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Abstract

In this paper, in the Section 1, we have described some equations concerning the functions ¢/(s)
and (s, w). In this Section, we have described also some equations concerning a transformation

formula involving the gamma and Riemann zeta functions of Ramanujan. Furthermore, we have
described also some mathematical connections with various theorems concerning the incomplete
elliptic integrals described in the “Ramanujan’s lost notebook™. In the Section 2, we have described
some Ramanujan-type series for 1/z and some equations concerning the p-adic open string for the
scalar tachyon field. In this Section, we have described also some possible and interesting
mathematical connections with some Ramanujan’s Theorems, contained in the first letter of
Ramanujan to G. H. Hardy. In the Section 3, we have described some equations concerning the zeta
strings and the zeta nonlocal scalar fields. In conclusion, in the Section 4, we have showed some
possible mathematical connections between the arguments above mentioned, the Palumbo-Nardelli
model and the Ramanujan’s modular equations that are related to the physical vibrations of the
bosonic strings and of the superstrings.

1. On some equations concerning some observations concerning the functions ¢ (s) and

{(s,w) [1]

In the Mathematical Analysis there exist the proof of the following formula:

1 1 = = dt
{(s):5+:+2j0 (1+12) 2Sin[sArcTan(t)] e (D

that can be rewritten also as follows:




¢~ sin(stan”'(¢)) 1.1
g(s)_zjo (t2+1)x/2(em_l)dt+2+s_1 (1.1b)

where {'(s) represent the Riemann zeta function.

Now we analyze in greater detail the formula (1.1)
The function ¢(s) is represented from the series

§(S)zl+is+is+...+is+..., (1.2)
283 n

as the real part of the complex variable
s=E+in

is greater than the unity. Under the same condition, we have still that

what is easily proved by using the following equality

1 _ 1 < _s-1
7—@]0 e x dx. (14)

It is from the expression (1.3) that Riemann reached by an ingenious application of the residue
calculus, extending ¢ (s) across all the plan and discover such interesting properties of this function.

Weset f(z)=z"", where

pl,t)= (1'2 + tz)% cos(s arctanij . qlr,t)= —(12 +1 )7% sin(s arctanij . (1.5
T T

The following three conditions:

1° The function f(z) is holomorphic for 7 >« , for each ¢;

2° The condition lim e 2 f(z+it)=0 is verified uniformly for & <7 < 3, however great f3;

13

3° The function f(z) is subject to the following condition: lim j eiz”‘t” flr+ it)| =0;

are verified in the half-plane 7 >0; assuming & >1, so that the series (1.2) converges, and by
m =1, we obtain, after the application of the following formula:

=

S 70)="1 plm)+ [ e 2 20

e —_

dt, (1.6)

m



;():l_,_L.FzJ' 1+t)2s1n(sarctant) di , (L.7)
2 s-—1 e’ —

that is the eq. (1.1), and, after the application of the following formula,

= I:f(r)dr - 2.[: Ola,t)dt, (1.8)

for azl,
2

s—1 -3
£(s)= 2 1_2j0 (%+t2j 2sin(sarctanZt)2,,,&- (1.9)

s — e +1

Another expression for ¢(s) is derived from the following formula:

3 f)= ‘“’T j (z)d=z. (1.10)
~ " 2mide=\ sin

,z:%ﬂ't,we find

1

By a=
Y=y

1-s

Ar m(l ZJZ cos[(s —1)arctan 2¢]
SRRy L -
s—10 (e’” + e"”)

{(s)= dr. (1.11)

4

Starting from the relationship

(1- ! jg<s>=1—i.+i.-i,+...

23—1

with the application of the following formula

S 1) £ )= [ ,;f(_) =-2["Q/(ect)dr. (1.12)

a—loo
m e

with m=1,a = %, we also find

£(s)= 2* jw(l+t2j_2cos(sarctanZt)dt. (1.13)

2 -1\ 4 e +e”

It is easy to see that the integrals definite appearing in the above expressions are analytic functions,
holomorphic for any finite value of s . On the other hand, we deduce from the eq. (1.7), for s =0,



: 1 . : o
then, subtracting the two members T and making tend s to the unity, taking into account the

S —
following equality:
1 ~ t 1
C=-+2 —dt, (1.14
2 j<>1+t2 e -1 (1.14)
we obtain

1] 1 et 1
lim| £(s)——— | = ~+2 . a=C, (115
3—1[4(5) s—J 2 e (1.15)

and finally, by differentiating with respect to s, putting s =0 and using the following equality

dt =log~2x, (1.16)

1—2.[0 arctantem 1

we obtain

{'(0)22.[:arctant dt —1=—-log~2x . (1.17)

2
o

We note that there exist a mathematical connection between 7 and ¢ = , 1.e. the aurea

section, by the simple formula
arccos¢ =0,2879x, (1.18)

thence we have that

JT = arccos@-

. (1.19
0,2879 (1.19)

We can rewrite the eq. (1.17) also as follows:

'(0)=2[ arctan? dt —1=-log (2| arccos®- . (1.19b
£'(0)=2[ o g\/ ( ¢ 0,2879] (1.19b)
Now we consider the function

(s, w)= 1§+ L oL L 20

w (w+l) (w+2)
which reduces to {(s) for w=1. We must replace our general formulas

fl2)=(z+w)", (@1.21)

where



! j , q(r.t)= —[(T +w)f +1 P sin(s arctan—
w 7T+

plt,t)= [(T +w)f +1 P cos(s arctan——
T

j. (1.22)
w

Assuming the real part of w positive, applying the following formula

g(m,t)dt, (1.23)

Zf jf )T - 2]

we obtain
1-s — s
C(s,w)=2—+ 24 ZJ' (w? + tz)fi sin| s arctan
s—1 2 0 w)e

———dr, (1.24)

valid expression in the whole plan and shows that ¢ (s,w) is a uniform function admitting for

singularity at finite distance, only the pole s =1 of residue 1. We conclude, on the other hand, for
s=0,

{(O,W):%—w, (1.25)

. 1 . .
then, subtracting = and for s tending to the unity,
S —

%dr, (1.26)

2m

s—1 0w+t e

1}31[5@ w)—L}z—logw+2i+2j

and finally, differentiating with respect to s and then for s =0, we have that

£ (0,w)= (w—%jlogw— w+ ZI:arctanL -

dr. (1.27)
we™ —1

For the following equalities,

logI(x) = log\/ﬂ+(x—%jlogx— x+J(x), (1.28)

D, logI'(x)=logx — Zi +J'(x), (1.29)
X

. . I"w
these last two expressions on reduced respectively to  — % and log F(w) —log+2rx .

w
Here it is possible to obtain some mathematical connections with various theorems concerning the
incomplete elliptic integrals described in the “Ramanujan’s lost notebook™.

