Proof of Legendre's conjecture

Kouji Takaki

February 16 ${ }^{\text {th }}, 2021$

Abstract

By a consideration of this research, since we found that at least one prime number exists between n^{2} and $n(n+1)$ when $n \geqq 3$, we have obtained a conclusion that Legendre's conjecture is true.

Contents

Introduction 1
Proof 1
Complement 5
Acknowledgement 5
References 5

1. Introduction

This is the conjecture that there is a prime number always between n^{2} and $(\mathrm{n}+1)^{2}$ for arbitrary positive integer n . It was set up by the French mathematician Adrien-Marie Legendre. (Quoted from Wikipedia)
2. Proof

Let n and p be positive integers. If Legendre's conjecture is true, there is at least one prime number p satisfying the following inequalities.

$$
n^{2}<p<(n+1)^{2}(n \geqq 1) \ldots(1)
$$

I. When $\mathrm{n}<3$

The inequalities (1) hold when $\mathrm{n}=1$ since there are prime numbers 2 and 3 between 1 and 4 . In the same way, the inequalities hold when $n=2$ since there are prime numbers 5 and 7 .
II. When $n \geqq 3$

Suppose that p satisfies the following inequalities,

$$
\begin{equation*}
\mathrm{n}^{2}<\mathrm{p}<\mathrm{n}(\mathrm{n}+1) \tag{2}
\end{equation*}
$$

Let q be a positive integer. If any p is a composite number and has prime factors, the largest possible factor of p in the range of the inequalities (2) is $n(n+1) / 2-1$ and p must be divided by q from $n+2$ to $\left(n^{2}+n-2\right) / 2$ since n and $n+1$ cannot divide p and the product of two factors between 2 and $n-1$ cannot be p.

$$
\begin{equation*}
\mathrm{n}+1<\mathrm{q}<\mathrm{n}(\mathrm{n}+1) / 2 \tag{3}
\end{equation*}
$$

We will consider the case where p is divisible by q satisfying the inequalities above. Let r be a positive integer and the quotient when p is divided. r must be satisfied the following inequalities.

$$
\begin{equation*}
1<\mathrm{r}<\mathrm{n} \tag{4}
\end{equation*}
$$

If it is assumed that p are all composite numbers in the range of the inequalities (2), p must be divided by q in the inequalities (3). When p is a composite number, one p corresponds to some combinations of q and r. q has a one-to-one correspondence with p since the minimum number of $q, n+2$ is greater than the number of p satisfying the inequalities (2), $n-1$ and r has a one-to-many correspondence with p.

We need to apply a rule to select the relations from p to r and consider the case when $\mathrm{n}=9$.
When $\mathrm{p}=82$, ($\mathrm{q}, \mathrm{r})=(41,2)$
When $p=84,(q, r)=(42,2),(28,3),(21,4),(14,6),(12,7)$
When $p=85,(q, r)=(17,5)$
When $p=86,(q, r)=(43,2)$
When $p=87,(q, r)=(29,3)$
When $\mathrm{p}=88,(\mathrm{q}, \mathrm{r})=(44,2),(22,4),(11,8)$
Define [p,r] as a relation from p to r. We will select the relations between p and r so that there are all one-to-one correspondences. At first the relations are selected by r which are multiples of 2 for each p. [82,2] is sorted out when $p=82$. Then [84,4] is sorted out since $r=2$ has been selected. When $p=86$, there is one combination $(q, r)=(43,2)$ and $r=2$ has been taken from. In this case, we consider to use the factor 2 of 6 and think that there is a relation $[86,6]$. Then $[88,8]$ is sorted out. Next, we select the relation by 3 multiples r and $[87,3]$ is sorted out.
When r is a composite number we skip the number since we have already taken from the relations by a multiple of the prime factor of r. Next, we select the relations by multiples of prime numbers greater than or equal to 5 .

