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Abstract 
 
Physics and astrophysics owe much to Mathematics: k nowledge of the 
universe today would be impossible without it. 
 
What is surprising every day? The simplicity of the  physical and 
mathematical models that Nature uses. 
 

 
 
 
It was discovered relatively recently that other sc ientific fields 
such as medicine, bioengineering, music, economics,  etc., can draw 
on mathematical models of number theory. 
 
The authors in this article show how, starting from  the simple 
continued fractions, one can reach the most advance d theories of 
physics, as the connections between the prime numbe rs and the 
strings adic, adelic and zeta-strings, furthermore the connections 

Also behind elementary 
mathematics topics as continued 
fractions are hidden problems 
with greater complexity.  
 
The design of Nature is as if 
it were conceived in "bottom 
up" from the small elementary 
brick, until completion of the 
"cathedrals of the universe." 
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between the mathematics of the fractals and the gol den number. 
 
In particular the areas examined in the following a re: "zeta non-
local scalar fields", "Lagrangians with Riemann zet a functions" 
and "Lagrangians for adelic strings. 
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1. Continued Fractions  
 
Continued fractions are of the type: 

1
1

1
1

2
1

3
4 ...

a
ao

b a
a

a
a

α = = +
+

+
+

+

 

 
Each number α∈Ρ can be expressed in this form, with generation 
finite or infinite depending on whether it is ratio nal or 
irrational. 
 
For example: 
α=116/43; with the Euclidean algorithm we obtain 
 

116 = 2 × 43 + 30 
 
Dividend for 43: 
 

116/43 = 2 + 30/43 = 2 + 1/43/30 
 
so: 

43 = 1 × 30 + 13 
 
Dividend for 30: 
 

43/30 = 1 + 13/30 = 1 + 1/30/13 
 
If we continue until the Euclidean algorithm gives no rest, we 
obtain that: 
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Euclid's algorithm allows to find the gcd (a, b) wi thout knowing 
either the divisors of a, nor those of b. 

Semi-prime numbers: factorization and periodic expa nsions  
Among the most curious and funny factorizations of a Semiprime N = 
p*q, there is the technique of "periodic expansion in base 10 of 
the fraction 1/N". 
 
For example: N = 1517. It takes three steps to the factorization 
of semi-prime. 
 
Step 1: find the length of the period T(1/N) of the fractio n 1/N 
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1/N=0. 000659195781147 000659195781147 

where for simplicity we have marked in bold red onl y the "regular 
part" of the fraction 1/N. If we count the digits o f this period 
(bold red) we obtain that T(1/N) = 15. 
 

Step 2: factorization of the length of the period of the fraction 
1/N 

We factor a number that is lower than that of depar ture, 
especially now we make the factorization of the len gth of the 
period T(1/N) = 15 = 3*5. Same result is obtained b y PARI/GP with 
factor (15)), where k1 = 3 and k2 = 5. 

Step 3: find the gcd of N with 10^k1-1 and N with 10^k2-1  
 

GCD(1517,10^3-1)=37=p 
GCD(1517,10^5-1)=41=q 

 
So N=1517=37*41. 
 
Let the counter-test method above. We know that N =  1517 = 37*41. 
 
Now try for p = 37 and q = 41 the smallest values k 1 and k2 such 
that are entire the quantity: 

 
(10^k1-1)/p=3 
(10^k2-1)/q=5 

 
What are K1 and K2? These are the length of the per iods of 
expansions 1/p and 1/q. 
 
As it is shown that all right? Meanwhile remember t hat lcm is the 
least common multiple (lcm) and LCM is the product of least common 
multiple in the game; also denote by T the period o f a fraction. 
 
If N = p*q is then: T(N) = LCM (T(p), T(q)) 
 
If we let g = GCD [T(p), T(q)] then T(N) = T(p)T(q) /g. 
 
So for some factorization T(N) = abg we obtain: 
 

T(p) = ag e T(q) = bg 
 
and in conclusion: 
 

p = GCD [ N, 10^ag - 1 ] 
q = GCD [ N, 10^bg - 1 ] 

 
In all this we have used the base B = 10 but in the  proof instead 
of 10 we could put a general B: 
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p = GCD [ N, B^ag - 1 ] 
q = GCD [ N, B^bg - 1 ] 

 
It’s nice! It is a method that is good and easily t o apply to a  
semi-prime number; while things get more complicate d if the number 
is not semi-prime or if the period is unable to loc ate. 
 
If N is semi-prime for example in PARI/GP we can kn ow it with the 
function bigomega (N): If N is semi-prime in fact i t returns 2. 
The bigomega gives the number of prime factors even  if repeated. 
 
There is always a period? No, not always. If N is p rime, 1/N is 
periodic, except in the case N = 2 and N = 5. If N is semi-prime N 
= p*q, then 1/N is not periodic if p = q or p and q  are prime 
factors equal to 2 or powers of 2 or equal to 5 or powers of 5 or 
products of powers of 2 and 5. Obviously, the resul t could also 
give an irrational or no period. 
 
