On the study of a Ramanujan equation. New possible mathematical connections with the Cosmological Constant and some topics of String Theory, in particular some "shift orientifolds" equations.

Michele Nardelli¹, Antonio Nardelli²

Abstract

In this paper, we analyze a Ramanujan equation. We obtain new possible mathematical connections with the Cosmological Constant and some topics of String Theory, in particular some "shift orientifolds" equations.

¹ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" -Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

² A. Nardelli studies at the Università degli Studi di Napoli Federico II - Dipartimento di Studi Umanistici – **Sezione Filosofia - scholar of Theoretical Philosophy**

From:

RAMANUJAN - TWELVE LECTURES ON SUBJECTS SUGGESTED BY HIS LIFE AND WORK - *BY G. H. HARDY* - CAMBRIDGE AT THE UNIVERSITY PRESS - 1940

Now, we have that:

 $\int_0^\infty \frac{dx}{(1+x^2)(1+r^2x^2)(1+r^4x^2)\dots} = \frac{\pi}{2(1+r+r^3+r^6+r^{10}+\dots)}.$

From the left-hand side, we obtain:

integrate $1/(((1+x^2)(1+r^2x^2)(1+r^4x^2)))dx$

Indefinite integral

$$\int \frac{1}{(1+x^2)(1+r^2x^2)(1+r^4x^2)} \, dx = \\ \frac{-(r^3+r)\tan^{-1}(rx) + r^4\tan^{-1}(r^2x) + \tan^{-1}(x)}{(r^2-1)^2(r^2+1)} + \text{constant}$$

 $\tan^{-1}(x)$ is the inverse tangent function

(figure that can be related to a D-brane/Instanton)

Contour plot

Alternate forms of the integral

$$\frac{-(r^2+1)r\tan^{-1}(rx)+r^4\tan^{-1}(r^2x)+\tan^{-1}(x)}{(r^2-1)^2(r^2+1)}+\text{constant}$$

$$\frac{-r^3 \tan^{-1}(r x) + r^4 \tan^{-1}(r^2 x) - r \tan^{-1}(r x) + \tan^{-1}(x)}{(r-1)^2 (r+1)^2 (r^2+1)} + \text{constant}$$

$$\frac{-r^{3} \tan^{-1}(r x) + r^{4} \tan^{-1}(r^{2} x) - r \tan^{-1}(r x) + \tan^{-1}(x)}{(r-1)^{2} (r-i) (r+i) (r+1)^{2}} + \text{constant}$$

Expanded form of the integral

 $-\frac{r\tan^{-1}(rx)}{\left(r^2-1\right)^2\left(r^2+1\right)}+\frac{\tan^{-1}(x)}{\left(r^2-1\right)^2\left(r^2+1\right)}+\frac{r^4\tan^{-1}\left(r^2x\right)}{\left(r^2-1\right)^2\left(r^2+1\right)}-\frac{r^3\tan^{-1}(rx)}{\left(r^2-1\right)^2\left(r^2+1\right)}+\frac{r^4\tan^{-1}(rx)}{\left(r^2-1\right)^2\left(r^2+1\right)^2\left(r^2+1\right)}+\frac{r^4\tan^{-1}(rx)}{\left(r^2-1\right)^2\left(r^2+1\right)^2}+\frac{r^$

Series expansion of the integral at x=0

$$x + \frac{1}{3} \left(-r^4 - r^2 - 1 \right) x^3 + \frac{1}{5} \left(r^8 + r^6 + 2 r^4 + r^2 + 1 \right) x^5 + O(x^6)$$
(Taylor series)

Series expansion of the integral at $x=\infty$

$$-\frac{\pi\left(\left(r^{2}\right)^{3/2}+\sqrt{r^{2}}-\sqrt{r^{4}}r^{2}-1\right)}{2\left(\left(r^{2}-1\right)^{2}\left(r^{2}+1\right)\right)}-\frac{1}{5\,r^{6}\,x^{5}}+O\left(\left(\frac{1}{x}\right)^{6}\right)$$

(Laurent series)

From the right-hand side, we obtain:

Pi/(2(1+r+r^3+r^6+r^10))

Input

$$\frac{\pi}{2\left(1+r+r^{3}+r^{6}+r^{10}\right)}$$

Plots

(figures that can be related to the open strings)

Alternate forms

$$\frac{\pi}{2r^{10}+2r^6+2r^3+2r+2}$$

$$\frac{\pi}{r\left(\left(\left(2\,r^{4}+2\right)r^{3}+2\right)r^{2}+2\right)+2}$$

Roots

(no roots exist)

Series expansion at r=0

$$\frac{\pi}{2} - \frac{\pi r}{2} + \frac{\pi r^2}{2} - \pi r^3 + \frac{3\pi r^4}{2} + O(r^5)$$
(Taylor series)

Series expansion at $r=\infty$

$$\frac{\pi}{2r^{10}} + O\left(\left(\frac{1}{r}\right)^{14}\right)$$
(Laurent series)

Derivative

$$\frac{d}{dr} \left(\frac{\pi}{2\left(1 + r + r^3 + r^6 + r^{10} \right)} \right) = -\frac{\pi \left(10 \, r^9 + 6 \, r^5 + 3 \, r^2 + 1 \right)}{2 \left(r^{10} + r^6 + r^3 + r + 1 \right)^2}$$

Indefinite integral

$$\int \frac{\pi}{2(1+r+r^3+r^6+r^{10})} \, dr = \frac{1}{2} \pi \sum_{\{\omega:\,\omega^{10}+\omega^6+\omega^3+\omega+1=0\}} \frac{\log(r-\omega)}{10\,\omega^9+6\,\omega^5+3\,\omega^2+1} + \text{constant}$$

(assuming a complex-valued logarithm)

log(x) is the natural logarithm

Global maximum

$$\max\left\{\frac{\pi}{2\left(1+r+r^{3}+r^{6}+r^{10}\right)}\right\} \approx 29.094 \text{ at } r \approx -0.78128$$

Limit

$$\lim_{r \to \pm \infty} \frac{\pi}{2\left(1 + r + r^3 + r^6 + r^{10}\right)} = 0$$

Definite integral

$$\int_0^\infty \frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} \, dr \approx 1.00917144104\dots$$

Alternative representations

$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = \frac{180^{\circ}}{2\left(1+r+r^3+r^6+r^{10}\right)}$$

$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = -\frac{i\log(-1)}{2\left(1+r+r^3+r^6+r^{10}\right)}$$

$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = \frac{\cos^{-1}(-1)}{2\left(1+r+r^3+r^6+r^{10}\right)}$$

Series representations

$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = \frac{2\sum_{k=0}^{\infty}\frac{(-1)^k}{1+2k}}{1+r+r^3+r^6+r^{10}}$$

$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = \sum_{k=0}^{\infty} -\frac{2\left(-1\right)^k 1195^{-1-2k} \left(5^{1+2k}-4\times 239^{1+2k}\right)}{\left(1+2k\right) \left(1+r+r^3+r^6+r^{10}\right)}$$

$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = \frac{\sum_{k=0}^{\infty} \left(-\frac{1}{4}\right)^k \left(\frac{1}{1+2k} + \frac{2}{1+4k} + \frac{1}{3+4k}\right)}{2\left(1+r+r^3+r^6+r^{10}\right)}$$

Integral representations

$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = \frac{2}{1+r+r^3+r^6+r^{10}} \int_0^1 \sqrt{1-t^2} dt$$
$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = \frac{1}{1+r+r^3+r^6+r^{10}} \int_0^1 \frac{1}{\sqrt{1-t^2}} dt$$

$$\frac{\pi}{2\left(1+r+r^3+r^6+r^{10}\right)} = \frac{1}{1+r+r^3+r^6+r^{10}} \int_0^\infty \frac{1}{1+t^2} dt$$

Now, we have that

$$\int \frac{1}{\left(1+x^2\right)\left(1+r^2x^2\right)\left(1+r^4x^2\right)} \, dx = \\ \frac{-\left(r^3+r\right)\tan^{-1}(r\,x)+r^4\tan^{-1}(r^2\,x)+\tan^{-1}(x)}{\left(r^2-1\right)^2\left(r^2+1\right)} + \text{constant}$$

for x = 2 and r = 3, from the solution of the above integral, we obtain:

 $(\tan^{-1})(2) - (3 + 3^{3}) \tan^{-1}(3^{2}) + 3^{4} \tan^{-1}(3^{2})/((-1 + 3^{2})^{2} (1 + 3^{2}))$

Input

$$\frac{\tan^{-1}(2) - \left(3 + 3^3\right)\tan^{-1}(3 \times 2) + 3^4\tan^{-1}\left(3^2 \times 2\right)}{\left(-1 + 3^2\right)^2\left(1 + 3^2\right)}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result

```
\frac{1}{640} \left( \tan^{-1}(2) - 30 \tan^{-1}(6) + 81 \tan^{-1}(18) \right) (result in radians)
```

Decimal approximation

0.1276200668466711868000863600432077346272271815525109926433974803

···· (result in radians)

0.1276200668...

The study of this function provides the following representations:

Alternate forms

$$\frac{1}{640} \left(\tan^{-1}(2) - 30 \tan^{-1}(6) \right) + \frac{81}{640} \tan^{-1}(18)$$

$$\frac{1}{640} \left(\tan^{-1}(2) - 3 \left(10 \tan^{-1}(6) - 27 \tan^{-1}(18) \right) \right)$$

$$\frac{1}{640} \left(26 \pi - \frac{1}{2} \tan^{-1} (58913 379 462 895 774 772 724 778 827 649 539 057 431 546 673 162 915 \times 355 987 398 994 354 025 134 238 231 336 405 495 185 901 438 621 121 \times 794 846 875 698 845 540 849 255 425 358 857 774 354 320 742 912 167 \times 917 961 549 707 013 756 193 248 205 981 116 425 025 969 777 616 718 \times 121 756 713 935 372 393 195 989 472 859 145 459 846 656 / 6 450 833 704 265 459 357 234 746 227 776 117 562 553 648 094 090 972 \times 229 491 454 540 812 942 550 538 191 463 781 072 269 304 937 466 \times 348 926 084 764 084 181 194 283 974 771 330 467 686 477 401 126 \times 899 086 757 199 598 238 257 500 975 970 739 854 839 282 838 289 \times 412 657 398 632 235 074 009 778 411 613 718 173 790 378 300 097 \times 744 233) \right)$$

Expanded form

$$\frac{1}{640}\tan^{-1}(2) - \frac{3}{64}\tan^{-1}(6) + \frac{81}{640}\tan^{-1}(18)$$

Alternative representations

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2\times 2)}{(-1+3^2)^2(1+3^2)} = \frac{\sec^{-1}(2\mid 0) - 30\sec^{-1}(6\mid 0) + \sec^{-1}(18\mid 0) 3^4}{10\times 8^2}$$

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2\times 2)}{(-1+3^2)^2(1+3^2)} = \frac{\cot^{-1}(\frac{1}{2}) - 30\cot^{-1}(\frac{1}{6}) + \cot^{-1}(\frac{1}{18})3^4}{10\times 8^2}$$

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2\times 2)}{(-1+3^2)^2(1+3^2)} = \frac{\tan^{-1}(1,2) - 30\tan^{-1}(1,6) + \tan^{-1}(1,18)3^4}{10\times 8^2}$$

Series representations

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2\times 2)}{(-1+3^2)^2(1+3^2)} = \frac{(-1+3^2)^2(1+3^2)}{(1+3^2)^2(1+3^2)} = \frac{13\pi}{320} + \sum_{k=0}^{\infty} -\frac{(-1)^k 4^{-4-k} \times 9^{-2k} (9-10\times 9^k + 81^k)}{5(1+2k)}$$

$$\begin{aligned} \frac{\tan^{-1}(2) - \left(3 + 3^3\right) \tan^{-1}(3 \times 2) + 3^4 \tan^{-1}(3^2 \times 2)}{\left(-1 + 3^2\right)^2 \left(1 + 3^2\right)} &= \\ \sum_{k=0}^{\infty} \left(\frac{\left(-1\right)^k 2^{-5+4k} \times 5^{-1-k} \left(1 + \sqrt{\frac{21}{5}}\right)^{-1-2k} F_{1+2k}}{1 + 2k} + \frac{\left(-1\right)^{1+k} 3^{2+2k} \times 4^{-2+2k} \times 5^{-k} \left(1 + \sqrt{\frac{149}{5}}\right)^{-1-2k} F_{1+2k}}{1 + 2k} + \frac{\left(-1\right)^k 2^{-5+4k} \times 5^{-1-k} \times 9^{3+2k} \left(1 + \sqrt{\frac{1301}{5}}\right)^{-1-2k} F_{1+2k}}{1 + 2k} + \frac{\left(-1\right)^k 2^{-5+4k} \times 5^{-1-k} \times 9^{3+2k} \left(1 + \sqrt{\frac{1301}{5}}\right)^{-1-2k} F_{1+2k}}{1 + 2k} + \frac{1 + 2k}{1 + 2k} + \frac{\left(-1\right)^k 2^{-5+4k} \times 5^{-1-k} \times 9^{3+2k} \left(1 + \sqrt{\frac{1301}{5}}\right)^{-1-2k} F_{1+2k}}{1 + 2k} + \frac{1 + 2k}{1 + 2k}$$

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2\times 2)}{(-1+3^2)^2(1+3^2)} = \frac{13}{160}\tan^{-1}(z_0) + \sum_{k=1}^{\infty}\frac{1}{1280\,k}i\left((-i-z_0)^k - (i-z_0)^k\right) \\ \left((2-z_0)^k - 30\left(6-z_0\right)^k + 81\left(18-z_0\right)^k\right)\left(-i-z_0\right)^{-k}(i-z_0)^{-k} \\ \text{for } (i\,z_0 \notin \mathbb{R} \text{ or } ((\text{not } 1 \le i\,z_0 < \infty) \text{ and } (\text{not } -\infty < i\,z_0 \le -1)))$$

 ${\it F}_n$ is the $n^{\rm th}$ Fibonacci number

Integral representations

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2\times 2)}{\left(-1+3^2\right)^2\left(1+3^2\right)} = \int_0^1 \frac{2}{1+364\,t^2+13\,104\,t^4+46\,656\,t^6}\,dt$$

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2\times 2)}{(-1+3^2)^2(1+3^2)} = \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \frac{i\,5^{-1-2\,s}\times481^{-s}\left(18\times5^{1+2\,s}\times13^s - 729\times37^s - 2405^s\right)\Gamma\left(\frac{1}{2} - s\right)\Gamma(1-s)\,\Gamma(s)^2}{256\,\pi^{3/2}}$$

$$ds \text{ for } 0 < \gamma < \frac{1}{2}$$

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2\times 2)}{(-1+3^2)^2(1+3^2)} = \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} -\frac{i\,2^{-2\,(4+s)}\times9^{-2\,s}\left(729-10\times9^{1+s}+81^s\right)\Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\,\Gamma(s)}{5\,\pi\,\Gamma\left(\frac{3}{2}-s\right)}\,ds \text{ for}$$

$$0 < \gamma < \frac{1}{2}$$

 $\Gamma(x)$ is the gamma function

Continued fraction representations

$$\frac{\tan^{-1}(2) - (3+3^3)\tan^{-1}(3\times 2) + 3^4\tan^{-1}(3^2 \times 2)}{(-1+3^2)^2(1+3^2)} = \frac{1}{320} \left(\frac{1}{1+\frac{K}{K} \frac{4k^2}{1+2k}} - \frac{90}{1+\frac{K}{K} \frac{36k^2}{1+2k}} + \frac{729}{1+\frac{K}{K} \frac{324k^2}{1+2k}} \right) = \frac{1}{1+\frac{4k^2}{1+2k}} = \frac{1}{1+\frac{4k^2}{1+2k}} - \frac{90}{1+\frac{36k}{1+\frac{36}{1+2k}}} + \frac{729}{1+\frac{324}{1+2k}} = \frac{1}{1+\frac{324}{1+\frac{324}{1+\frac{1296}{5+\frac{2916}{7+\frac{5184}{9+\dots}}}}} + \frac{1}{1+\frac{324}{1+\frac{324}{5+\frac{2916}{7+\frac{5184}{9+\dots}}}}} + \frac{1}{1+\frac{324}{1+\frac{324}{5+\frac{2916}{7+\frac{5184}{9+\dots}}}}} = \frac{1}{1+\frac{324}{1+\frac{324}{5+\frac{2916}{7+\frac{5184}{9+\dots}}}}} = \frac{1}{1+\frac{324}{5+\frac{324}{5+\frac{2916}{7+\frac{5184}{9+\dots}}}}} = \frac{1}{1+\frac{324}{5+\frac{324}{5+\frac{2916}{7+\frac{5184}{9+\dots}}}}} = \frac{1}{1+\frac{324}{5+\frac{324}{5+\frac{324}{5+\frac{2916}{7+\frac{5184}{9+\dots}}}}}} = \frac{1}{1+\frac{324}{5+\frac{324}$$