Let $a(n, r)$ and $b(n, r)$ be integers and $a(n, r)$ be the number of r multiples in the range of the inequalities (2) and $b(n, r)$ be that in the range of the inequalities (4). The following inequalities hold.

$$
a(n, r) \leqq b(n, r)+1
$$

When $\mathrm{n}=8, \mathrm{a}(8,5)=2, \mathrm{~b}(8,5)=1$ and $\mathrm{a}(8,5)>\mathrm{b}(8,5)$ hold.
When $p=65,(q, r)=(13,5)$
When $p=66,(q, r)=(33,2),(22,3),(11,6)$
When $p=68,(q, r)=(34,2),(17,4)$
When $p=69$, $(q, r)=(23,3)$
When $p=70,(q, r)=(35,2),(14,5),(10,7)$
In this case, $[65,5]$ can be selected since $[70,6]$ has already sorted out when $r=2$. Let s be a prime number less than r. In the case of $a(n, r)>b(n, r)$, the actual increase in the number of relations between p and r is less than or equal to $b(n, r)$ at the time of making the selection because one of the s adjacent multiples of r is a multiple of s and the relations have already been selected by s multiples. The value of s can be considered 2 or 3 since $a(n, s)=b(n, s)$ holds as follows.

Let m be an integer.

- When $\mathrm{n}=2 \mathrm{~m}$ and $\mathrm{m}>1$
$\mathrm{a}(2 \mathrm{~m}, 2)=$ floor $\left(\left((2 \mathrm{~m})^{2}+2 \mathrm{~m}-1\right) / 2\right)-$ floor $\left((2 \mathrm{~m})^{2} / 2\right)=\mathrm{m}-1$
$b(2 m, 2)=$ floor $((2 m-1) / 2)=m-1$
- When $\mathrm{n}=2 \mathrm{~m}+1$ and $\mathrm{m}>0$
$a(2 m+1,2)=$ floor $\left(\left((2 m+1)^{2}+2 m+1-1\right) / 2\right)-\operatorname{floor}\left((2 m+1)^{2} / 2\right)=m$
$b(2 m+1,2)=$ floor $((2 m+1-1) / 2)=m$
Therefore, $\mathrm{a}(\mathrm{n}, 2)=\mathrm{b}(\mathrm{n}, 2)$ holds when $\mathrm{n} \geqq 3$.
- When $\mathrm{n}=3 \mathrm{~m}$ and $\mathrm{m}>0$
$\mathrm{a}(3 \mathrm{~m}, 3)=$ floor $\left(\left((3 \mathrm{~m})^{2}+3 \mathrm{~m}-1\right) / 3\right)-$ floor $\left((3 \mathrm{~m})^{2} / 3\right)=\mathrm{m}-1$
$b(3 m, 3)=$ floor $((3 m-1) / 3)=m-1$
- When $\mathrm{n}=3 \mathrm{~m}+1$ and $\mathrm{m}>0$
$\mathrm{a}(3 \mathrm{~m}+1,3)=$ floor $\left(\left((3 \mathrm{~m}+1)^{2}+3 \mathrm{~m}+1-1\right) / 3\right)-$ floor $\left((3 \mathrm{~m}+1)^{2} / 3\right)=\mathrm{m}$
$b(3 m+1,3)=$ floor $((3 m+1-1) / 3)=m$
- When $\mathrm{n}=3 \mathrm{~m}+2$ and $\mathrm{m}>0$
$a(3 m+2,3)=$ floor $\left(\left((3 m+2)^{2}+3 m+2-1\right) / 3\right)-$ floor $\left((3 m+2)^{2} / 3\right)=m$
$b(3 m+2,3)=$ floor $((3 m+2-1) / 3)=m$
Therefore, $\mathrm{a}(\mathrm{n}, 3)=\mathrm{b}(\mathrm{n}, 3)$ holds when $\mathrm{n} \geqq 3$.
From the above, the prime number r with $a(n, r)>b(n, r)$ satisfies $r \geqq 5$.

We will consider the case when $\mathrm{n}=17$.
When $\mathrm{n}=17, \mathrm{a}(17,5)=4, \mathrm{~b}(17,5)=3$ and $\mathrm{a}(17,5)>\mathrm{b}(17,5)$ hold.

