A Proof of the Erdös-Straus Conjecture

Zhang Tianshu
Email: chinazhangtianshu@126.com
xinshijizhang@hotmail.com
Nanhai West Oil Administrative Bureau
Zhanjiang city, Guangdong province, China

Abstract

First, divide all integers ≥ 2 into 8 kinds, and that formulate each of 7 kinds therein into a sum of 3 unit fractions.

For the unsolved kind, again divide it into 3 genera, and that formulate each of 2 genera therein into a sum of 3 unit fractions. For the unsolved genus, further divide it into 5 sorts, and that formulate each of 3 sorts therein into a sum of 3 unit fractions. For two unsolved sorts i.e. 4/(49+120c) and $4 /(121+120 c)$ where $c \geq 0$, let us depend on logical deduction to prove them separately.

AMS subject classification: 11D72, 11D45, 11P81
Keywords: Erdös-Straus conjecture; Diophantine equation; unit fraction

1. Introduction

The Erdös-Straus conjecture relates to Egyptian fractions. In 1948, Paul Erdös conjectured that for any integer $n \geq 2$, there are invariably $4 / \mathrm{n}=1 / \mathrm{x}+1 / \mathrm{y}+1 / \mathrm{z}$, where x, y and z are positive integers; [1].

Later, Ernst G. Straus further conjectured that x, y and z satisfy $\mathrm{x} \neq \mathrm{y}, \mathrm{y} \neq \mathrm{z}$ and $\mathrm{z} \neq \mathrm{x}$, because there are convertible $1 / 2 \mathrm{r}+1 / 2 \mathrm{r}=1 /(\mathrm{r}+1)+1 / \mathrm{r}(\mathrm{r}+1)$ and $1 /(2 \mathrm{r}+1)+1 /(2 \mathrm{r}+1)=1 /(\mathrm{r}+1)+1 /(\mathrm{r}+1)(2 \mathrm{r}+1)$ where $\mathrm{r} \geq 1 ;[2]$.

Thus, the Erdös conjecture and the Straus conjecture are equivalent from each other, and they are called the Erdös-Straus conjecture collectively. As a general rule, the Erdös-Straus conjecture states that for every integer $n \geq 2$, there are positive integers x, y and z, such that $4 / n=1 / x+1 / y+1 / z$. Yet, it is still one both unproved and un-negated conjecture hitherto; [3].

2. Divide integers ≥ 2 into $\mathbf{8}$ kinds and that formulate $\mathbf{7}$

kinds therein

First, divide integers ≥ 2 into 8 kinds, i.e. $8 \mathrm{k}+1,8 \mathrm{k}+2,8 \mathrm{k}+3,8 \mathrm{k}+4,8 \mathrm{k}+5$, $8 k+6,8 k+7$ and $8 k+8$, where $k \geq 0$, and arrange them as follows orderly:
$\mathrm{K} \backslash \mathrm{n}=8 \mathrm{k}+1, \quad 8 \mathrm{k}+2, \quad 8 \mathrm{k}+3, \quad 8 \mathrm{k}+4, \quad 8 \mathrm{k}+5, \quad 8 \mathrm{k}+6, \quad 8 \mathrm{k}+7, \quad 8 \mathrm{k}+8$
0 (1), $2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8$,
$1, \quad 9, \quad 10, \quad 11, \quad 12, \quad 13, \quad 14, \quad 15,16$,
$2, \quad 17, \quad 18, \quad 19, \quad 20, \quad 21, \quad 22, \quad 23, \quad 24$,
$32 \quad 25, \quad 26, \quad 27, \quad 28, \quad 29, \quad 30, \quad 31, \quad 32$,

