ON THE INFINITUDE OF SOPHIE GERMAIN PRIMES

THEOPHILUS AGAMA

ABSTRACT. In this paper we obtain the estimate
D T
(2 + 2log2) log? =
where P is the set of all prime numbers and D := D(x) > 1. This proves that
there are infinitely many primes p € P such that 2p 4+ 1 € P is also prime.

#{p<z|2p+1,pecP}>(1+0(1))

1. Introduction and statement

Let P denotes the set of all prime numbers, then we say a prime p is a Sophie
Germain prime - named after the French mathematician Sophie Germain who en-
countered it in her investigations of Fermat’s Last Theorem - if 2p + 1 is also a
prime number. The motivation for the study of Sophie Germain primes is quite
clear from a practical point of view (see [3]), as it owes it’s application to cryptog-
raphy and primality testing [2]. There has also been lot of computational work in
verifying pushing the barrier of the largest known Sophie Germain prime, a worth-
while endeavor since the infinitude of such primes has been conjectured to hold. In
the current paper we obtain a lower bound for the number of such primes less than
a given threshold, thereby confirming the infinitude of such primes.

Let us denote ¢ : N — C to be function defined by

logp if neP
d(n) = .
0 otherwise

then an natural step to take to obtain an estimate for the number of such primes
is to an obtain an estimate for the correlation

Z Jd(n)9(2n + 1)

n<zx
or at the very least a non-trivial lower bound followed by a consequent appeal to
partial summation to remove the weight ¢/. Analyzing such correlations is by no

means an easy tussle but an appeal to the area method [1] provides with at least a
non-trivial lower bound.

2. Preliminary results

In this section we restate and prove an earlier result which will certainly serve
it’s purpose and in many ways can be viewed as a black box to obtaining further
results in the sequel. The proof of this result can be found in [1]. It could have been
ignored and refereed but we deem it appropriate keeping in mind our intention to
make the paper comprehensive.
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Theorem 2.1. Let {r; j=1 and {hj}?zl be any sequence of real numbers, and let
n n

r and h be any real numbers satisfying Y, r; =r and )y h; =h, and
j=1 j=1
(P + BV = (7 + 1),
j=1

then

Proof. Consider a right angled triangle, say AABC' in a plane, with height h and
base r. Next, let us partition the height of the triangle into n parts, not neccessarily
equal. Now, we link those partitions along the height to the hypothenus, with the
aid of a parallel line. At the point of contact of each line to the hypothenus, we
drop down a vertical line to the next line connecting the last point of the previous
partition, thereby forming another right-angled triangle, say AA; B;Cy with base
and height 1 and h; respectively. We remark that this triangle is covered by the
triangle AABC, with hypothenus constituting a proportion of the hypothenus of
triangle AABC. We continue this process until we obtain n right-angled triangles
AA;B;C}, each with base and height r; and h; for j = 1,2,...n. This construction
satisfies

h:ihj andr:irj
j=1 j=1

and
n

(r? + h?)V/? = Z(rf +h3)M2,
j=1
Now, let us deform the original triangle AABC by removing the smaller triangles
AA;B;C; for j = 1,2,...n. Essentially we are left with rectangles and squares
piled on each other with each end poking out a bit further than the one just above,
and we observe that the total area of this portrait is given by the relation

A =7r1he + (r1+r2)hg + - (ri+ 12+ rp2)hp 1+ (1 +re o+ rao1)hy
=ri(ha+hg+ - hy) +ra(hs+ha+ -+ hy) + o+ rua(huo1 + ha) +Tao1hy

n—1
-5
j=1
On the other hand, we observe that the area of this portrait is the same as the

difference of the area of triangle AABC and the sum of the areas of triangles
AA;B;C; for j =1,2,...,n. That is

1 1 —
Al = irh — izlrjhj
j:

This completes the first part of the argument. For the second part, along the
hypothenus, let us construct small pieces of triangle, each of base and height (r;, h;)
(i =1,2...,n) so that the trapezoid and the one triangle formed by partitioning

n—

<

hjvk.
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becomes rectangles and squares. We observe also that this construction satisfies

the relation
n

(2 +B2)Y2 =3 (rF + D)2,
i=1
Now, we compute the area of the triangle in two different ways. By direct strategy,
we have that the area of the triangle, denoted A, is given by

aev(350) (S

i=1
On the other hand, we compute the area of the triangle by computing the area of
each trapezium and the one remaining triangle and sum them together. That is,

n n—1 n—1 n—2
A= hn/2(zm n Zri) n hnl/Q(Zri n Zri) e 1/2my,
i=1 i=1 i=1 i=1
By comparing the area of the second argument, and linking this to the first argu-

ment, the result follows immediately. (I

Corollary 2.1. Let f: N — C, then we have the decomposition

o> fmftn+q)= Y f) > fim).

n<z—1j<zx—n 2<n<z m<n—1

Proof. Let us take f(j) =r; = h; in Theorem 2.1, then we denote by G the partial
sums

G=310)

and we notice that
n n

S 2402 =YV FG) + f)?
j=1 j=1
=> VG + £()?
j=1
=V2> f()).
j=1

Since /(G2 + G2) = Gv2 = v/2 3" f(j) our choice of sequence is valid and, there-
j=1

fore the decomposition is valid for any arithmetic function. O

3. Main results
In this section we state the main Lemma and establish our main result.

Theorem 3.1. Let f : N — C. Suppose there exists some constant 1 < N =
N(z) < z such that

S rmfon+ 1) =2 S S )

n<wx n<zx—1j<z—n
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for arbitrary l, with 1 <1, < x then

S st =D S gy S

n<z 2<n<z m<n—1

Proof. This is an easy consequence of Corollary 2.1. (]

Remark 3.2. The function @ in the statement of Theorem 3.1 can more be
thought of as the local density function of the correlation

Zf fn+1,)

n<zx

for arbitrary I, in the interval [1, z]. Indeed this function will always exists for any
arithmetic function so long as it depends on the size of the arbitrary shift [, € N
and consequently on the range of summation [1, z].

Theorem 3.3. Let P denotes the set of all prime numbers, then we have the esti-
mate

D T

<z |2p+1peP}>(1+o(1
#{p<z|[2p+1,peP}>(1+0( ))(2+210g2)log2m

where D :=D(z) > 1
Proof. Let us consider the function ¢ : N — C function defined as

1 if P

9(n) = ogp 1 n €

0 otherwise

so that by virtue of Corollary 2.1 we obtain the decomposition
D
(3.1) > dm)d(n+ (n+1) = - S o) > d(m
n<z 2<n<zx m<n—1

for D := D(x) > 1. Now using the weaker estimate found in the literature

3 9(n) = (14 o(1))z

n<zx

we obtain the following estimates by an appeal to summation by parts

Y dn) D dm)=(1+0(1) Y 9n)

2<n<zx m<n—1 2<n<zx
A +o@)z 3 8(n)— (1+of >>/( > ﬁ(n))dt
2<n<zx p) 2<n<t

xT

— (14 o(1))a? — (1 + (1)) /(1 T o(1))tdt

= (1+0(1))z? — (1 +0(1))=

5 O

(3.2) =(1+ 0(1))%
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By plugging (3.2) into (3.1) we obtain the estimate

D z2
> dm)d(n+ (n+1) = —(+o(1)7
n<z
D
=(1+ 0(1))5%
On the other hand, we can write
S 0@+ (1) = Y logplog(2p+ 1)
n<zx p<z
2p1€P
~ Z log? p + (log 2) Z log p
p<z p<zm
2pF1€P 2pf1eP
(3.3) < (1+1log2) Z log? p
p<x
2pf1€P

so that by an application of partial summation we have

(3.4) Z log® p < log® Z 1.

p<z p<z
2p+1€P 2p+1€P

By combining (3.2), (3.1) and (3.4) the lower bound follows as a consequence. [
Corollary 3.1. There are infinitely many primes p € P such that 2p + 1 € P.

Proof. This is a consequence of Theorem 3.3. O
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