy xy xyz

zd dS dt da= = ϒτ .  

In this article, we use expression (4) with the component xyr

c
ϒ  of the canonical spin tensor 

(2) twice to visually demonstrate the difference that arises when the temporal vector potential is 

replaced by the standard potential obtained by the formula [40] 

ret

0

1 1
[ ]

4
dV

r
φ ρ

πε
= � ,  

ret2

0

1 1
[ ]

4
dV

c rπε
= �A j .                            (5) 

We call the temporal potential the potential obtained by integrating the electric field over time, at a 

zero scalar potential. Since this gauge choice is the Weyl gauge, we denote temporal potential W  

so as not to be confused with A . It turns out that the temporal potential gives the correct result, and 

the standard potential (5) gives the wrong result.  

The starting point for constructing the canonical spin tensor with the temporal potential is 

the field of the dipole exp( )i tω−p  [8,41]  
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but we restrict ourselves only to the radiation field of rotating dipole. 
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This gives (no exponential factor) 
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Since t
iω= −∂ =E W W  or tx t x xF W i Wω= ∂ = − , we get  
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taking 
x

xW W= −  into account because of the metric signature used. According to (2)
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To calculate the infinitesimal spin (4) 
xylxy

l
c

dS da dt= Υ , we need the Cartesian coordinates of the 

elements lda  of a spherical surface Constr = , the spherical coordinates of which look like this  

{ , 0, 0}rd da d d da daθ ϕθ ϕ= = = =a . 

Conversion factors between Cartesian and spherical coordinates  

r

z
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∂
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=
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∂
=

∂

∂
,,   and  θ= sin2rg  

allow us to get the desired Cartesian coordinates of the elements: 

{ sin , sin , sin }l x y zda da xr d d da yr d d da zr d dθ θ ϕ θ θ ϕ θ θ ϕ= = = =  

As a result, we obtain the flux of the spin component through the surface element lda  

/
xyl xyx xyy xyzxy
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c c c c
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32 16

p z x z y r z z p
d d d d
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π ε π ε

+ + +
= = .      (13) 

This formula is presented in Fig. 3. 

 

3. Standard field potential of a rotating dipole 

Now we calculate the standard potential (5) { , }φ A  in the field of the rotating dipole to use it instead 

of the temporal potential W  in formula (2) [ ]2
c

A Fλµν λ µ νΥ = −  to obtain the spin flux.  

Consider first an oscillating (non-rotating) dipole directed along the x axis: 

exp( )x
p lq p i tω= = − .                                      (14) 

We consider it as "elementary vibrator" in the sense that the charges q are located at the ends, at a 

distance l, and the current 

/x

tI q i p lω= ∂ = −                                         (15) 

is the same at the points of the dipole. Using jdV Idx=  in equation (5) and integrating the constant 

current along the dipole, taking into account the retardation, we obtain  

2

0

exp( )
4

x i p
A ikr i t

c r

ω
ω

πε

−
= − .                                 (16) 

Representing a rotating dipole as a pair of dipoles with a quarter-period phase shift relative to each 

other, { , }p ip=p , we obtain the standard vector potential of the rotating dipole field 

2 2

0 0

{ , , 0}exp( )
4 4

x y zi p p
A A A ikr i t

c r c r

ω ω
ω

πε πε

−
= = = = −A .                 (17) 

It is easy to verify that such a potential, taking into account the corresponding ϕ -potential, gives 

the electromagnetic field (6), (7). 

Using expressions (17) instead of temporal potential (11) to calculate the canonical spin 

tensor (2) gives, instead of (12): 
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These expressions for the spin tensor lead to the correct result and coincide with (12) on the axis of 

rotation of the dipole, where z r= . However, they are not equal to zero on the plane of rotation, 

where the radiation polarization is linear and where there is no spin. This means they are not 

correct. 

 

4. Conclusion 

It is shown that the calculation of the dipole spin radiation by the formula (4) depends on which of 

the gauge equivalent vector potentials is used to form the spin tensor (2). Gauge transformations of 

electromagnetic potentials do not change the electromagnetic field determined by these potentials, 

and, accordingly, do not change the calculated values of energy, momentum and moment of 

momentum of the field. However, they change the calculated value of the spin of the 

electromagnetic field. The correct spin is given only by the temporal potentials obtained by 

integrating the electric field over time. So the inevitable recognition of the electrodynamics spin 

entails the denial of the gauge equivalence of vector potentials. This changes the foundations of 

classical electrodynamics.  

I am eternally grateful to Robert Romer for courageously publication the question, "Does a 

plane wave really carry no spin?" [42]. 
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