Excepting $n=8 k+1$, formulate each of other 7 kinds into $1 / x+1 / y+1 / z$:
(1) For $\mathrm{n}=8 \mathrm{k}+2$, there are $4 /(8 \mathrm{k}+2)=1 /(4 \mathrm{k}+1)+1 /(4 \mathrm{k}+2)+1 /(4 \mathrm{k}+1)(4 \mathrm{k}+2)$;
(2) For $n=8 k+3$, there are $4 /(8 k+3)=1 /(2 k+2)+1 /(2 k+1)(2 k+2)+1 /(2 k+1)(2 k+3)$;
(3) For $\mathrm{n}=8 \mathrm{k}+4$, there are $4 /(8 \mathrm{k}+4)=1 /(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+2)(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+1)(2 \mathrm{k}+2)$;
(4) For $\mathrm{n}=8 \mathrm{k}+5$, there are $4 /(8 \mathrm{k}+5)=1 /(2 \mathrm{k}+2)+1 /(8 \mathrm{k}+5)(2 \mathrm{k}+2)+1 /(8 \mathrm{k}+5)(\mathrm{k}+1)$;
(5) For $\mathrm{n}=8 \mathrm{k}+6$, there are $4 /(8 \mathrm{k}+6)=1 /(4 \mathrm{k}+3)+1 /(4 \mathrm{k}+4)+1 /(4 \mathrm{k}+3)(4 \mathrm{k}+4)$;
(6) For $n=8 k+7$, there are $4 /(8 k+7)=1 /(2 k+3)+1 /(2 k+2)(2 k+3)+1 /(2 k+2)(8 k+7)$;
(7) For $n=8 k+8$, there are $4 /(8 k+8)=1 /(2 k+4)+1 /(2 k+2)(2 k+3)+1 /(2 k+3)(2 k+4)$.

By this token, n as above 7 kinds of integers be suitable to the conjecture.

3. Divide the unsolved kind into 3 genera and that
 formulate 2 genera therein

For the unsolved kind $\mathrm{n}=8 \mathrm{k}+1$ with $\mathrm{k} \geq 1$, divide it by the modulus 3 into 3 genera to (1) the remainder $0,(2)$ the remainder 1 and (3) the remainder 2 . Excepting the genus (2), formulate each of other 2 genera as listed below: (8) For $\mathrm{n}=8 \mathrm{k}+1$ by the modulus 3 to the remainder 0 , i.e. let $\mathrm{k}=3 \mathrm{t}+1$ with $\mathrm{t} \geq 0$, then there are $4 /(8 \mathrm{k}+1)=1 /(8 \mathrm{k}+1) / 3+1 /(8 \mathrm{k}+2)+1 /(8 \mathrm{k}+1)(8 \mathrm{~K}+2)$ with $\mathrm{k} \geq 1$, of course, $(8 \mathrm{k}+1) / 3$ at here is an integer.
(9) For $n=8 k+1$ by the modulus 3 to the remainder 2, i.e. let $k=3 t+2$ with $\mathrm{t} \geq 0$, then there are $4 /(8 \mathrm{k}+1)=1 /(8 \mathrm{k}+2) / 3+1 /(8 \mathrm{k}+1)+1 /(8 \mathrm{k}+1)(8 \mathrm{k}+2) / 3$ with $k \geq 2$, of course, $(8 k+2) / 3$ at here is an integer.

4. Divide the unsolved genus into 5 sorts and that

formulate 3 sorts therein

For the unsolved genus $n=8 \mathrm{k}+1$ by the modulus 3 to the remainder 1, i.e.
let $\mathrm{k}=3 \mathrm{t}$ with $\mathrm{t} \geq 1$, further divide it into 5 sorts, i.e. $25+120 \mathrm{c}, 49+120 \mathrm{c}$, $73+120 \mathrm{c}, 97+120 \mathrm{c}$ and $121+120 \mathrm{c}$, where $\mathrm{c} \geq 0$, as listed below.

