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Abstract. In this paper we use a new method to study problems in additive

number theory. We leverage this method to prove the Lemoine conjecture, a
closely related problem to the binary Goldbach conjecture. In particular, we

show by using the notion of circles of partition that for all odd numbers n ≥ 9

holds

n = p + 2q for not necessarily different primes p, q.

1. Introduction

Let P and 2P denotes primes numbers and their doubles, respectively. Then
Lemoine’s conjecture, roughly speaking, purports all odd numbers can be partition
into the set of all prime numbers and their doubles. More formally the conjecture
states

Conjecture 1.1. The equation 2n+ 1 = p+ 2q always has a solution in primes p
and q (not necessarily distinct) for n > 2.

The conjecture was first formulated and posed by Emile Lemoine in 1895 but was
wrongly attributed to Hyman Levy in the 1960 (see [1]), which is why it is some-
times referred to as Levy’s conjecture. The Lemoine conjecture has not gained
much popularity as does the binary Goldbach conjecture but is closely related to
and certainly implies the ternary Goldbach conjecture. There has been an amaz-
ing computational work in verifying the conjecture, and it is now known that the
conjecture holds upto 1010 [2].
In this paper we apply a method developed in [3] to study the conjecture; In par-
ticular, we show that the conjecture holds for all odd numbers n ≥ 9.

2. The Circle of Partition

Here we repeat the base results of the method of circles of partition developed
in [3].

Definition 2.1. Let n ∈ N and M ⊆ N. We denote with

C(n,M) = {[x] | x, y ∈M, n = x+ y}
the Circle of Partition generated by n with respect to the subset M. We will
abbreviate this in the further text as CoP. We call members of C(n,M) as points
and denote them by [x]. For the special case M = N we denote the CoP shortly as
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C(n). We denote with ‖[x]‖ := x the weight of the point [x] and correspondingly
the weight set of points in the CoP C(n,M) as ‖C(n,M)‖. Obviously holds

‖C(n)‖ = {1, 2, . . . , n− 1}.

Definition 2.2. We denote the line L[x],[y] joining the point [x] and [y] as an axis
of the CoP C(n,M) if and only if x + y = n. We say the axis point [y] is an axis
partner of the axis point [x] and vice versa. We do not distinguish between L[x],[y]

and L[y],[x], since it is essentially the the same axis. The point [x] ∈ C(n,M) such
that 2x = n is the center of the CoP. If it exists then we call it as a degenerated
axis L[x] in comparison to the real axes L[x],[y]. We denote the assignment of an
axis L[x],[y] to a CoP C(n,M) as

L[x],[y] ∈̂ C(n,M) which means [x], [y] ∈ C(n,M) with x+ y = n.

Remark 2.3. In the following we consider only real axes. Therefore we abstain from
the attribute real in the sequel.

Proposition 2.4. Each axis is uniquely determined by points [x] ∈ C(n,M).

Proof. Let L[x],[y] be an axis of the CoP C(n,M). Suppose as well that L[x],[z] is
also an axis with z 6= y. Then it follows by Definition 2.2 that we must have
n = x + y = x + z and therefore y = z. This cannot be and the claim follows
immediately. �

Corollary 2.5. Each point of a CoP C(n,M) except its center has exactly one axis
partner.

Proof. Let [x] ∈ C(n,M) be a point without an axis partner being not the center
of the CoP. Then holds for every point [y] 6= [x] except the center

x+ y 6= n.

This is a contradiction to the Definition 2.1. Due to Proposition 2.4 the case of
more than one axis partners is impossible. This completes the proof. �

Notations. We denote by

Nn = {m ∈ N | m ≤ n} (2.1)

the sequence of the first n natural numbers.

Now we add here a lemma which not is contained in [3] but is needed in the next
section.

Lemma 2.6. We denote an odd number n = p+ 2q | p, q ∈ P as Lemoine number
and Q as the set of all Lemoine numbers. Then holds

Q = {n ∈ 2N + 1 | C(n,P ∪ 2P) 6= ∅}.
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Proof. In virtue of Definition 2.1 holds

C(n,P ∪ 2P) = {[x] | x, n− x ∈ P ∪ 2P}.

Since n is odd only sums of an odd prime with an even double of a prime are
possible. Therefore x must be a prime and n−x is a double of a prime or reversely.
Then is n a Lemoine number. This means that n is a Lemoine number if and only
if C(n,P ∪ 2P) is not empty. �

3. The Fundamental Theorem and its Conclusions

Theorem 3.1 (Fundamental). Let n, r ∈ N, M ⊆ N and C(n,M) be a non-empty
CoP with an axis L[x],[n−x] ∈̂ C(n,M) 1 . If holds x+ r ∈M then C(n+ r,M) is a
non-empty CoP too.

