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Abstract. In this paper we obtain the estimate

# {p ≤ x | 2p + 1, p ∈ P} ≥ (1 + o(1))
D

(2 + 2 log 2)

x

log2 x

where P is the set of all prime numbers and D := D(x) ≥ 1. This proves that

there are infinitely many primes p ∈ P such that 2p + 1 ∈ P is also prime.

1. Introduction and statement

Let P denotes the set of all prime numbers, then we say a prime p is a Sophie
Germain prime - named after the French mathematician Sophie Germain who en-
countered it in her investigations of Fermat’s Last Theorem - if 2p + 1 is also a
prime number. The motivation for the study of Sophie Germain primes is quite
clear from a practical point of view (see [3]), as it owes it’s application to cryptog-
raphy and primality testing [2]. There has also been lot of computational work in
verifying pushing the barrier of the largest known Sophie Germain prime, a worth-
while endeavor since the infinitude of such primes has been conjectured to hold. In
the current paper we obtain a lower bound for the number of such primes less than
a given threshold, thereby confirming the infinitude of such primes.
Let us denote ϑ : N −→ C to be function defined by

ϑ(n) :=

{
log p if n ∈ P
0 otherwise

then an natural step to take to obtain an estimate for the number of such primes
is to an obtain an estimate for the correlation∑

n≤x

ϑ(n)ϑ(2n+ 1)

or at the very least a non-trivial lower bound followed by a consequent appeal to
partial summation to remove the weight ϑ. Analyzing such correlations is by no
means an easy tussle but an appeal to the area method [1] provides with at least a
non-trivial lower bound.

2. Preliminary results

In this section we restate and prove an earlier result which will certainly serve
it’s purpose and in many ways can be viewed as a black box to obtaining further
results in the sequel. The proof of this result can be found in [1]. It could have been
ignored and refereed but we deem it appropriate keeping in mind our intention to
make the paper comprehensive.
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Theorem 2.1. Let {rj}nj=1 and {hj}nj=1 be any sequence of real numbers, and let

r and h be any real numbers satisfying
n∑

j=1

rj = r and
n∑

j=1

hj = h, and

(r2 + h2)1/2 =

n∑
j=1

(r2j + h2j )1/2,

then
n∑

j=2

rjhj =

n∑
j=2

hj

( j∑
i=1

ri +

j−1∑
i=1

ri

)
− 2

n−1∑
j=1

rj

n−j∑
k=1

hj+k.

Proof. Consider a right angled triangle, say ∆ABC in a plane, with height h and
base r. Next, let us partition the height of the triangle into n parts, not neccessarily
equal. Now, we link those partitions along the height to the hypothenus, with the
aid of a parallel line. At the point of contact of each line to the hypothenus, we
drop down a vertical line to the next line connecting the last point of the previous
partition, thereby forming another right-angled triangle, say ∆A1B1C1 with base
and height r1 and h1 respectively. We remark that this triangle is covered by the
triangle ∆ABC, with hypothenus constituting a proportion of the hypothenus of
triangle ∆ABC. We continue this process until we obtain n right-angled triangles
∆AjBjCj , each with base and height rj and hj for j = 1, 2, . . . n. This construction
satisfies

h =

n∑
j=1

hj and r =

n∑
j=1

rj

and

(r2 + h2)1/2 =

n∑
j=1

(r2j + h2j )1/2.

Now, let us deform the original triangle ∆ABC by removing the smaller triangles
∆AjBjCj for j = 1, 2, . . . n. Essentially we are left with rectangles and squares
piled on each other with each end poking out a bit further than the one just above,
and we observe that the total area of this portrait is given by the relation

A1 = r1h2 + (r1 + r2)h3 + · · · (r1 + r2 + · · ·+ rn−2)hn−1 + (r1 + r2 + · · ·+ rn−1)hn

= r1(h2 + h3 + · · ·hn) + r2(h3 + h4 + · · ·+ hn) + · · ·+ rn−2(hn−1 + hn) + rn−1hn

=

n−1∑
j=1

rj

n−j∑
k=1

hj+k.

On the other hand, we observe that the area of this portrait is the same as the
difference of the area of triangle ∆ABC and the sum of the areas of triangles
∆AjBjCj for j = 1, 2, . . . , n. That is

A1 =
1

2
rh− 1

2

n∑
j=1

rjhj .

This completes the first part of the argument. For the second part, along the
hypothenus, let us construct small pieces of triangle, each of base and height (ri, hi)
(i = 1, 2 . . . , n) so that the trapezoid and the one triangle formed by partitioning
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becomes rectangles and squares. We observe also that this construction satisfies
the relation

(r2 + h2)1/2 =

n∑
i=1

(r2i + h2i )1/2,

Now, we compute the area of the triangle in two different ways. By direct strategy,
we have that the area of the triangle, denoted A, is given by

A = 1/2

( n∑
i=1

ri

)( n∑
i=1

hi

)
.