C, $25+120 \mathrm{c}, \quad 49+120 \mathrm{c}, \quad 73+120 \mathrm{c}, \quad 97+120 \mathrm{c}, \quad 121+120 \mathrm{c}$,
$0, \quad 25, \quad 49, \quad 73, \quad 97, \quad 121$,
1, 145, 169, 217, 241,
$2, \quad 205, \quad 313, \quad 337, \quad 361$,

Excepting $\mathrm{n}=49+120 \mathrm{c}$ and $121+120 \mathrm{c}$, formulate other 3 sorts as as follows:
(10) Forn $=25+120$ c, there are $4 /(25+120 \mathrm{c})=1 /(25+120 c)+1 /(50+240 \mathrm{c})+1 /(10+48 \mathrm{c})$;
(11) For $\mathrm{n}=73+120 \mathrm{c}$, there are $4 /(73+120 \mathrm{c})=1 /(73+120 \mathrm{c})(10+15 \mathrm{c})+1 /(20+30 \mathrm{c})+$ 1/(73+120c)(4+6c);
(12) For $\mathrm{n}=97+120 \mathrm{c}$, there are $4 /(97+120 \mathrm{c})=1 /(25+30 \mathrm{c})+1 /(97+120 \mathrm{c})(50+60 \mathrm{c})+$ $1 /(97+120 c)(10+12 c)$.

For each of listed above 12 equations that express $4 / n=1 / x+1 / y+1 / z$, please each reader self to make a check respectively.

5. Proving the sort $4 /(49+120 c)=1 / x+1 / y+1 / z$

For a proof of the sort $4 / 49+120 \mathrm{c}$, it means that when c is equal to each of positive integers plus 0 , there are $4 /(49+120 c)=1 / x+1 / y+1 / z$.

After c is endowed with any value, $4 /(49+120 \mathrm{c})$ can be substituted by infinitely more a sum of 2 fractions, and that these fractions are different from one another:

$$
\begin{aligned}
& 4 /(49+120 c) \\
& =1 /(13+30 c)+3 /(13+30 c)(49+120 c) \\
& =1 /(14+30 c)+7 /(14+30 c)(49+120 c) \\
& =1 /(15+30 c)+11 /(15+30 c)(49+120 c) \\
& =1 /(16+30 c)+15 /(16+30 c)(49+120 c) \\
& \ldots \\
& =1 /(13+\alpha+30 c)+(3+4 \alpha) /(13+\alpha+30 c)(49+120 c), \text { where } \alpha \geq 0 \text { and } c \geq 0
\end{aligned}
$$

As listed above, it is observed that we can first let $1 /(13+\alpha+30 c)=1 / x$, after that, prove $(3+4 \alpha) /(13+\alpha+30 c)(49+120 c)=1 / y+1 / z$.

Proof: When $c=0$, such as $\alpha=1$, then the fraction $4 /(49+120 c)$ got is exactly $4 / 49$, and that there is $4 / 49=1 / 14+1 / 99+1 /(98 \times 99)$;

When $\mathrm{c}=1$, such as $\alpha=9$, then the fraction $4 /(49+120 \mathrm{c})$ got is exactly $4 / 169$, and that there is $4 / 169=1 / 52+1 /(2 \times 169)+1 /\left(2^{2} \times 169\right)$.

This manifests that when $\mathrm{c}=0$ and $1,4 /(49+120 \mathrm{c})$ has been expressed into a sum of 3 unit fractions respectively.

Excepting $1 /(13+\alpha+30 c)=1 / \mathrm{x}$, in following paragraphs, let us analyze and prove $(3+4 \alpha) /(13+\alpha+30 c)(49+120 c)=1 / y+1 / z$ by $c=2 k$ and $c=2 k+1$ concurrently, where $\mathrm{k} \geq 1$.

For the numerator $3+4 \alpha$, excepting itself as an integer, also can express it into the sum of two integers, i.e. $1+(2+4 \alpha), 2+(1+4 \alpha), 3+(4 \alpha),(3+3 \alpha)+\alpha$,
$(1+\alpha)+(2+3 \alpha),(2+\alpha)+(1+3 \alpha),(3+\alpha)+3 \alpha,(3+2 \alpha)+2 \alpha$ and $(2+2 \alpha)+(1+2 \alpha)$.
For the denominator $(13+\alpha+30 c)(49+120 c)$, in reality merely need us to convert $13+\alpha+30 \mathrm{c}$, and that can continue to have $49+120 \mathrm{c}$.