Let u(g) denote the Rogers-Ramanujan continued fraction defined by

u=u(q)= 9 . lgl<1, (1.30)




and set v = u(q2 ) Recall that y(g) is defined by

w(a)=fla.q’)=3q"" <qq.’qqz) (1.31)
Then
Iﬂq_) 9 = loglu* )+ /5 log {%j (1.32)

We note that 1+(\/§ —2):1,236067977: \/gz_IXZ, i.e. the aurea section multiplied by the

\/§+1
2

number 2, and that  1—(v/5 +2)=-3,2360679777 = —( x 2} .i.e. the aurea ratio multiplied by

the number 2 and with the minus sign.

With f(~¢), w(g), and u(q) defined by

=3

f0)=rlEq-¢7)= S (1) g2 =(g:q). =™ n(z), g=¢, Imz>0, (1.33)

n=—oco

by (1.31) and (1.30), respectively, and with & = (/5 +1)/2,, we have that

53/4J"1f2(_t)f2(_t5)dt:2.[”/2 ! dp=
0 \/; cos”! ((84)5/2)\/1 —£7°532in? (1)
_ .[Ztan—l(53/4\/;f3(_q5)/f3(_q)) 1 d¢ _ \/g.[Ztan"(5”4\/;!//(!15)/!//@1)) 1 d¢ (134)

J1-£757%sin> o J1-£5"sin’ @

Let v be defined by the following expression

R 01 )V w i )]
gtlvic o M

and let £ = (\/§+ 1)/2. Then

1 Ztanfl(l/x/g) 1

J A Ear el )= s L T

1 J-m 1 1 J-:an-l(a-ﬁ )

1
(e [l ] | ————dp =~ [ s = ]—d(p.
9% [1+V€3 (lvgl)(1+V€5)J l_isinzw 4 (3 5) (14+ve)14+ve™ I_Esin2¢
V" 81 V' 16

If v is defined by the following expression

(1.36)




ﬂﬂﬂvﬁﬂVFFVFNM=—i—ffpﬂJ 1 dp. (1.38)

22 Y
Let
_ f3(_q2)f3<_q14) . :9_4ﬁ
TURCr) 7
Then
[[reorEe)ro) o= 2”1ﬁ{1mx 1 dp. (139)

61+2ﬁx+1} \/1 _ 32 - 13'\/5 Sil’lz ¢
64

1.1 On some equations concerning a transformation formula involving the gamma and
Riemann zeta functions of Ramanujan.

In the Ramanujan’s lost notebook there is a claim that provides a beautiful series transformation
involving the logarithmic derivative of the gamma function and the Riemann zeta function. To state
Ramanujan’s claim, it will be convenient to use the familiar notation

x

_ x —
i )_ e Z(k—l—x k+1j’ (1.40)

where ¥ denotes Euler’s constant. We also need to recall the following functions associated with

Riemann’s zeta function ¢(s). Let

0= -0 {12 Jet6).

Then Riemann’s Z-function is defined by



Theorem 1

Define
B(x):= z//(x)+i—1ogx . (1.41)
2x

If a and [ are positive numbers such that of =1, then

Ja 7B 5 gt - [, S )

2ﬂ n=1
"= lt r —1+1it
0|7\ 2 4

2 cos(;tlog aj
dt, (1.42
1+¢ (1.42)
where y denotes Euler’s constant and Z(x) denotes Riemann’s Z-function.
Although Ramanujan does not provide a proof of (1.42), he does indicate that (1.42) “can be
deduced from”

J; (w1+.x)~logx)oos(2mux)ds = ({1 + )~ logn). ~ (1.43)

We have that, for 1 # 0,

= (1 11
Z ——(, _?+Ej' (1.44)

parl +4n 2t\ e —1

We find that, for Rez >0,

¢(z)=—2j0°°(t tdi J (1.45)

vy

We require Binet’s integral for logF(z) , 1.e., for Rez >0, thence

logF(z):(z—%jlogz—Z+%10g(2ﬁ)+j:[%—%+etl_ljet dt. (1.46)

We find that

j”( L —lje*dx:y, (1.47)
o\l—-e" x

where ¥ denotes Euler’s constant. Furthermore, by Frullani’s integral, we have that



—jux w

[ —dr=log~ . wv>0. (148)
0 x ﬂ

We now describe a proof of Theorem 1. Our first goal is to establish an integral representation for
the far left side of (1.42). Replacing z by na in (1.45) and summing on n, 1 <n <o, we find, by
absolute convergence, that

=

[ tdt 2 = tdt 1
Z(b(”a):_zn_ljo (tz_l_nzaz)(ezm_l):__zjo (ezm_l)z . (1.49)

n=I1

Invoking (1.44) in (1.49), we see that

oo

z¢(n06)=—2—7[m 1 ( 1 a+1jdt. (1.50)
e

o (ez’” —1)

n=I1

Next, setting x =2 in (1.47), we readily find that

2t

_J'm 27 _e_
7= e —1 t

jdt. (1.51)

