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Abstract

The smooth Newtonian model of gravity is quantized using the results obtained from
the combined theory of Special Relativity (SR) and Quantum Mechanics (QM). The
resulting quantum model of gravity, unlike the classical Newtonian model, predicts that
there exists an upper limit to the distance between a given pair of masses, called the
action distance, beyond which they become gravitationally unbound. Equivalently, at
any given radial distance from a large gravitating body of mass, there exists a minimum
mass below which the particle would not gravitationally bind to the gravitating body.
The attractable mass limit of a gravitating body is determined by equating action
distance with the surface radius of the body. Moreover, the quantum model of gravity
indicates that the escape velocity from a large gravitating body is a function of the mass
of the escaping particle as well. This quantum effect of gravity become significant if the
mass of the escaping particles, such as the gas molecules from the exosphere of a planet,
are comparable to the attractable mass limit of the planet. The significant discrepancy
observed in the escape rates of CH4 and N2 species from Pluto’s exosphere is used to
constrain the reference mass of the combined SR-QM theory to m̄ = 3.2E − 45 (kg).
The latter is thought to be the physical cut-off limit for massless particles. An Earth
bound experiment is also proposed to test the predictions of the combined SR-QM
theory and determine the reference mass with a higher accuracy.
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1 Introduction

In the classical Newtonian model of gravity, the gravitational field surrounding a large body of mass
extends unboundedly in space. Furthermore, the local acceleration of a particle falling freely in such
a gravitational field is a continuous function of the shrinking distance between them. However, the
combined theory of Special Relativity (SR) and Quantum Mechanics (QM) indicates that the local
acceleration of the physical particles do not vary continuously but rather under a fixed steps. The
quanta of acceleration of a particle is found to be inversely proportional to the square of its rest
mass m, therefore, the higher the rest mass the smaller the acceleration quanta. This makes the
accelerated motion of massive particles smoother than those of lighter particles. Having obtained
the quantum of acceleration as a function of rest mass, then the classical Newtonian model of
gravity was subsequently quantized by invoking the equivalency principle between gravity and local
acceleration.
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2 Background

We begin with a very brief description of the combined theory of SR-QM whose details can be found
in [1]. According to the theory, the inherent uncertainties in the position ε, time δt′, momentum δp′

and energy δE′ of a particle are all functions of its rest mass m. Moreover, the theory necessitates
the existence of a reference particle with rest mass m̄ which the physical particles are all scaled
against. The reference particle represents a particle whose rest mass m̄ is the smallest none-zero
mass physically possible. Therefore, any particle with rest mass m < m̄ is physically considered as
a massless particle, i.e. {m = 0 | m < m̄}. As will be discussed later, one of the main applications
of the quantized model of gravity is the estimation of the reference particle mass.

The notion of rest frame in the combined SR-QM theory is revised into an inertial frame of
reference in which a quantum particle has a minimum inherent uncertainty in its position. The
rest frame in SR-QM theory is called the nearest frame, or alternatively near-rest frame, as the
particle is at the nearest state to being stationary in that frame. From the theory, we learn that
the uncertainty εn in the spatial position of a quantum particle, as viewed from an inertial frame
of reference which is in motion relative to the particle’s nearest frame, is given by [1]:

εn = A

√
m̄

m
n n = 1, 2, ... (1)

where quantum index n is a dimensionless positive integer. The constant A is a fixed integer multiple
of Planck length lp. A is also the Compton wavelength of the reference particle A = h/m̄c [1].
Quantized equation of the particle velocity v′n, under the non-relativistic condition v′n << c, is given
by:

v′n = c

√
m̄

m
n n = 1, 2, ... (2)

where c is the speed of light. From Eqn’s 1 and 2, it is evident that the higher the velocity of a
particle relative to an inertial frame, the higher is the spatial uncertainty in that frame. It then
follows that the lowest quantum index, n = 1, corresponds to a condition in which the particle is
at the nearest state to being stationary.