Proof. Since L[x],[n−x] ∈̂ C(n,M), x and n− x are members of M. And due to the
premise also x+ r ∈M. Then holds

n+ r − (x+ r) = n− x ∈M.

Ergo there is an axis L[x+r],[n+r−(x+r)] ∈̂ C(n + r,M) and C(n + r,M) is non-
empty. �

Corollary 3.2. Let the requirements of Theorem 3.1 be fulfilled. If the base set
M is an infinite set and there exists a non-empty CoP C(no,M) then there exist
infinitely many positive integers n > no with non-empty CoPs C(n,M).

Proof. Let L[x],[n−x] be an axis of C(no,M). Then is due to Theorem 3.1 also
C(no + r1,M) non-empty with r1 > 0 and if x + r1 ∈ M. From this CoP we can
continue this process with r2 > 0 to the non-empty CoP C(no + r1 + r2,M). Since
the base set is an infinite set this process can be repeated infinitely many. �

Lemma 3.3. It is possible to construct all CoPs C(n,P ∪ 2P) containing a certain
member [xo] with n ≥ xo + 6 for n ∈ 2N + 1 with n ≥ 9.

Proof. We start with the least generator no = xo + 6 of a CoP containing the axis
L[6],[xo] and yo = no−xo. Now we consider the axis L[yo],[no−yo] = L[yo],[xo] ∈̂ C(no,P∪
2P). In virtue of Theorem 3.1 holds also

L[y1],[n1−y1] = L[yo+do],[no−yo] ∈̂ C(no + do,P ∪ 2P)

and therefore

L[yo+do],[no−yo] = L[y1],[xo] ∈̂ C(n1,P ∪ 2P)

with y1 = yo + do and n1 = no + do, if do is the distance to the immediately
subsequent prime after yo. Thus we have found with C(no,P∪2P) and C(n1,P∪2P)
two CoPs both containing [xo]. Since y1 is the immediately subsequent prime after
yo there is no CoP C(n,P ∪ 2P) with no < n < n1 containing [xo] because there is
no axis L[xo],[y] ∈̂ C(n,P ∪ 2P) between

L[xo],[yo] ∈̂ C(no,P ∪ 2P) and L[xo],[y1] ∈̂ C(n1,P ∪ 2P).

1The axis can also be a degenerated axis with x = n− x = n
2

if it exists.
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By virtue of Corollary 3.2 we can repeat this procedure with y1, y2, . . ., d1, d2, . . .
and n1, n2, . . . infinitely many often and obtain a chain of axes

L[yo],[xo],L[y1],[xo],L[y2],[xo], . . .L[ys],[xo], . . .

of the chain of all CoPs

C(no,P ∪ 2P), C(n1,P ∪ 2P), C(n2,P ∪ 2P), . . . C(ns,P ∪ 2P), . . .

containing all the fixed point [xo]. �

Theorem 3.4 (Infinite Lemoine). There are infinitely many odd numbers n ≥ 9
having at least one representation as sum of a prime and double of a prime.

Proof. As an equivalent to the claim we prove that there exist non-empty CoPs for
infinitely many odd generators n ≥ 9. We construct by virtue of Lemma 3.3 all
chains of non-empty CoPs starting with generators no = p+ 6 for all p ≥ 3. These
are infinitely many chains with infinite lengths of each one. �

Even if the statement of this theorem seems trivial, it illustrates in a beauty
fashion the application of the method of circles of partition on issues in additive
number theory.

Whether each odd number ≥ 9 generates a CoP in this pool remains still open,
but it will be solved in the sequel. The argument employed can be thought of as
an inclusion law, that once the truth of the conjecture holds for some odd number
then by necessity it must hold for the next subsequent odd number. This trick is
then exploited to cover all odd numbers, but before then we introduce and study
the following sets.

By virtue of Lemma 3.3 let

Hx := {n ∈ 2N + 1 | [x] ∈ C(n,P ∪ 2P)}, x ∈ P (3.1)

be the set of odd generators of all CoPs containing the point [x] and

Hx(n) := {m ∈ Hx | m ≤ n} (3.2)

the set of such generators not greater than n. Further let be

H(n) :=
⋃

p ∈ P
3 ≤ p ≤ n− 3

Hp(n). (3.3)

Proposition 3.5. For all p ∈ P | p ≥ 3 holds

Hp = 2P + p and Hp(n) = 2Pn + p

where Pn = P ∩ Nn and for n ∈ (2N + 1).

