Eliminate the Irrelevant to the Subject and Prove Algebraic Expressions Related to Beal's Conjecture

Zhang Tianshu

Email: chinazhangtianshu@126.com
xinshijizhang@hotmail.com
Nanhai West Oil Administrative Bureau, Zhanjiang city, China

Abstract

The subject of this article is to analyze and prove Beal's Conjecture. First, we classify A, B and C according to their respective parity, then, two types of $A^{X}+B^{Y}\neq C^{Z}$ are excluded, for they have nothing to do with the conjecture. Next, several types of $A^{X}+B^{Y}=C^{Z}$ under the necessary constraints are exemplified, where A, B, and C have at least one common prime factor. Secondly, divide $A^{X}+B^{Y}\neq C^{Z}$ under the necessary constraints into four inequalities under the known constraints, in order to make more detailed proofs, where A, B and C have not any common prime factor.

Then, expound the interrelation between an even number and a sum of two odd numbers in the symmetry, and draws four conclusions from this, which can be used as basis for judging certain results in the processes of proofs.

After that, two inequalities under the known constraints are proved by the mathematical induction.

Then again, two other inequalities under the known constraints are proved by the reduction to absurdity.

Finally, after compare $A^X + B^Y = C^Z$ and $A^X + B^Y \neq C^Z$ under necessary

constraints, the conclusion reached is that Beal's conjecture is tenable.

AMS subject classification: 11D41, 11D85 and 11D61

Keywords: Beal's conjecture; indefinite equation; inequalities; the symmetry; mathematical induction; reduction to absurdity

1. Introduction

Beal's conjecture states that if $A^{X}+B^{Y}=C^{Z}$, where A, B, C, X, Y and Z are positive integers, and X, Y and Z are all greater than 2, then A, B and C must have a common prime factor.

The conjecture was discovered by Andrew Beal in 1993. Later, it was announced in December 1997 issue of the Notices of the American Mathematical Society, [1]. However, it remains a conjecture that has neither been proved nor disproved.

The conjecture shows that whoever wants to solve it, must both enumerate $A^{X}+B^{Y}=C^{Z}$ in which case A, B and C have at least one common prime factor, and prove $A^{X}+B^{Y}\neq C^{Z}$ in which case A, B and C have no any common prime factor.

Let us consider limits of values of A, B, C, X, Y, and Z within the indefinite equation $A^{X}+B^{Y}=C^{Z}$ as the necessary constraints, in order to describe briefly related indefinite equations and inequalities after this.

2. The Selection On Combinations of Values of A, B and C

First, we classify A, B and C according to their respective parity, and then, the following two types of $A^{X}+B^{Y}\neq C^{Z}$ are excluded:

- 1) A, B and C are all odd numbers.
- 2) A, B and C are two even numbers and an odd number.

After that, merely continue to have following two types which contain $A^{X}+B^{Y}=C^{Z}$ under the necessary constraints:

- 1) A, B and C are all positive even numbers.
- 2) A, B and C are two positive odd numbers and one positive even number.

3. Exemplifying AX+BY=CZ Under the Necessary Constraints

For the indefinite equation $A^X+B^Y=C^Z$ satisfying either of the abovementioned two constraints, there are, in fact, many sets of solution with A, B and C as positive integers, as shown in the following example.

If A, B and C are all positive even numbers, let A=B=C=2, $X=Y \ge 3$ and Z=X+1, so $A^X+B^Y=C^Z$ is changed to $2^X+2^X=2^{X+1}$. Thus, $A^X+B^Y=C^Z$ in this case has one set of solution with A, B, and C as 2, 2 and 2, and A, B and C have one common prime factor 2.

In addition to this, let A=B=162, C=54, X=Y=3 and Z=4, so $A^X+B^Y=C^Z$ is changed to $162^3+162^3=54^4$. Thus, $A^X+B^Y=C^Z$ in this case has a set of solution with A, B, and C as 162, 162 and 54, and A, B, and C have common prime factors 2 and 3.

If A, B and C are two odd numbers and one even number, let A=C=3, B=6, X=Y=3 and Z=5, so $A^X+B^Y=C^Z$ is changed to $3^3+6^3=3^5$. Thus, $A^X+B^Y=C^Z$ in this case has one set of solution with A, B, and C as 3, 6 and 3, and A, B and C have one common prime factor 3.

In addition to this, let A=B=7, C=98, X=6, Y=7 and Z=3, so $A^X+B^Y=C^Z$ is changed to $7^6+7^7=98^3$. Thus, $A^X+B^Y=C^Z$ in this case has one set of solution with A, B, and C as 7, 7 and 98, and A, B and C have one common prime factor 7.

It follows that, there must be $A^{X}+B^{Y}=C^{Z}$ under the necessary constraints, and A, B and C have at least one common prime factor.

4. On $A^X+B^Y\neq C^Z$ and Divide It into Four Inequalities

According to the requirement of the conjecture, if we can prove that $A^{X}+B^{Y}\neq C^{Z}$ under the necessary constraints plus A, B and C without common prime factor, then, the conjecture must be true.

In which case A, B and C are all even numbers, they have the common prime factor 2, so A, B and C without common prime factor can only be two odd numbers and one even number.

If A, B, and C have not a common prime factor, then any two of them have not a common prime factor either, because if two have a common prime factor, you can extract the common prime factor, yet another does not have it. so this will lead up to $A^{X}+B^{Y}\neq C^{Z}$ according to the unique factorization theorem of natural number.

There is no doubt that following two inequalities, taken together, are sufficient to replace $A^{X}+B^{Y}\neq C^{Z}$ under the necessary constraints, where A, B and C are two odd numbers and one even number without common prime factor.