3 Local acceleration

The local acceleration of a particle, a, is defined as the magnitude of the acceleration of the particle
relative to an inertial frame of reference which the accelerating particle is found to be instantaneously
at near-rest with [2]. The derivative of the quantum velocity from Eqn 2, with respect to the
coordinate time, gives the quantized acceleration of the particle as follows:

aṅ = ṅc

√
m̄

m
ṅ = 0,±1,±2, ... (3)

Unlike the quantum index n which is always a positive number, the quantum rate index ṅ could be
either a negative or positive integer, or zero. The quantum rate index ṅ < 0 is for a decelerating
particle where quantum index n reduces in coordinate time, ṅ > 0 is for an accelerating particle
where quantum index n increases in time and ṅ = 0 is for a stationary particle or a particle with
a non-varying momentum (constant velocity) where the quantum index n is constant in coordinate
time. The unit of quantum rate index ṅ is sec−1.

4 Quantized Newtonian gravity

Now let us consider a special case where a small particle of mass m is in the state of free fall towards
a larger body of mass M , with this condition that M >> m. The latter is to emphasize that only
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the smaller mass m is in the state of free fall and the bigger mass M is stationary. Hence, in the
equations to follow the masses m and M are not interchangeable. From the equivalence principle
of General Relativity [3], the state of an accelerating particle under the local acceleration a is
physically identical to the state of its free fall in a uniform gravitational field g, if, and only if,
g = a. Accordingly, the quantum acceleration given in Eqn 3, can also be used to describe the
gravitational acceleration of the particle m when falling freely in the gravitational field of a much
larger gravitating body M as follows:

GM

R2
ṅ

= gṅ = ṅc

√
m̄

m
ṅ = 1, 2, ... (4)

Note that in this equation, only the positive integers of ṅ are taken into consideration to further
emphasize that if a particle is in a gravitational field, and it is also in the state of free fall, it then
must be in acceleration (i.e ṅ > 0). Now recall that in the classical Newtonian theory of gravity, the
distance R in the equation g(R) = GM

R2 can be increased indefinitely; and subsequently, the gravita-
tional force of M , acting from a distance R on the particle m, can be reduced indefinitely. Therefore,
without an upper limit on the distance R, as R→∞ then g(R)→ 0; i.e. the gravitational acceler-
ation of m drops further and further without any physical limit on its non-zero minimum. In the
quantum description of gravity, however, there exists an upper limit to the distance of gravitational
influence beyond which the gravitational acceleration of the free falling particle m drops below its
acceleration quanta. The latter is obtained by setting ṅ = 1 in Eqn 4 as follows:

g1 = c

√
m̄

m
(5)

According to Eqn 5, the higher the mass m of a particle the smaller is its acceleration quanta.
Therefore, from quantum gravity perspective, free fall of more massive particles occur in a finer
quantum steps than those of lighter particles, (i.e. smoother than lighter particles). More specifically,
it follows that the ratio of quantum accelerations of a pair of particles is equal to the square of the
inverse of their mass ratio. This is simply obtained by writing Eqn 5 for a pair of particles with
masses m1 and m2 and then finding the ratio of their quantum accelerations as follows:

g11

g12
=

√
m2

m1
(6)

where g11 is the acceleration quanta of m1 and g12 is the acceleration quanta of m2.

5 The action distance

The maximum distance between a large gravitating body M and a particle of small mass m beyond
which they gravitationally become unbounded is called the action distance. The latter can be
determined by setting the quantum rate index ṅ = 1 in Eqn 4 and then solving for the distance:

R1 = 4

√
m

m̄

√
GM

c
(7)

Again, note that the masses m and M are not interchangeable in these set of equations, as discussed
before. From Eqn 7, it is clear that the higher the masses M and m the higher the action distance
between the pair. In other words, the gravitational influence of M stretches to higher distances in
the case of its interaction with a more massive particle. When the distance R between the masses
increases beyond the action distance R1, the quantum rate index drops from ṅ = 1 at R1 to ṅ = 0
at distances R > R1, indicating that the gravitational force at any distance greater than the action
distance is zero, i.e. the particle m is not gravitationally bound to the body M any more. Note that
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Figure 1: The rings of constant gravity progressively narrow down in width as altitude drops