Difficulties: 

• In PARI/GP there isn’t a default function (built-in) that 
identifies the period: we need to write an algorithm for T (1 / N); 

• Not always the fraction is periodic; 

• For N large, PARI/GP returns the value in exponential notation (example of exponential 
notation: 23 E-21) 

For point 1 to search for the period of a fraction,  as seen from 
above, is to research "the smallest value k such th at B^k = 1 mod 
N"; but an exhaustive search of this is not always faster than a 
"Trial Division". However, in PARI/GP there exist a n easy way to 
place anyway under an algorithm, for example, we kn ow that sqrt 
(21) = 4,1,1,2,1,8, where the underlined part is th e period T 
(sqrt (21)). 

If we use contfrac (sqrt (21)) we obtain the vector  

 [4,1,1,2,1,8,1,1,2,1,8,1,…] 

Now, if a1 is the first element of the vector and j  is the j-th 
element of the vector, then the period T (sqrt (21) ) = j-1 if aj = 
2*a1. Obviously the method is less applicable if a1  = 0, i.e. the 
fraction is not periodic but is finite or infinite (irrational 
number). 
 
The example above was a case of factorization trivi al. 
 
Let us examine, instead, N = 66167 T(66167) = 1092.  
 
Factorization of 1092 is  1092 = 2*2*3*7*13. Here w e must see how 
to combine the possible partitions of 1092. For exa mple, after a 
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few attempts we note that 1092 = 21*26*2 and we obt ain ag = 42  
and bg = 52. In this case T(p) and T(q) aren’t co-p rime numbers. 
 
From here: 

GCD[66167,10^(21*2)-1]  =  127 
GCD[66167,10^(26*2)-1]  =  521 

 
Naturally enough to calculate only one factor, the other is 
obtained by division, until you get a non-trivial f actor such that 
GCD [N, B^k-1]. 
 
This type of factorization can work with numbers le ss than N, and 
is especially useful for semi-prime numbers. But, a s seen, it is 
not said to be faster than a factorization of “tria l” type. 
 
What justifies that the method of continued fractio ns is adjusted 
to the factorization of a number RSA or semi-prime?  
 
We saw in [8] that a method for the factorization o f a RSA numbers 
is to use a quadratic equation: in fact it is the p roduct of the 
solutions of the equation that their sum (sum relat ed to Goldbach 
conjecture) allow you to the factorization of a RSA  number. 
 
Now a quadratic equation like: 
 

2x  + ax - b = 0 
we can rewrite as: 
 

x(x + a) = b

b
x =    

a+x

b
x a

x
= − +

 

 
In both cases we can generate a continued fraction:  
 

b
b

a+
b

a+
a+...

    
b

a
b
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b

-a+
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− +  
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2. Continued fractions and the Riemann zeta 
 
The Riemann hypothesis and the factorization are tw o problems 
certainly linked, but are not the same problem. It is also not at 
all certain that the evidence of RH leads to a fast  method for the 
factorization: how would use the non-trivial zeros of the Riemann 
zeta for the factorization? If is true, this really  should be 
known already as of now, regardless of proof of RH ... 
 
Previously with "factorizations semi-prime periodic  and periodic 
expansions”, perhaps, has come to you some associat ion of ideas: 
if the fractions are related to the factorization, they are 
therefore also linked to the Riemann’s zeta? 
 
Have you tried to prove it? It is not easy, unless you know that 
you can write the Riemann zeta in another way, thro ugh the Mellin 
transform : 
 

1
1

0

( ) ( )
1

ss
s s h x x dx

s
ζ −= −

− ∫   (2.1) 

where: 

1 1
( )h x

x x
 = −   

    (2.2) 

 
is called the "Gauss map", which represents the exp ansion in 
continued fractions of x: the symbol 'square bracke t below' 
denotes the largest value less than or equal to 1 /  x. 
 
In particolar is: 
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Obviously h(x) is the inverse, i.e. a "reverse shif t operator" on 
the expansion of continued fractions. 
 
The study of continued fractions is very important,  more than it 
seems: they are related to the Riemann zeta, to the  solution of 
the Pell, to fractals (What? Yet Another Simmetry? Then again the 
Riemann zeta, Beta and Gamma !!!), to the dynamic s ystems,  to the 
Farey fractions and to the "symmetrical modular gro ups" SL(2, Ζ).  
 
We want to exaggerate and say that from here you ca n even go to 
string theory? Well, certainly not wrong at all. 
 
In reality, the "transfer operator" of the Gauss ma p is known in 
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mathematics as "operator of Gauss-Kuzmin-Wirsing" G KW and has many 
interesting properties. 
 
Moreover, the Gauss map can be thought as a particu lar element of 
the group of permutations acting on an infinite dim ensional 
representation of real numbers. 
 