$$\begin{aligned} \frac{\tan^{-1}(2) - (3+3^3) \tan^{-1}(3\times 2) + 3^4 \tan^{-1}(3^2 \times 2)}{(-1+3^2)^2 (1+3^2)} &= \\ \frac{1}{320} \left(\frac{1}{1+\frac{K}{K} \frac{4(1-2k)^2}{5-6k}} - \frac{90}{1+\frac{K}{K} \frac{36(1-2k)^2}{37-70k}} + \frac{729}{1+\frac{K}{K} \frac{324(1-2k)^2}{325-646k}} \right) \\ &= \\ \frac{1}{320} \left(\frac{1}{1+\frac{4}{-1+\frac{36}{-1+\frac{36}{-19+\frac{196}{-19+\dots}}}}} - \frac{90}{1+\frac{36}{-33+\frac{324}{-103+\frac{900}{-173+\frac{1764}{-243+\dots}}}} + \frac{729}{1+\frac{729}{-173+\frac{1764}{-243+\dots}}} \right) \\ &= \\ \frac{1}{1+\frac{729}{-321+\frac{2916}{-967+\frac{8100}{-1613+\frac{15876}{-2259+\dots}}}}} \right) \end{aligned}$$

$$\begin{aligned} \frac{\tan^{-1}(2) - \left(3 + 3^3\right) \tan^{-1}(3 \times 2) + 3^4 \tan^{-1}(3^2 \times 2)}{\left(-1 + 3^2\right)^2 \left(1 + 3^2\right)} &= \\ 2 - \frac{1}{80 \left(3 + \sum_{k=1}^{\infty} \frac{4(1 + (-1)^{1+k} + k)^2}{3 + 2k}\right)} + \frac{81}{8 \left(3 + \sum_{k=1}^{\infty} \frac{36(1 + (-1)^{1+k} + k)^2}{3 + 2k}\right)} - \\ \frac{59 \ 049}{80 \left(3 + \sum_{k=1}^{\infty} \frac{324(1 + (-1)^{1+k} + k)^2}{3 + 2k}\right)} = 2 - \frac{1}{80 \left(3 + \frac{36}{5 + \frac{16}{7 + \frac{16}{11 + \dots}}}\right)} + \\ \frac{81}{8 \left(3 + \frac{324}{5 + \frac{144}{7 + \frac{900}{9 + \frac{576}{11 + \dots}}}\right)} - \frac{59 \ 049}{80 \left(3 + \frac{2916}{5 + \frac{1296}{7 + \frac{8100}{9 + \frac{5184}}}\right)} - \frac{81}{80 \left(3 + \frac{2916}{5 + \frac{1296}{7 + \frac{8100}{9 + \frac{5184}}}\right)} - \frac{81}{80 \left(3 + \frac{2916}{5 + \frac{1296}{7 + \frac{8100}{9 + \frac{5184}}}\right)} - \frac{81}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{1296}{7 + \frac{8100}{9 + \frac{5184}{11 + \dots}}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{1296}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{11296}{5 + \frac{114}{11 + \dots}}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{114}{11 + \dots}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{1}{11 + 10}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{1}{11 + 10}}\right)} + \frac{1}{80 \left(3 + \frac{2916}{5 + \frac{1}{11 + 10}}\right)} + \frac{1}{80 \left(3 + \frac{1}{11 + \frac{1}{11 + 10}}\right)} + \frac{1}{80 \left(3 + \frac{1}{11 + \frac{1}{11 + 10}}\right)} + \frac{1}{80 \left(3 + \frac{1}{11 + \frac{1}{11 + 10}\right)} + \frac{1}{11 + \frac{1}{11 + 10}}\right)} + \frac{1}{11 + \frac{1}{11 + \frac{1}{11 + 10}}} + \frac{1}{11 + \frac{1}{11 + \frac{1}{11 + 10}}} + \frac{1}{11 + \frac{$$

 $\underset{k=k_1}{\overset{k_2}{K}} a_k / b_k$ is a continued fraction

For r = 3, from the right-hand side of the initial expression, we obtain:

$$\frac{n}{2r^{10} + 2r^6 + 2r^3 + 2r + 2}$$

 $\pi/(2*3^{10}+2*3^{6}+2*3^{3}+2*3+2)$

Input

 $\frac{\pi}{2 \times 3^{10} + 2 \times 3^6 + 2 \times 3^3 + 2 \times 3 + 2}$

Result

 $\frac{\pi}{119618}$

Decimal approximation

```
0.0000262635443962429838190125514828830350298213429364736563140576
```

0.000026263544....

The study of this function provides the following representations:

Property

 $\frac{\pi}{119618}$ is a transcendental number

Alternative representations

 $\frac{\pi}{2 \times 3^{10} + 2 \times 3^6 + 2 \times 3^3 + 2 \times 3 + 2} = \frac{180^{\circ}}{62 + 2 \times 3^6 + 2 \times 3^{10}}$

 $\frac{\pi}{2 \times 3^{10} + 2 \times 3^6 + 2 \times 3^3 + 2 \times 3 + 2} = -\frac{i \log(-1)}{62 + 2 \times 3^6 + 2 \times 3^{10}}$

 $\frac{\pi}{2 \times 3^{10} + 2 \times 3^6 + 2 \times 3^3 + 2 \times 3 + 2} = \frac{\cos^{-1}(-1)}{62 + 2 \times 3^6 + 2 \times 3^{10}}$

Series representations

$$\frac{\pi}{2\times 3^{10}+2\times 3^6+2\times 3^3+2\times 3+2} = \frac{2\sum_{k=0}^{\infty}\frac{(-1)^k}{1+2k}}{59\,809}$$

$$\frac{\pi}{2\times 3^{10}+2\times 3^6+2\times 3^3+2\times 3+2} = \sum_{k=0}^{\infty} -\frac{2\left(-1\right)^k 1195^{-1-2k} \left(5^{1+2k}-4\times 239^{1+2k}\right)}{59\,809\,(1+2\,k)}$$

$$\frac{\pi}{2\times 3^{10}+2\times 3^6+2\times 3^3+2\times 3+2} = \frac{\sum_{k=0}^{\infty} \left(-\frac{1}{4}\right)^k \left(\frac{1}{1+2k}+\frac{2}{1+4k}+\frac{1}{3+4k}\right)}{119\,618}$$

Integral representations

$$\frac{\pi}{2 \times 3^{10} + 2 \times 3^6 + 2 \times 3^3 + 2 \times 3 + 2} = \frac{2}{59\,809} \int_0^1 \sqrt{1 - t^2} \, dt$$

$$\frac{\pi}{2 \times 3^{10} + 2 \times 3^6 + 2 \times 3^3 + 2 \times 3 + 2} = \frac{1}{59\,809} \int_0^1 \frac{1}{\sqrt{1 - t^2}} \, dt$$

$$\frac{\pi}{2 \times 3^{10} + 2 \times 3^6 + 2 \times 3^3 + 2 \times 3 + 2} = \frac{1}{59809} \int_0^\infty \frac{1}{1 + t^2} dt$$

For x = 0.5 and r = 0.8, from the solution of the integral, we obtain:

 $(\tan^{(-1)}(0.5) - (0.8 + 0.8^3) \tan^{(-1)}(0.8^{0.5}) + 0.8^4 \tan^{(-1)}(0.8^2^{0.5}))/((-1 + 0.8^2)^2 (1 + 0.8^2))$

Input

$$\frac{\tan^{-1}(0.5) - \left(0.8 + 0.8^3\right)\tan^{-1}(0.8 \times 0.5) + 0.8^4\tan^{-1}\!\left(0.8^2 \times 0.5\right)}{\left(-1 + 0.8^2\right)^2\left(1 + 0.8^2\right)}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result

0.4294525760029614803057628751818899964062236610370222718363874339

(result in radians)

0.42945276....

The study of this function provides the following representations:

Alternative representations

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \frac{\sec^{-1}(0.5 \mid 0) - \sec^{-1}(0.4 \mid 0) (0.8 + 0.8^3) + \sec^{-1}(0.5 \times 0.8^2 \mid 0) 0.8^4}{(1 + 0.8^2) (-1 + 0.8^2)^2}$$

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \frac{\cot^{-1}(\frac{1}{0.5}) - \cot^{-1}(\frac{1}{0.4}) (0.8 + 0.8^3) + \cot^{-1}(\frac{1}{0.5 \times 0.8^2}) 0.8^4}{(1 + 0.8^2) (-1 + 0.8^2)^2}$$

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \frac{\tan^{-1}(1, 0.5) - \tan^{-1}(1, 0.4) (0.8 + 0.8^3) + \tan^{-1}(1, 0.5 \times 0.8^2) 0.8^4}{(1 + 0.8^2) (-1 + 0.8^2)^2}$$

 $\operatorname{sc}^{-1}(x \,|\, m)$ is the inverse of the Jacobi elliptic function sc

Series representations

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \sum_{k=0}^{\infty} \frac{(-1)^k (0.308341 \, e^{-2.27887 \, k} - 1.23457 \, e^{-1.83258 \, k} + 1.17623 \, e^{-1.38629 \, k})}{0.5 + k}$$

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \sum_{k=0}^{\infty} \left(\frac{1.92713 \left(-\frac{1}{5}\right)^k 0.64^{1+2k} F_{1+2k} \left(\frac{1}{1+\sqrt{1.08192}}\right)^{1+2k}}{1+2k} - \frac{6.17284 \left(-\frac{1}{5}\right)^k 0.8^{1+2k} F_{1+2k} \left(\frac{1}{1+\sqrt{1.128}}\right)^{1+2k}}{1+2k} + \frac{4.70491 \left(-\frac{1}{5}\right)^k 1^{1+2k} F_{1+2k} \left(\frac{1}{1+\sqrt{1.2}}\right)^{1+2k}}{1+2k} \right)$$

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] - 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 1.92713 \pi \left[\frac{\arg(i\ (0.32 - x))}{2\pi}\right] + 0.459199 \tan^{-1}(x) + 0.4591$$

Integral representations

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \int_0^1 \frac{122.07 - 1.77636 \times 10^{-15} t^4}{244.141 + 125.098 t^2 + 20.0156 t^4 + t^6} dt$$

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \int_{-i \, \infty + \gamma}^{i \, \infty + \gamma} \frac{1}{\pi^{3/2}} e^{-0.469053 \, s} \\ (-0.588114 \, e^{0.24591 \, s} + 0.617284 \, e^{0.320633 \, s} - 0.15417 \, e^{0.371564 \, s}) i}{\Gamma\left(\frac{1}{2} - s\right) \Gamma(1 - s) \, \Gamma(s)^2 \, ds} \text{ for } 0 < \gamma < \frac{1}{2}$$

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \int_{-i \ \infty + \gamma}^{i \ \infty + \gamma} \frac{1}{i \ \pi \ \Gamma(\frac{3}{2} - s)} \left(0.588114 \ e^{1.38629 \ s} - 0.617284 \ e^{1.83258 \ s} + 0.15417 \ e^{2.27887 \ s} \right)}{\Gamma\left(\frac{1}{2} - s\right) \Gamma(1 - s) \ \Gamma(s) \ ds} \text{ for } 0 < \gamma < \frac{1}{2}$$

Continued fraction representations

$\tan^{-1}(0.5) - (0.8 + 0.8^3)$	$) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8 \times 0.5))$	$n^{-1}(0.8^2 \times 0.5)$
$\frac{0.616682}{1+\underset{k=1}{\overset{\infty}{\mathrm{K}}} \frac{0.1024k^2}{1+2k}} - \frac{\binom{-2}{2}}{1+1}$	$\frac{(1+0.8^2)^2 (1+0.8^2)}{(1+0.8^2)^2} + \frac{(1+0.8^2)^2}{(1+0.8^2)^2} + \frac{(1+0.8^2)^2}{(1+0.8^2)$	
0.616682	2.46914	2.35245
$1 + \frac{0.1024}{3 + \frac{0.4096}{5 + \frac{0.9216}{7 + \frac{1.6384}{9 + \dots}}}}$	$\frac{1}{1+\frac{0.16}{3+\frac{0.64}{5+\frac{1.44}{7+\frac{2.56}{9+\dots}}}}} +$	$\frac{1+\frac{0.25}{3+\frac{1}{5+\frac{2.25}{7+\frac{4}{9+\dots}}}}$

$$\frac{\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8^2 \times 0.5)}{(-1 + 0.8^2)^2 (1 + 0.8^2)} = \\ \frac{0.616682}{1 + \sum_{k=1}^{\infty} \frac{0.1024(1-2k)^2}{1.1024+1.7952k}} - \frac{2.46914}{1 + \sum_{k=1}^{\infty} \frac{0.16(1-2k)^2}{1.16+1.68k}} + \frac{2.35245}{1 + \sum_{k=1}^{\infty} \frac{0.25(1-2k)^2}{1.25+1.5k}} = \\ \frac{0.616682}{1 + \frac{0.1024}{2.8976+\frac{0.9216}{4.6928+\frac{2.56}{6.488+\frac{5.0176}{8.2832+\dots}}}} - \\ \frac{2.46914}{1 + \frac{2.46914}{4.52+\frac{1.44}{4.52+\frac{4.}{6.2+\frac{7.84}{7.88+\dots}}}} + \frac{2.35245}{1 + \frac{0.25}{2.75+\frac{2.25}{4.25+\frac{6.25}{5.75+\frac{12.25}{7.25+\dots}}}}$$

$\tan^{-1}(0.5) - (0.8 + 0.8^3) \tan^{-1}$	$(0.8 \times 0.5) + 0.8^4 \tan^{-1}(0.8)$	$8^2 \times 0.5)$
(-1 + 0.8)	$(2)^{2}(1+0.8^{2})$	_
0.0631482		
$3 + \underset{k=1}{\overset{\infty}{\mathrm{K}}} \frac{0.1024 \left(1 + (-1)^{1+k} + \frac{1}{3+2k}\right)}{3+2k}$	$(k)^2$	
0.395062	0.588114	_
$3 + \underset{k=1}{\overset{\infty}{\mathrm{K}}} \frac{0.16 \left(1 + (-1)^{1+k} + k\right)^2}{3 + 2k}$	$3 + \mathop{\mathrm{K}}_{k=1}^{\infty} \frac{0.25 \left(1 + (-1)^{1+k} + k\right)^2}{3 + 2k}$	_
0.0631482	0.395062	0.588114
$\begin{array}{r} 0.3 = & \\ 3 + & \\ \hline 3 + & \\ 5 + & \\ \hline 5 + & \\ \hline 6 + & \\ 7 + & \\ \hline 2.56 \\ 9 + & \\ \hline 1.6384 \\ 11 + \dots \end{array}$	$ \begin{array}{c} + & \frac{1.44}{3 + \frac{1.44}{5 + \frac{0.64}{7 + \frac{4}{9 + \frac{2.56}{11 + \dots}}}} \end{array} $	$3 + \frac{2.25}{5 + \frac{1}{7 + \frac{6.25}{9 + \frac{4}{11 + \dots}}}}$

While, for r = 0.913, from the right-hand side of the initial expression, we obtain:

$$\pi/(2*0.913^{10} + 2*0.913^{6} + 2*0.913^{3} + 2*0.913 + 2)$$

Input

 $\frac{\pi}{2\!\times\!0.913^{10}+2\!\times\!0.913^6+2\!\times\!0.913^3+2\!\times\!0.913+2}$

Result

0.4296853832642974759864335853185634069641642583430419350319757791 ...

0.4296853832....