By Frullani’s integral (1.48),

—tlo —2m
oo e p—

dt = 1og(2—”j =log(27). (1.52)
lx

Combining (1.51) and (1.52), we arrive at

tla

y—log(27a)= | (ez,zf —et jdt. (1.53)

-1

Hence, from (1.40) and (1.43), we deduce that

y—log(2mar) & 1 = 27 e 21 = 1 ( 1 o 1)
L oa ) = - dt - - — |dt
\/E( a ,,Z_:‘¢(M)] 2 J (e“’ -1 ¢ \/Ejo @ -\ 1 2z 2

—tla

27 e

_[ e
-l [t(e”’ -1) Jal@“-1)em-1) 2t\/5]dt' (159

Now, for n real, we have that

. . 2 .
J-mr(—lﬂtjr(—l—ztj E(ltj cosnztdt:J-w E(ltjr(—l+ltj
0 4 A 2)) 1+t o \2 A

(1 1 1 1
= ( - j( - — jdx. 1.55
V7| il be i (1.55)

2

cosnt
—dt =

1+¢




Letting n = %loga and x=2m/Jea in (1.55), we deduce that

1
o J-w:(ltjr(1+itjzcos(2t10gajdt:27zJ-w( 1 1)( L ajdt:
NEEARW) 4 1+¢ Jah e -1 2m N\ -1 2m
- —2m/iNa Jo 1 Ja
= - . (1.
.[0 ((eZIZZ/OC_IXeZﬂI _1)+ t(eZﬂl _1)+ t\/&(ézm/a_l) 2m2jdt ( 56)

Hence, combining (1.54) and (1.56), in order to prove that the far left side of (1.42) equals the far
right side of (1.42), we see that it suffices to show that

oo 1 \/E e—t/(l B 1 - 1 1 e—u/(27z') ~
} (da(emm—l)‘zmz*zz@}”‘ﬁfo [u(eu-l)‘ﬁ » ]du-oa (1.57)

where we made the change of variable u =27/« . In fact, more generally, we show that

oo 1 I ™ 1
-—+ du=—-—log(2m), (1.58
[ o= om0

so that if we set @ =1/(27) in (1.58), we deduce (1.57).
Consider the integral, for ¢ >0,

o 1 I 1)e™ e —e™ 1 1 1. ¢
Fla,r)= L du=1ogT(t)~| t -~ |logt +1 —~log(27)+ ~log -
(a.1) Io{[e“—l u+2j v }” gt ( 2j°g Fi=loga)tlog

(1.59)
where we applied (1.46) and (1.48). Upon the integration of (1.30), it is easily gleaned that, as
t—0,

logT'(t)~ —logt —, (1.60)

where y denotes Euler’s constant. Using this in (1.59), we find, upon simplification, that, as t — 0,
1 1
F(a,t)z - —tlogt +1t —Elog(Zﬂ')—Eloga . (1.61)

Hence,

limF(a,t):—%log(%[a). (1.62)

t—0

Letting ¢ approach 0 in (1.59), taking the limit under the integral sign on the right-hand side using
Lebesgue’s dominated convergence theorem, and employing (1.62), we immediately deduce (1.58).
As previously discussed, this is sufficient to prove the equality of the first and third expressions in
(1.42), namely,

10



2 cos(; tlog aj
dt. (1.63
1+¢ (1.63)

@%{)@@W)}?ﬁf E(%fjf(_f itj

Lastly, using (1.63) with & replaced by £ and employing the relation ¢ =1, we conclude that

{2
2 4

2 cos(;tlogﬂj

—_

1+¢

T Ry L )

1
N cos[tlog(l/a)j
- /1 3 jo E(%tjr(_lzlt 2l+z‘2 i =
V4
1
N cos(tlog(a)j
S j”a(ltjr(_”” 2 Jar. (1.64)
N (2 4 1+¢

Hence, the equality of the second and third expressions in (1.42) has been demonstrated, and so the
proof is complete.

2. On some Ramanujan-type series for 1/7 [2]

Ramanujan’s series representations for 1/7 depend upon Clausen’s product formulas for
hypergeometric series and Ramanujan’s Eisenstein series

kk
_qqk, g <1. 1)

P(q)::1—2421
k=1

More precisely, but briefly, by combining two different relations between P(q) and P(q”), for

certain positive integers 7, along with a Clausen formula, we can obtain series representations for
l/r.

Theorem 1

For n=5,if A, and B,, k 20, are defined by the following formula

L6, G060 . @06,

kPR kP e kP

then

11



=S sk 5 -1 (V5 2] 22

Il
M

N N
i

(—1)"(20k+3)3k4—1,{. (2.3)

=~
I
(=]

For n=13,if A, and B,, k=0, are defined by the formula (2.1b), then

a|\‘

i *(260k + 23)Bk (2.4)
k=0

The last two identities was recorded by Ramanujan in the fundamental paper “Modular equations
and approximations to n(1914)”.

Proofof (2.2).

From Ramanujan’s second notebook (Notebooks — 2 volumes — 1957), we see that

I AL LA SR T AN (i) et}
o lale) i)} @)
With the help of (2.1) we can rewrite (2.4) in the form
5P(¢")- Plg*)= %W (00" (4" I+ xlg g + T —x{g )i~ +lg T
X {1 + \/x(q)x(q5 ) + \/(1 - x(q))(l - )c(q5 ))}/2 . (2.6)

and use, following Ramanujan, the following expressions

= kq’

k:l

1+

Now we set g =e™*’ v5

l-x,=x,,, zl/nzx/;zn, 2.7)
11
z:=z(g) :=2F1(5,5;1;xj =¢*(q), (2.8)

to deduce that x(g)=x,,s =1-x;, x(qs): x;, and ¢’ (e*’”ﬁ): \/§¢2(e*”f5): 5z,
Thus, from (2.6), we find that

sPle>5)- Pl )= 5225 + 2 /s (1— x, )}\/% (1425 (1-x;))=
= 5225 +1/4x5(1—xs)}\/%(1+1/4x5(1—x5)). 2.9)