To be precise, the operator of Ruelle-Perron-Froben ius associated 
with the Gauss map is the operator of Gauss-Kuzmin- Wirsing (GKW) 
Λh.  
 
This latter is a linear map between spaces of funct ions in the 
unit interval closed (Banach spaces), i.e. if is as signed a vector 
space of functions, from the unit closed interval t o the set of 

real numbers R { }| :[0,1]f f= → �F , thence also Λh is a linear 

operator from F  to F  (see [1]). 
 
Λh is an operator of type: 
 

[ ]
( )h 2

1

1 1
( )

n

f x f
n xn x

∞

=

 =  + +
∑L    (2.3) 

 
This operator has not been fully resolved, meaning that there are 
no known closed forms that express all their eigenv alues and 
eigenfunctions. We know only an eigenvector: 
 

1
( )

1
f x

x
=

+
     (2.4) 

 
corresponding to its unit eigenvalue, solution prov ided by Gauss. 
 

 
 
 
Bearing in mind the operator Λh, we can rewrite (2.1) as follows: 
 

1
1

h

0

( )  [ ]
1

ss
s s dx x x

s
ζ −= −

− ∫ L    (2.5) 

Behind this fact there is a broad 
class of fractals and discontinuous 
functions that have eigenvalue 1.  
 
Treatment prototype of solutions 
associated with them can be through 
the derivative of the Minkowski's 
function "Question Mark"? (X), 
namely: 
 

[ ]h ?' ( ) ?'( )x x=L  
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The (2.5) together with a better understanding of g kw may be 
useful to investigate both the Riemann’s zeta and R H. 
 
We can in fact replace the Riemann zeta second of b inomial 
coefficients and arrive at the equivalent RH, Diric hlet L-
function, totiente series, Liouville series, etc (s ee [1], [2], 
[3], [4]). Because on the operator of before there are no simple 
solutions, a possible study is to use (2.3) and som e associated 
theorems (see [1]), furthermore we can find models for replace 
(2.2). 
 
The binomial coefficients mentioned previously for the Riemann 
zeta are implicated in various fractals forms and t he Berry’s 
conjecture suggests that "non-trivial zeros of the Riemann zeta 
corresponds to the spectrum of an unknown chaotic q uantization of 
a mechanical system chaotic." 
 
For example, (2.5) can be rewritten with a series o f Newton (see 
[4]): 
 

0

( ) ( 1) ( )
1 !

n n
n

n

bs
s s

s n
ζ

∞

=
= + −

− ∑       (2.6) 

 
Where (s)n = s(s−1)…(s−n+1) is the “symbol descenda nt of 
Pochhammer”. 
 
The (2.6) has a strong resemblance with a develop i n Taylor 
series. These general similarities are the basic id ea of a 
technique called "umbral calculus". In (2.6) b n has a similar role  
to the Stieltje’s constants in the Taylor expansion  and has 
several properties: 
 

1
2

1
(1 ) ( 1) ( )

2

n
k

n n
k

b n H kγ ζ−
=

= − − − + −∑   (2.7) 

for n>0 and γ is Euler-Mascheroni constant. Furthermore is: 
 

1

1n

n
m

H
m=

=∑       (2.8) 

 
that is the armonic number. 
 
The initial values of b n, derivable from (2.7), are: 
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Although the intermediate terms become very large, the result 
tends, instead, to become small: 

 
1/4 2( )n

nb n e π−= Ο  

 
From (2.7) one can try to generalize b n to complex values: 

 

2

1 1
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2 1
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s
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∞

=
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Form the study of generalization of Riemann, throug h the L-
function, we can to obtain a fractal structure of t he distribution 
of zeros, using the so-called "Rescaled range analy sis". 
 
Property of fractal self-similarity (see below) of the 
distribution of zeros of L-function is of great imp ortance and is 
characterized by a fractal dimension d = 1.9. A suc h great fractal 
dimension was found for many zeros of the Riemann z eta function 
and also for those of L-functions of another type. 

Fractions and Farey’s series  
Some properties of Farey fractions were discovered by the 
geologist Farey. 
 
We consider the series Fn with n = 3 obtained from all the set of 
the fractions less than or equal to 1, having for n umerator and 
denominator all the numbers from n = 0 to, for exam ple, n = 3, 
then delete the equivalent values and resort them f rom the lowest 
to the largest: 
 

3

0 1 1 2 1
, , , ,

1 3 2 3 1
F =  

 
Excluding the terms which give 0 or 1, one can obse rve interesting 
properties. 
 
Example for the series above we can consider only t he elements 
1/3, 1/2 and 2/3. The two outer elements said “conv ergent” if add 
up give the central element, said “means”. This is generally true 
for every N and for each trio of fractions excludin g external ones 
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that give 0 and 1. Moreover, when N is prime we obt ain N-1 
fractions or ϕ(N). 
 