The study of this function provides the following representations:

Alternative representations

$$\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^{6} + 2 \times 0.913^{3} + 2 \times 0.913 + 2}_{180^{\circ}} = \frac{\pi}{3.826 + 2 \times 0.913^{3} + 2 \times 0.913^{6} + 2 \times 0.913^{10}} = \frac{\pi}{2}$$

$$\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^{6} + 2 \times 0.913^{3} + 2 \times 0.913 + 2}_{-\frac{i \log(-1)}{3.826 + 2 \times 0.913^{3} + 2 \times 0.913^{6} + 2 \times 0.913^{10}}} =$$

 $\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^{6} + 2 \times 0.913^{3} + 2 \times 0.913 + 2} = \frac{1}{\cos^{-1}(-1)}$

Series representations

$$\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^{6} + 2 \times 0.913^{3} + 2 \times 0.913 + 2} = 0.547092 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1 + 2k}$$

$$\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^6 + 2 \times 0.913^3 + 2 \times 0.913 + 2} = -0.273546 + 0.273546 \sum_{k=1}^{\infty} \frac{2^k}{\binom{2k}{k}}$$

$$\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^6 + 2 \times 0.913^3 + 2 \times 0.913 + 2} = 0.136773 \sum_{k=0}^{\infty} \frac{2^{-k} \left(-6 + 50 \, k\right)}{\binom{3 \, k}{k}}$$

Integral representations

$$\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^6 + 2 \times 0.913^3 + 2 \times 0.913 + 2} = 0.273546 \int_0^\infty \frac{1}{1+t^2} \, dt$$

$$\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^6 + 2 \times 0.913^3 + 2 \times 0.913 + 2} = 0.547092 \int_0^1 \sqrt{1 - t^2} dt$$

$$\frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^6 + 2 \times 0.913^3 + 2 \times 0.913 + 2} = 0.273546 \int_0^\infty \frac{\sin(t)}{t} dt$$

For r = 0.913, from the solution of the integral, we obtain:

 $(\tan^{-1}(0.913) - (0.913 + 0.913^{3}) \tan^{-1}(0.913^{0.913}) + 0.913^{4} \tan^{-1}(0.913^{2*}0.913))/((-1 + 0.913^{2})^{2} (1 + 0.913^{2}))$

Input

$$\frac{\tan^{-1}(0.913) - \left(0.913 + 0.913^3\right)\tan^{-1}(0.913 \times 0.913) + 0.913^4\tan^{-1}\!\left(0.913^2 \times 0.913\right)}{\left(-1 + 0.913^2\right)^2\left(1 + 0.913^2\right)}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result

0.5652571220839497774225175491537038808501473041522555135017016858 ...

(result in radians)

0.565257122....

The study of this function provides the following representations:

Alternative representations

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)} = \left(sc^{-1}(0.913 \mid 0) - sc^{-1}(0.833569 \mid 0) (0.913 + 0.913^3) + sc^{-1}(0.913 \times 0.913^2 \mid 0) 0.913^4 \right) / \left((1 + 0.913^2) (-1 + 0.913^2)^2 \right)$$

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)} = \frac{\cot^{-1}(\frac{1}{0.913}) - \cot^{-1}(\frac{1}{0.833569}) (0.913 + 0.913^3) + \cot^{-1}(\frac{1}{0.913 \times 0.913^2}) 0.913^4}{(1 + 0.913^2) (-1 + 0.913^2)^2}$$

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)}$$

= $(\tan^{-1}(1, 0.913) - \tan^{-1}(1, 0.833569) (0.913 + 0.913^3) + \tan^{-1}(1, 0.913 \times 0.913^2) 0.913^4) / ((1 + 0.913^2) (-1 + 0.913^2)^2)$

 $\operatorname{sc}^{-1}(x \mid m)$ is the inverse of the Jacobi elliptic function sc

Series representations

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k (5.20595 \, e^{-0.546116 \, k} - 13.7377 \, e^{-0.364078 \, k} + 8.98825 \, e^{-0.182039 \, k})}{0.5 + k}$$

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)}$$

$$= 0.20466 i \log(2) - 6.84049 i \log((0.761048 - i) i) + 16.4806 i \log((0.833569 - i) i) - 9.84474 i \log((0.913 - i) i) + \sum_{k=1}^{\infty} \frac{1}{k} 2^{-k} (-6.84049 (0.761048 - i)^k + 16.4806 (0.833569 - i)^k - 9.84474 (0.913 - i)^k) i^{1+k}$$

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)}$$

= -0.20466 *i* log(2) + 6.84049 *i* log(-*i* (0.761048 + *i*)) -
16.4806 *i* log(-*i* (0.833569 + *i*)) + 9.84474 *i* log(-*i* (0.913 + *i*)) + $\sum_{k=1}^{\infty} \frac{1}{k} 2^{-k} (-i)^k$
i (6.84049 (0.761048 + *i*)^k - 16.4806 (0.833569 + *i*)^k + 9.84474 (0.913 + *i*)^k)

Integral representations

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)}$$
$$= \int_0^1 \frac{2.72158 - 1.42109 \times 10^{-14} t^2}{2.98092 + 6.2826 t^2 + 4.36538 t^4 + t^6} dt$$

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)}$$

=
$$\int_{-i \,\infty+\gamma}^{i \,\infty+\gamma} \frac{1}{\pi^{3/2}} e^{-1.59077 \,s}$$

$$(-4.49412 \, e^{0.984502 \,s} + 6.86885 \, e^{1.06318 \,s} - 2.60297 \, e^{1.13385 \,s})$$

$$i \,\Gamma\left(\frac{1}{2} - s\right) \Gamma(1 - s) \,\Gamma(s)^2 \, ds \text{ for } 0 < \gamma < \frac{1}{2}$$

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)}$$

$$= \int_{-i \infty + \gamma}^{i \infty + \gamma} \frac{1}{i \pi \Gamma(\frac{3}{2} - s)} (4.49412 e^{0.182039 s} - 6.86885 e^{0.364078 s} + 2.60297 e^{0.546116 s})$$

$$\Gamma(\frac{1}{2} - s) \Gamma(1 - s) \Gamma(s) ds \text{ for } 0 < \gamma < \frac{1}{2}$$

Continued fraction representations

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{1 + \frac{1}{K} \frac{0.579195 k^2}{1 + 2k}} - \frac{\frac{(-1 + 0.913^2)^2 (1 + 0.913^2)}{1 + \frac{1}{K} \frac{0.694837 k^2}{1 + 2k}} + \frac{17.9765}{1 + \frac{1}{K} \frac{0.833569 k^2}{1 + 2k}} = \frac{10.4119}{1 + \frac{10.4119}{1 + \frac{0.579195}{3 + \frac{2.31678}{5 + \frac{5.21275}{7 + \frac{9.26712}{9 + \dots}}}} - \frac{27.4754}{1 + \frac{0.694837}{3 + \frac{2.77935}{5 + \frac{6.25354}{7 + \frac{11.1174}{9 + \dots}}}} + \frac{17.9765}{1 + \frac{0.833569}{3 + \frac{3.33428}{5 + \frac{7.50212}{7 + \frac{13.3371}{9 + \dots}}}}$$

$\tan^{-1}(0.913) - (0.913 + 0.9)$	$(13^3) \tan^{-1}(0.913 \times 0.913)$	$) + 0.913^4 \tan^{-1} (0.913^2 \times 0.913)$
	$(-1+0.913^2)^2(1+0.913^2)^2$	13 ²)
= 10.4119	27.4754	17.9765
$1 + \underset{k=1}{\overset{\infty}{\text{K}}} \frac{0.579195(1-2k)^2}{1.57919+0.84161k} -$	$1 + \mathop{K}\limits_{k=1}^{\infty} \frac{0.694837 \left(1 - 2k\right)^2}{1.69484 + 0.610325k}$	$ + \frac{1}{1 + \sum_{k=1}^{\infty} \frac{0.833569 (1-2k)^2}{1.83357 + 0.332862 k}} = $
10.41		_
$1 + \frac{0.57}{2.42081 + \frac{0.57}{3.26242 + \frac{1}{2}}}$	79195 5.21275 14.4799 4.10403+ <u>28.3805</u> 4.94564+ 4754	
$1 + \frac{0.2}{2.30516 + \frac{0.2}{2.91549 + 12}}$		- +
$1 + \frac{0}{2.16643 + \frac{0}{2.49929}}$	$833569 \\ \hline 7.50212 \\ + \frac{20.8392}{2.83215 + \frac{40.8449}{3.16502 + \dots}}$	-

$$\frac{\tan^{-1}(0.913) - (0.913 + 0.913^3) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)}{(-1 + 0.913^2)^2 (1 + 0.913^2)}$$

$$= 0.913 - \frac{6.03052}{3 + \frac{K}{k=1}} \frac{0.579195 (1 + (-1)^{1+k} + k)^2}{3 + 2k}}{19.0909} + \frac{14.9847}{3 + \frac{K}{k=1}} \frac{0.833569 (1 + (-1)^{1+k} + k)^2}{3 + 2k}}{19.0909} = 0.913 - \frac{14.9847}{3 + \frac{K}{k=1}} \frac{0.833569 (1 + (-1)^{1+k} + k)^2}{3 + 2k}}{19.0909} = \frac{14.9847}{3 + \frac{5.21275}{5 + \frac{2.31678}{7 + \frac{14.4799}{9 + \frac{9.26712}{11 + \dots}}}} + \frac{19.0909}{3 + \frac{6.25354}{5 + \frac{2.77935}{7 + \frac{17.3709}{9 + \frac{11.1174}{11 + \dots}}} - \frac{14.9847}{3 + \frac{5.21275}{7 + \frac{20.8392}{9 + \frac{13.3371}{11 + \dots}}}$$

$=\frac{(-1+0.913^2)^2 (1+0.913^2)}{10.4119} - \frac{1.15839 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.2896+0.289597 (-1)^k) (1+2k)}} - \frac{1.57919 + \overset{\infty}{\mathrm{K}} \frac{1.15839 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.2896+0.289597 (-1)^k) (1+2k)}} + \frac{1.69484 + \overset{\infty}{\mathrm{K}} \frac{1.38967 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.34742+0.347419 (-1)^k) (1+2k)}} + \frac{17.9765}{17.9765} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} \frac{1.66714 (1-2 \lfloor \frac{1+k}{2} \rfloor) \lfloor \frac{1+k}{2} \rfloor}{(1.44779 + 0.447795 (-1)^k) (1+2k)}} = \frac{1.83357 + \overset{\infty}{\mathrm{K}} 1.833$
$\frac{1.57919 + \underset{k=1}{\overset{\infty}{\text{K}}} \frac{1.15839 \left(1 - 2 \left(\frac{1+k}{2}\right)\right) \left(\frac{1+k}{2}\right)}{\left(1.2896 + 0.289597 (-1)^{k}\right) (1+2k)}}{27.4754} + \frac{1.69484 + \underset{k=1}{\overset{\infty}{\text{K}}} \frac{1.38967 \left(1 - 2 \left(\frac{1+k}{2}\right)\right) \left(\frac{1+k}{2}\right)}{\left(1.34742 + 0.347419 (-1)^{k}\right) (1+2k)}}{17.9765} + \frac{17.9765}{1.83357 + \underset{k=1}{\overset{\infty}{\text{K}}} \frac{1.66714 \left(1 - 2 \left(\frac{1+k}{2}\right)\right) \left(\frac{1+k}{2}\right)}{\left(1.445795 (-0.445795 (-1)^{k}\right) (1-2k)}} =$
$\frac{1.69484 + \overset{\infty}{\mathbf{K}}_{k=1} \frac{1.38967 \left(1 - 2 \left\lfloor \frac{1+k}{2} \right\rfloor\right) \left\lfloor \frac{1+k}{2} \right\rfloor}{\left(1.34742 + 0.347419 \left(-1\right)^{k}\right) \left(1 + 2k\right)}}{17.9765} = \frac{1.83357 + \overset{\infty}{\mathbf{K}}}{1.83357 + \overset{\infty}{\mathbf{K}}} \frac{1.66714 \left(1 - 2 \left\lfloor \frac{1+k}{2} \right\rfloor\right) \left\lfloor \frac{1+k}{2} \right\rfloor}{\left(1 + 41679 + 0.416795 \left(-1 + \frac{k}{2}\right)\right) \left\lfloor \frac{1+k}{2} \right\rfloor}} = \frac{1.83357 + \overset{\infty}{\mathbf{K}}}{1.83357 + \overset{\infty}{\mathbf{K}}} \frac{1.66714 \left(1 - 2 \left\lfloor \frac{1+k}{2} \right\rfloor\right) \left\lfloor \frac{1+k}{2} \right\rfloor}{\left(1 + 41679 + 0.416795 \left(-1 + \frac{k}{2}\right)\right) \left\lfloor \frac{1+k}{2} \right\rfloor}}$
$\frac{11.83357 + \overset{\infty}{\mathbf{K}} \frac{1.66714(1-2\lfloor \frac{1+k}{2} \rfloor)\lfloor \frac{1+k}{2} \rfloor}{(1.41679.0.416795(-1.4k)(1-2))}} =$
$\frac{k=1}{10.4119} \left(\frac{1.416/8 + 0.416/85(-1)^{-1}}{10.4119} \right)^{(1+2.k)}$
$\frac{1.57919 + -\frac{1.15839}{3\frac{1.15839}{7.89597 - \frac{6.95034}{7\frac{6.95034}{14.2128 + \dots}}} -$
$\frac{1.69484 + - \frac{1.38967}{3 - \frac{1.38967}{8.47419 - \frac{8.33805}{7 - \frac{8.33805}{15.2535 + \dots}}} + 17.9765}$
$1.83357 + -\frac{1.66714}{3-\frac{1.66714}{9.16785-\frac{10.0028}{7-\frac{10.0028}{16.5021+\dots}}}}$

 $\mathop{\mathrm{K}}\limits_{k=k_1}^{k_2} a_k \, / \, b_k$ is a continued fraction

We have the following equation:

 $\begin{aligned} x^{*}(\tan^{(-1)}(0.913) - (0.913 + 0.913^{3}) \tan^{(-1)}(0.913^{*}0.913) + 0.913^{4} \tan^{(-1)}(0.913^{*}2^{*}0.913))/((-1 + 0.913^{2})^{2} (1 + 0.913^{2})) &= \pi/(2^{*}0.913^{10} + 2^{*}0.913^{6} + 2^{*}0.913^{3} + 2^{*}0.913 + 2) \end{aligned}$

Input

$$x \times \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^{3}\right)\tan^{-1}(0.913 \times 0.913) + 0.913^{4}\tan^{-1}\left(0.913^{2} \times 0.913\right)\right) / \left(\left(-1 + 0.913^{2}\right)^{2}\left(1 + 0.913^{2}\right)\right) = \frac{\pi}{2 \times 0.913^{10} + 2 \times 0.913^{6} + 2 \times 0.913^{3} + 2 \times 0.913 + 2}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result

0.565257 x = 0.429685

Plot

Alternate form

0.565257 x - 0.429685 = 0

Alternate form assuming x is real

0.565257 x + 0 = 0.429685

Solution

 $x \approx 0.760159$

Indeed:

 $e^{(-1 + 1/e + 2 e)} \pi^{(1 - 2 e)} (\tan^{(-1)}(0.913) - (0.913 + 0.913^3) \tan^{(-1)}(0.913^{0.913}) + 0.913^{4} \tan^{(-1)}(0.913^{2}^{0.913}))/((-1 + 0.913^{2})^{2} (1 + 0.913^{2}))$

where

 $e^{-1+1/e+2e}\pi^{1-2e}$

0.7601618480162878571796051624908594110178354115967817615188329823

•••

Input

$$e^{-1+1/\epsilon+2\epsilon} \pi^{1-2\epsilon} \times \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3 \right) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1} \left(0.913^2 \times 0.913 \right) \right) / \left(\left(-1 + 0.913^2 \right)^2 \left(1 + 0.913^2 \right) \right)$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result

0.4296868985277037012189476302079535279260252662214004347774946859

···· (result in radians)

0.4296868985277....