The eq. (2.9), putting X, = 4x,(1—x,), can be rewritten also as follows

12



5P<e_2”(5)—P<€_2”/ﬁ):ﬁzg{3+2'\/x5(1_x5)}\/%(1+2 xs(l_xs)):
=525+ X, %(1+\/Z). (2.9b)

But, the singular modulus x; is given by

so that

X, =9-445 and .JX,=+5-2. (2.11)

Thus, from (2.9), we find that
-2745 -27/5 \/g -1
5Pl )- P25 )= 55 +1) Tl en
Next, setting n =15 in the following equation

nPle7 )1 ple )= % . (2.13)

we find that
sp(e‘z”ﬁ )+ P(e—z’”ﬁ ): % . (2.14)

Adding (2.12) and (2.14), we deduce that

Ple5)= 2 MRERR [\/5—1]252. (2.15)

NN 2

Now, employing the following expression

in (2.15), we deduce the identity

aas) 3 A5+ (S-S,
P(e )_”ﬁ+ 7 ( jZAkXS. (2.17)

Next, setting #n =5 in the following equation

13



P(e‘z”f) 1-2x,) i3k+1AX" (2.18)

k=0

we find that

P( 2’”) (1-2x,)) (3k+1)4, X =252 2)2 3k+1)4,.X . (2.19)
k=0 k=0

Using (2.17) and (2.19), we arrive at (2.2).

Proofof (2.3).

Employing the following expression

2 FG L, sz > B, 0sxs (1-2742-42 ), @20
—4ZX

1_ 2x k=0

in (2.15), we find that

e e AL e YL EUC]

where

2./X
W, = NS % (2.22)

T
IS

Next, setting n =5 in the following equation

(2zzf) i k3k1+X)+1+X”/2

BW*™ (2.23
1 Xn k""" n ( )

we find that

(z;;f) i (1+X,)+1+X,/2

B (—1Y w2
1 X k( ) n

8

:(3\2/§k+3\/§+2

j(—l)kBkWsz". (2.24)

From (2.21) and (2.24), we readily arrive at (2.3). Thus, we complete the proof. The proof of (2.3b)
is similar.

2.1 On some equations concerning the p-adic open string for the scalar tachyon field. [3] [4]

As a free action in p-adic field theory one can take the following functional

= jQ Dfdx  (2.25)

14



where f = f(x) is a function f: Q, > R, dx is the Haar measure and D is the Vladimirov

operator or its generalizations. Boundary value problems for homogeneous solutions of nonlinear
equations of motion corresponding to the p-adic string,

SD=D". (2.26)
Here [ is the d’Alembert operator and the field @ and its argument are real-valued.

The dynamics of the open p-adic string for the scalar tachyon field is described by the non-linear
pseudodifferential equation

1
—0
pPrO=0", (2.27)

where 0=0;-0] —..—0; , t=x, isthe d’Alembert operator and p is a prime number,
p=2.375,... In what follows p is any positive integer. We consider only real solutions of
equations (2.27), since only real solutions have physical meaning. In the one-dimensional case (d =

1) we use the change
olt)=®y21np)

and write equation (2.27) in the following equivalent form:

laz

e p=¢". (2.28)

Equation (2.28) is a non-linear integral equation of the following form:

Vo(r)dr=¢"(t), teR. (2.29)

1 = ~(t-7
—| e
R
Solutions of equation (2.29) are sought in the class of measurable functions ¢(¢) such that
p(t) < Cexpl(i-€)?} forany e>0, re R. (230)

The following boundary-value problems for the solutions ¢ of equation (2.29) have physical
meaning:
limg(f)=0,  lime()=1 (2.31)

t——oo t—oo
if p is even, and

limg(t)=-1,  limgp(r)=1 (232)
if p is odd.

Assertion 1

If @ is a solution of equation (2.29) such that

limg(t)=a, |d<e, (2.33)

t—o0

15



then a=0 or a=11if p is even and a=0 or a==x1 if p is odd, 1im,_>m(¢”)(t)=0. If a#0,
then lim__¢'(t)=0.

We deduce from equation (2.29) the following chain of equalities:

t—>o0 t—>o0

}i_)rg(o”(t): [11_)rg(p(t)]” =a’ = hm\/_J' Vdr= hm\/_j =

j lime(t—u)e ™ du=a, (2.34)

—o0 f—300

whence a=0 or a=1if p iseven and a =0,%1 if p is odd. Further, we have

limlp” J(¢)=-2lim— g7 = 2lim—— (t—u e du=
t—>oo( 1= 7T J-—oo 1= 7T J- )1/
2 2 oo 2 2
hm t—uue " du=———=al| ue" du=——a-0=0. (2.35
rf limp{ = Lo - (235)

If a#0,then lim,__¢'()=0, since
lim(p” }(t) = plimg” ™ (¢)¢'(t) = pa’ ' limg'()=0. (2.36)

We passed to the limit under the integral sign, using Lebesgue’s theorem and estimate (2.30). We
shall write @ =b if the integers a and b are both even or both odd, and a # b if one of them is
even and the other is odd.