The Farey’s series also produce a proof of an impor tant corollary 
of Euclid's algorithm: for two integers m and n wit h gcd (m, n) = 
1 and m ≤n, there exist positive integers a and b such that ma-nb = 
1. 
 
The test was given by Cauchy and a geometric interp retation was 
provided by Lester R. Ford. The Farey’s series is c onnected  to 
the “Stern-Brocot’s tree” least in terms of demonst ration. (see 
[5]). 
 
Finally, between two adjacent of Farey one can also  define an 
operation known as the Farey “sum”: 
 

p/q ⊕ r/s = (p+q)/(r+s) 
 
the resulting number is the “means” and is that of lower 
denominator, which is in the range (p/q, r/s). This  “means” is 
useful to describe the hierarchy of the responses o f 
synchronization in a periodically forced oscillator : the response 
characterized by “means”, (p+q)/(r+s), has the most  important 
region of stability among those who are in the rang e defined by 
the numbers p/q and r/s. 
 
From here it turns playing with the non-linear forc ed oscillators 
that “any dynamical system forced by two or more mu tually 
incommensurate frequencies, can’t produce periodic responses”. 
 

Golden Section, Fibonacci series and Farey’s series  
A special infinite continued fraction is: 
 

(0,1,1,1,1,1,1,1,1,…)           (2.10) 
 
 
The (2.10), in fact, corresponds to the number φ, the golden 
section: 
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We can consider also (2.10) as several pieces of co nvergent terms, 
for example: 
 
(0) = 0  
(0, 1) = 1  
(0, 1, 1) = 1/2  
(0, 1, 1, 1) = 2/3   
(0, 1, 1, 1, 1) = 3/5  
(0, 1, 1, 1, 1, 1) = 5/8  
(0, 1, 1, 1, 1, 1, 1) = 8/13 
 
The various pieces seen before give us two unexpect ed links  of the 
golden section, one with the Fibonacci’s series, th e other with 
the Farey’s series! 
 
We note in the pieces the repetition of the sequenc e 1, 2, 3, 5, 
8, 13, ... as in the Fibonacci’s numbers. Excluding  (0), to obtain 
the third element, we must add the first two, for t o obtain the 
next term we must add up the previous two etc. 
 
Again from the pieces we note that two successive p ieces 
convergent of the golden section satisfy the relati on (ps - qr) = 
1. For example with 5/8 and 8/13 we have that 5*13- 8*8 = 65-64 = 
1. 
 

3. The fractals 
It was Benoit Mandelbrot in 1975 to speak for the f irst time of 
fractal. Fractal  comes from the Latin fractus  meaning irregular or 
fragmented . 
 

 
 
Several classics fractals indeed has been described  by famous 
mathematicians of the past as Cantor, Hilbert, Pean o, von Koch, 
Sierpinski, but only with "The Fractal Geometry of Nature" (1982) 
that they have found an unified and geometric theor y, which 
highlighted the links with typical forms of nature (galaxy,  
coastlines, trees, mountains, butterflies, ...). 
 
Intuitively, a fractal is a figure in which a singl e reason is 
repeated on sliding scale. Zoom in on any part of t he figure, we 
can find a copy in the scale of the figure itself. 
Fractals, therefore, are also a symptom of recursiv e symmetry. 
 

Mandelbrot is considered the father of the 
theory of fractals. 
 
He has formalized the properties of these 
figures, considered, before him, only 
curiosity. 
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In general, a fractal is a set that has one or more  of following 
properties: 
 

• self-similarity : is the union of copies of itself at 
different scales; 

• fine structure : the detail of the image does not change at 
every enlargement; 

• irregularities : can not be described as a place of points 
that satisfy simple geometric or analytical conditi ons; the 
function is recursive and irregular locally and glo bally 

• fractal dimension : although it can be represented in a 
conventional space of two or three dimensions, its size is 
not necessarily an integer; it can be a fraction, b ut often 
also an irrational number. It is usually greater th an the 
topological dimension 

The properties above are also expressible mathemati cally.  
 

The fractal dimension is therefore the number that measures the 
degree of irregularity and interruption of an objec t, considered 
in any scale.  

Since Mandelbrot introduced the fractal geometry , is born a new 
description language of complex forms of nature: th ey require 
algorithms, simple recursive function, that iterate s many times 
provide a picture.  

In the 80's years with this new geometry have been found fractals 
in every area: from the nature to the medicine and music and has 
been developed a branch of fractal geometry which s tudies the so-
called fractal biomorphic  and one on fractals with condensing , 
using the transformations geometric of the plan, th e methods  IFS 
and the L-system.  
Obviously the fractals appear also in the study of dynamical 
systems.  
Fractals are used by physicists and engineers to bu ild models that 
describe the motion of fluid turbulence - but for the authors are 
important also for the extra dimensions  - and the phenomena of 
combustion. Furthermore, they have application in t he compression 
of images and for virtual movies. Finally, they are  useful for the 
reproduction of porous media and the study of hydro carbons and of 
Nature in general: geographical coastlines, river c ourses etc. 