Proof. Since [p] ∈ C(n,P∪2P) also holds [n−p] ∈ C(n,P∪2P) and hence n−p ∈ 2P
and for p ≥ 3

Hp = {n ∈ 2N | n− p ∈ 2P, n− p ≥ 6}
= {q + p | q ∈ 2P, q ≥ 6}
= 2P + p.

It follows obviously that Hp(n) = 2Pn + p. �
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Remark 3.6. It is crucially important to recognize that CoPs with odd number
generators with base set P ∪ 2P do not have a center. The upshot is that any such
non-empty CoP C(n,P ∪ 2P) must contain only real axis.

Lemma 3.7 (The Little Lemma). Let Hx(n) be defined as in (3.2). If for an odd
no holds that H(no) as defined in (3.3) contains all odd numbers 9 ≤ n < no and
there exist an axis L[x],[y] ∈̂ C(n,P ∪ 2P) such that x ∈ P and x < y, then there
exists some even 2 ≤ do ≤ no − 9 and some prime po such that

[po − do] ∈ C(no − do,P ∪ 2P).

Proof. Appealing to Proposition 3.5, we can write

Hx(no)− {d} = (2Pno − {d}) + x

for 2 ≤ d ≤ no− 6 where Hy(no)−{d} is structurally the set of all d-left translates
of the odd numbers < no for all choice of even d in the preassigned range and
2Pno − {d} is the d-left translate of the first no prime numbers doubles. Under the
assumption that H(no) contains all odd numbers upto no − 2 inclusive except no,
it certainly follows that there exists at least an axis L[x],[y] ∈ C(no − d,P ∪ 2P) for
any choice of d satisfying 2 ≤ d ≤ no− 9. For a fixed d1 ∈ [2, no− 9] and under the
requirement, we choose y ≥ no−d1

2 such that

Hx(no)− {d1} = (2Pno
− {d1}) + x

with L[x],[y] ∈ C(no − d1,P ∪ 2P). Then it must be the case that

x ≤ no − d1
2

≤ no − 2

2
< no − 2.

Appealing to Bertrand’s postulate there must exists at least a prime number inside
the open interval (no−2

2 , no − 2), so that for any prime po ∈ (no−2
2 , no − 2) there

exists some even number do such that x + do = po. It follows by replacing x with
po − do the containment

[po − do] ∈ C(no − d1,P)

and by virtue of our choice of y the containment po−do ∈ Pno
−{d1}. We examine

two possible cases for this scenario.
In the case do = d1 then we have

[po − do] ∈ C(no − do,P).

For the case d1 6= do, then by virtue of the containment po − do ∈ Pno −{d1} there
exist a prime number p1 ∈ Pno such that po − do = p1 − d1 so that we have

[p1 − d1] ∈ C(no − d1,P).

This completes the proof of the Lemma. �

Proposition 3.8.

# {p ≤ n | 2p ≤ n} = π(
n

2
).
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Proof. We can write

# {p ≤ n | 2p ≤ n} =
∑
p≤n
2p≤n

1 =
∑
p≤n

2

1 = π(
n

2
)

�

Proposition 3.8 does indicates that the weight of the co-axis point with a prime
weight of the CoP C(n,P ∪ 2P) 6= ∅ must not exceed the threshold n

2 . That is to
say, for any axis L[p],[2q] ∈̂ C(n,P ∪ 2P) such that p, q ∈ P then it is required that
q ≤ n

2 for the CoP to have any chance of being non-empty.

Lemma 3.9 (Modified little Lemma). Let Hx(n) be defined as in (3.2). If for an
odd no holds that H(no) as defined in (3.3) contains all odd numbers 9 ≤ n < no
and there exists an axis L[x],[y] ∈̂ C(n,P ∪ 2P) such that y ∈ 2P and y < x, then
there exists some even 2 ≤ do ≤ no − 9 and some 2po ∈ 2P such that

[2po − do] ∈ C(no − do,P ∪ 2P).

Proof. Appealing to Proposition 3.5, we can write

Hx(no)− {d} = (2Pno
− {d}) + x

for 2 ≤ d ≤ no− 6 where Hx(no)−{d} is structurally the set of all d-left translates
of the odd numbers < no for all choice of even d in the preassigned range and
2Pno − {d} is the d-left translate of the first no prime numbers doubles. Under the
assumption that H(no) contains all odd numbers upto no − 2 inclusive except no,
it certainly follows that there exists at least an axis L[x],[y] ∈ C(no − d,P ∪ 2P) for
any choice of d satisfying 2 ≤ d ≤ no− 9. For a fixed d1 ∈ [2, no− 9] and under the
requirement, we choose x ≥ no−d1

2 for x ∈ P such that

Hx(no)− {d1} = (2Pno
− {d1}) + x

with L[x],[y] ∈ C(no − d1,P∪ 2P). Then by making the assignment y = 2q for q ∈ P
it must be the case that

q ≤ no − d1
4

≤ no − 2

4
<
no − 2

2
.