Hermite polynomials are defined to be the polynomials

H (x)=(=1)e" dﬂe-xz, n=0,.. (2.37)
dx

whence H,(x)=1, H,(x)=2x, H,(x)=4x-2, H,(x)=8x"—12x,.... They form a complete
orthogonal system in the Hilbert space L}, and

J.H x)du,(x)=2"n!. (2.38)

Any f e L, can be expanded in Hermite polynomials:

=ifH1H()

S in L, (2.39)

and the Parseval-Steklov equality holds:

1

2"l

171} = i|(f )| (2.40)



The expansion in powers of x has the form

n

H,(x)=n) ¢, x", n=0L., (241)

n

m=0
In particular, we have
_2 _ =y _ _ A
Con = ; s> Coo ™ T s Coppn = 2 o Copo = _2m s Coppz = 3(}1 _ 1)! . (2.42)

The integral representation for the modified Hermite polynomials has the form:

V(x)= \E j TH (D) dr, n=0,,... (2.43)
pul I

Let fe L)’. It follows from (2.28) that f'e L,,

ianH”—(fo(X):ian”(x) in L. (2.44)

Lemma 1

The operator K assigns to every function f (t) satisfying condition (2.30) an entire function
(Kf )(z) with the estimate

(Kf )z) < %exp{ o+ G - 1}2} , z=t+iy. (2.46)

The proof follows immediately from (2.30):

C 2 pp= 2 C 1
dr=—=e" " | e " dr=—exply’ +(——ljt2}. 2.47
Jz .[_m Je p{y c ( )

(=)’

Lemma 2

The operator K assigns to fe L%, 0<a <2, an entire function (Kf )(z) with the estimate

(&)< 2-a) exp{ v f‘aﬁ} L zmitiy. (248)
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The proof follows from the Cauchy-Bunyakovskii inequality (applied to (Kf)(z)) and the following

estimates:
exp{— 2 +2z7— (1 - %)‘52}

< f||a[% [ lexplaz? + 417 -(2- o)’ }(dt} < f||a{% [ expley? 22 + 417 -(2-a)? }d‘r}

=71, exp{ V24 ; ixﬂ}{% J-Zexp{(Z - a)(f_ ; ifaj }dt} . (2.49)

We can rewrite the above equation also as follows:

exp{— 22 +2z7— (1 - %)‘52}
d ﬂ}{l [ exp{(2 - a)(r— 2 j }dt} . (2.49b)
- 7T 2—-o

dt <

|(Kf <_J‘ |f (xrz/z

1/2

<L [ Irtege -

171, exof

Lemma 3

, 1s bounded, and

The operator K : L} —1£, 0<a <2, ﬁ>22a

&7, < (205—2%—04] fels. (250)

We prove the lemma by writing the following chain of equalities and inequalities for f'e L7:

2
L[ f*(,z.)e—(oz/z)z'2 —(l—a/2)2'2+2trd,z.

Aty = (e o= 2] v L
l ﬁ = -(B2)? [T 2 —or? © ~(2-a)?+arr _
< 7[\/; [ [ ) e dz| e ddt
1 \E” AT Sy, [ e ar=(2p-20- aﬂ)‘“ﬁ” /L. @5
TN o

This equation can be rewritten also as follows:

&7, = \/7 [ e |(xr)e \/7 L e “Jrzdtrme‘(z‘“)”dr. (2.51b)

Lemma 4

dt <

18



If feL,, then its image (Kf \t) can be expanded in the Taylor series

K=Y 0 a=(r1). @52

. . . 1/2
which converges uniformly on every compact setin R.If fe L,", then

K 0=35"20 B b= @5y
n=0 n:

and
(Kf,H,),=(f.V,),,, n=0l... (2.54)

By lemma 3, the function (Kf)(¢) is the trace of an entire function (Kf)(z) for y =0. Hence, it can
be expanded in the Taylor series with the coefficients

d}’l

d}’l
dt}’l n

dt

(K1Ne) o = [ A0 e e = [ A1 H (e, =

:j%ﬁf@@ﬁHk4kﬂM4ﬁHJ:%.Qﬁ)

Here we used equality (2.37). Further, if fe L)?, then (2.53) holds by (2.44), since Kf € L, by
Lemma 3. Equalities (2.54) can be proved as follows:

(Kf,H,) = (K H, ),y = (£.V,),), (2.56)

Here we used formula (2.43), which implies that ¥, = K'H,, where K" is the operator adjoint to
K.

Let @ be a solution of equation (2.29) belonging to L., whence ¢” = K¢. Putting a, = ((p, H, )1,
we deduce from (2.39) and (2.40) that

> H(t) . = a’
ﬂ#;wﬁ%ml; Sl s

The function @”(¢) is the trace of the entire function A(z)=(K¢)(z), for which (2.48) holds with
a=1:
()< g e, zec. (@38)

By Lemma 4, it can be expanded in the Taylor series (2.52):
0" ()=>a, t—' (2.59)
= n

The integral equation (2.29) is equivalent to the following boundary-value problem for the heat
equation:
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1
u,=—u

x 4 it

u(0,0)=0(t), u(l,t)="(t), teR. (2.61)

0<x<l, teR, (2.60)

Let us note that if there is an interpolating function, it can be represented by Poisson’s formula for
equation (2.60):
(c-7f

u(x,t)= % j";(p(r)exp{— —}dr, 0<x<l. (2.62)

X

If @ such that
lp(e) < Cexp{e‘tz} for any £€>0, te R, (2.63)

then formula (2.62) gives its analytic continuation to the domain x>1, te R and, further, its
analytic continuation with respect to (x,t) to the complex domain 7% xC, where T"is the right

half-plane Red =x>0.
Equation (2.29) takes the form

()= ﬁfm plrledr, g=12... (2.64)

If ¢(t) is a solution of equation (2.64), then ¢(—¢) and ¢(+1,) also are solutions of this equation
(forall ¢,).

Assertion 2

If ¢(t) is a solution of equation (2.64) such that (2.63) holds, then

L [ o (@)exp =7 dTSxﬁ(l+x)_Tl—2 _ 2971 (565
NS X 2gx—x—1

forall x>1/(2q-1).