On the other hand, we compute the area of the triangle by computing the area of
each trapezium and the one remaining triangle and sum them together. That is,

A = hn/2

( n∑
i=1

ri +
n−1∑
i=1

ri

)
+ hn−1/2

( n−1∑
i=1

ri +
n−2∑
i=1

ri

)
+ · · ·+ 1/2r1h1.

By comparing the area of the second argument, and linking this to the first argu-
ment, the result follows immediately. �

Corollary 2.1. Let f : N −→ C, then we have the decomposition∑
n≤x−1

∑
j≤x−n

f(n)f(n+ j) =
∑

2≤n≤x

f(n)
∑

m≤n−1

f(m).

Proof. Let us take f(j) = rj = hj in Theorem 2.1, then we denote by G the partial
sums

G =

n∑
j=1

f(j)

and we notice that
n∑

j=1

√
(h2j + r2j ) =

n∑
j=1

√
(f(j)2 + f(j)2

=

n∑
j=1

√
(f(j)2 + f(j)2

=
√

2
n∑

j=1

f(j).

Since
√

(G2 + G2) = G
√

2 =
√

2
n∑

j=1

f(j) our choice of sequence is valid and, there-

fore the decomposition is valid for any arithmetic function. �

3. Main results

In this section we state the main Lemma and establish our main result.

Theorem 3.1. Let f : N −→ C. Suppose there exists some constant 1 ≤ N :=
N (x) < x such that∑

n≤x

f(n)f(n+ lo) =
N (x)

x

∑
n≤x−1

∑
j≤x−n

f(n)f(n+ j)
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for arbitrary lo with 1 ≤ lo < x then∑
n≤x

f(n)f(n+ lo) =
N (x)

x

∑
2≤n≤x

f(n)
∑

m≤n−1

f(m).

Proof. This is an easy consequence of Corollary 2.1. �

Remark 3.2. The function N (x)
x in the statement of Theorem 3.1 can more be

thought of as the local density function of the correlation∑
n≤x

f(n)f(n+ lo)

for arbitrary lo in the interval [1, x]. Indeed this function will always exists for any
arithmetic function so long as it depends on the size of the arbitrary shift lo ∈ N
and consequently on the range of summation [1, x].

Theorem 3.3. Let P denotes the set of all prime numbers, then we have the esti-
mate

# {p ≤ x | 2p+ 1, p ∈ P} ≥ (1 + o(1))
D

(2 + 2 log 2)

x

log2 x

where D := D(x) ≥ 1.

Proof. Let us consider the function ϑ : N −→ C function defined as

ϑ(n) :=

{
log p if n ∈ P
0 otherwise

so that by virtue of Corollary 2.1 we obtain the decomposition∑
n≤x

ϑ(n)ϑ(n+ (n+ 1)) =
D
x

∑
2≤n≤x

ϑ(n)
∑

m≤n−1

ϑ(m)(3.1)

for D := D(x) ≥ 1. Now using the weaker estimate found in the literature∑
n≤x

ϑ(n) = (1 + o(1))x

we obtain the following estimates by an appeal to summation by parts∑
2≤n≤x

ϑ(n)
∑

m≤n−1

ϑ(m) = (1 + o(1))
∑

2≤n≤x

ϑ(n)n

= (1 + o(1))x
∑

2≤n≤x

θ(n)− (1 + o(1))

x∫
2

( ∑
2≤n≤t

ϑ(n)

)
dt

= (1 + o(1))x2 − (1 + o(1))

x∫
2

(1 + o(1))tdt

= (1 + o(1))x2 − (1 + o(1))
x2

2
+O(1)

= (1 + o(1))
x2

2
.(3.2)
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By plugging (3.2) into (3.1) we obtain the estimate∑
n≤x

ϑ(n)ϑ(n+ (n+ 1)) =
D
x

(1 + o(1))
x2

2

= (1 + o(1))
D
2
x.

On the other hand, we can write∑
n≤x

ϑ(n)ϑ(n+ (n+ 1)) =
∑
p≤x

2p+1∈P

log p log(2p+ 1)

≈
∑
p≤x

2p+1∈P

log2 p+ (log 2)
∑
p≤x

2p+1∈P

log p

≤ (1 + log 2)
∑
p≤x

2p+1∈P

log2 p(3.3)

so that by an application of partial summation we have∑
p≤x

2p+1∈P

log2 p ≤ log2 x
∑
p≤x

2p+1∈P

1.(3.4)

By combining (3.2), (3.1) and (3.4) the lower bound follows as a consequence. �

Corollary 3.1. There are infinitely many primes p ∈ P such that 2p+ 1 ∈ P.

Proof. This is a consequence of Theorem 3.3. �
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