ṅ = 0 means velocity of the particle remains invariant in time (i.e. particle is not gravitationally
being accelerated over time). The quanta of the external force that can accelerate a particle of rest
mass m with a single acceleration quanta g1 is then given by:

f1 = mg1 = c
√
mm̄ (8)

In general, for a given pair of masses M and m, each quantum rate index ṅ is related to a fixed
distance between the masses obtained from Eqn 4 by:

Rṅ = 4

√
m

m̄

√
GM

ṅ · c
(9)

Therefore, as shown in Fig 1, due to the characteristics of such quantization, the gravitational free
fall of mass m occurs in a series of constant accelerations, each corresponding to a distinct quantum
rate index ṅ. The free fall distance of each quantum rate index ṅ (and hence acceleration) is given
by:

xṅ = 4

√
m

m̄
(

√
GM

ṅc
−

√
GM

(ṅ+ 1)c
) (10)

It then follows that the distance traveled from the rate index ṅ = 1 to ṅ = k is given by:

Lk =
k−1∑
j=1

xj = 4

√
m

m̄
(

√
GM

c
−
√
GM

kc
) k > 1 (11)

Finally, from the last equation, the quantum rate index k corresponding to a given free fall distance
Lk, measured from R1, as shown in Fig 1, is given by the following:

k =
GM

(
√

GM
c − Lk

4

√
m̄
m )2c

(12)
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It is worth to note that as the mass m continues to fall to lower and lower altitudes in the gravita-
tional field of M , the quantum rate index ṅ continues to progressively increase, and the distance xṅ
between two successive ṅ’s continues to progressively reduce in length, resulting in an increasingly
smooth variation in the acceleration of the mass m as it gets closer and closer to the gravitating
body M . Before concluding this section, let us consider two masses m1 and m2 with such mass
ratios that permits Rṅ1 = Rṅ2 . Using Eqn 9, for such situation we will have the following relation
between the quantum rates indices and the masses:

ṅ1

ṅ2
=

√
m1

m2
(13)

Note that since quantum rate indices are variables that always assume integer values, the condition

Rṅ1 = Rṅ2 of two particles will only be met, if, and only if
√

m1
m2

itself is an integer number (or

inverse of an integer number). Accordingly, this means that in the quantum formulation of gravity,
particles of such mass ratios will have exactly the same gravitational acceleration at those coinciding
distances from a gravitating body. To realize this, we replace for ṅ1 in Eqn 4 from Eqn 13 as follows:

gm1 = ṅ1 · c
√

m̄

m1
= ṅ2

√
m1

m2
· c
√

m̄

m1
= ṅ2 · c

√
m̄

m2
= gm2 (14)

For any other radial distances between two successive coinciding Rṅ1 = Rṅ2 , as shown in Fig 2,
the acceleration of the heavier particle will be higher by some integer multiples of the heavier
particle’s quantum acceleration, before they become equal again in the next coinciding distance.
The situation illustrated in Fig 2 is for a mass ratio of 9. From Eqn 6, the ratio of acceleration
quanta in this case will be g11

g12
= 3 ; and hence, there is precisely three quantum acceleration

upticks of the heavier mass per one uptick of the lighter mass. Hence, in average, gravitational
acceleration of the massive particle will be 0.5g11 higher per quantum acceleration uptick of the
lighter particle. Therefore, unlike General Relativity or Newtonian model of gravity, the quantum
model of gravity indicates that the free fall of particles with different mass occur under slightly
different gravitational accelerations. Therefore, comparing a pair of particles of large and small
mass - both fall in vacuum from equal heights and initial velocities - the accumulation of tiny effects
of quantum gravity would result in the massive particle to attain a higher velocity and fall ahead
of the lighter particle. Inversely, in free ascending scenarios, starting from equal heights and initial
velocities, the massive particle would gain a higher altitude compared to the lighter particle.