We remember that if S is a measurable subset of R" with the Lebesgue measure, and f and g are
measurable real- or complex-valued functions on S, then Holder inequality is

J.S|f(x)g(X)|dx < qs|f(xydx)/pqs|g(xlqu)“q. (2.65b)

Denoting the left-hand side of inequality (2.65) by J(x,?), using the boundary conditions (2.61), the
properties of solutions of the heat equation and Holder’s inequality, we obtain the following chain
of relations for all x >1/(2¢ —1):
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o e et
o e

\/7L/_ Jr[j exp{ (Z)Jr(ii;;l_)l)}drj " (2.66)

whence
1

S (i ( Jm(m)(zq—l)]l_“, 267

_\/7Dc(l+x) 2gx—x—1

which implies that (2.65) holds.
Now we can rewrite the eq. (2.65) also as follows:

i (m)sa ( \/7zx(l+x)(2q1)j;q:>

_\/7Dc(l+x) 2gx—x—1

4 1

2 _q_ -
— ﬁjm @ (z‘)exp{— —(t _xT) }dl‘ < x*! (1 + X)_m % . (2.67b)

Corollary

For x =1 estimate (2.65) with q =2,3,... takes the form

ﬁfw(ﬂz"(r)exp{—( o) <2 = ;Z_; . (2:68)

With regard the possible mathematical connections, we note that it is possible to obtain some
interesting and new relationships evidencing some Ramanujan’s Theorems. The first letter of
Ramanujan to G. H. Hardy, contain the bare statements of about 120 theorems, mostly formal
identities extracted from his note-books. We take, for the connections regarding this section, the
following identities:

r”(bxﬂjz_l+(bizj2mdx:\/;F(H;jr(bﬂ)r(ba+;j o)
o e

- 1 1
J-O (1+x2)(1+r2x2)(1+r4x2)..dx:ﬁ2(l+r+r3 +r0 47 +)

. (2.70)
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If off=r",then

,ﬁxl
—1/4 xe _ p-l/4 = Xe
(1+4aoem_1de_ﬂ [1+4ﬁj0 S

-2r _—4rm
Le e _ 5+\/§ _\/§+1 62”/5, (272)
I+ 1+ 1+... 2 2

lde , (2.71)

—Zﬂ\/g —4/r\/g
leve™” | Vs BREEaR P (2.73)

1+ 1+ 4. 512 2
1 \/{53/4(\/glj 1}
2

We note that the eqgs. (2.49b), (2.51b) and (2.68) can be related with the expression (2.69) and
(2.70). Indeed, we have:
J —ar? /2 2 ( aj 2
<— T)e exps—z +2zt—-|1-— |7
—[1re) p{ :

1/2
_ 2 a l o _ B 2t Y
2]

j”(bizjz ) \/;r( 1)F(b+l)l"(b—a+;j .

dr=

X =

frfg et

(7o)< =] lrte)e exp{— 2 221—(1 _%}2}

o aenlief—2) o] 5

éj (1+x2)(1+szz)(Hr4x2)--dx_”2(l+r+r3 +r0+ ) @7)

Il = B e arpea =L BYrp [ oo
1+( j 1+( j fr[a+ljr(b+1)r(b—a+lj
> r b+1) b+2 de= VT 2 2

2 F(a)l“(b+;jl“(b—a +1)

\ . 5 . S
1+(j 1+( j
a a+1

dt =

, (2.76)
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ot = 2 e

9'[ (1+x )(1+r2x2)(1+rx) a 2(1+r+r +r8 4+ )’

) dr = || M e dt [et"ar>
=7

(2.77)

ﬁj";wzq(f)exp{—( ) }d2'<2 4q 2 [29-1 N

2g-2

eImH(bx”jz-1+(bizjz...dx:ﬁr(a+2j oo (b_ﬁij (2.78)
T e

1 2g -1
= @ent-le- s 2015
9L (1+x2)(1+r2x2)(1+r4x2)..dx‘”z(1+r+r3+r6+rl°+...)' 2.79)

3. On some equations concerning the zeta strings and the zeta nonlocal scalar fields [5]

The exact tree-level Lagrangian for effective scalar field ¢ which describes open p-adic string
tachyon is

[}

1 p2 1 2 1 +1
L A L PP S R B
P 2 > 4 p+1¢ } (3.1

g p-1
where p is any prime number, 0=-9> +V? is the D-dimensional d’Alambertian and we adopt

metric with signature (— +...+). Now, we want to show a model which incorporates the p-adic
string Lagrangians in a restricted adelic way. Let us take the following Lagrangian
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L=YCL =" e =—[——¢Z 2¢+Z 1} (3.2)

nl nl n’ n>1 PR

Recall that the Riemann zeta function is defined as

5(S)=ZLS=H L s=otir, o>1. (33)
n>1 1 14 l_p

Employing usual expansion for the logarithmic function and definition (3.3) we can rewrite (3.2) in
the form

{ M( j¢+¢+ln( ¢)}, (3.4

where |¢| <l.¢ (%) acts as pseudodifferential operator in the following way:

2

O _# o _k_ZN _r2_2_ 72
g(—j¢(x)_ Gny j ;( 2J¢(k)dk, K=ki-k*>2+e, (3.5)

where 5 (k)= .[ e(*"k")¢(x)dx is the Fourier transform of ¢(x).

Dynamics of this field ¢ is encoded in the (pseudo)differential form of the Riemann zeta function.

When the d’Alambertian is an argument of the Riemann zeta function we shall call such
string a “zeta string”. Consequently, the above ¢ is an open scalar zeta string. The equation of

motion for the zeta string ¢ is

ey el K15 k=2
g(zjqj_(zﬂ')[) J-k5*132>2+ge é/( 2J¢(k)dk 1_¢ (36)

which has an evident solution ¢ =0.

For the case of time dependent spatially homogeneous solutions, we have the following equation of
motion

-9, 1 i o Ko | o)
—L olt)=— e "' = \p(k, )dk, = . (37
5( : j¢() ) i (( > [Pk =17 0 B7)
With regard the open and closed scalar zeta strings, the equations of motion are

f@

txk

( j k)dk = 29”2¢ (3.8)

n=1

zxk

1ok

and one can easily see trivial solution ¢ =6=0.