For $13+\alpha+30 \mathrm{c}$, after α is endowed with values ≥ 0, because begin with each constant i.e. $13,14,15 \ldots$ p..., there is $\alpha \geq 0$ in like wise, so $13+\alpha+30$ c can be converted to $p+\alpha+30$ c where $p \geq 13, \alpha \geq 0$, and $\mathrm{c} \geq 0$.

Such being the case, so let $c=2 k$, then $(3+4 \alpha) /(p+\alpha+30 c)$ is exactly $(3+4 \alpha) /(p+\alpha+60 \mathrm{k})$; again let $\mathrm{c}=2 \mathrm{k}+1$, then $(3+4 \alpha) /(\mathrm{p}+\alpha+30 \mathrm{c})$ is exactly $(3+4 \alpha) /(\mathrm{p}+\alpha+60 \mathrm{k}+30)$, where $\mathrm{k} \geq 1$.

In fractions $(3+4 \alpha) /(\mathrm{p}+\alpha+60 \mathrm{k})$ and $(3+4 \alpha) /(\mathrm{p}+\alpha+60 \mathrm{k}+30)$, the denominator $p+\alpha+60 k$ can be every integer ≥ 73, and the denominator $p+\alpha+60 k+30$ can be every integer ≥ 103. On the other, for the numerator $3+4 \alpha$, either it is an integer or the sum of two integers as listed above.

In any case, not only each of numerators as listed above is smaller than a corresponding denominator $\mathrm{p}+\alpha+60 \mathrm{k}$ or $\mathrm{p}+\alpha+60 \mathrm{k}+30$, but also $\mathrm{p}+\alpha+60 \mathrm{k}$ and $\mathrm{p}+\alpha+60 \mathrm{k}+30$ contain respectively integers of whole multiples of $3+4 \alpha$ and either of two integers which divide $3+4 \alpha$ into.

Therefore, $(3+4 \alpha) /(p+\alpha+60 \mathrm{k})$ can be expressed into a sum of two unit fractions, and $(3+4 \alpha) /(p+\alpha+60 k+30)$ can be expressed into a sum of two unit fractions too, in which case $p \geq 13, \alpha \geq 0$ and $k \geq 1$, also $k \geq 1$ i.e. $c \geq 2$.

If $3+4 \alpha$ serve as an integer, and from this get an unit fraction, then can
multiply the denominator by 2 to make a sum of two identical unit fractions, afterwards again convert them into the sum of two each other's -distinct unit fractions by the formula $1 / 2 \mathrm{r}+1 / 2 \mathrm{r}=1 /(\mathrm{r}+1)+1 / \mathrm{r}(\mathrm{r}+1)$.

Let a sum of two unit fractions which expresses $(3+4 \alpha) /(p+\alpha+60 k)$ into be written as $1 / \mu+1 / v$, again let a sum of two unit fractions which expresses $(3+4 \alpha) /(p+\alpha+60 \mathrm{k}+30)$ into be written as $1 / \varphi+1 / \psi$, where μ, v, φ and ψ express positive integers.

For $1 / \mu+1 / \nu$ and $1 / \varphi+1 / \psi$, multiply every denominator by $49+120$ c reserved in the front, then get $1 / \mu(49+120 c)+1 / v(49+120 c)=1 / y+1 / z$ and $1 / \varphi(49+120 c)+1 / \psi(49+120 c)=1 / y+1 / z$.

To sum up, we have proved $4 /(49+120 c)=1 /(13+\alpha+30 c)+1 / y+1 / z$, to wit $4 /(49+120 c)=1 / x+1 / y+1 / z$.