Figure 2: Quantum free fall accelerations of two particles with mass ratio of 9

Finally, let us remark here that unlike the smooth Newtonian gravity, where the stable orbital paths
of particles around a large gravitating body are always circular, in the situations where quantum

5



effects of gravity are apparent the stable orbital paths of particles are polygons. The polygons are
fit within the rings of constant gravity, as shown in Fig 1. The Newtonian circular motion, then
corresponds to a special case where the width of the rings are reduced to zero (i.e. the case of
classical mechanics) and therefore the polygons have infinite sides. One of the manifestations of
the phenomenon, is believed to be the Saturn’s hexagon. These two topics are introduced in two
separate papers that will be submitted following the current paper.

6 Numerical simulation of quantum free fall

As discussed in the previous section, motion of any particle of sufficiently small mass in a gravita-
tional free fall is consisted of a numerous quantum free falls, each under a constant local acceleration.
In this section, a very simple recursive numerical algorithm is described in order to demonstrate the
quantum effects of gravity as predicted by this theory. Starting from a given initial height, a falling
particle of mass m and a gravitating body of mass M , first the quantum rate index j corresponding
to the initial radial position Rj of the particle is found using:

j =
GM

Rj
2c

√
m

m̄
(15)

Then the local acceleration gj and the quantum distance xj corresponding to the quantum rate
index j are found using Eqns 4 and 10, respectively. Next, the quantum free fall duration tj ,
corresponding to the distance xj , is found using the following:

tj =

√
(
v′j−1

gj
)2 +

2xj
gj
−
v′j−1

gj
(16)

where v′j−1 is the velocity of the falling mass m at the end of the previous free fall of quantum rate
j − 1 . If free fall starts from a stationary condition, v′j−1 is then set to zero at the very beginning
of the simulation. Finally, the free fall velocity at the end of the current quantum rate index j is
calculated using:

v′j = v′j−1 + gjtj (17)

The recursive process is then repeated for the next quantum rate index j + 1 ; obtaining distances,
elapsed times, velocities and accelerations as free fall continues by continuous increase of the index
j, one unit at a time.

7 Attractable mass limit

As discussed earlier, in both the Newtonian model of gravity and General Relativity, there is no
physical upper limit to the distance between a pair of gravitationally bounded masses M and m,
beyond which the force of gravity drops below a physical minimum required to accelerate them.
In the quantum model of gravity, however, we find that there exists a distance of gravitational
influence R1, associated with the quantum rate index ṅ = 1, beyond which the gravitational force
of the gravitating body M on particle m drops below the quanta c

√
mm̄; and therefore, by not

being able to accelerate the particle it becomes physically inconsequential. Similarly, in this section
we want to show that, unlike the existing continuous theories of gravity, the quantum model of
gravity offers a minimum particle mass mr below which the gravitational force between the masses
m and M drops below the quanta. It is obvious that the binding mass limit is a function of radial
distance r from the gravitating mass M . When the binding distance is taken to be the surface
radius Rs of the body M , the corresponding minimum gravitationally binding mass of the body
M is denoted by ms and is called the Attractable Mass Limit (AML). To find the latter, we begin
with the action distance of Eqn 7 and ask the following question: for a given gravitating body of
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mass M and radius Rs, what is the minimum mass ms whose gravitationally binding distance R1

is equal to the radius of the body Rs? Therefore, by setting R1 = Rs in Eqn 7 we arrive at:

ms = ξs m̄ (18)

The constant of proportionality ξs, called the constant of gravitational attraction of body M , is a
dimensionless parameter given by:

ξs = (
c

gs
)2 (19)

where gs is gravitational strength at the surface radius Rs of the body M . According to the theory,
for a large gravitating body of mass like a planet, the gaseous species with molecular mass m < ms

will not be gravitationally bound to the planet’s surface. The minimum mass limit mr at any other
radial distance Rr > Rs is given by mr = ξr m̄. The constant of gravitational attraction ξr is
then given by ξr = ( c

gr
)2, where gr is gravitational strength at the radial distance Rr. Therefore,

as expected, we always have ms < mr, i.e. the attractable mass limit of body M increases with
increasing distance from it.