= n + 1)

n(n—l)_1
[ j e )k = Z{en nln=1) )" (6 -1)|, 3.9
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The exact tree-level Lagrangian of effective scalar field ¢, which describes open p-adic string
tachyon, is:

mD 2 T2
R T ) RERT)
g, p-1| 2 p+1

where p is any prime number, (1=-09> +V* is the D-dimensional d’Alambertian and we adopt
metric with signature (— +...+), as above. Now, we want to introduce a model which incorporates
all the above string Lagrangians (3.10) with p replaced by ne N . Thence, we take the sum of all
Lagrangians £, in the form

+o00 +o0 mD nZ 1 —% 1 e
L= CL =>C 4 {—m ? "¢+m¢ 1}, (3.11)
n=1 n=1 n

g n—1] 2

whose explicit realization depends on particular choice of coefficients C,, masses m, and coupling

constants g, .

Now, we consider the following case
c =" -1

n 2+h
n

(3.12)

where /4 is a real number. The corresponding Lagrangian reads

D
m

1 & s &on
L=—|——0>n>™ ¢+ —¢"" 3.13
e 2¢; ¢ ;nH(b (3.13)

and it depends on parameter /4. According to the Euler product formula one can write

& 1
;nz =11 —. (14

p l_p 2m>

Recall that standard definition of the Riemann zeta function is

é“(s)=iis:]_[ L s=o+ir, o>1, (.15
n=1 1 ) l_p

which has analytic continuation to the entire complex s plane, excluding the point s =1, where it
has a simple pole with residue 1. Employing definition (3.15) we can rewrite (3.13) in the form

[ 1 o LA
Lh—gz{ 2¢§( 2+hj¢+;n+1¢ } (3.16)

2m
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O
2m?

tere ¢

+ hj acts as a pseudodifferential operator

;( Dz+hj¢(x): 1 je“"g(— k22+h}?(k)dk, (3.17)

2m (27)” 2m

where 5 (k)= J-e(*”“)¢(x)dx is the Fourier transform of ¢(x).

We consider Lagrangian (3.16) with analytic continuations of the zeta function and the power series
—h

n .
S g e,

n+1

m

_m’| 1.0 ST
Lh—gz{ 2¢§( 2+hj¢+AC;n+l¢ } (3.18)

2m

where AC denotes analytic continuation.
Potential of the above zeta scalar field (3.18) is equalto — L, at 0=0, i.e.

_m (P oy e
V,(9)= gz(zﬁh) AC;M(,» j (3.19)

where h#1 since ¢ (l) =oo. The term with ¢ -function vanishes at 4 =-2,—4,—6,.... The equation
of motion in differential and integral form is

g“( 2D _+ hj(b _ Acgnh(o” . (320)

m

! jRD eb‘ké’(— 2"2 + h}Z(k)dk = ACin’h(b” , (3.21)

(27Z)D m’ o

respectively.
Now, we consider five values of /4, which seem to be the most interesting, regarding the
Lagrangian (3.18): h=0, h==1, and h=12. For h=-2, the corresponding equation of motion

SINPS PR S " LSS 1/8Y S A
5(2m2 2)¢_(2,,)D IRD ( o 2j¢(k)dk—(l_¢)3. (3.22)

now read:

This equation has two trivial solutions: ¢(x)=0 and @(x)=—1. Solution ¢(x)=—1 can be also
shown taking ¢ (k)=-8(k)(2z)° and ¢(-2)=0 in (3.22).
For h =-1, the corresponding equation of motion is:

2 1lp=! e - o5 __ ¢
g(Zmz 1)¢‘(2,,)DLD 5( o I}D(k)dk =oF (3.23)

1
where {(—1)=——.
(=t
The equation of motion (3.23) has a constant trivial solution only for ¢(x) =0.
For h =0, the equation of motion is
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2m? 2m?

O] . 1 e — K = :L
5( }»—(M)D [ 5( j¢(k)dk ;e G2

It has two solutions: ¢ =0 and ¢ =3. The solution ¢ =3 follows from the Taylor expansion of the
Riemann zeta function operator

C( O j:§(0)+z§(")!(0)

2
2m n=l1 n

oy
(2’"2} ., (3.25)

as well as from ¢ (k)= (27)"35(k).
For 4 =1, the equation of motion is:

1 ixk k e __l )2
on) [ e {(—2m2+1j¢(k)dk— 21n(1 o), (3.26)

where ()= gives V,(p)=co.
In conclusion, for 4 =2, we have the following equation of motion:

2

(2;)1) [,e¢ (— 21;2 + 2}5 (k )k = —I¢de. (3.27)

0 2w

Since holds equality

_ I‘M dw= 27_1% ~£(2)

0 w

one has trivial solution ¢ =1 in (3.27).

Now, we want to analyze the following case: C, = & In this case, from the Lagrangian (3.11),

-
n

L :Z—j{—?{g(z;z —1) + 5(2’22 j}m 1@} . (3.28)

The corresponding potential is:

we obtain:

_m” 31-7¢

. (3.29
¢ 24i-g)? %

V(g)=

We note that 7 and 31 are prime natural numbers, i.e. 6n+1 with n=1 and 5, with 1 and 5 that are
Fibonacci’s numbers. Furthermore, the number 24 is related to the Ramanujan function that has 24
“modes” that correspond to the physical vibrations of a bosonic string. Thence, we obtain:
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= COS 7TxW' o g
0 coshmx V142
mZ

4| antilog
- tZW'

V)=t 31—7¢)¢2: e * ¢ (i)

g 24(1-¢ 10+11W2) | (104742
logl | ———— |+ || ———
4 4
The equation of motion is:

Hzfﬁ _1j+ g(zfizj}) B ¢[(?¢__1 T)ZH]' (3-30)

(3.29b)

Its weak field approximation is:

&[222 _1j+§(222j_2}¢=0, (3.31)

which implies condition on the mass spectrum

4(M1—1)+§(§422)=2- (3.32)

From (3.32) it follows one solution for M* >0 at M’ =2.79m’ and many tachyon solutions when

M? <-38m*.
% and d)=\/§2+1

We note that the number 2.79 is connected with ¢ = , 1.e. the “aurea” section

and the “aurea” ratio. Indeed, we have that:

2
(\/E + lj N i(%j =2,772542=2,78.