When $p=290$, $(q, r)=(145,2),(58,5),(29,10)$
When $p=291,(q, r)=(97,3)$
When $\mathrm{p}=292,(\mathrm{q}, \mathrm{r})=(146,2),(73,4)$
When $p=294,(q, r)=(147,2),(98,3),(49,6),(42,7),(21,14)$
When $p=295,(q, r)=(59,5)$
When $\mathrm{p}=296,(\mathrm{q}, \mathrm{r})=(148,2),(74,4),(37,8)$
When $p=297,(q, r)=(99,3),(33,9),(27,11)$
When $p=298$, $(q, r)=(149,2)$
When $p=299,(q, r)=(23,13)$
When $p=300,(q, r)=(150,2),(100,3),(75,4),(60,5),(50,6),(30,10),(25,12),(20,15)$
When $p=301,(q, r)=(43,7)$
When $\mathrm{p}=302$, $(\mathrm{q}, \mathrm{r})=(151,2)$
When $p=303,(q, r)=(101,3)$
When $p=304,(q, r)=(152,2),(76,4),(38,8),(19,16)$
When $p=305$, $(q, r)=(61,5)$
In the beginning, we select the relations [290,2], [292,4], [294,6], [296,8], [298,10], $[300,12]$, $[302,14]$ and $[304,16]$ when $r=2$. Then we select $[291,3],[297,9]$ and [303,15] when $r=3$. When $r=5$, we should select the relations in the case of $p=$ 295 and $\mathrm{p}=305$. However, there is only 5 for r which corresponds to p since 10 and 15 have already been taken from. With this method, we cannot select the one-to-one relations between p and r .

And so we will change the rules as follows. We select relations by multiples of the prime numbers in descending order. When $a(n, r)>b(n, r)$ holds, a composite number p can be skipped since one of the relations can later be selected by multiples of a prime number less than r . When $\mathrm{n}=17$, the relations are selected as follows.
When $\mathrm{r}=13$, $[299,13]$
When $\mathrm{r}=11$, [297,11]
When $\mathrm{r}=7$, [294,7],[301,14]
When $\mathrm{r}=5$, [290,5],[295,10], [305,15]
When $r=3$, [291,3], [300,6], [303,9]
When $\mathrm{r}=2$, [292,2],[296,4],[298,8], [302,12], [304,16]
The minimum n when there exists r with $a(n, r)>b(n, r)$ is 7 and the minimum r where $a(n, r)>b(n, r)$ holds is 5 . Therefore, if we select the relations this way, one-to-one correspondence with all composite numbers p can be set for r , for all n in the range of $n \geqq 3$.

However, it becomes a contradiction since the number of p in the inequalities (2), $n-1$ is greater than the number of r in the inequalities (4), $n-2$ and it does not become a one-to-one correspondence between p and r . Therefore, the assumption that p are all composite numbers in the range is false and there is at least one prime number in the range of the inequalities (2) when $n \geqq 3$. From the above I and II, it is proved that Legendre's conjecture is true. (Q.E.D.)
3. Complement

Oppermann's conjecture states that, for every integer $x>1$, there is at least one prime number between $x(x-1)$ and x^{2}, and at least another prime between x^{2} and $x(x+1)$. It is named after Danish mathematician Ludvig Oppermann, who announced it in an unpublished lecture in March 1877. (Quoted from Wikipedia)

$$
\mathrm{x}(\mathrm{x}+1)<\mathrm{p}<\mathrm{x}(\mathrm{x}+2)
$$

Considering an integer p satisfying these inequalities, because $a(x, r) \leqq b(x, r)+1$ holds and the minimum x where there exists r with $a(x, r)>b(x, r)$ is 9 and the minimum r where $a(x, r)>b(x, r)$ holds is 7 , we found that at least one prime number between $x(x+1)$ and $(x+1)^{2}$ when $x \geqq 3$ in the same way as this proof. Therefore, we conclude that Oppermann's conjecture is true.

4. Acknowledgement

We would like to thank my family members who sustained a research environment and mathematicians who reviewed these studies.
5. References
A.Sabihi, On the Firoozbakht's conjecture, arXiv:1603.08917v2,(2016)
A.Sabihi, On solutions of some of unsolved problems in number theory, specifically on the distribution of primes, arXiv:1605.01722v5,(2016)
Hiroyuki Kojima, "The world is made of prime numbers" Kadokawa Shoten, (2017)
Fumio Sairaiji Kenichi Shimizu, "A story that prime is playing" Kodansha, (2015)
The Free Encyclopedia Wikipedia