We conclude this section by noting since a particle with mass m < ms is not gravitationally
bound to the gravitating body, the escape velocity of classical mechanics does not apply to it.
Therefore, unlike that of classical mechanics, the escape velocity from quantum gravity is expected
to be a function of the mass of the escaping particle, such that at the minimum mass limit ms the
escape velocity of the particle is expected to be the particle’s velocity quanta v1. The latter is the
smallest non-zero velocity that a particle of mass m could have [1].

8 Escape velocity of quantum gravity

The classical escape velocity vec of a particle of mass m from a gravitating body of mass M and
radius Rs is obtained by equating the total energy of the escaping particle at the surface of the body
and that of infinitely far away, where both the gravitational potential and kinetic energy (KE) of
the particle are assumed to asymptotically reach zero:

1

2
mv2

ec −
GMm

Rs
= 0− 0 = 0 (20)

Accordingly, the classical escape velocity vec is determined to be:

vec =

√
2GM

Rs
(21)

From Eqn 21, the classical escape velocity is found to be independent of the mass m of the escaping
particle, an aspect that is shown here not to be true in the case of particles of very small mass; such
as the case of gas molecules escaping the exosphere of planets. The effect of quantum gravity on the
escape velocity could be determined by simply accounting for the potential and KE energies of the
particle at the action distance R1, instead of infinitely far away which is not physically appealing.
Therefore:

1

2
mv2

eq −
GMm

Rs
=

1

2
mv2

1 −
GMm

R1
(22)

Substituting for the quanta velocity v1 from Eqn 2, the action distance R1 from Eqn 7 and solving
for the quantum escape velocity veq we arrive at:

veq = [2GM(
1

Rs
−
√

1.c

GM
4

√
m̄

m
) + c2 m̄

m
]1/2 (23)

It is evident that for more massive particles as the ratio m̄/m → 0, the quantum effect of grav-
ity diminishes and the escape velocity from Eqn 23 reduces to that of the classical mechanics -
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as expected. Moreover, the escape velocity of AML with mass m = ms and the action distance
R1 = Rs is found to be veq = gs

1 = v1. Therefore, we learn that the escape velocity of the AML of
the gravitating body M is equal to the body’s surface gravity -numerically. Recall that the unit of
numeric 1 in the denominator is sec−1. Therefore, a particle whose escape velocity from Earth is
veq = 9.81 (m/sec) is the AML of the planet Earth.

The percent error in the escape velocities from the classical and quantum formulation is, there-
fore, a function of how close the escaping particle mass is to the attractive mass limit AML of the
gravitating body. Such error can be a source of discrepancy between the escape rates of a pair of
species, in particular if mass of one of them is too close to ms of the host planet. This unique char-
acteristic of the quantum model of Newtonian gravity will be used in the next section to constrain
the value of reference mass m̄.

9 Jeans atmospheric escape mechanism

One the mechanisms of the atmospheric loss corresponds to a condition that the kinetic energy
of gas species is adequately high to overcome the gravitational grip of a planet. Such condition
is important in particular at the very edge of the atmosphere, called exobase, where the planet’s
atmosphere interfaces with the vacuum of space. At the edge of the exobase should the gas molecules
have speeds higher than the escape velocity they will have a chance to escape into the space instead
of remaining confined by their collisions to the surrounding molecules. This molecule by molecule
escape condition is not unlike to that of vapor molecules leaving the surface of a boiling liquid when
their kinetic energy is adequately high to break them away from the liquid surface. The thermally
driven molecule by molecule escape mechanism from planetary atmosphere is known as Jeans escape
[5]. The onset of Jeans escape can therefore be described in terms of the Jeans parameter, defined
as the ratio of gravitational potential energy to the thermal energy of the gas at the exobase as
follows:

λ = −U(r)

κT
(24)

where κ = 1.38065E− 23 (J/K) is Boltzmann constant, T is the species temperature at the exobase
in Kelvin and r = Rs +H is radius of the exobase. The gravitational potential energy U(r) of the
escaping molecule is a function of the mass m and radius r as follows:

U(r) = −GMm

r
(25)

The average velocity vrms of gas molecules at temperature T , on the other hand, is given by:

1

2
mv2

rms =
3

2
κT (26)

By substituting for the energy terms from Eqn 25 and Eqn 26, we then have the Jeans parameter
from Eqn 24 in terms of the gas escape velocity vec and the gas average molecular velocity vrms as
follows:

λ =
3

2
(
vec
vrms

)2 (27)

By examining Eqn 27, it is evident that a large Jeans parameter λ would indicate a high escape
velocity vec and a low gas molecular velocity vrms. This corresponds to the case of a massive planet
with a cold exobase for which the atmospheric escape is suppressed due to a large gravity and low
molecular velocity. On the other extreme, a small Jeans parameter λ would indicate a low escape
velocity vec and a high gas molecular velocity vrms. This corresponds to the case of a small planet
and a hot exobase for which atmospheric escape is more likely.
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For a given planet and exobase altitude, the escape rates Φ of the species will be a function of
their Jeans parameters; if all other influencing variables such as their abundance and temperature
were similar. Jeans escape occurs if vrms is greater than some fraction α of the escape velocity vec.
As a rule of thumb [6], if the fraction α > 1/6, Jeans escape mechanism is active and as a result
Jeans escape rate Φ > 0. Under such condition, the escape rate Φ is inversely proportional to the
Jeans parameter λ and directly proportional to the density number N of the species present at the
top of the exosphere as follows:

Φ ∝ N

λ
(28)

Assuming the constant of proportionality remains invariant between a pair of species, then the ratio
of their escape rate at the top of the exobase could be approximated as follows:

Φ1

Φ2
≈ N1λ2

N2λ1
(29)

where N is the number density in units cm−3, Φ is Jeans escape rate in units sec−1 and λ is Jeans
Parameter - a dimensionless number.

10 Constraining the reference mass m̄

Based on the observational evidence obtained from the ALICE spectograph and New Horizons mis-
sion, the escape rate of Nitrogen N2 molecules from the exosphere of Pluto is found to be 4 orders
of magnitudes less than the theoretical values [8] (using escape velocity of classical mechanics).
This is rather a large discrepancy in comparison to that of less massive Methane CH4 molecules
whose escape rate is found to be inline with the theoretical predictions. The escape rate corre-
sponding to these species are in the range of Φ1 = 4−8E25 CH4 sec−1 and Φ2 = 3−7E22 N2 sec−1

[9]. The number density corresponding to each specie is given as N1 = 2.71E6 CH4 cm−3 and
N2 = 1.8E6 N2 cm−3. It is evident that such a large discrepancy in the average escape rate ratio
Φ1/Φ2 = 6000/5 of CH4 to N2 molecules cannot be explained by their mass ratio of 16/28 and
number density ratio 2.71/1.8 alone.

To address the discrepancy in the escape rates, we propose to use the quantum escape velocity of
Eqn 23 instead of the classical escape velocity

√
−2U(r)/m traditionally used in the calculations.

Taking the extreme values, the ratio of escape rates between two species could be bracketed to
the range 571 < Φ1/Φ2 < 2666. From Eqn 29, a similar range could be assumed for the ratio
571 < N1λ2

N2λ1
< 2666; with the exception that now in the calculation of Jeans parameters of λ1 (i.e.