2 2?
Furthermore, we have also that:

(@)*7 +(@)™*"7 =2,618033989 +0,179314566 = 2,79734

4. Mathematical connections

We have the following new possible mathematical connections: between egs. (1.7), (1.17) and
(1.19b) with eq. (3.6)

1 SN
g“(s)—§+:+2j‘0 (l+t )ZSm(sarctant)

9

2m
e —
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e§(9j¢: : o P (—%ja(k)dhi, 4.1)

E ——1 ixk _k_2 ~ :L
” §(2j¢_ (27)” .[kg—1€2>2+ge g( 5 ]¢(k)dk -’ 4.2)

)~ 1
£'(0)= 2J-0 arctante2

1
=2 arctant dt—l——lo 2| arccos¢ - >
£1(0)=2f, g\/ ( ¢ O,2879j

E = ! ixk kz L
95(2%_(27:)”]1{3—;2»%@ 5( 2J¢(k)dk— T 43

We have further possible mathematical connections between egs. (1.56) and (1.64) with eq. (3.6):

E(%zjr(_l: i j
_Lm((ez’”;”z—ﬁl/)(g—1)+t(e;{?_1)+t\/5(ezlma_ - ;/;Jdte

K §[9j¢ ~ 7 [ (— %)5 (k etk = % . (44)

2 Cos[itlogaj 2 1 1 1 o
di == - - |dt =
\/EIO (62711_1 2721)(6 j

1+t2 2771/0:_1 27ZT

1
2 cos| —tlog B
Jp|7~1os27) 1 m_(l j (—1+itj [2 j
" =T W ER d
ﬂ{ WZ(D } 7 jo 2 4 1+
1
2 COS tlog(a)j
1 =1 —1+it (2
=t dt >
e (Zj ( 4 j 1+ 2

9;(2j¢_(2ﬁ)DIk§EZ>2+€e ;( 2J¢(k)dk 1_¢, (45)

With regard n, we have these possible mathematical connections between eqs (4.4) and (4.5) with

some Ramanujan’s equations ((2.69) and (2.70)). Indeed:
1
1\ 1+t zcos[zﬂogaj (11 1 o
El —t|C dt =— - -~ |dt=
(2 j ( 4 j 1+1¢° JEIO (ez’”—l 2mj(e2’”/“—1 2mj

- —2xiNa Ja 1 Ja
- .[0 ((62711/05 _lerﬂZ _1)+ t(eZﬂZ _1)+ t\/&(eux/a _1)_ e Jdt 2
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~27/\a Ja | I
: >
I( 27/ o IXezm‘ 1) t(€2m_1)+t\/5(ezm/a 1) szl‘
” ggj¢ - (271z)D Ls—mﬁe%(_ k?ja (k )k = % >
er 1 s | .
0 (l+x2)(1+r2x2)(1+r4x2),,, B 2(l+r+r3+76+r10+,,,)' .

We have also some possible mathematical connections with the egs. (1.19b), (1.34), (1.36) and eq.
(3.6). Indeed:

{'(O) = 2!: arctant 7 1_ " dt—1= —log\/Z(arccosgb- 0,2879)
953/4I"f2(_t)f ( S)d 2!’”2 . 1 do=
0 Jt cos )\/1_875573/2$in2¢
260”840/ 07 )1 17 (-q) 1 207 (5" o lo* ) wlo) 1
:-[0 -5g-3/2 ;.2 dw:\/gj’() -1/2 . 2 d¢9
\/l—g 57 sin" @ \/1—85 sin” @
O 1 . 2\~ ¢
> ===, - W - |p(k)dk=——, (4.8
([2j¢ Gn7 | (( 2}»( Mk=125. (48)
{'(0):2rarctant ! dt —1=—log_|[2| arccos¢ -
0 e —1 0,2879
an \/7
S oo ta=_ [ lli ) ,7
0 ? I+v—v? 7511,1 ¢

dp—>

1 ¢zi2 1 1 tanl(3—
J

- —ye™3 +ve)ll-ved —d = — —ve’
e S g S 3 e
21 2 16 4

Plp=1 wd K)oy, 0
9;(2j¢_(27z')[’jk51€2>2+ge ;( 2j¢(k)dk s (4.9)
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In conclusion, we have also some possible mathematical connections between the eqgs. (1.32) and

1.39) with the following equation z:Llo M + M , related to @
( & 3 e ¢ 4 4

and with the physical vibrations of the superstrings. Thence, we have:

Iﬂq_) 9 = log(u’v )+\/_10{1i8__—+§%j9

ST_8 1 \/(10+11\/§J+ (10+47\/5] @10)

3 142 4

[ =2 [ L, 1 dp=>
{ 1+2fx+1}\/1 . 32 —6143\/5 Sil’l2 ¢

ST_8 \/[10+11ﬁ]+ [10+47J§J @10

4

Acknowledgments

I would like to thank Prof. Branko Dragovich of Institute of Physics of Belgrade (Serbia) for his
availability, useful discussion and friendship

References

[1] Bruce C. Berndt and Atul Dixit — “Transformation formula involving the gamma and
Riemann zeta functions in Ramanujan’s lost notebook” — H98230-07-01-0088

[2] Nayandeep Deka Baruah and Bruce C. Berndt — “Eisenstein series and Ramanujan-type
Series for 1/t — Math. Reviews Class.N: 33C05, 33E05, 11F11, 11R29

[3] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. volovich — “On p-adic

31



Mathematical Physics” — arXiv:0904.4205v1 — Apr 2009

[4] V. S. Vladimirov — “On the equation of the p-adic open string for the scalar tachyon field”
arXiv:math-ph/0507018v1 — Jul 2005

[5] Branko Dragovich: “Zeta Strings” — arXiv:hep-th/0703008v1 — 1 Mar 2007.

32