In [7] it was shown that in the case of extra dimen sions 
compactified, if you make the analogy with a tube p ump in which is 
driven water by strong pressure, it is first projec ted strongly on 
the side panels and then continues in the longitudi nal direction. 
Now, at a distance rather small, the lines of stren gth of gravity 
behave at the same way: a short distance or small d imension one 
has the propagation radially in all directions, and  after extend 
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into the larger dimension in a linear mode. From th is phenomenon, 
using a “umbral” technique that clone the turbulent  flow of the 
fluid, we can observe a sort of " fractal gravity ”. 

 

The differential form of Gauss' law for gravity sta tes: 

 

where 

denotes divergence,  
G is the gravitational constant of the universe,  
ρ is the mass density at each point.  

The two forms of Gauss' law for gravity are mathema tically 
equivalent. The divergence theorem states: 

 

where 

V is a closed region bounded by a simple closed orie nted 
surface ∂V,  
g is a continuously differentiable vector field defi ned on a 
neighborhood of V,  
dV is an infinitesimal piece of the volume V.   

Given also that 

 

we can apply the divergence theorem to the integral  form of Gauss' 
law for gravity, which becomes: 

 

which can be rewritten: 

 

This has to hold simultaneously for every possible volume V; the 
only way this can happen is if the integrands are e qual. Hence we 
arrive at 
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which is the differential form of Gauss' law for gr avity. 

The differential form of Gauss' law for gravity can  also be 
derived from Newton's law of universal gravitation.  Using the 
expression from Newton's law, we get the total fiel d at r  by using 
an integral to add up the field at r  due to the mass at each other 
point in space with respect to an s  coordinate system, to give 

 

If we take the divergence of both sides of this equ ation with 
respect to r , and use the known theorem 

 

where δ( s ) is the Dirac delta function, the result is 

 

Using the "sifting property" of the Dirac delta fun ction, we 
arrive at 

 

which is the differential form of Gauss' law for gr avity, as 
desired. 

Since the gravitational field has zero curl (equiva lently, gravity 
is a conservative force), it can be written as the gradient of a 
scalar potential, called the gravitational potentia l: 

,  

Then the differential form of Gauss' law for gravit y becomes 
Poisson's equation: 

,  

This provides an alternate means of calculating the  gravitational 
potential and gravitational field. Although computi ng g via 
Poisson's equation is mathematically equivalent to computing g 
directly from Gauss's law, one or the other approac h may be an 
easier computation in a given situation. 
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In radially symmetric systems, the gravitational po tential is a 

function of only one variable (namely, ), and Poisson's 
equation becomes: 

 

while the gravitational field is: 

 
 
It is possible that the Poisson’s equation give ris e to the 
“fractals” in the specific case of the extra compac tified 
dimensions? It all depends from the boundary condit ions or 
from the fact that is possible to simplify  the equ ation  

,  in a Laplace’s equation? Yes, it is possible. 
Indeed, we have said above that at a distance rathe r small, 
the lines of strength of gravity behave at the same  way: a 
short distance or small dimension one has the propa gation 
radially in all directions, and after extend into t he larger 
dimension in a linear mode. 

 

 

 
 
 
The famous incision of Escher “ Limite of the circle IV”  is one 
"map" of a space to curvature negative  that shows exactly as a 
bidimensional slice of an AdS space it would appear . In it, the 
figures are alternated without end, falling through  in an edge 
infinite fractal ( also here is present the Aurea ratio Φ ). 
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We now add the time and we put all together in a fi gure that 
represents an anti de Sitter space. We put the time  along the 
vertical axis. Every horizontal section represents the ordinary 
space to a particular instant. We can think then th e AdS as an 
endless sequence of thin slices of space that,  sta ck one on the 
other, form a continuous space-time of cylindrical form. 
Now we imagine to zoom on a region near to the edge  of the figure 
and to do an enlargement of it such that can to app ear the edge 
almost rectilinear. If we simplify the image replac ing the dark 
figures with squares, the image becomes a kind of n etwork made as 
soon as more and more of small squares it draws nea r us to the 
edge endless fractal. We can imagine the AdS as an infinite "wall" 
of square bricks: going down along the wall, to eve ry new layer 
the width of the bricks doubles. 
The anti de Sitter space is as one "tin of soup" Th e horizontal 
sections of the tin represent the space, while the vertical axis 
represents the time. The label to the outside of th e tin is the 
edge, while the inside represents the real space-ti me. The pure 
AdS space is an empty tin, that can be made more in teresting when 
is full of "soup", thence of matter and energy. Edw ard Witten has 
explained that, accumulating enough matter and ener gy in the tin, 
it is possible to create a black hole. 
The existence of a black hole in the "soup" must ha ve an 
equivalent on the hologram on the board, but what? In his "theory 
of edge" Witten sustains that the black hole in the  "soup" it is 
equivalent to a "warm fluid" of elementary particle s, essentially 
gluons. Now, the field theory is a particular case of quantum 
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mechanics, and in quantum mechanics the information  never comes 
destroyed . The strings theorists immediately understood that  
Maldacena and Witten had shown without shade of dou bt that is not 
possible to make to disappear information behind th e horizon of a 
black hole . 
In the Maldacena paper: “The Large N Limit of Super conformal field 
theories and supergravity”, we consider a near extr emal black D3 
brane solution in the following decoupling limit: 
 