CH4) and λ2 (i.e. N2) each specie has its own escape velocity calculated from Eqn 23. The process
shows that the reference mass must be constrained to the range 3.1979E − 45 < m̄ < 3.2039E − 45
in order to address the Jeans escape rate discrepancy between N2 and CH4 species in Pluto. Using
the mean value m̄ = 3.2(0)E − 45 (kg), the exobase altitude of 1710 (km) and exobase temperature
of T = 67.78 (K), the quantum escape velocity of CH4 is found to be only veq−CH4 = 16.2 (m/sec)
and that of N2 gas molecule is veq−N2 = 280.5 (m/sec). In comparison, the classical escape velocity
is vec = 776.4(m/sec) for both species. Evidently, the escape velocity of CH4 being so low promotes
its escape rate by 2-3 orders of magnitude higher than that of N2. Table 1 shows the gravitational
binding distance of various gas molecules in comparison to the exobase radius Rr = Rs + H =
1188.3 + 1710 = 2898.3 (km) of Pluto. The quantum gravity escape velocity of the gaseous species
calculated at the exobase altitude and the percent error between the quantum and classical escape
velocities are also shown in the table. By taking m̄ = 3.2E − 45 (kg), the H2 and He molecules will
not be gravitationally bound to Pluto, as R1/Rr < 1, and therefore, their escape velocity is zero.
This makes the percent error between the escape velocities of classical and quantum gravity of the
H2 and He molecules infinite. Using the estimated value of the reference mass m̄, the resulting
quantum escape velocity and action distance of Na atom on the Moon will be determined in the
following section.
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Table 1: Action distance and escape velocity of various species from Pluto

11 Lunar comet-like sodium tail

According to the quantum model of gravity, Na atoms can escape the lunar surface at lower speeds
than the classical escape velocity of vec = 2.38 (km/sec). As shown in table 2, the lunar escape
velocity of Na atoms under quantum model of gravity is veq = 2.08 (km/sec), which is about 12%
lower than vec. The lower escape velocity promotes the escape rate of Na atoms by reducing Jeans

Table 2: Action distance and escape velocity of various species from Moon

parameter. Therefore, Na atoms of lower ejection speed are able to contribute to the lunar Sodium
tail formation. In order to produce an escaping Na atmosphere, the ejection speeds of the Na
atoms in the Monte-Carlo simulations [10, 11] can be taken well below 2.0 (km/sec), in particular
considering the solar radiation pressure. Moreover, as shown in table 2, the gravitational binding
distance R1 of Sodium atom to Moon under the quantum model of gravity is found to be 4.3Rs
which is comparable with the size ≈ 5Rs of the Sodium atmosphere on the day-side of the moon
[10]. A reason for this difference could be that the actual average ejection velocity of Sodium atoms
are higher than the quantum escape velocity veq.

12 Earth bound experiment

As discussed earlier, comparing a pair of particles with a distinct mass ratio, the quantum model
of Newtonian gravity predicts that the massive particle would attain higher velocity in free fall and
eventually fall ahead of the lighter particle. Therefore, this feature of quantum gravity could be
used to validate the theory and also determine the reference mass m̄ with a higher accuracy. In
this section, an experimental set up is proposed in which velocities of a pair of particles are mea-
sured after a certain distance of free fall. The required particle mass that such a feable quantum
effect could be demonstrated in the Earth’s gravitational field is a function of free fall distance
and the value of the reference mass - which is not currently known with accuracy. To determine
a particle mass that allows to minimize the required height of the device, the free fall velocity of
particles of various mass are simulated by taking m̄ = 3.2E−45(kg), Earth mass M = 5.98E24(kg)
and Earth radius Rs = 6371 (km). Figure 3 shows the results, obtained from the numerical sim-
ulation described earlier in section 6. The mass of the lightest particle used in the simulations
is taken to be m2 = 1.0E − 21 (kg). The maximum mass ratio used in the simulation is 400,
therefore, the mass of the most massive particle used in the simulations of Figure 3 is taken to be
m1 = 400×m2 = 4.0E − 19 (kg).
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First note that the longer the duration of free fall, the higher the difference the particle veloci-
ties. This is as expected - because a longer free fall duration (or distance) allows the small quantum
effects of gravity to creep up to a more tangible difference. Moreover, a higher mass ratio between
a pair of falling particles results in a higher velocity difference between them. However, as shown
in Fig 3, as the mass ratio increases the difference in the velocity of a pair of particles eventually
reaches to a plateau. The latter is due to the fact that the quantum effect of gravity diminishes as
the mass of the heavier particle increases. Therefore, beyond some large mass ratio, around 400,
the quantum free fall velocity of the heavier particle reduces to that of the classical gravity; where
the difference in free fall velocities gets plateaued. So for the particle mass m2 = 1.0E − 21 (kg)
and m1 = 4.0E − 19 (kg), the velocity difference that needs to be measured in the experiment is
found to be about 1.898 and 3.147 (mm/sec); for 10 and 15 seconds of free fall, respectively. Taking
typical gravitational acceleration gs = 9810 (mm/sec2), the velocity of the particles at the end of
10 seconds of free fall would be about 98100 (mm/sec). Therefore, the accuracy required in the
velocity measurement would be 1.898/98100, i.e. ≈ 20 (ppm). Such a high accuracy indicates that
the experiment needs to be done in a vacuum chamber which in turn could pose a practical challenge
due to the required height of ≈ 500 (m) for 10 seconds of free fall. It is therefore evident that the