6. Proving the sort $4 /(121+120 c)=1 / x+1 / y+1 / z$

For a proof of the sort $4 /(121+120 \mathrm{c})$, it means that when c is equal to each of positive integers plus 0 , there are $4 /(121+120 c)=1 / x+1 / y+1 / z$.

After c is endowed with any value, $4 /(121+120 \mathrm{c})$ can be substituted by infinitely more a sum of 2 fractions, and that these fractions are different from one another :

$$
\begin{aligned}
& 4 /(121+120 c) \\
& =1 /(31+30 c)+3 /(31+30 c)(121+120 c) \\
& =1 /(32+30 c)+7 /(32+30 c)(121+120 c)
\end{aligned}
$$

$=1 /(33+30 c)+11 /(33+30 c)(121+120 c)$,
$=1 /(34+30 c)+15 /(34+30 c)(121+120 c)$,
$=1 /(31+\alpha+30 \mathrm{c})+(3+4 \alpha) /(31+\alpha+30 \mathrm{c})(121+120 \mathrm{c})$, where $\alpha \geq 0$ and $\mathrm{c} \geq 0$.

As listed above, it is observed that we can first let $1 /(31+\alpha+30 c)=1 / \mathrm{x}$, after that, prove $(3+4 \alpha) /(31+\alpha+30 c)(121+120 c)=1 / y+1 / z$.

Proof. When $c=0$, such as $\alpha=2$, then the fraction $4 /(121+120 c)$ got is exactly $4 / 121$, and that there is $4 / 121=1 / 33+1 /\left(3 \times 11^{2}+1\right)+1 /\left(3 \times 11^{2}\right)\left(3 \times 11^{2}+1\right)$; When $\mathrm{c}=1$, such as $\alpha=2$, then the fraction $4 /(121+120 \mathrm{c})$ got is exactly $4 / 241$, and that there is $4 / 241=1 / 63+1 /(2 \times 3 \times 241)+1 /\left(2 \times 3^{2} \times 7 \times 241\right)$.

This manifests that when $\mathrm{c}=0$ and $1,4 /(121+120 \mathrm{c})$ has been expressed into a sum of 3 unit fractions respectively.

Excepting $1 /(31+\alpha+30 c)=1 / \mathrm{x}$, in following paragraphs, let us analyze and prove $(3+4 \alpha) /(31+\alpha+30 \mathrm{c})(121+120 \mathrm{c})=1 / \mathrm{y}+1 / \mathrm{z}$ by $\mathrm{c}=2 \mathrm{k}$ and $\mathrm{c}=2 \mathrm{k}+1$ concurrently, where $\mathrm{k} \geq 1$.

For the numerator $3+4 \alpha$, excepting itself as an integer, also can express it into the sum of two integers, i.e. $1+(2+4 \alpha), 2+(1+4 \alpha), 3+(4 \alpha),(3+3 \alpha)+\alpha$, $(1+\alpha)+(2+3 \alpha),(2+\alpha)+(1+3 \alpha),(3+\alpha)+3 \alpha,(3+2 \alpha)+2 \alpha$ and $(2+2 \alpha)+(1+2 \alpha)$.

For the denominator $(31+\alpha+30 c)(121+120 c)$, in reality merely need us to convert $31+\alpha+30 \mathrm{c}$, and that can continue to have $121+120 \mathrm{c}$.

For $31+\alpha+30$ c after α is endowed with values ≥ 0, because begin with each constant i.e. $31,32,33 \ldots$ q..., there is $\alpha \geq 0$ in like wise, so $31+\alpha+30$ c can be converted to $\mathrm{q}+\alpha+30 \mathrm{c}$, where $\mathrm{q} \geq 31, \alpha \geq 0$ and $\mathrm{c} \geq 0$.