                    0'→α ,    =≡
'α

r
U fixed.  (3.1) 

 
We keep the energy density on the brane worldvolume  theory ( )µ  
fixed. We find the following metric: 
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ds i ππ

π
α ,  (3.2)  

 
where 

                               µπ 24
7

4
0 3

2
gU = .  (3.3) 

 

We note that the pure number 8029195849,8121217,4156
3

2
44

47

≅==π
 is 

related to the Aura ratio by the following relation : 
 

( ) ( ) ( ) ( )[ ] ( ) 8
3

2
05572809,023606798,061803399,009016994,11

3

27/427/217/77/35 =⋅+++=⋅Φ+Φ+Φ+Φ −−−

 
Furthermore, we note also that 8 is a Fibonacci’s n umber. 
We could now ask what the low energy effective acti on for the 
light ( )1U  fields is. For large N  the action of a D3 brane in 

5
5 SAdS ×  is 1>>gN . More concretely, the bosonic part of the action 

becomes the Born-Infeld action on the AdS backgroun d: 
 

  ( )
( )∫ 



 −+∂∂+∂∂+−−= − 12

2

1 214
3 αββαβααβ πθθη

π
FhhgUUUhDetxhd

g
S ji

ij   (3.4) 

                          
4

4

U

gN
h

π= ,  (3.5) 

 
with ,3,2,1,0, =βα  5,...,1, =ji ; and ijg  is the metric of the unit five-

sphere. As any low energy action (3.4) is valid whe n the energies 
are low compared to the mass of the massive states that we are 
integrating out. In this case the mass of the massi ve states is 
proportional to U . The low energy condition translates into 

UUU <<∂ /  and Ui <<∂θ , etc… So the nonlinear terms in the action 
(3.4) will be important only when gN  is large. 
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Also here we can note that there exists the mathema tical 
connection with the Aurea section. Indeed, we remem ber that π , 
that is present in the eqs. (3.4) and (3.5), is rel ated to the 

Aurea section 2/15 −=φ  by the following simple relation: 
 
                                                           πφ 2879,0arccos =                 (3.6) 
 
 
 

 

4. p-adic, adelic and zeta strings [9] [10] [11] [12] [13]  

Like in the ordinary string theory, the starting po int of p-adic 
strings is a construction of the corresponding scat tering 
amplitudes. Recall that the ordinary crossing symme tric Veneziano 
amplitude can be presented in the following forms: 
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,    (4.1 – 4.4) 

 

where 1=h , π/1=T , and ( )
2

1
s

sa −−=−= α , ( )tb α−= , ( )uc α−=  with the 

condition 8−=++ uts , i.e. 1=++ cba . 
The p-adic generalization of the above expression  
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is : 

                                                ( ) ∫
−− −=

pQ

b

p

a

ppp dxxxgbaA
112 1, ,    (4.5) 

 
where 

p
...  denotes p-adic absolute value. In this case only s tring 

world-sheet parameter x  is treated as p-adic variable, and all 
other quantities have their usual (real) valuation.  
Now, we remember that the Gauss integrals satisfy a delic product 
formula 
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what follows from 
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These Gauss integrals apply in evaluation of the Fe ynman path 
integrals 
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for kernels ( )',';'','' txtxKv  of the evolution operator in adelic quantum 

mechanics for quadratic Lagrangians. In the case of  Lagrangian  
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for the de Sitter cosmological model one obtains 
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Also here we have the number 24 that correspond to the Ramanujan 
function that has 24 “modes”, i.e., the physical vi brations of a 
bosonic string. Hence, we obtain the following math ematical 
connection : 
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The adelic wave function for the simplest ground st ate has the 
form 
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where ( ) 1=Ω
p

x  if 1≤
p

x  and ( ) 0=Ω
p

x  if 1>
p

x . Since this wave 

function is non-zero only in integer points it can be interpreted 
as discreteness of the space due to p-adic effects in adelic 
approach. The Gel’fand-Graev-Tate gamma and beta fu nctions are : 
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where Ccba ∈,,  with condition 1=++ cba  and ( )aζ  is the Riemann zeta 
function. With a regularization of the product of p -adic gamma 
functions one has adelic products : 
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where 1=++ cba . We note that ( )baB ,∞  and ( )baBp ,  are the crossing 

symmetric standard and p-adic Veneziano amplitudes for scattering 
of two open tachyon strings. Introducing real, p-ad ic and adelic 
zeta functions as 
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one obtains 
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where ( )aAζ  can be called adelic zeta function. We have also t hat 
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Let us note that ( )2exp xπ−  and ( )

p
xΩ  are analogous functions in real 

and p-adic cases. Adelic harmonic oscillator has co nnection with 
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the Riemann zeta function. The simplest vacuum stat e of the adelic 
harmonic oscillator is the following Schwartz-Bruha t function : 
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whose the Fourier transform 
 