The study of this function provides the following representations:

Alternative representations

$$\begin{pmatrix} \left(e^{-1+1/e+2e} \pi^{1-2e}\right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^{3}\right) \tan^{-1}(0.913 \times 0.913) + 0.913^{4} \tan^{-1}(0.913^{2} \times 0.913)\right) \\ \left(\left(-1 + 0.913^{2}\right)^{2} \left(1 + 0.913^{2}\right)\right) = \left(\left(\sec^{-1}(0.913 \mid 0) - \sec^{-1}(0.833569 \mid 0) \left(0.913 + 0.913^{3}\right) + \sec^{-1}(0.913 \times 0.913^{2} \mid 0) - 0.913^{4}\right) e^{-1+2e+1/e} \pi^{1-2e} \end{pmatrix} / \left(\left(1 + 0.913^{2}\right) \left(-1 + 0.913^{2}\right)^{2}\right)$$

$$\begin{split} & \big(\big(e^{-1+1/e+2\,e} \, \pi^{1-2\,e} \big) \left(\tan^{-1}(0.913) - \big(0.913 + 0.913^3 \big) \tan^{-1}(0.913 \times 0.913) + \\ & 0.913^4 \, \tan^{-1} \big(0.913^2 \times 0.913 \big) \big) \big/ \big(\big(-1 + 0.913^2 \big)^2 \, \big(1 + 0.913^2 \big) \big) = \\ & \left(\bigg(\cot^{-1} \Big(\frac{1}{0.913} \Big) - \cot^{-1} \Big(\frac{1}{0.833569} \Big) \big(0.913 + 0.913^3 \big) + \cot^{-1} \Big(\frac{1}{0.913 \times 0.913^2} \Big) \right. \\ & 0.913^4 \Big) e^{-1+2\,e+1/e} \, \pi^{1-2\,e} \right) \Big/ \left(\big(1 + 0.913^2 \big) \big(-1 + 0.913^2 \big)^2 \big) \end{split}$$

$$\begin{split} & \big(\big(e^{-1+1/e+2\,e} \, \pi^{1-2\,e} \big) \, \big(\tan^{-1}(0.913) - \big(0.913 + 0.913^3 \big) \tan^{-1}(0.913 \times 0.913) + \\ & 0.913^4 \, \tan^{-1} \big(0.913^2 \times 0.913 \big) \big) \big) \big/ \big(\big(-1 + 0.913^2 \big)^2 \, \big(1 + 0.913^2 \big) \big) = \\ & \big(\big(\tan^{-1}(1, \, 0.913) - \tan^{-1}(1, \, 0.833569) \, \big(0.913 + 0.913^3 \big) + \\ & \tan^{-1} \big(1, \, 0.913 \times 0.913^2 \big) \, 0.913^4 \big) \\ & e^{-1+2\,e+1/e} \, \pi^{1-2\,e} \big) \big/ \big(\big(1 + 0.913^2 \big) \, \big(-1 + 0.913^2 \big)^2 \big) \end{split}$$

 $\operatorname{sc}^{-1}(x \,|\, m)$ is the inverse of the Jacobi elliptic function sc

Series representations

$$\begin{pmatrix} \left(e^{-1+1/e+2e} \pi^{1-2e}\right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^{3}\right) \tan^{-1}(0.913 \times 0.913) + \\ 0.913^{4} \tan^{-1} \left(0.913^{2} \times 0.913\right) \end{pmatrix} \end{pmatrix} / \left(\left(-1 + 0.913^{2}\right)^{2} \left(1 + 0.913^{2}\right)\right) = \\ \sum_{k=0}^{\infty} \frac{1}{0.5+k} \left(-1\right)^{k} \left(5.20595 e^{-0.546116k} - 13.7377 e^{-0.364078k} + 8.98825 e^{-0.182039k}\right) \\ e^{-1+1/e+2e} \pi^{1-2e}$$

$$\begin{split} & \left(\left(e^{-1+1/e+2\,e}\,\pi^{1-2\,e}\right)\left(\tan^{-1}(0.913)-\right.\\ & \left(0.913+0.913^3\right)\tan^{-1}(0.913\times0.913)+0.913^4\tan^{-1}(0.913^2\times0.913)\right)\right) / \\ & \left(\left(-1+0.913^2\right)^2\left(1+0.913^2\right)\right) = \sum_{k=0}^{\infty}\frac{1}{1+2\,k}\left(-\frac{1}{5}\right)^k \,e^{-1+1/e+2\,e}\,\pi^{1-2\,e} \\ & \left.F_{1+2\,k}\left(20.8238\,e^{0.840178\,k}\left(\frac{1}{1+\sqrt{1.46336}}\right)^{1+2\,k}-54.9508\,e^{1.02222\,k} \\ & \left(\frac{1}{1+\sqrt{1.55587}}\right)^{1+2\,k}+35.953\,e^{1.20426\,k}\left(\frac{1}{1+\sqrt{1.66686}}\right)^{1+2\,k}\right) \end{split}$$

$$\begin{split} & \left(\left(e^{-1+1/e+2e} \ \pi^{1-2e}\right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3\right) \tan^{-1}(0.913 \times 0.913) + \\ & 0.913^4 \ \tan^{-1} \left(0.913^2 \times 0.913\right)\right)\right) / \\ & \left(\left(-1 + 0.913^2\right)^2 \left(1 + 0.913^2\right)\right) = 0.40932 \ e^{-1+1/e+2e} \ \pi^{1-2e} \ \tan^{-1}(x) + \\ & 13.681 \ e^{-1+1/e+2e} \ \pi^{2-2e} \left\lfloor \frac{\arg(i \ (0.761048 - x))}{2\pi} \right\rfloor - \\ & 32.9611 \ e^{-1+1/e+2e} \ \pi^{2-2e} \left\lfloor \frac{\arg(i \ (0.833569 - x))}{2\pi} \right\rfloor + \\ & 19.6895 \ e^{-1+1/e+2e} \ \pi^{2-2e} \left\lfloor \frac{\arg(i \ (0.913 - x))}{2\pi} \right\rfloor + \\ & \sum_{k=1}^{\infty} \frac{1}{k} \ e^{-1+1/e+2e} \ i \ \pi^{1-2e} \\ & \left(6.84049 \ (0.761048 - x)^k \ (-i - x)^k - 16.4806 \ (0.833569 - x)^k \ (-i - x)^k + \\ & 9.84474 \ (0.913 - x)^k \ (-i - x)^k - 6.84049 \ (0.761048 - x)^k \ (i - x)^k + \\ & 16.4806 \ (0.833569 - x)^k \ (i - x)^k - 9.84474 \ (0.913 - x)^k \ (i - x)^k \right) \\ & \left(-i - x\right)^{-k} \ (i - x)^{-k} \ \text{for } (i \ x \in \mathbb{R} \text{ and } i \ x < -1) \end{split}$$

 F_n is the n^{th} Fibonacci number

Integral representations

$$\begin{pmatrix} \left(e^{-1+1/e+2e} \pi^{1-2e}\right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3\right) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913) \right) \end{pmatrix} / \left(\left(-1 + 0.913^2\right)^2 \left(1 + 0.913^2\right)\right) = \int_0^1 \frac{e^{-1+1/e+2e} \pi^{1-2e} \left(2.72158 - 1.42109 \times 10^{-14} t^2\right)}{2.98092 + 6.2826 t^2 + 4.36538 t^4 + t^6} dt$$

$$\begin{pmatrix} \left(e^{-1+1/e+2e} \pi^{1-2e}\right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3\right) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913) \right) \end{pmatrix} / \left(\left(-1 + 0.913^2\right)^2 \left(1 + 0.913^2\right)\right) = \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} e^{-1.59077\,s} \left(-4.49412\,e^{0.984502\,s} + 6.86885\,e^{1.06318\,s} - 2.60297\,e^{1.13385\,s}\right) \\ e^{-1+1/e+2e}\,i\,\pi^{-1/2-2e}\,\Gamma\left(\frac{1}{2} - s\right)\Gamma(1 - s)\,\Gamma(s)^2\,d\,s \text{ for } 0 < \gamma < \frac{1}{2}$$

$$\begin{pmatrix} \left(e^{-1+1/e+2e} \pi^{1-2e}\right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3\right) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}(0.913^2 \times 0.913)\right) \end{pmatrix} / \left(\left(-1 + 0.913^2\right)^2 \left(1 + 0.913^2\right)\right) = \int_{-i \,\infty+\gamma}^{i \,\infty+\gamma} \frac{1}{i \,\Gamma\left(\frac{3}{2} - s\right)} \left(4.49412 \, e^{0.182039 \, s} - 6.86885 \, e^{0.364078 \, s} + 2.60297 \, e^{0.546116 \, s}\right) \\ e^{-1+1/e+2e} \pi^{-2e} \, \Gamma\left(\frac{1}{2} - s\right) \Gamma(1 - s) \, \Gamma(s) \, ds \quad \text{for } 0 < \gamma < \frac{1}{2}$$

Continued fraction representations

$$\begin{split} & \left(\left(e^{-1+1/e+2e} \pi^{1-2e}\right)\left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3\right)\tan^{-1}(0.913 \times 0.913) + 0.913^4 \tan^{-1}\left(0.913^2 \times 0.913\right)\right)\right) \right/ \\ & \left(\left(-1+0.913^2\right)^2 \left(1+0.913^2\right)\right) = 19.6895 \, e^{-1+1/e+2e} \, \pi^{1-2e} \\ & \left(\frac{0.528805}{1+\sum_{k=1}^{\infty} \frac{0.579195 k^2}{1+2k}} - \frac{1.39543}{1+\sum_{k=1}^{\infty} \frac{0.694837 \, k^2}{1+2k}} + \frac{0.913}{1+\sum_{k=1}^{\infty} \frac{0.833569 \, k^2}{1+2k}}\right) = 14.9672 \\ & \left(\frac{0.528805}{1+\frac{0.579195}{3+\frac{2.31678}{5+\frac{5.21275}{7+\frac{9.26712}{9+\ldots}}}} - \frac{1.39543}{1+\frac{0.694837}{3+\frac{2.77935}{5+\frac{6.25354}{7+\frac{11.1174}{9+\ldots}}}} + \frac{0.913}{1+\frac{0.833569}{3+\frac{3.33428}{5+\frac{7.50212}{7+\frac{13.3371}{9+\ldots}}}}\right) \end{split}$$

 $\underset{k=k_1}{\overset{k_2}{K}} a_k / b_k$ is a continued fraction
From which:

$$\frac{1}{(((e^{(-1 + 1/e + 2 e) \pi^{(1 - 2 e)*(tan^{(-1)}(0.913) - (0.913 + 0.913^{3}) tan^{(-1)}(0.913^{*}0.913) + 0.913^{4} tan^{(-1)}(0.913^{*}2^{*}0.913))}{((-1 + 0.913^{*}2)^{2} (1 + 0.913^{*}2))))^{3}33 ((3/91)^{(3/4)} \pi)}$$

where

$$\left(\frac{3}{91}\right)^{3/4} \pi \approx 0.2430579157$$

Input

$$\begin{split} 1 \big/ \big(e^{-1+1/e+2\,e} \, \pi^{1-2\,e} \times \big(\tan^{-1}(0.913) - \big(0.913 + 0.913^3 \big) \tan^{-1}(0.913 \times 0.913) + \\ & 0.913^4 \, \tan^{-1} \big(0.913^2 \times 0.913 \big) \big) \big/ \\ & \big(\big(-1 + 0.913^2 \big)^2 \, \big(1 + 0.913^2 \big) \big) \big)^{333} \left(\Big(\frac{3}{91} \Big)^{3/4} \, \pi \right) \end{split}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result

 $3.51606... imes 10^{121}$

(result in radians)

 $0.351606....*10^{122} \approx \Lambda_0$

The observed value of ρ_{Λ} or Λ today is precisely the classical dual of its quantum precursor values ρ_Q , Λ_Q in the quantum very early precursor vacuum U_Q as determined by our dual equations

The study of this function provides the following representations:

Alternative representations

$$\begin{split} & \left(\frac{3}{91}\right)^{3/4} \pi \\ \hline \left(\frac{e^{-1+1/e+2\ e\ \pi^{1-2\ e\ (\tan^{-1}(0.913)-(0.913+0.913^3)\tan^{-1}(0.913\times0.913)+0.913^4\tan^{-1}(0.913^2\times0.913))}{(-1+0.913^2)^2\ (1+0.913^2)}\right)^{333} \\ = \\ & \left(\left(\pi\left(\frac{3}{91}\right)^{3/4}\right) \middle/ \left(\left(\left(\tan^{-1}(1,\ 0.913)-\tan^{-1}(1,\ 0.833569)\ (0.913+0.913^3)+\tan^{-1}(1,\ 0.913\times0.913^2)\ 0.913^4\right)e^{-1+2\ e+1/e\ \pi^{1-2\ e}}\right) \right/ \\ & \left(\left(1+0.913^2\right)\left(-1+0.913^2\right)^2\right)\right)^{333} = 0 \end{split}$$

$$\begin{split} & \left(\frac{\frac{3}{91}}{91}\right)^{3/4} \pi \\ \hline \left(\frac{e^{-1+1/e+2\ e\ \pi^{1-2\ e\ (\tan^{-1}(0.913)-(0.913+0.913^3)\tan^{-1}(0.913\times0.913)+0.913^4\tan^{-1}(0.913^2\times0.913))}{(-1+0.913^2)^2\left(1+0.913^2\right)}\right)^{333} \\ & = \left(\left(\pi\left(\frac{3}{91}\right)^{3/4}\right) \middle/ \left(\left(\left(\cot^{-1}\left(\frac{1}{0.913}\right) - \cot^{-1}\left(\frac{1}{0.833569}\right)\left(0.913+0.913^3\right) + \cot^{-1}\left(\frac{1}{0.913\times0.913^2}\right)0.913^4\right)e^{-1+2\ e\ 1/e\ \pi^{1-2\ e\ }}\right) \middle/ \\ & \quad \left(\left(1+0.913^2\right)\left(-1+0.913^2\right)^2\right)\right)^{333} = 0\right) \end{split}$$

 $\operatorname{sc}^{-1}(x \mid m)$ is the inverse of the Jacobi elliptic function sc

Continued fraction representations

We obtain also, after some calculations:

 $2(1/(((e^{(-1 + 1/e + 2 e) \pi^{(1 - 2 e)}(\tan^{(-1)}(0.913) - (0.913 + 0.913^{3})) \tan^{(-1)}(0.913^{0.913}) + 0.913^{4} \tan^{(-1)}(0.913^{2}^{0.913}))/((-1 + 0.913^{2})^{2} (1 + 0.913^{2})))))^{8+8}$

Input

$$\begin{array}{c} 2\left(1/\left(e^{-1+1/e+2\,e}\,\pi^{1-2\,e}\times\right.\\ \left(\tan^{-1}(0.913)-\left(0.913+0.913^3\right)\tan^{-1}(0.913\times0.913)+0.913^4\right.\\ \left.\tan^{-1}\!\left(0.913^2\times0.913\right)\right)/\left(\left(-1+0.913^2\right)^2\left(1+0.913^2\right)\right)\right)^8+8\end{array}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result

1729.13...

(result in radians)

1729.13....

This result is very near to the mass of candidate glueball $f_0(1710)$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. (1728 = $8^2 * 3^3$) The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

Alternative representations

$$\begin{split} 2 \left(1 / \left(\left(e^{-1 + 1/e + 2\,e} \, \pi^{1 - 2\,e} \right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3 \right) \tan^{-1}(0.913 \times 0.913) + \\ & 0.913^4 \tan^{-1}(0.913^2 \times 0.913) \right) \right) / \\ \left(\left(-1 + 0.913^2 \right)^2 \left(1 + 0.913^2 \right) \right) \right)^8 + 8 = \\ & 8 + 2 \left(1 / \left(\left(\cot^{-1} \left(\frac{1}{0.913} \right) - \cot^{-1} \left(\frac{1}{0.833569} \right) \left(0.913 + 0.913^3 \right) + \\ & \cot^{-1} \left(\frac{1}{0.913 \times 0.913^2} \right) 0.913^4 \right) \\ & e^{-1 + 2\,e + 1/e} \, \pi^{1 - 2\,e} \right) / \left(\left(1 + 0.913^2 \right) \left(-1 + 0.913^2 \right)^2 \right) \right)^8 \end{split}$$

$$\begin{split} 2 \left(1 / \left(\left(e^{-1 + 1/e + 2\,e} \, \pi^{1 - 2\,e} \right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3 \right) \tan^{-1}(0.913 \times 0.913) + \\ & 0.913^4 \tan^{-1} \left(0.913^2 \times 0.913 \right) \right) \right) / \\ & \left(\left(-1 + 0.913^2 \right)^2 \left(1 + 0.913^2 \right) \right) \right)^8 + 8 = \\ & \left(8 + 2 \left(1 / \left(\left(\sec^{-1}(0.913 \mid 0) - \sec^{-1}(0.833569 \mid 0) \left(0.913 + 0.913^3 \right) + \\ & \sec^{-1} \left(0.913 \times 0.913^2 \mid 0 \right) 0.913^4 \right) e^{-1 + 2\,e + 1/e} \, \pi^{1 - 2\,e} \right) / \\ & \left(\left(1 + 0.913^2 \right) \left(-1 + 0.913^2 \right)^2 \right) \right)^8 = \\ & 8 + \left(8.85433 \times 10^{-11} \, e^{8 - 8/e - 16\,e} \, \pi^{-8 + 16\,e} \right) / \left(0.694837 \, \mathrm{sc}^{-1}(0.761048 \mid 0) - \\ & 1.67405 \, \mathrm{sc}^{-1}(0.833569 \mid 0) + \mathrm{sc}^{-1}(0.913 \mid 0) \right)^8) \end{split}$$

$$\begin{split} 2 \left(1 / \left(\left(e^{-1 + 1/e + 2\,e} \, \pi^{1 - 2\,e} \right) \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3 \right) \tan^{-1}(0.913 \times 0.913) + \\ & 0.913^4 \, \tan^{-1} (0.913^2 \times 0.913) \right) \right) / \\ \left(\left(-1 + 0.913^2 \right)^2 \left(1 + 0.913^2 \right) \right) \right)^8 + 8 = \\ \left(8 + 2 \left(1 / \left(\left(\tan^{-1}(1, 0.913) - \tan^{-1}(1, 0.833569) \left(0.913 + 0.913^3 \right) + \\ & \tan^{-1}(1, 0.913 \times 0.913^2) \, 0.913^4 \right) e^{-1 + 2\,e + 1/e} \, \pi^{1 - 2\,e} \right) / \\ \left(\left(1 + 0.913^2 \right) \left(-1 + 0.913^2 \right)^2 \right) \right)^8 = \\ & 8 + \left(8.85433 \times 10^{-11} \, e^{8 - 8/e - 16\,e} \, \pi^{-8 + 16\,e} \right) / \left(0.694837 \tan^{-1}(1, 0.761048) - \\ & 1.67405 \tan^{-1}(1, 0.833569) + \tan^{-1}(1, 0.913) \right)^8 \end{split}$$