Such being the case, so let $c=2 k$, then $(3+4 \alpha) /(q+\alpha+30 c)$ is exactly $(3+4 \alpha) /(\mathrm{q}+\alpha+60 \mathrm{k})$; again let $\mathrm{c}=2 \mathrm{k}+1$, then $(3+4 \alpha) /(\mathrm{q}+\alpha+30 \mathrm{c})$ is exactly $(3+4 \alpha) /(\mathrm{q}+\alpha+60 \mathrm{k}+30)$, where $\mathrm{k} \geq 1$.

In fractions $(3+4 \alpha) /(q+\alpha+60 k)$ and $(3+4 \alpha) /(q+\alpha+60 k+30)$, the denominator $q+\alpha+60 k$ can be every integer ≥ 91, and the denominator $q+\alpha+60 k+30$ can be every integer ≥ 121. On the other, for the numerator $3+4 \alpha$, either it is an integer or the sum of two integers as listed above.

In any case, not only each of numerators as listed above is smaller than a corresponding denominator $\mathrm{q}+\alpha+60 \mathrm{k}$ or $\mathrm{q}+\alpha+60 \mathrm{k}+30$, but also $\mathrm{q}+\alpha+60 \mathrm{k}$ and $\mathrm{q}+\alpha+60 \mathrm{k}+30$ contain respectively integers of whole multiples of $3+4 \alpha$ and either of two integers which divide $3+4 \alpha$ into.

Therefore, $(3+4 \alpha) /(\mathrm{q}+\alpha+60 \mathrm{k})$ can be expressed into a sum of two unit fractions, and $(3+4 \alpha) /(\mathrm{q}+\alpha+60 \mathrm{k}+30)$ can be expressed into a sum of two unit fractions too, in which case $\mathrm{q} \geq 31, \alpha \geq 0$ and $\mathrm{k} \geq 1$, also $\mathrm{k} \geq 1$ i.e. $\mathrm{c} \geq 2$. If $3+4 \alpha$ serve as an integer, and from this get an unit fraction, then can multiply the denominator by 2 to make a sum of two identical unit fractions, afterwards again convert them into the sum of two each other's -distinct unit fractions by the formula $1 / 2 r+1 / 2 r=1 /(r+1)+1 / r(r+1)$.

Let a sum of two unit fractions which expresses $(3+4 \alpha) /(\mathrm{q}+\alpha+60 \mathrm{k})$ into be written as $1 / \beta+1 / \xi$, again let a sum of two unit fractions which expresses $(3+4 \alpha) /(q+\alpha+60 \mathrm{k}+30)$ into be written as $1 / \eta+1 / \delta$, where β, ξ, η and δ express positive integers.

For $1 / \beta+1 / \xi$ and $1 / \eta+1 / \delta$, multiply every denominator by $121+120$ c reserved in the front, then get $1 / \beta(121+120 c)+1 / \xi(121+120 c)=1 / y+1 / z$ and $1 / \eta(121+120 c)+1 / \delta(121+120 c)=1 / y+1 / z$.

To sum up, we have proved $4 /(121+120 c)=1 /(31+\alpha+30 c)+1 / y+1 / z$, to wit $4 /(121+120 c)=1 / x+1 / y+1 / z$.

The proof was thus brought to a close. As a consequence, the ErdösStraus conjecture is tenable.

References

[1] J. W. Sander, On $4 / x=1 / x+1 / y+1 / z$ and Iwaniec' Half Dimensional Sieve; Journal of Number Theory, Volume 46, Issue 2, February 1994, Pages 123-136; https://www.sciencedirect.com/science/article/pii/S0022314X84710080?via\%3Dihub
[2] Wolfram Mathworld, the web's most extensive mathematics resource;
https://mathworld.wolfram.com/Erdos-StrausConjecture.html
[3] Konstantine Zelator, An ancient Egyptian problem: the diophantine equation $4 / n=1 / x+1 / y+1 / z, n>o r=2$; arXiv: 0912.2458 ;
https://arxiv.org/search/?query=on+4\%2Fn\%3D1\%2Fx\%2B1\%2Fy\%2B1\%2Fz\&searchtype=title \&source=header