                                       ( ) ( ) ( ) ( )∫ ∏
∈

− Ω== ∞

Pp
pp

k
AAA kexkxk

2
4

1

2 πψχψ     (4.21) 

 
has the same form as ( )xAψ . The Mellin transform of ( )xAψ  is 
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and the same for ( )kAψ . Then according to the Tate formula one 
obtains (4.19). 
The exact tree-level Lagrangian for effective scala r field ϕ  which 
describes open p-adic string tachyon is 
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where p  is any prime number, 22 ∇+−∂= t�  is the D-dimensional 

d’Alambertian and we adopt metric with signature ( )++− ... . Now, we 
want to show a model which incorporates the p-adic string 
Lagrangians in a restricted adelic way. Let us take  the following 
Lagrangian  
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Recall that the Riemann zeta function is defined as  
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Employing usual expansion for the logarithmic funct ion and 
definition (4.25) we can rewrite (4.24) in the form  
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where 1<φ . 





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2
�ζ  acts as pseudodifferential operator in the 

following way : 
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where   ( ) ( ) ( )dxxek ikx φφ ∫
−=~

   is the Fourier transform of ( )xφ . 

Dynamics of this field φ  is encoded in the (pseudo)differential 
form of the Riemann zeta function. When the d’Alambertian is an 
argument of the Riemann zeta function we shall call  such string a 
“zeta string”. Consequently, the above φ  is an open scalar zeta 

string. The equation of motion for the zeta string φ  is 
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which has an evident solution 0=φ . 
For the case of time dependent spatially homogeneou s solutions, we 
have the following equation of motion 
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With regard  the open and closed scalar zeta strings, the equations of motion are 
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and one can easily see trivial solution 0== θφ . 
 
The exact tree-level Lagrangian of effective scalar  field ϕ , which 
describes open p-adic string tachyon, is: 
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where p  is any prime number, 22 ∇+−∂= t�  is the D-dimensional 

d’Alambertian and we adopt metric with signature ( )++− ... , as above. 
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Now, we want to introduce a model which incorporate s all the above 
string Lagrangians (4.32) with p  replaced by Nn ∈ . Thence, we 

take the sum of all Lagrangians nL  in the form 
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whose explicit realization depends on particular ch oice of 
coefficients nC , masses nm  and coupling constants ng . 

Now, we consider the following case 
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where h  is a real number. The corresponding Lagrangian rea ds 
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and it depends on parameter h . According to the Euler product 
formula one can write 
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Recall that standard definition of the Riemann zeta  function is 
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which has analytic continuation to the entire compl ex s  plane, 
excluding the point 1=s , where it has a simple pole with residue 
1. Employing definition (4.37) we can rewrite (4.35 ) in the form 
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where  ( ) ( ) ( )dxxek ikx φφ ∫
−=~

   is the Fourier transform of ( )xφ . 

We consider Lagrangian (4.38) with analytic continu ations of the 

zeta function and the power series ∑ +
−

+
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1
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n φ , i.e. 
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where AC  denotes analytic continuation. 
Potential of the above zeta scalar field (4.40) is equal to hL−  at 

0=� , i.e. 
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where 1≠h  since ( ) ∞=1ζ . The term with ζ -function vanishes at 

,...6,4,2 −−−=h . The equation of motion in differential and integr al 
form is 
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respectively . 
 
Now, we consider five values of h , which seem to be the most 
interesting, regarding the Lagrangian (4.40): ,0=h  ,1±=h  and 

2±=h .  For 2−=h , the corresponding equation of motion now read : 
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This equation has two trivial solutions: ( ) 0=xφ  and ( ) 1−=xφ . 

Solution ( ) 1−=xφ  can be also shown taking  ( ) ( )( )Dkk πδφ 2
~ −=  and  

( ) 02 =−ζ  in (4.44). 

For 1−=h , the corresponding equation of motion is : 
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where ( )
12
1

1 −=−ζ .  
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The equation of motion (4.45) has a constant trivia l solution only 
for ( ) 0=xφ . 

For 0=h , the equation of motion is  
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It has two solutions: 0=φ  and 3=φ . The solution 3=φ  follows from 
the Taylor expansion of the Riemann zeta function o perator 
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as well as from ( ) ( ) ( )kk D δπφ 32
~ = . 