 $\cot^{-1}(x)$ is the inverse cotangent function

 $\operatorname{sc}^{-1}(x \,|\, m)$ is the inverse of the Jacobi elliptic function sc

Continued fraction representations

$$2\left(1/(\left(e^{-1+1/e+2e}\pi^{1-2e}\right)\left(\tan^{-1}(0.913) - \left(0.913 + 0.913^{3}\right)\tan^{-1}(0.913 \times 0.913) + 0.913^{4}\tan^{-1}(0.913^{2} \times 0.913)\right)\right)/ \\ \left(\left(-1 + 0.913^{2}\right)^{2}\left(1 + 0.913^{2}\right)\right)\right)^{8} + 8 = \\ 8 + \frac{8.85433 \times 10^{-11}e^{8-8/e-16e}\pi^{-8+16e}}{\left(\frac{0.528805}{1+\frac{\infty}{1+2k}} - \frac{1.39543}{1+\frac{\infty}{k=1}}\frac{0.694837k^{2}}{1+2k}} + \frac{0.913}{1+\frac{\infty}{k=1}\frac{0.833569k^{2}}{1+2k}}\right)^{8}} = \\ 8 + \frac{7.94158 \times 10^{-10}}{\left(\frac{0.528805}{1+\frac{0.579195}{3+\frac{2.31678}{5+\frac{5.21275}{7+\frac{9.26712}{9+\ldots}}}} - \frac{1.39543}{1+\frac{0.694837}{3+\frac{2.77935}{5+\frac{6.25354}{5+\frac{6.25354}{7+\frac{11.1174}{9+\ldots}}}} + \frac{0.913}{1+\frac{0.833569}{3+\frac{3.33428}{5+\frac{7.50212}{7+\frac{13.3371}{9+\ldots}}}}\right)^{8}}$$

$$\begin{split} & 2\left(1/(\left(e^{-1+1/e+2e}\pi^{1-2e}\right)(\tan^{-1}(0.913)-(0.913+0.913^3)\tan^{-1}(0.913\times0.913)+0.913^4\tan^{-1}(1.91\times0.913\times0.913)+0.913^4\tan^{-1}(1.91\times0.913)+0.913^4\tan^{-$$

 $\mathop{\mathrm{K}}\limits_{k=k_1}^{k_2} a_k \, / \, b_k$ is a continued fraction

$$(1/27((2(1/(((e^{(-1 + 1/e + 2 e) \pi^{(1 - 2 e)*(tan^{(-1)}(0.913) - (0.913 + 0.913^{3}) tan^{(-1)}(0.913^{*}0.913) + 0.913^{4} tan^{(-1)}(0.913^{*}2^{*}0.913))/((-1 + 0.913^{*}2)^{2} (1 + 0.913^{*}2)))))^{8+8}))))^{2} - \Phi$$

Input

$$\begin{split} \Big(\frac{1}{27} \left(\Big(2 \left(1 / \left(e^{-1+1/e+2\,e} \, \pi^{1-2\,e} \times \left(\tan^{-1}(0.913) - \left(0.913 + 0.913^3 \right) \tan^{-1}(0.913 \times 0.913) + 0.913^4 \, \tan^{-1}(0.913^2 \times 0.913) \right) \right) \\ & \left(\left(-1 + 0.913^2 \right)^2 \left(1 + 0.913^2 \right) \right) \Big)^8 + 8 \Big) - 1 \Big) \Big)^2 - \Phi \end{split}$$

 $\tan^{-1}(x)$ is the inverse tangent function Φ is the golden ratio conjugate

Result

4095.99... (result in radians) $4095.99... \approx 4096 = 64^2$

where 4096 and 64 are fundamental values indicated in the Ramanujan paper "Modular equations and Approximations to π "

Hence

$$64g_{22}^{24} = e^{\pi\sqrt{22}} - 24 + 276e^{-\pi\sqrt{22}} - \cdots,$$

$$64g_{22}^{-24} = 4096e^{-\pi\sqrt{22}} + \cdots,$$

so that

$$64(g_{22}^{24}+g_{22}^{-24})=e^{\pi\sqrt{22}}-24+4372e^{-\pi\sqrt{22}}+\cdots=64\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\}.$$

Hence

$$e^{\pi\sqrt{22}} = 2508951.9982\ldots$$

 $\begin{array}{l} (2(1/(((e^{(-1 + 1/e + 2 e) \pi^{(1 - 2 e)*(\tan^{(-1)}(0.913) - (0.913 + 0.913^3) \tan^{(-1)}(0.913^{*}0.913) + 0.913^{*}4 \tan^{(-1)}(0.913^{*}2^{*}0.913))/((-1 + 0.913^{*}2)^{*}2 (1 + 0.913^{*}2)))))^{*}8+8)^{*}1/15 \end{array}$

Input

$$\begin{array}{c} \left(2\left(1\left/\left(e^{-1+1/e+2\,e}\,\pi^{1-2\,e}\times\left(\tan^{-1}(0.913)-\left(0.913+0.913^{3}\right)\tan^{-1}(0.913\times0.913\right)+\right.\right.\right.\\ \left.\left.\left.\left(\left(-1+0.913^{2}\right)^{2}\left(1+0.913^{2}\right)\right)\right)\right|^{8}+8\right)^{8}\left(1/15\right) \end{array}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result

1.6438233238803693576543321042556651287611541902774423952804536994

•••

(result in radians)

 $1.64382332388.... \approx \zeta(2) = \frac{\pi^2}{6} = 1.644934...$ (trace of the instanton shape)

From:

Open Descendants of $Z_2 \times Z_2$ Freely-Acting Orbifolds

I. Antoniadis, G. D'Appollonio, E. Dudas and A. Sagnotti - arXiv:hep-th/9907184v1 25 Jul 1999

We have the following equation:

$$\begin{split} \tilde{\mathcal{A}} &= \frac{2^{-5}}{4} \Big\{ (Q_o + Q_v) \Big[N^2 v W^4 + \frac{1}{v} \sum_m (D + \frac{\delta}{2} e^{2i\pi\alpha m} + \frac{\delta}{2} e^{-2i\pi\alpha m})^2 P^3 P_m \Big] \\ &+ 2N (D + \delta) (Q_o - Q_v) (\frac{2\eta}{\theta_2})^2 + 4(Q_s + Q_c) \left(R_N^2 + R_D^2 \right) \left(\frac{2\eta}{\theta_4} \right)^2 - 2R_N R_D \left(Q_s - Q_c \right) \left(\frac{2\eta}{\theta_3} \right)^2 \Big\} \;, \end{split}$$

We consider:

 $((2\eta)/\theta_4)^2$

Input

 $\left(\frac{2\,\eta(\tau)}{\theta_4}\right)^{\!\!2}$

 $\eta(\tau)$ is the Dedekind eta function

Result

 $\frac{4\,\eta(\tau)^2}{\theta_4^2}$

3D plot

Contour plot

Series expansion at $\tau=0$

$$e^{-(25\,i\,\pi)/(6\,\tau)}\left(\left(1+e^{(4\,i\,\pi)/\tau}\right)\left(\frac{4\,i}{\theta_4^2\,\tau}+O(\tau^{32})\right)+e^{(2\,i\,\pi)/\tau}\left(-\frac{8\,i}{\theta_4^2\,\tau}+O(\tau^{32})\right)\right)$$

For $\tau = \theta = 0.5$:

 $(4 \eta(1/2)^2)/0.5^2$

Input

$$\frac{4\eta(\frac{1}{2})^2}{0.5^2}$$

 $\eta(\tau)$ is the Dedekind eta function

Exact result

$$16 \eta \left(\frac{1}{2}\right)^2$$

The study of this function provides the following representations:

Series representations

$$\frac{4 \eta \left(\frac{1}{2}\right)^2}{0.5^2} = (15.4548 + 4.1411 \, i) \, e^{-2 \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} e^{i \, k \, n \, \pi} / k}$$

$$\frac{4\eta(\frac{1}{2})^2}{0.5^2} = (15.4548 + 4.1411\,i) \left(\sum_{k=-\infty}^{\infty} e^{1/2\,i\,k\,(1+3\,k)\,\pi}\right)^2$$

$$\frac{4\eta(\frac{1}{2})^2}{0.5^2} = (27.7128 + 16.i) \left(\sum_{k=0}^{\infty} (-1)^k e^{-2ik(1+k)\pi} (1+2k)\right)^{2/3}$$

Integral representation

$$\frac{4 \eta \left(\frac{1}{2}\right)^2}{0.5^2} = 9.44272 \exp\left(\frac{2 i}{\pi} \int_i^{\frac{1}{2}} \text{WeierstrassZeta}[1, \text{WeierstrassInvariants}[\{1, t\}]\right] dt$$

From the result

$$16 \eta \left(\frac{1}{2}\right)^2$$

we obtain:

16 η(1/2)^2

Input

 $16\,\eta \Bigl(\frac{1}{2}\Bigr)^{\!2}$

The study of this function provides the following representations:

 $\eta(\tau)$ is the Dedekind eta function

Series representations

$$16 \eta \left(\frac{1}{2}\right)^2 = 16 \sqrt[12]{-1} e^{-2\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} e^{i k n \pi} / k}$$

$$16 \eta \left(\frac{1}{2}\right)^2 = 16 \sqrt[12]{-1} \left(\sum_{k=-\infty}^{\infty} e^{1/2 i \, k \, (1+3 \, k) \, \pi}\right)^2$$

$$16\eta \left(\frac{1}{2}\right)^2 = 32\sqrt[6]{-1} \left(\sum_{k=0}^{\infty} (-1)^k e^{-2ik(1+k)\pi} (1+2k)\right)^{2/3}$$

Integral representation

 $16 \eta \left(\frac{1}{2}\right)^2 =$ $4 \exp\left(\frac{2i}{\pi} \int_{t}^{\frac{1}{2}} \text{WeierstrassZeta}[1, \text{WeierstrassInvariants}[\{1, t\}]] dt\right) \Gamma\left(\frac{1}{4}\right)^{2}$ $\pi^{3/2}$

From:

$$16 \eta \left(\frac{1}{2}\right)^2 = 32 \sqrt[6]{-1} \left(\sum_{k=0}^{\infty} (-1)^k e^{-2ik(1+k)\pi} (1+2k)\right)^{2/3}$$

for k = 2:

32 (-1)^(1/6) (-1)^2 e^(-2 i *2 (1 + 2) π) (1 + 2*2)^(2/3)

Input 32 $\sqrt[6]{-1}$ (-1)² $e^{-2(i\times 2)(1+2)\pi}$ (1+2×2)^{2/3}

i is the imaginary unit

Exact result

 $32\sqrt[6]{-1} 5^{2/3}$

Decimal approximation

81.03275655707706725895562039584004009610274895557229787114423039... +

46.78428381140585704810859776220676445648797816161648066276117616... *i*

(using the principal branch of the logarithm for complex exponentiation)

Polar coordinates $r = 32 \times 5^{2/3}$ (radius), $\theta = \frac{\pi}{6}$ (angle)

Exact result $32 \times 5^{2/3}$

Decimal approximation

93.568567622811714096217195524413528912975956323232961325522352322

93.568567622....

The study of this function provides the following representations:

Polar forms

$$32 \times 5^{2/3} \left(\cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right) \right)$$

Approximate form

 $32 \times 5^{2/3} e^{(i \pi)/6}$

Alternate forms

 $32 \times 5^{2/3} e^{(i \pi)/6}$

$16\sqrt{3} 5^{2/3} + 16i5^{2/3}$

Alternative representations

$$32\sqrt[6]{-1} (-1)^2 e^{-2i2(1+2)\pi} (1+2\times 2)^{2/3} = 32(-1)^{12ii}\sqrt[6]{-1} 5^{2/3}$$

$$32\sqrt[6]{-1} (-1)^2 e^{-2i2(1+2)\pi} (1+2\times 2)^{2/3} = 32\sqrt[6]{-1} 5^{2/3} e^{-2160\circ i}$$

$$32\sqrt[6]{-1} (-1)^2 e^{-2i2(1+2)\pi} (1+2\times 2)^{2/3} = 32\sqrt[6]{-1} 5^{2/3} e^{12i^2 \log(-1)}$$

Series representations

$$32\sqrt[6]{-1} (-1)^2 e^{-2i2(1+2)\pi} (1+2\times 2)^{2/3} = 32\sqrt[6]{-1} 5^{2/3} \left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-48i\sum_{k=0}^{\infty} (-1)^k / (1+2k)}$$

$$32\sqrt[6]{-1} (-1)^2 e^{-2i 2(1+2)\pi} (1+2\times 2)^{2/3} = 32\sqrt[6]{-1} 5^{2/3} \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!}\right)^{-48i \sum_{k=0}^{\infty} (-1)^k / (1+2k)}$$

$$32\sqrt[6]{-1} (-1)^2 e^{-2i 2(1+2)\pi} (1+2\times 2)^{2/3} = 32\sqrt[6]{-1} 5^{2/3} \left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-12i \sum_{k=1}^{\infty} 4^{-k} \left(-1+3^k\right) \zeta(1+k)}$$

 $\zeta(s)$ is the Riemann zeta function

Integral representations

$$32\sqrt[6]{-1} (-1)^2 e^{-2i2(1+2)\pi} (1+2\times 2)^{2/3} = 32\sqrt[6]{-1} 5^{2/3} e^{-24i\times \int_0^\infty 1/(1+t^2)dt}$$

$$32\sqrt[6]{-1} (-1)^2 e^{-2i2(1+2)\pi} (1+2\times 2)^{2/3} = 32\sqrt[6]{-1} 5^{2/3} e^{-48i\int_0^1 \sqrt{1-t^2} dt}$$

 $32\sqrt[6]{-1} (-1)^2 e^{-2i2(1+2)\pi} (1+2\times 2)^{2/3} = 32\sqrt[6]{-1} 5^{2/3} e^{-24i\int_0^\infty \sin(t)/t\,dt}$

From this other equation:

$$\frac{2^{-5}}{4} \Big\{ (Q_o + Q_v) \Big[N^2 v W^4 + \frac{1}{v} \sum_m (D + \frac{\delta}{2} e^{2i\pi\alpha m} + \frac{\delta}{2} e^{-2i\pi\alpha m})^2 P^3 P_m \Big] \\ + 2N(D + \delta) (Q_o - Q_v) (\frac{2\eta}{\theta_2})^2 + 4(Q_s + Q_c) \left(R_N^2 + R_D^2 \right) \left(\frac{2\eta}{\theta_4} \right)^2 - 2R_N R_D \left(Q_s - Q_c \right) \left(\frac{2\eta}{\theta_3} \right)^2 \Big\}$$

We consider:

$$N = D_1 = D_2 = D_3 = 32 \quad D = \delta$$

$$P = W = 2 \; ; \; Q_i = 8 \; ; \; Q_j = 16 \; ; \; R_i = 16 \; ; \; v = 1$$

$$((2\eta)/\theta_4)^2 = ((2\eta)/\theta_3)^2 = ((2\eta)/\theta_2)^2 = 93.5685676228117$$

and obtain:

$$\frac{1}{4*1}/32 \left[\left(\left(\left((32)\left(\left((32^2*2^4+(32+16*e^{(2\pi)}+16*e^{(-2\pi)})^2)*8*2 \right) \right) \right) + 64*64*(16-8)*93.5685676228117^2 + 4(16+8)(16^2+16^2)* ((93.5685676228117^2-2*16*16))(16-8)*93.5685676228117^2) \right) \right]$$

Input interpretation

$$\begin{aligned} &\frac{1}{4} \times \frac{1}{32} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2 \pi} + 16 \ e^{-2 \pi} \right)^2 \right) \times 8 \times 2 \right) + \\ & \quad 64 \times 64 \ (16 - 8) \times 93.5685676228117^2 + \\ & \quad 4 \ (16 + 8) \left(\left(16^2 + 16^2 \right) \left(93.5685676228117^2 - 2 \times 16 \times 16 \right) \right) \\ & \quad \left((16 - 8) \times 93.5685676228117^2 \right) \right) \end{aligned}$$

Result 2.2200060498872... × 10¹¹

 $2.22000604....*10^{11}$

The study of this function provides the following representations:

Alternative representations

$$\begin{aligned} &\frac{1}{32 \times 4} \Big(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + \\ & \quad 64 \times 64 \ (16 - 8) \ 93.56856762281170000^2 + \\ & \quad 4 \left(16^2 + 16^2 \right) \left(93.56856762281170000^2 - 2 \times 16 \times 16 \right) \\ & \quad (16 + 8) \left((16 - 8) \ 93.56856762281170000^2 \right) \Big) = \\ & \quad \frac{1}{4 \times 32} \Big(32 \ 768 \times 93.56856762281170000^2 + \\ & \quad 1536 \times 16^2 \left(-512 + 93.56856762281170000^2 \right) 93.56856762281170000^2 + \\ & \quad 512 \left(2^4 \times 32^2 + \left(32 + 16 \ e^{-360^\circ} + 16 \ e^{360^\circ} \right)^2 \right) \Big) \end{aligned}$$

$$\begin{aligned} &\frac{1}{32 \times 4} \Big(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2 \pi} + 16 \ e^{-2 \pi} \right)^2 \right) 8 \times 2 \right) + \\ & \quad 64 \times 64 \ (16 - 8) \ 93.56856762281170000^2 + \\ & \quad 4 \left(16^2 + 16^2 \right) \left(93.56856762281170000^2 - 2 \times 16 \times 16 \right) \\ & \quad (16 + 8) \left((16 - 8) \ 93.56856762281170000^2 \right) \Big) = \\ & \quad \frac{1}{4 \times 32} \Big(32 \ 768 \times 93.56856762281170000^2 + \\ & \quad 1536 \times 16^2 \left(-512 + 93.56856762281170000^2 \right) \ 93.56856762281170000^2 + \\ & \quad 512 \left(2^4 \times 32^2 + \left(32 + 16 \ e^{-2 i \log(-1)} + 16 \ e^{2 i \log(-1)} \right)^2 \right) \Big) \end{aligned}$$

$$\frac{1}{32 \times 4} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 (16 - 8) 93.56856762281170000^2 + 4 (16^2 + 16^2) (93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2) \right) = \frac{1}{32 \times 4} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \exp^{2\pi}(z) + 16 \exp^{-2\pi}(z) \right)^2 \right) 8 \times 2 \right) + 64 \times 64 (16 - 8) 93.56856762281170000^2 + 4 (16^2 + 16^2) (93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) (16 + 8) ((16 - 8) (16 + 8) ((16 - 8) (16 + 8) ((16 + 8) (16 + 8) ((16 + 8) (16 + 8) ((16 + 8) ((16 + 8) ((16 + 8) ((16 + 8) ((16 + 8) ((16 + 8) ((16 + 8) ((16 + 8) ((16 + 8) ($$

Series representations

$$\begin{aligned} &\frac{1}{32 \times 4} \Big(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + \\ & 64 \times 64 \ (16 - 8) \ 93.56856762281170000^2 + \\ & 4 \ (16^2 + 16^2) \ (93.56856762281170000^2 - 2 \times 16 \times 16) \\ & (16 + 8) \ ((16 - 8) \ 93.56856762281170000^2) \Big) = \\ & 5.9604644775390625 \times 10^{-8} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{-16 \sum_{k=0}^{\infty} (-1)^k / (1+2k)} \\ & \left(1.71798691840000000 \times 10^{10} + \right) \\ & 6.8719476736000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{8 \sum_{k=0}^{\infty} (-1)^k / (1+2k)} + \\ & 3.71958895314365707 \times 10^{18} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{16 \sum_{k=0}^{\infty} (-1)^k / (1+2k)} + \\ & 6.8719476736000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{24 \sum_{k=0}^{\infty} (-1)^k / (1+2k)} + \\ & 1.71798691840000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{32 \sum_{k=0}^{\infty} (-1)^k / (1+2k)} \end{aligned}$$

+

+

$$\begin{split} &\frac{1}{32 \times 4} \Big(32 \left(\big(32^2 \times 2^4 + \big(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \big)^2 \big) 8 \times 2 \big) + \\ & 64 \times 64 \ (16 - 8) \ 93.56856762281170000^2 + \\ & 4 \ (16^2 + 16^2) \ \big(93.56856762281170000^2 - 2 \times 16 \times 16 \big) \\ & (16 + 8) \ \big((16 - 8) \ 93.56856762281170000^2 \big) \big) = \\ & 5.9604644775390625 \times 10^{-8} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{-16 \sum_{k=1}^{\infty} \tan^{-1} \big(1/F_{1+2,k} \big)} \\ & \left(1.71798691840000000 \times 10^{10} + \right) \\ & 6.8719476736000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{16 \sum_{k=1}^{\infty} \tan^{-1} \big(1/F_{1+2,k} \big)} + \\ & 6.8719476736000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{16 \sum_{k=1}^{\infty} \tan^{-1} \big(1/F_{1+2,k} \big)} + \\ & 6.8719476736000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{24 \sum_{k=1}^{\infty} \tan^{-1} \big(1/F_{1+2,k} \big)} + \\ & 1.71798691840000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{32 \sum_{k=1}^{\infty} \tan^{-1} \big(1/F_{1+2,k} \big)} \right) \end{split}$$

$$\begin{aligned} &\frac{1}{32 \times 4} \Big(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + \\ & 64 \times 64 \ (16 - 8) \ 93.56856762281170000^2 + \\ & 4 \ \left(16^2 + 16^2 \right) \left(93.56856762281170000^2 - 2 \times 16 \times 16 \right) \\ & (16 + 8) \ \left((16 - 8) \ 93.56856762281170000^2 \right) \Big) = \\ & 5.9604644775390625 \times 10^{-8} \left(\sum_{k=0}^{\infty} \frac{(-1 + k)^2}{k!} \right)^{-16 \sum_{k=0}^{\infty} (-1)^k / (1 + 2k)} \\ & \left(1.71798691840000000 \times 10^{10} + \right) \\ & 6.8719476736000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{(-1 + k)^2}{k!} \right)^{8 \sum_{k=0}^{\infty} (-1)^k / (1 + 2k)} + \\ & 6.8719476736000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{(-1 + k)^2}{k!} \right)^{16 \sum_{k=0}^{\infty} (-1)^k / (1 + 2k)} + \\ & 6.8719476736000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{(-1 + k)^2}{k!} \right)^{24 \sum_{k=0}^{\infty} (-1)^k / (1 + 2k)} + \\ & 1.71798691840000000 \times 10^{10} \left(\sum_{k=0}^{\infty} \frac{(-1 + k)^2}{k!} \right)^{32 \sum_{k=0}^{\infty} (-1)^k / (1 + 2k)} \right) \end{aligned}$$

n! is the factorial function

 F_n is the n^{th} Fibonacci number

+

+

Integral representations

$$\begin{aligned} &\frac{1}{32 \times 4} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + \\ & 64 \times 64 \ (16 - 8) \ 93.56856762281170000^2 + \\ & 4 \ \left(16^2 + 16^2 \right) \left(93.56856762281170000^2 - 2 \times 16 \times 16 \right) \\ & (16 + 8) \ \left((16 - 8) \ 93.56856762281170000^2 \right) \right) = \\ & 2.217047782625947633 \times 10^{11} + 1024 \ e^{-32/3} \ \int_0^\infty \sin^3(t)/t^3 \ dt + \\ & 4096 \ e^{-16/3} \ \int_0^\infty \sin^3(t)/t^3 \ dt + 4096 \ e^{16/3} \ \int_0^\infty \sin^3(t)/t^3 \ dt + 1024 \ e^{32/3} \ \int_0^\infty \sin^3(t)/t^3 \ dt \end{aligned}$$

$$\begin{aligned} &\frac{1}{32 \times 4} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + \\ & 64 \times 64 \ (16 - 8) \ 93.56856762281170000^2 + \\ & 4 \ \left(16^2 + 16^2 \right) \left(93.56856762281170000^2 - 2 \times 16 \times 16 \right) \\ & (16 + 8) \ \left((16 - 8) \ 93.56856762281170000^2 \right) \right) = \\ & 2.217047782625947633 \times 10^{11} + 1024 \ e^{-160/11 \ \int_0^\infty \sin^6(t)/t^6 \ dt} + \\ & 4096 \ e^{-80/11 \ \int_0^\infty \sin^6(t)/t^6 \ dt} + 4096 \ e^{80/11 \ \int_0^\infty \sin^6(t)/t^6 \ dt} + 1024 \ e^{160/11 \ \int_0^\infty \sin^6(t)/t^6 \ dt} \end{aligned}$$

$$\frac{1}{32 \times 4} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 (16 - 8) 93.56856762281170000^2 + 4 (16^2 + 16^2) (93.56856762281170000^2 - 2 \times 16 \times 16) (16 + 8) ((16 - 8) 93.56856762281170000^2) \right) = 2.217047782625947633 \times 10^{11} + 1024 e^{-1536/115} \int_0^\infty \sin^5(t)/t^5 dt + 4096 e^{-768/115} \int_0^\infty \sin^5(t)/t^5 dt + 1024 e^{1536/115} \int_0^\infty \sin^5(t)/t^5 dt \right)$$

From which:

where

 $731\zeta(3) - 876 \approx 2.703596209663$

Input interpretation

$$\begin{array}{c} \frac{1}{128} \\ \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) \times 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.56856762^2 + 4 \left(16 + 8 \right) \left(\left(16^2 + 16^2 \right) \left(93.56856762^2 - 2 \times 16 \times 16 \right) \right) \\ \left(8 \times 93.56856762^2 \right) \right) (731 \ \zeta (3) - 876) \end{array}$$

 $\zeta(s)$ is the Riemann zeta function

Result 6.00199994...×10¹¹

 $6.00199994...*10^{11}$ result almost equal to the value of Sneutrino mass as possible heavy Dark Matter particle $\approx 6.002*10^{11}$ eV

The study of this function provides the following representations:

Alternative representations

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) (16 + 8) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \ \zeta(3) - 876) = \frac{1}{128} \left(32 \ 768 \times 93.5686^2 + 1536 \times 16^2 \left(-512 + 93.5686^2 \right) \right) \\ & 93.5686^2 + 512 \left(2^4 \times 32^2 + \left(32 + 16 \ e^{-2\pi} + 16 \ e^{2\pi} \right)^2 \right) \right) (-876 + 731 \ \zeta(3, 1)) \end{aligned}$$

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \ \zeta(3) - 876) = \frac{1}{128} \left(-876 + 731 \ S_{2,1}(1) \right) \\ & \left(32768 \times 93.5686^2 + 1536 \times 16^2 \left(-512 + 93.5686^2 \right) 93.5686^2 + \\ & 512 \left(2^4 \times 32^2 + \left(32 + 16 \ e^{-2\pi} + 16 \ e^{2\pi} \right)^2 \right) \right) \end{aligned}$$

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \ \zeta(3) - 876) = \frac{1}{128} \left(-876 - \frac{731 \ \text{Li}_3(-1)}{\frac{3}{4}} \right) \\ & \left(32768 \times 93.5686^2 + 1536 \times 16^2 \left(-512 + 93.5686^2 \right) 93.5686^2 + \\ & 512 \left(2^4 \times 32^2 + \left(32 + 16 \ e^{-2\pi} + 16 \ e^{2\pi} \right)^2 \right) \right) \end{aligned}$$

 $\zeta(s, a)$ is the generalized Riemann zeta function

 $S_{n,p}(x)$ is the Nielsen generalized polylogarithm function

Series representations

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \, e^{2\pi} + 16 \, e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \, \zeta(3) - 876) = 748\,544 \, e^{-4\pi} \left(1 + 4 \, e^{2\pi} + 2.16509 \times 10^8 \, e^{4\pi} + 4 \, e^{6\pi} + e^{8\pi} \right) \\ & \left(-1.19836 + \sum_{k=1}^{\infty} \frac{1}{k^3} \right) \end{aligned}$$

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \, e^{2\pi} + 16 \, e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \, \zeta(3) - 876) = 998 \, 059. \ e^{-4\pi} \left(1 + 4 \, e^{2\pi} + 2.16509 \times 10^8 \, e^{4\pi} + 4 \, e^{6\pi} + e^{8\pi} \right) \\ & \left(-0.898769 - \sum_{k=1}^{\infty} \frac{(-1)^k}{k^3} \right) \end{aligned}$$

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \, e^{2\pi} + 16 \, e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \, \zeta(3) - 876) = 855 \, 479. \, e^{-4\pi} \left(1 + 4 \, e^{2\pi} + 2.16509 \times 10^8 \, e^{4\pi} + 4 \, e^{6\pi} + e^{8\pi} \right) \\ & \left(-1.04856 + \sum_{k=0}^{\infty} \frac{1}{(1+2\,k)^3} \right) \end{aligned}$$

Integral representations

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \, e^{2\pi} + 16 \, e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \, \zeta(3) - 876) = -\frac{1}{\Gamma(3)} 897 \, 024 \, e^{-4\pi} \\ & \left(1 + 4 \, e^{2\pi} + 2.16509 \times 10^8 \, e^{4\pi} + 4 \, e^{6\pi} + e^{8\pi} \right) \\ & \left(\Gamma(3) - 0.834475 \, \int_0^\infty \frac{t^2}{-1 + \mathcal{A}^t} \, dt \right) \end{aligned}$$

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \, e^{2\pi} + 16 \, e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \zeta(3) - 876) = -\frac{1}{\Gamma(3)} 897 \, 024 \, e^{-4\pi} \\ & \left(1 + 4 \, e^{2\pi} + 2.16509 \times 10^8 \, e^{4\pi} + 4 \, e^{6\pi} + e^{8\pi} \right) \left(\Gamma(3) - 1.11263 \, \int_0^\infty \frac{t^2}{1 + \mathcal{A}^t} \, dt \right) \end{aligned}$$

$$\begin{aligned} &\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left(8 \times 93.5686^2 \right) \right) \\ & (731 \zeta(3) - 876) = -\frac{1}{\Gamma(3)} 897 \, 024 \ e^{-4\pi} \\ & \left(1 + 4 \ e^{2\pi} + 2.16509 \times 10^8 \ e^{4\pi} + 4 \ e^{6\pi} + e^{8\pi} \right) \\ & \left(\Gamma(3) - 0.476843 \int_0^\infty t^2 \operatorname{csch}(t) \ dt \right) \end{aligned}$$

We obtain also:

 $\begin{array}{l} (1/128*1/(728+1/8+\pi^{2}+2*2^{(1/3)}))(([(((((32)((((32^{2}*2^{4}+(32+16*e^{(2\pi)}+16*e^{(-2\pi)})^{2})*8*2))))+64*64*(16-8)*93.568567^{2}+4(16+8)(16^{2}+16^{2})*((93.568567^{2}-2*16*16))(16-8)*93.568567^{2})))]))\\ \end{array}$

Input interpretation

$$\begin{pmatrix} \frac{1}{128} \times \frac{1}{728 + \frac{1}{8} + \pi^2 + 2\sqrt[3]{2}} \\ (32\left(\left(32^2 \times 2^4 + \left(32 + 16e^{2\pi} + 16e^{-2\pi}\right)^2\right) \times 8 \times 2\right) + 64 \times 64(16 - 8) \times 93.568567^2 + 4(16 + 8)\left(\left(16^2 + 16^2\right)\left(93.568567^2 - 2 \times 16 \times 16\right)\right)\left((16 - 8) \times 93.568567^2\right)\right)$$

Result

 $2.997924... \times 10^{8}$

 $2.997924....*10^8 \approx c = speed of light$

The study of this function provides the following representations:

Alternative representations

$$\begin{array}{l} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2 \pi} + 16 \ e^{-2 \pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \ (16 - 8) \ 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left((16 - 8) \ 93.5686^2 \right) \right) \right) \right) \\ \left(128 \left(728 + \frac{1}{8} + \pi^2 + 2 \ \sqrt[3]{2} \right) \right) = \\ \left(32768 \times 93.5686^2 + 1536 \times 16^2 \left(-512 + 93.5686^2 \right) 93.5686^2 + \\ & 512 \left(2^4 \times 32^2 + \left(32 + 16 \ e^{-360^\circ} + 16 \ e^{360^\circ} \right)^2 \right) \right) \right) \\ \left(128 \left(728 + 2 \ \sqrt[3]{2} + \frac{1}{8} + (180^\circ)^2 \right) \right) \right)$$

$$\begin{array}{l} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2 \pi} + 16 \ e^{-2 \pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \ (16 - 8) \ 93.5686^2 + \\ & 4 \ \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left((16 - 8) \ 93.5686^2 \right) \right) \right) \\ & \left(128 \left(728 + \frac{1}{8} + \pi^2 + 2 \ \sqrt[3]{2} \right) \right) = \\ & \left(32768 \times 93.5686^2 + 1536 \times 16^2 \left(-512 + 93.5686^2 \right) \ 93.5686^2 + \\ & 512 \left(2^4 \times 32^2 + \left(32 + 16 \ e^{-2 i \log(-1)} + 16 \ e^{2 i \log(-1)} \right)^2 \right) \right) \right) \\ & \left(128 \left(728 + 2 \ \sqrt[3]{2} + \frac{1}{8} + \left(-i \log(-1) \right)^2 \right) \right) \right) \end{array}$$

$$\begin{split} & \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \ (16 - 8) \ 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) (16 + 8) \left((16 - 8) \ 93.5686^2 \right) \right) \middle/ \\ & \left(128 \left(728 + \frac{1}{8} + \pi^2 + 2 \ \sqrt[3]{2} \right) \right) = \\ & \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ \exp^{2\pi}(z) + 16 \ \exp^{-2\pi}(z) \right)^2 \right) 8 \times 2 \right) + \\ & 64 \times 64 \ (16 - 8) \ 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) (16 + 8) \left((16 - 8) \ 93.5686^2 \right) \right) \middle/ \\ & \left(128 \left(728 + \frac{1}{8} + \pi^2 + 2 \ \sqrt[3]{2} \right) \right) \ \text{for } z = 1 \end{split}$$