Appealing to Bertrand’s postulate there must exists at least a prime number inside
the open interval (no−2

4 , no−2
2 ), so that for any prime po ∈ (no−2

4 , no−2
2 ) there exists

some even number do such that q + do = po so that we have y + d2 = 2po for some
even number d2. It follows by replacing y with 2po − d2 the containment

[2po − d2] ∈ C(no − d1,P)

and by virtue of our choice of x the containment 2po − d2 ∈ 2Pno
− {d1}. We

examine two possible cases for this scenario.
In the case d2 = d1 then we have

[2po − d2] ∈ C(no − d2,P).

For the case d1 6= d2, then by virtue of the containment 2po − d2 ∈ 2Pno
− {d1}

there exists a prime number p1 ∈ Pno
such that 2po−d2 = 2p1−d1 so that we have

[2p1 − d1] ∈ C(no − d1,P).

This completes the proof of the Lemma. �
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Lemma 3.10 (Main Lemma). Let Hx(2n+ 1) by virtue of (3.2) be the generator
set of CoPs containing the point [x] such that their generators are not greater than
2n + 1 by n ∈ N | n ≥ 3. Then contains H(2n + 1) as defined in (3.3) all odd
numbers between 9 and 2n+ 1 inclusive.

Proof. At first we prove that the following statement is equivalent to the claim

∀n ∈ (2N + 1) | 9 ≤ n ≤ 2n+ 1 holds C(n,P ∪ 2P) 6= ∅. (3.4)

Let be

η(n, p) =

{
0 for p > n− 3 ∨ n− p 6∈ 2P
1 for n− p ∈ 2P.

(3.5)

Then is obviously

‖C(n,P ∪ 2P)‖ = {p ∈ P | 3 ≤ p ≤ n− 3, η(n, p) > 0}
and for n ∈ (2N + 1)

Hp(2n+ 1) = {m ∈ (2N + 1) | 9 ≤ m ≤ 2n+ 1, η(m, p) > 0}.

It follows that if C(2n+ 1,P ∪ 2P) = ∅ then holds

η(2n+ 1, p) = 0 for 3 ≤ p ≤ 2n− 3

and reversely. And this means that the sets Hp(2n+1) contain for no p the generator
2n+1 and reversely that if C(2n+1,P∪2P) 6= ∅ then 2n+1 belongs to at least one
set Hp. The equivalence between (3.4) and the claim of this lemma is demonstrated.

Now we assume that for the odd number 2no + 1 holds that H(2no + 1) contains
all odd numbers between 9 and 2no − 1 inclusive except 2no + 1. This would mean
that it holds C(2no + 1,P ∪ 2P) = ∅ and C(n,P ∪ 2P) 6= ∅ for 9 ≤ n ≤ 2no − 1.

Because of Lemma 3.7 there is always a prime po and an even number do such
that po − do is also prime and it holds

[po − do] ∈ C(2no + 1− do,P ∪ 2P).

in the case the case the lower axis point of the CoP has a prime number weight.
Then holds in virtue of Theorem 3.1 that there is an axis

L[po],[2no+1−po] ∈̂ C(2no + 1,P ∪ 2P).

But this contradicts the assumption that C(2no + 1,P ∪ 2P) = ∅.
Also in the case the lower axis point of the CoP belongs to the set of doubles of
primes 2P, then by appealing to Lemma 3.9 there exists some 2po ∈ 2P and some
even number d such that 2po − d ∈ 2P and it holds

[2po − d] ∈ C(2no + 1− d,P ∪ 2P).

Then holds in virtue of Theorem 3.1 that there is an axis

L[2po],[2no+1−2po] ∈̂ C(2no + 1,P ∪ 2P).

This also contradicts the assumption that the CoP C(2no + 1,P ∪ 2P) = ∅. Hence
2no + 1 is member of

H(2no + 1) = {9, . . . , 2no − 1, 2no + 1} = (2Nno + 1) \ {1, 3, 5, 7}
and the CoP C(2no + 1,P ∪ 2P) is non-empty. �

Since we did not put any restriction on the odd number 2no + 1 this statement
is valid for all odd numbers.
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Corollary 3.11. From Lemma 3.10 follows by n→∞
H(n) −→ (2N + 1) \ {1, 3, 5, 7}.

This means that there are no empty CoPs with the base set P ∪ 2P for all odd
generators ≥ 9 and proves the following Theorem.

Theorem 3.12 (Lemoine’s conjecture). For all odd numbers ≥ 7 there exists at
least one representation as sum of a prime and double a prime.
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