For 1=h , the equation of motion is : 
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where ( ) ∞=1ζ   gives   ( ) ∞=φ1V .  

In conclusion, for 2=h , we have the following equation of motion : 
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Since holds equality 
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one has trivial solution 1=φ  in (4.49). 

Now, we want to analyze the following case: 2

2 1
n

n
Cn

−= . In this case, 

from the Lagrangian (4.33), we obtain : 
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The corresponding potential is : 
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We  note that 7 and 31 are prime natural numbers, i .e. 16 ±n  with 
n =1 and 5, with 1 and 5 that are Fibonacci’s numbers . Furthermore, 
the number 24 is related to the Ramanujan function that has 24 
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“modes” that correspond to the physical vibrations of a bosonic 
string. Thence, we obtain : 
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The equation of motion is : 
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Its weak field approximation is : 
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which implies condition on the mass spectrum 
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From (4.54) it follows one solution for 02 >M  at 22 79.2 mM ≈  and 

many tachyon solutions when 22 38mM −< . 

We note that the number 2.79 is connected with 
2

15 −=φ  and 

2
15 +=Φ , i.e. the “aurea” section and the “aurea” ratio. I ndeed, 

we have that : 
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Furthermore, we have also that : 
 

                                ( ) ( ) 79734,2179314566,0618033989,27/257/14 =+=Φ+Φ −  
 
With regard the extension by ordinary Lagrangian, w e have the 
Lagrangian, potential, equation of motion and mass spectrum 

condition that, when 2

2 1
n

n
Cn

−= , are : 
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In addition to many tachyon solutions, equation (4. 58) has two 

solutions with positive mass: 22 67.2 mM ≈  and 22 66.4 mM ≈ . 
We note also here, that the numbers 2.67 and 4.66 a re related to 
the “aureo” numbers. Indeed, we have that : 
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Furthermore, we have also that : 
 

                              ( ) ( ) 6777278,2059693843,0618033989,27/417/14 =+=Φ+Φ − ; 

                              ( ) ( ) 6646738,41271565635,0537517342,47/307/22 =+=Φ+Φ − . 
 
 

Furthermore, with regard the value 22 38mM −< ,we have the following 
connection with the aureo number: 
 

( ) ( ) ( ) ( )[ ] ( ) 36305572809,023606798,061803399,009016994,1137/427/217/77/35 =⋅+++=⋅Φ+Φ+Φ+Φ −−−

 
and 36 is < of 38.  
 

Now, we describe the case of  ( ) 2

1
n

n
nCn

−= µ .  Here ( )nµ  is the Mobius 

function, which is defined for all positive integer s and has 
values 1, 0, – 1 depending on factorization of n  into prime 
numbers p . It is defined as follows : 
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The corresponding Lagrangian is 
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Recall that the inverse Riemann zeta function can b e defined by 
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Now (4.60) can be rewritten as 
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potential, equation of motion and mass spectrum for mula, 
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where usual relativistic kinematic relation  222
0

2 Mkkk −=+−=
r

  is 

used. 
 
Now, we take the pure numbers concerning the eqs. ( 4.54) and 
(4.58). They are:  2.79, 2.67 and 4.66. We note tha t all the 

numbers are related with 
2

15 +=Φ , thence with the aurea ratio, by 

the following expressions : 
 

                ( ) 7/1579,2 Φ≅ ;      ( ) ( ) 7/217/1367,2 −Φ+Φ≅ ;      ( ) ( ) 7/307/2266,4 −Φ+Φ≅ .    (4.66)  
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                           5. Mathematical connections. 
 
Now, we describe some possible mathematical connect ions between 
some equations concerning the Section 2  and some equations 
regarding the Section 4 . 
We note that from the eqs. (2.1) and (2.2), we have  that: 
 

                   ( ) ∫
−






−−
−

=
1

0

111

1
dxx

xx
s

s

s
s sζ ;    (5.1) 

 
That is related with the eqs. (4.28), (4.43) and (4 .49) as 
follows: 
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Now, we note that the eq. (2.5) can be rewritten, f or the eqs. 
(2.6) and (2.7), as follows 
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Thence, we have the following mathematical connecti ons with the 
eqs. (4.28), (4.43), (4.49) and (4.62): 
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Furthermore, also the eq. (3.4) can be related with  the eq. (5.5) 
and we obtain the following interesting mathematica l connection: 
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Also here we can note that there exists the mathema tical 
connection with the Aurea section. Indeed, we remem ber that π , 
that is present in the eqs. (5.2) - (5.4) and (5.6)  – (5.8), is 

related to the Aurea section 2/15 −=φ  by the following simple but 
fundamental relation: 
 
 
 

                                                                       πφ 2879,0arccos =          
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For further details, click on the following link: 
 
http://150.146.3.132/1163/01/TCN6.pdf  
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