Integral representations

$$\begin{aligned} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \ (16 - 8) \ 93.5686^2 + \\ & 4 \ \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) (16 + 8) \left((16 - 8) \ 93.5686^2 \right) \right) \middle/ \\ & \left(128 \left(728 + \frac{1}{8} + \pi^2 + 2 \ \sqrt[3]{2} \right) \right) = \\ & \left(512 \ e^{-8 \int_0^\infty \sin(t)/t \ dt} \left(1 + 4 \ e^{4 \int_0^\infty \sin(t)/t \ dt} + 2.16509 \times 10^8 \ e^{8 \int_0^\infty \sin(t)/t \ dt} + \\ & 4 \ e^{12 \int_0^\infty \sin(t)/t \ dt} + e^{16 \int_0^\infty \sin(t)/t \ dt} \right) \right) \middle/ \left(365.322 + 2 \left(\int_0^\infty \frac{\sin(t)}{t} \ dt \right)^2 \right) \end{aligned}$$

$$\begin{aligned} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 8 \times 2 \right) + 64 \times 64 \left(16 - 8 \right) 93.5686^2 + \\ & 4 \left(16^2 + 16^2 \right) \left(93.5686^2 - 2 \times 16 \times 16 \right) \left(16 + 8 \right) \left((16 - 8) \ 93.5686^2 \right) \right) \middle/ \\ & \left(128 \left(728 + \frac{1}{8} + \pi^2 + 2 \ \sqrt[3]{2} \right) \right) = \\ & \left(512 \ e^{-8 \times \int_0^\infty 1/(1+t^2)dt} \left(1 + 4 \ e^{4 \times \int_0^\infty 1/(1+t^2)dt} + 2.16509 \times 10^8 \ e^{8 \times \int_0^\infty 1/(1+t^2)dt} + \\ & 4 \ e^{12 \times \int_0^\infty 1/(1+t^2)dt} + e^{16 \times \int_0^\infty 1/(1+t^2)dt} \right) \right) \middle/ \left(365.322 + 2 \left(\int_0^\infty \frac{1}{1+t^2} \ dt \right)^2 \right) \end{aligned}$$

$$\begin{array}{l} \left(32\left(\left(32^{2} \times 2^{4} + \left(32 + 16\ e^{2\pi} + 16\ e^{-2\pi}\right)^{2}\right)8 \times 2\right) + 64 \times 64\ (16 - 8)\ 93.5686^{2} + \\ & 4\left(16^{2} + 16^{2}\right)\left(93.5686^{2} - 2 \times 16 \times 16\right)\left(16 + 8\right)\left((16 - 8)\ 93.5686^{2}\right)\right) \right/ \\ & \left(128\left(728 + \frac{1}{8} + \pi^{2} + 2\ \sqrt[3]{2}\right)\right) = \\ & \left(512\ e^{-16\ \int_{0}^{1}\sqrt{1-t^{2}}\ dt}\left(1 + 4\ e^{8\ \int_{0}^{1}\sqrt{1-t^{2}}\ dt} + 2.16509 \times 10^{8}\ e^{16\ \int_{0}^{1}\sqrt{1-t^{2}}\ dt} + \\ & 4\ e^{24\ \int_{0}^{1}\sqrt{1-t^{2}}\ dt} + e^{32\ \int_{0}^{1}\sqrt{1-t^{2}}\ dt}\right)\right) \right/ \left(365.322 + 8\left(\int_{0}^{1}\sqrt{1-t^{2}}\ dt\right)^{2}\right) \end{array}$$

And again, after some calculations:

 $(1/2(\sqrt{((1/128*1/(728+1/8+\pi^2+2*2^{(1/3)}))(([((((32)(((32^2*2^4+(32+16*e^{(2\pi)}+16*e^{(2\pi)})^2)*8*2))))+64*64*8*93.568567^2+4(24)(16^2+16^2)*(93.568567^2-2*16*16)8*93.568567^2)))])))-2e+\pi-2\Phi))^{2}-4+\Phi$

Input interpretation

$$\left(\frac{1}{2} \left(\sqrt{\left(\left(\frac{1}{128} \times \frac{1}{728 + \frac{1}{8} + \pi^2 + 2\sqrt[3]{2}} \right) (32 \left((32^2 \times 2^4 + (32 + 16 e^{2\pi} + 16 e^{-2\pi})^2 \right) \times 8 \times 2 \right) + 64 \times 64 \times 8 \times 93.568567^2 + 4 \times 24 \left((16^2 + 16^2) \left(93.568567^2 - 2 \times 16 \times 16 \right) \right) \\ \left(8 \times 93.568567^2 \right) \right) \right) - 2 e + \pi - 2 \Phi \right) \right)^2 - 4 + \Phi$$

 Φ is the golden ratio conjugate

Result 4096.0484... $4096.0484... \approx 4096 = 64^2$

 $27 \operatorname{sqrt}((1/2(\sqrt{((1/128*1/(728+1/8+\pi^2+2*2^{(1/3)}))(([(((((32)((((32^2*2^4+(32+16*e^{(2\pi)+16*e^{(-2\pi)})^2)*8*2))))+4096*8*93.56856^2+4(24)*512*(93.56856^2-2*16*16)8*93.56856^2)))]))))-2e+\pi-2\Phi))^2-4+\Phi)+1$

Input interpretation

$$27 \sqrt{\left(\left(\frac{1}{2}\left(\sqrt{\left(\left(\frac{1}{128} \times \frac{1}{728 + \frac{1}{8} + \pi^2 + 2\sqrt[3]{2}}\right)(32\left((32^2 \times 2^4 + (32 + 16e^{2\pi} + 16e^{2\pi}$$

 Φ is the golden ratio conjugate

Result

1729.010... 1729.010....

This result is very near to the mass of candidate glueball $f_0(1710)$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. (1728 = $8^2 * 3^3$) The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

Input interpretation

$$\left(27 \sqrt{\left(\left(\frac{1}{2} \left(\sqrt{\left(\left(\frac{1}{128} \times \frac{1}{728 + \frac{1}{8} + \pi^2 + 2\sqrt[3]{2}} \right) \right)} \right) (32 \left((32^2 \times 16 + (32 + 16e^{2\pi} + 16e^{-2\pi})^2 \right) \times 16 \right) + 4096 \times 8 \times 93.56856^2 + 4 \times 24 \times 512} (93.56856^2 - 512) (8 \times 93.56856^2)) \right) \right) - 2e + \pi - 2\Phi \right) \right)^2 - 4 + \Phi + 1 \right)^{-1} (1/15)$$

 Φ is the golden ratio conjugate

Result

1.6438159...

 $1.6438159.... \approx \zeta(2) = \frac{\pi^2}{6} = 1.644934...$ (trace of the instanton shape)

From the previous expression, we obtain also:

 $(1/128 [(((((32)((((32^2*2^4+(32+16*e^{(2\pi)}+16*e^{(-2\pi)})^2)*16))))+4096*8*)$ 93.56856762^2+4(16+8)*512*(((93.56856762^2-2*16*16))8*93.56856762^2)))])^11

Input interpretation

$$\left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^2\right) \times 16\right) + 4096 \times 8 \times 93.56856762^2 + 4 \left(16 + 8\right) \times 512 \left(93.56856762^2 - 2 \times 16 \times 16\right) \left(8 \times 93.56856762^2\right)\right) \right)^{11}$$

Result $6.4549924... \times 10^{124}$ $6.4549924...*10^{124}$

From which:

 $\frac{1}{(-e^{(2 + 2/e + \pi) \pi^{(3 - 3 e)} \sec(e \pi))((1/(1/128))((((32^{2*2^{4}+(32+16^{e^{(2\pi)}+16^{e^{(-2\pi)}})^{2})^{*}16))))+4096^{*}8^{*}}{93.56856762^{2}+4(16+8)^{*}512^{*}((93.56856762^{2}-2)^{2}+16^{*}16))8^{*}93.56856762^{2})))]^{1})^{1}}{3}$

where

 $-e^{2+2/e+\pi}\pi^{3-3e} \sec(e\pi) \approx 1.542380369766$

Input interpretation

$$-\frac{1}{e^{2+2/e+\pi}\pi^{3-3\,e}\sec(e\,\pi)} \left(1/\left(\frac{1}{128}\left(32\left(\left(32^2\times2^4+\left(32+16\,e^{2\pi}+16\,e^{-2\pi}\right)^2\right)\times16\right)+4096\times\right.\right.\right.\\\left.8\times93.56856762^2+4\left(16+8\right)\times512\left(93.56856762^2-2\times16\times16\right)\left(8\times93.56856762^2\right)\right)\right)^{11}\right)^{-}(1/3)$$

sec(x) is the secant function

Result

 $1.61625519...\times 10^{-42}$

1.61625519...*10⁻⁴²

The study of this function provides the following representations:

Alternative representations

$$-\left(\left(\left(\frac{1}{128}\left(32\left(\left(32^{2} \times 2^{4} + \left(32 + 16\ e^{2\pi} + 16\ e^{-2\pi}\right)^{2}\right)16\right) + 4096 \times 8 \times 93.5686^{2} + 4 \times 8 \times 93.5686^{2} \right) \\ \left(16 + 8\right)\left(512\left(93.5686^{2} - 2 \times 16 \times 16\right)\right)\right)^{11}$$

$$-\left(\left(\left(1\left/\left(\frac{1}{128}\left(32\left(\left(32^{2}\times2^{4}+\left(32+16\ e^{2\,\pi}+16\ e^{-2\,\pi}\right)^{2}\right)16\right)+\right.\right.\right.\right.\right.\right.\right.$$

$$\left.\left.\left.\left.\left.\left(16+8\right)\left(512\left(93.5686^{2}+4\times8\times93.5686^{2}\right)\right)\right)^{11}\left(1\right)^{11}\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{11}\right)^{11}\left(1\right)^{$$

$$-\left(\left(\left(\frac{1}{128}\left(32\left(\left(32^{2} \times 2^{4} + \left(32 + 16\ e^{2\pi} + 16\ e^{-2\pi}\right)^{2}\right)16\right) + 4096 \times 8 \times 93.5686^{2} + 4 \times 8 \times 93.5686^{2} \\ (16 + 8)\left(512\left(93.5686^{2} - 2 \times 16 \times 16\right)\right)\right)\right)^{11}$$

Series representations

$$\begin{split} - & \left(\left(\left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 16 \right) + 4096 \times \right. \right. \\ & \left. 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 \left(16 + 8 \right) \\ & \left(512 \left(93.5686^2 - 2 \times 16 \times 16 \right) \right) \right) \right)^{11} \right)^{\wedge} \\ & \left(1/3 \right) \right) / \left(e^{2 + 2/e + \pi} \pi^{3 - 3 \ e} \sec(e \ \pi) \right) \right) = \\ & \left. \frac{16777 216 \times 2^{2/3} \ e^{-2 - 2/e - \pi} \ \sqrt[3]{\frac{1}{(2.83782 \times 10^{13} + 131 \ 072 \ e^{-4\pi} \left(1 + e^{2\pi} \right)^4 \right)^{11}}} \ \pi^{-3 + 3 \ e} \right) \\ & \left. \sum_{k=1}^{\infty} \left(-1 \right)^k q^{-1 + 2k} \right] \end{split}$$

$$-\left(\left(\left(\frac{1}{128}\left(32\left(\left(32^{2}\times2^{4}+\left(32+16\ e^{2\pi}+16\ e^{-2\pi}\right)^{2}\right)16\right)+4096\times8\times93.5686^{2}+4\times8\times93.5686^{2}\right)\right)\right)^{11}$$
Multiple-argument formulas

$$\begin{split} - & \left(\left(\left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \, e^{2\pi} + 16 \, e^{-2\pi} \right)^2 \right) 16 \right) + \right. \right. \\ & \left. 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 \left(16 + 8 \right) \right. \\ & \left(512 \left(93.5686^2 - 2 \times 16 \times 16 \right) \right) \right)^{11} \right) \uparrow (1/3) \right) \right/ \\ & \left(e^{2+2/e+\pi} \, \pi^{3-3\,e} \, \sec(e\,\pi) \right) \right) = -33\,554\,432 \times 2^{2/3} \, e^{-2-2/e-\pi} \\ & \left. \sqrt[3]{\frac{1}{(2.83782 \times 10^{13} + 131\,072 \, e^{-4\pi} \left(1 + e^{2\pi} \right)^4 \right)^{11}} \\ & \pi^{-3+3\,e} \\ & T_e(\\ & \cos(\pi)) \end{split}$$

$$-\left(\left(\left(\frac{1}{128}\left(32\left(\left(32^{2} \times 2^{4} + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^{2}\right)16\right) + 4096 \times 8 \times 93.5686^{2} + 4 \times 8 \times 93.5686^{2} (16 + 8) (512 \left(93.5686^{2} - 2 \times 16 \times 16\right)\right)\right)\right)^{11}\right) \land (1/3)\right) / (e^{2+2/e+\pi} \pi^{3-3e} \sec(e\pi)) = \frac{1}{\sec^{3}\left(\frac{e\pi}{3}\right)} 33\,554\,432 \times 2^{2/3}$$
$$e^{-2-2/e-\pi} \sqrt[3]{\frac{1}{(2.83782 \times 10^{13} + 131\,072\,e^{-4\pi}\,(1 + e^{2\pi})^{4})^{11}}} \pi^{-3+3e} \left(-4 + 3\sec^{2}\left(\frac{e\pi}{3}\right)\right)}$$

$$\begin{split} - \left(\left(\left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi} \right)^2 \right) 16 \right) + \right. \\ & \left. 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 \left(16 + 8 \right) \right. \\ & \left(512 \left(93.5686^2 - 2 \times 16 \times 16 \right) \right) \right)^{11} \right) \land (1/3) \right) \right/ \\ & \left(e^{2+2/e+\pi} \ \pi^{3-3 \ e} \ \sec(e \ \pi) \right) \right) = \frac{1}{\sec^2 \left(\frac{e \ \pi}{2} \right)} 33554 \ 432 \times 2^{2/3} \\ & \left. e^{-2-2/e-\pi} \ \sqrt[3]{\frac{1}{(2.83782 \times 10^{13} + 131072 \ e^{-4\pi} \left(1 + e^{2\pi} \right)^4 \right)^{11}} } \\ & \pi^{-3+3 \ e} \\ & \left(-2 + \sec^2 \left(\frac{e \ \pi}{2} \right) \right) \end{split}$$

 $T_n(x)$ is the Chebyshev polynomial of the first kind

We note that the result $1.61625519...*10^{-42}$ is equal to the Planck's electric inductance :

$$L_{\mathrm{P}}=rac{E_{\mathrm{P}}}{I_{\mathrm{P}}^2}=rac{m_{\mathrm{P}}l_{\mathrm{P}}^2}{q_{\mathrm{P}}^2}=\sqrt{rac{G\hbar}{16\pi^2arepsilon_0^2c^7}}$$

sqrt(((6.67408*10^-11 * 1.054571817*10^-34) / (16*π^2*(8.8541878176*10^-12)^2*(299792458)^7)))

Input interpretation

$$\sqrt{\frac{6.67408 \times 10^{-11} \times 1.054571817 \times 10^{-34}}{16 \,\pi^2 \, (8.8541878176 \times 10^{-12})^2 \times 299\,792\,458^7}}$$

Result $1.61623... \times 10^{-42}$ $1.61623...*10^{-42}$ From the initial expression, we obtain also:

 $(1/128 [(((((32)((((32^2*2^4+(32+16*e^{(2\pi)+16*e^{(-2\pi)})^2)*16}))))+4096*8*93.56856762^2+4(16+8)*512*((93.56856762^2-2*16*16))8*93.56856762^2)))])^{11*}(\log(2)/(16 e^{4} \log^{4}(3)))$