Figure 3: Difference in earth bound free fall velocity of particles with mass ratio m1/m2

higher the accuracy of velocity measurements the lower the height of the vacuum chamber needed in
this experiment. Hence, by determining the accuracy achievable in the velocity measurements, the
required height of the vacuum chamber (or the duration of free fall) can be determined. Knowing
the latter, then numerical simulations similar to Figure 4 can then be used to determine the required
particle mass in order to maximize the difference in their free fall velocity. For instance, by taking
m2 = 1.0E − 22 (kg) and m1 = 4.0E − 20 (kg) the difference in the velocity of the particles would
increase to ≈ 4.655 (mm/sec) after 10 seconds of free fall.
Finally, as discussed before, the difference in the velocity of the particles is also a function of the
value of the reference mass m̄. Figure 5 shows sensitivity in the free fall velocities if the reference
mass were 5 times higher or lower than m̄ = 3.2E−45(kg). Therefore, findings from this experiment
could not only validate the theory but also help determine the value of reference mass m̄ with a
higher certainty.

Using the mass ratio m1/m2 = 400, Table 3 summarizes the sensitivity of the particles free fall
velocity to the value of the reference mass m̄ and fall duration.
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Figure 4: Sensitivity of free fall velocity to selection of particle masses

Table 3: Velocity difference sensitivity to m̄, m1/m2 ratio and fall duration

13 Conclusion

The local acceleration quanta obtained from the combined theory of SR-QM is used to quantize the
smooth Newtonian model of gravity surrounding a large gravitating body of mass. In the quantum
model of Newtonian gravity, a particle of sufficiently small mass experiences variation of the gravi-
tational field through a series of stepwise quantum accelerations of equal magnitude. Independent
of the position of the particle in a field, the magnitude of quantum change in the gravitational
acceleration is always fixed. However, the length interval on which a single quantum step in gravity
occurs is a function of the distance to the gravitating body. At lower altitudes the quantum steps in
gravity are found to be closely packed. By further reduction in altitude, the distance between two
successive gravity upticks progressively reduces in length. At higher altitudes, a single quantum
step in the gravitational acceleration occurs over a longer radial span; and by further increase in
altitude the distance between two successive quantum steps progressively increases in length. The
magnitude of the acceleration quanta of a particle is found to be inversely proportional to the square
root of its rest mass. This makes the free fall of massive particles be less jerkier than that of lighter
particles. Quantum gravity predicts that in a free fall from equal heights and initial velocities,
massive particles attain higher velocity than lighter particles. In the combined theory of SR-QM,
rest mass of particles are scaled against that of a reference particle. An experiment is proposed
to validate the predictions of the quantum model of gravity and also to determine the mass of a
reference particle.
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Figure 5: Sensitivity of free fall velocity difference to value of the reference mass m̄
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