Input interpretation

$$\begin{pmatrix} \frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi} \right)^2 \right) \times 16 \right) + \\ 4096 \times 8 \times 93.56856762^2 + 4 \left(16 + 8 \right) \times 512 \\ \left(93.56856762^2 - 2 \times 16 \times 16 \right) \left(8 \times 93.56856762^2 \right) \right) \right)^{11} \times \frac{\log(2)}{16 e^4 \log^4(3)}$$

log(x) is the natural logarithm

Result

 $3.5159726... \times 10^{121}$

 $0.35159726...*10^{122} \approx \Lambda_0$

The observed value of ρ_{Λ} or Λ today is precisely the classical dual of its quantum precursor values ρ_Q , Λ_Q in the quantum very early precursor vacuum U_Q as determined by our dual equations. With regard the Cosmological constant, fundamental are the following results: $\Lambda = 2.846 * 10^{-122}$ and $\Lambda_Q = 0.3516 * 10^{122}$ (New Quantum Structure of the Space-Time - Norma G. SANCHEZ - arXiv:1910.13382v1 [physics.gen-ph] 28 Oct 2019)

The study of this function provides the following representations:

Alternative representations

$$\begin{aligned} \frac{1}{16 e^4 \log^4(3)} \\ &\left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^2\right) 16\right) + 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 (16 + 8) \left(512 \left(93.5686^2 - 2 \times 16 \times 16\right)\right)\right)\right)^{11} \log(2) = \frac{1}{16 e^4 \log_e^4(3)} \log_e(2) \left(\frac{1}{128} \left(32768 \times 93.5686^2 + 393216 \left(-512 + 93.5686^2\right) + 93.5686^2 + 512 \left(2^4 \times 32^2 + \left(32 + 16 e^{-2\pi} + 16 e^{2\pi}\right)^2\right)\right)\right)^{11} \end{aligned}$$

$$\begin{aligned} \frac{1}{16 e^4 \log^4(3)} \\ &\left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^2\right) 16\right) + 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 (16 + 8) \left(512 \left(93.5686^2 - 2 \times 16 \times 16\right)\right)\right)\right)^{11} \log(2) = \\ &\left(\log(a) \log_a(2) \left(\frac{1}{128} \left(32.768 \times 93.5686^2 + 393.216 \left(-512 + 93.5686^2\right) 93.5686^2 + 512 \left(2^4 \times 32^2 + \left(32 + 16 e^{-2\pi} + 16 e^{2\pi}\right)^2\right)\right)\right)^{11}\right) \right) \right) (16 e^4 (\log(a) \log_a(3))^4 \right) \end{aligned}$$

$$\frac{1}{16 e^4 \log^4(3)}$$

$$\left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^2\right) 16\right) + 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 (16 + 8) \left(512 \left(93.5686^2 - 2 \times 16 \times 16\right)\right)\right)\right)^{11}$$

$$\log(2) = \frac{1}{16 e^4 \left(2 \coth^{-1}(2)\right)^4} 2 \coth^{-1}(3)$$

$$\left(\frac{1}{128} \left(32768 \times 93.5686^2 + 393216 \left(-512 + 93.5686^2\right) 93.5686^2 + 512 \left(2^4 \times 32^2 + \left(32 + 16 e^{-2\pi} + 16 e^{2\pi}\right)^2\right)\right)\right)^{11}$$

Series representations

$$\frac{1}{16 e^4 \log^4(3)} \left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^2\right) 16\right) + 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 (16 + 8) \left(512 \left(93.5686^2 - 2 \times 16 \times 16\right)\right)\right)\right)^{11} \log(2) = \left(\left(2.83782 \times 10^{13} + 512 \left(16384 + \left(32 + 16 e^{-2\pi} + 16 e^{2\pi}\right)^2\right)\right)^{11} \left(2 i \pi \left\lfloor \frac{\arg(2 - x)}{2\pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (2 - x)^k x^{-k}}{k}\right)\right)\right) \right)$$

$$\left(2417851 639 229 258 349 412 352 e^4 \left(2 i \pi \left\lfloor \frac{\arg(3 - x)}{2\pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (3 - x)^k x^{-k}}{k}\right)^4\right) \text{ for } x < 0$$

$$\frac{1}{16 e^4 \log^4(3)} \left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^2\right) 16\right) + 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 \left(16 + 8\right) \left(512 \left(93.5686^2 - 2 \times 16 \times 16\right)\right)\right)\right)^{11} \log(2) = \left(\left(2.83782 \times 10^{13} + 512 \left(16384 + \left(32 + 16 e^{-2\pi} + 16 e^{2\pi}\right)^2\right)\right)^{11} \left(\log(z_0) + \left\lfloor \frac{\arg(2 - z_0)}{2\pi} \right\rfloor \left(\log\left(\frac{1}{z_0}\right) + \log(z_0)\right) - \sum_{k=1}^{\infty} \frac{(-1)^k \left(2 - z_0\right)^k z_0^{-k}}{k}\right)\right)\right) \right) \right) \right)$$

$$\left(2417851639229258349412352 e^4 \left(\log(z_0) + \left\lfloor \frac{\arg(3 - z_0)}{2\pi} \right\rfloor \left(\log\left(\frac{1}{z_0}\right) + \log(z_0)\right) - \sum_{k=1}^{\infty} \frac{(-1)^k \left(3 - z_0\right)^k z_0^{-k}}{k}\right)^4\right)\right)$$

$$\frac{1}{16 e^4 \log^4(3)} \left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^2\right) 16\right) + 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 (16 + 8) \left(512 \left(93.5686^2 - 2 \times 16 \times 16\right)\right)\right)\right)^{11} \log(2) = \left(\left(2.83782 \times 10^{13} + 512 \left(16384 + \left(32 + 16 e^{-2\pi} + 16 e^{2\pi}\right)^2\right)\right)^{11}\right) \left(2.83782 \times 10^{13} + 512 \left(16384 + \left(32 + 16 e^{-2\pi} + 16 e^{2\pi}\right)^2\right)\right)^{11}\right)^{11} \log(2) = \left(2i\pi \left\lfloor \frac{\pi - \arg\left(\frac{2}{z_0}\right) - \arg(z_0)}{2\pi} \right\rfloor + \log(z_0) - \sum_{k=1}^{\infty} \frac{(-1)^k (2 - z_0)^k z_0^{-k}}{k}\right)\right)\right) \right/ \left(2417851 639 229 258 349 412 352 e^4 \left(2i\pi \left\lfloor \frac{\pi - \arg\left(\frac{3}{z_0}\right) - \arg(z_0)}{2\pi} \right\rfloor + \log(z_0) - \sum_{k=1}^{\infty} \frac{(-1)^k (3 - z_0)^k z_0^{-k}}{k}\right)\right)\right)$$

Integral representations

$$\frac{1}{16 e^{4} \log^{4}(3)} \left(\frac{1}{128} \left(32 \left(\left(32^{2} \times 2^{4} + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^{2}\right) 16\right) + 4096 \times 8 \times 93.5686^{2} + 4 \times 8 \times 93.5686^{2} (16 + 8) \left(512 \left(93.5686^{2} - 2 \times 16 \times 16\right)\right)\right)\right)^{11} \log(2) = \frac{8.11296 \times 10^{31} e^{-4-44\pi} \left(1 + 4 e^{2\pi} + 2.16509 \times 10^{8} e^{4\pi} + 4 e^{6\pi} + e^{8\pi}\right)^{11} \int_{1}^{2} \frac{1}{t} dt}{\left(\int_{1}^{3} \frac{1}{t} dt\right)^{4}}$$

$$\begin{aligned} \frac{1}{16 \ e^4 \log^4(3)} \\ & \left(\frac{1}{128} \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2\pi} + 16 \ e^{-2\pi}\right)^2\right) 16\right) + 4096 \times 8 \times 93.5686^2 + 4 \times 8 \times 93.5686^2 (16 + 8) \left(512 \left(93.5686^2 - 2 \times 16 \times 16\right)\right)\right)\right)^{11} \log(2) = \\ & \left(\left(2.83782 \times 10^{13} + 512 \left(16384 + \left(32 + 16 \ e^{-2\pi} + 16 \ e^{2\pi}\right)^2\right)\right)^{11} i^3 \pi^3 \right) \\ & \int_{-i \ \infty + \gamma}^{i \ \infty + \gamma} \frac{\Gamma(-s)^2 \ \Gamma(1 + s)}{\Gamma(1 - s)} \ ds\right) \right) \\ & \left(302 \ 231 \ 454 \ 903 \ 657 \ 293 \ 676 \ 544 \ e^4 \left(\int_{-i \ \infty + \gamma}^{i \ \infty + \gamma} \frac{2^{-s} \ \Gamma(-s)^2 \ \Gamma(1 + s)}{\Gamma(1 - s)} \ ds\right)^4\right) \\ & \text{for } -1 < \gamma < 0 \end{aligned}$$

From this other equation:

$$\frac{2^{-5}}{4} \left\{ 16(Q_s + Q_c) \left(R_N^2 + R_D^2 + R_\delta^2 \right) \left(\frac{\eta}{\theta_4} \right)^2 - 8R_N (R_D + R_\delta) \left(Q_s - Q_c \right) \left(\frac{\eta}{\theta_3} \right)^2 \right\}$$

we consider:

$$N = D_1 = D_2 = D_3 = 32$$

 $D = \delta$
 $P = W = 2$; $Q_i = 8$; $Q_i = 16$; $R_i = 16$; $v = 1$

$$((\eta)/\theta_4)^2 = ((\eta)/\theta_3)^2 = 46.7842838114$$

and we obtain:

Input interpretation

$$\frac{1}{128} \begin{pmatrix} 16\,(16+8)\,(256+256+256)\times 46.7842838114^2 - \\ 8\times 16\times 32\times 8\times 46.7842838114^2 \end{pmatrix}$$

Result

 $\begin{array}{l} \textbf{4.48259934565503817885687808} \times 10^{6} \\ \textbf{4.48259934565503817885687808} \times 10^{6} \end{array}$

Dividing the two results, we obtain:

 $\begin{array}{l} 1/4.48259934565\times10^{6}(1/128\ [(((((32)((((32^{2}*2^{4}+(32+16^{*}e^{(2\pi)}+16^{*}e^{(-2\pi)})^{2})^{*}16))))+64^{*}64^{*}8^{*}93.56856762^{2}+4(16+8)512^{*}((93.56856762^{2}-2)^{2}+16^{*}16))8^{*}93.56856762^{2}))])\end{array}$

Input interpretation

 $\begin{array}{l} \displaystyle \frac{1}{4.48259934565 \times 10^6} \left(\frac{1}{128} \\ \left(32 \left(\left(32^2 \times 2^4 + \left(32 + 16 \ e^{2 \pi} + 16 \ e^{-2 \pi} \right)^2 \right) \times 16 \right) + 64 \times 64 \times 8 \times 93.56856762^2 + \\ \displaystyle 4 \left(16 + 8 \right) \left(512 \left(93.56856762^2 - 2 \times 16 \times 16 \right) \right) \left(8 \times 93.56856762^2 \right) \right) \right) \end{array}$

Result 49524.9715.... 49524.9715..... ≈ 49525

From the following Ramanujan taxicab numbers:

 $|35^{3} + |38^{3} = |72^{3} - |$ $|116|^{3} + |1468^{3} = |4258^{3} + |$ $|79|^{3} + 8|2^{3} = |0|0^{3} - |$ $|79|^{3} + 8|2^{3} = |0|0^{3} - |$

we note that:

 $11468 \times 4 + 1010 + 1729 + 791 + 135 = 49537$ $11468 \times 4 + 1010 + 1729 + 812 + 138 = 49561$ where

 $(11468 \times 4 + 1010 + 1729 + 791 + 135) - 12$

Input

 $(11\,468 \!\times\! 4 + 1010 + 1729 + 791 + 135) - 12$

Result

49525 49525

Or:

 $(11468 \times 4 + 1010 + 1729 + 812 + 138) - 36$

Input

 $(11468 \times 4 + 1010 + 1729 + 812 + 138) - 36$

Result

49525 49525

From the above expressions, after some calculations, we obtain:

 $\begin{array}{l} (1/4(\operatorname{sqrt}(1/4.48259934565\times10^{6}(1/128\\ [(((((32)((((32^{2}*2^{4}+(32+16^{*}e^{(2\pi)}+16^{*}e^{(-2\pi)}+16^{*}e^{(-2\pi)})^{2})^{*}16))))+64^{*}64^{*}8^{*}93.56856762^{2}+4(16+8)512^{*}((93.56856762^{2}-2^{*}16^{*}16))8^{*}93.56856762^{2})))])+34))^{2}-18+\Phi \end{array}$

Input interpretation

$$\begin{pmatrix} \frac{1}{4} \left(\sqrt{\left(\frac{1}{4.48259934565 \times 10^{6}} \left(\frac{1}{128} \left(32 \left(\left(32^{2} \times 2^{4} + \left(32 + 16 e^{2\pi} + 16 e^{-2\pi}\right)^{2}\right) \times 16\right) + 64 \times 64 \times 8 \times 93.56856762^{2} + 4 \left(16 + 8\right) \left(512 \left(93.56856762^{2} - 2 \times 16 \times 16\right)\right) \left(8 \times 93.56856762^{2}\right) \right) \end{pmatrix} + 34 \end{pmatrix} \right)^{2} - 18 + \Phi$$

 Φ is the golden ratio conjugate

Result 4095.98254... $4095.98254... \approx 4096 = 64^2$

```
\begin{array}{l} 27*\sqrt{((1/4(\operatorname{sqrt}(1/4.48259934565\times10^{6}(1/128\fill(((32)((((32^{2}*2^{4}+(32+16^{*}e^{(2\pi)}+16^{*}e^{(-2\pi)})^{2})^{*}16))))+64^{*}64^{*}8^{*}93.56856762^{2}+4(16+8)512^{*}((93.56856762^{2}-2^{2}+16^{*}16))8^{*}93.56856762^{2})))])+34))^{2}-18+\Phi)+1 \end{array}
```

Input interpretation

$$27 \sqrt{\left(\left(\frac{1}{4}\left(\sqrt{\left(\frac{1}{4.48259934565 \times 10^{6}}\right)^{2}}\right) + \frac{1}{128}\left(32\left(\left(32^{2} \times 2^{4} + \left(32 + 16\ e^{2\pi} + 16\ e^{-2\pi}\right)^{2}\right) \times 16\right)\right) + \frac{64 \times 64 \times 8 \times 93.56856762^{2} + 4}{4\left(16 + 8\right)\left(512\left(93.56856762^{2} - 2 \times 16 \times 16\right)\right)}\left(8 \times 93.56856762^{2}\right)\right)\right) + 34\right)^{2} - 18 + \Phi + 1$$

 Φ is the golden ratio conjugate

Result

1728.996317... 1728.996317.... ≈ 1729

This result is very near to the mass of candidate glueball $f_0(1710)$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. (1728 = $8^2 * 3^3$) The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

 $\begin{array}{l} (27\sqrt{((1/4(\operatorname{sqrt}(1/4.48259934565e+6(1/128 \\ [((((32)((((32^2*2^4+(32+16*e^2(2\pi)+16*e^2(-2\pi))^2)*16))))+64*64*8*93.56856762^2+4(16+8)512*((93.56856762^2-2*16*16))8*93.56856762^2)))])+34))^2-18+\Phi)+1)^{1/15} \end{array}$

Input interpretation

$$\left(27 \sqrt{\left(\left(\frac{1}{4} \left(\sqrt{\left(\frac{1}{4.48259934565 \times 10^6} \right)^2 \left(32 \left((32^2 \times 2^4 + (32 + 16 e^{2\pi} + 16 e^{-2\pi})^2 \right) \times 16 \right) + 64 \times 64 \times 8 \times 93.56856762^2 + 4 (16 + 8) (512 (93.56856762^2 - 2 \times 16 \times 16)) (8 \times 93.56856762^2 - 2 \times 16 \times 16)) (8 \times 93.56856762^2))) \right) + 34 \right) \right)^2 - 18 + \Phi + 1 \right)^{-} (1/15)$$

 Φ is the golden ratio conjugate

Result

1.6438149953...

1.6438149953..... $\approx \zeta(2) = \frac{\pi^2}{6} = 1.644934$... (trace of the instanton shape)

Acknowledgments

We would like to thank Professor **Augusto Sagnotti** theoretical physicist at Scuola Normale Superiore (Pisa – Italy) for his very useful explanations and his availability

References

RAMANUJAN - TWELVE LECTURES ON SUBJECTS SUGGESTED BY HIS LIFE AND WORK - *BY G. H. HARDY* - CAMBRIDGE AT THE UNIVERSITY PRESS - 1940

Open Descendants of $\mathbf{Z}_2 \times \mathbf{Z}_2$ Freely-Acting Orbifolds

I. Antoniadis, G. D'Appollonio, E. Dudas and A. Sagnotti - arXiv:hep-th/9907184v1 25 Jul 1999