1)
$$A^{X}+B^{Y}\neq(2W)^{Z}$$
, i.e. $A^{X}+B^{Y}\neq2^{Z}W^{Z}$;

2)
$$A^{X}+(2W)^{Y}\neq C^{Z}$$
, i.e. $A^{X}+2^{Y}W^{Y}\neq C^{Z}$.

In above inequalities, A, B and C are positive odd numbers; $X \ge 3$, $Y \ge 3$, $Z \ge 3$ and $W \ge 1$; and three terms of each inequality have not a common prime factor.

Continue to divide $A^X+B^Y\neq 2^ZW^Z$ into the following two inequalities:

(1)
$$A^{X}+B^{Y}\neq 2^{Z}$$
;

(2)
$$A^{X}+B^{Y}\neq 2^{Z}O^{Z}$$
.

Continue to divide $A^{X}+2^{Y}W^{Y}\neq C^{Z}$ into the following two inequalities:

(3)
$$A^{X}+2^{Y}\neq C^{Z}$$
;

(4)
$$A^{X}+2^{Y}O^{Y}\neq C^{Z}$$
.

In the above-listed four inequalities, A, B, C and O are positive odd numbers; $X\geq 3$, $Y\geq 3$ and $Z\geq 3$; and three terms of each inequality have not a common prime factor.

Moreover, regard aforesaid constraints as the known constraints, in order to describe briefly related inequalities and indefinite equations after this.

As thus, proving $A^X+B^Y\neq C^Z$ under the necessary constraints is changed into proving the above-listed four inequalities under the known conditions.

5. Main Bases for Proving the Four Inequalities

Before the proof begins, it is necessary to state some basic concepts, in

order to consider them as the main basis for judging certain results in the processes of proofs.

First of all, on positive half line of the number axis, if any even point is taken as a center of symmetry, then, odd points on the left side of the center and odd points concerned on the right side are one-to-one bilateral symmetric, [2].

Like that, in the sequence of natural numbers, if any even number is taken as a center of symmetry, then, odd numbers less than the even number and part odd numbers more than the even number are one-to-one symmetric.

Take any of $2^{H-1}W^V$ as a center of symmetry, then, two distances between the center and two odd points/odd numbers on two sides of the center are two equilong line segments/same differences, where H, W and V are integers, and $W\ge 1$, $H\ge 3$ and $V\ge 1$. Accordingly, we can draw following four conclusions from the interrelation between the sum of these two odd numbers and an even number as the center of symmetry.

Conclusion 1. The sum of two odd numbers that are symmetric with each other is equal to the double of the even number as the center of symmetry, in the sequence of natural numbers.

Conclusion 2. The sum of two asymmetric odd numbers does not equal the double of the even number as the center of symmetry, in sequence of natural numbers.

Conclusion 3. If the sum of two odd numbers is equal to the double of an

even number, then, these two odd numbers are symmetric with the even number as the center of symmetry, in sequence of natural numbers.

Conclusion 4. If the sum of two odd numbers does not equal the double of an even number, then, these two odd numbers are not symmetric with the even number as the center of symmetry, in sequence of natural numbers.

Besides, any odd number can be represented as one of O^V , where O is an odd number, and $V\ge 1$. Also, when V=1 or 2, you can write O^V as $O^{1\sim 2}$.

In following paragraphs, the author will prove each of aforementioned four inequalities, one by one.

6. Proving $A^{X}+B^{Y}\neq 2^{Z}$ Under the Known Constraints

Consider 2^{Z-1} as the center of symmetry about related odd numbers to prove $A^{X}+B^{Y}\neq 2^{Z}$ under the known constraints by the mathematical induction.

(1) When Z-1=2, 3, 4, 5 and 6, bilateral symmetric odd numbers on two sides of each center of symmetry are successively listed below.

1⁶, 3, (2²), 5, 7, (2³), 9, 11, 13, 15, (2⁴), 17, 19, 21, 23, 25, 3³, 29, 31, (2⁵), 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, (2⁶), 65, 67, 69, 71, 73, 75, 77, 79, 3⁴, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 5³, 127

As listed above, it can be seen that there are no two of O^V with $V \ge 3$ on two positions of each pair of bilateral symmetric odd numbers, with 2^{Z-1} as each center of symmetry, where Z-1=2, 3, 4, 5 and 6.

So there are $A^X + B^Y \neq 2^3$, $A^X + B^Y \neq 2^4$, $A^X + B^Y \neq 2^5$, $A^X + B^Y \neq 2^6$ and $A^X + B^Y \neq 2^7$

under the known constraints, according to the preceding Conclusion 2.

- (2) When Z-1=K with K \geq 6, we suppose that there are $A^{X}+B^{Y}\neq 2^{K+1}$ under the known constraints.
- (3) When Z-1=K+1, we need to prove that there are $A^X+B^Y\neq 2^{K+2}$ under the known constraints.

Proof Suppose that A^X and B^Y are two bilateral symmetric odd numbers with 2^K as the center of symmetry, then, there are $A^{X}+B^{Y}=2^{K+1}$ according to the preceding Conclusion 1.

While, there are $A^{X}+B^{Y}\neq 2^{K+1}$ under the known constraints in line with second step of the mathematical induction. Namely there are no two of O^{V} with $V\geq 3$ on two positions of each pair of bilateral symmetric odd numbers, with 2^{K} as the center of symmetry. Because of this, we tentatively regard A^{X} as one of O^{V} with $V\geq 3$, and regard B^{Y} as one of $O^{1\sim 2}$, i.e. let $X\geq 3$ and Y=1 or Z. Taken one with another, if there are $Z^{K}+Z^{K+1}$, then, Z^{K} and Z^{K} and in this situation, at least one of Z^{K} and Z^{K} as the center of symmetry, and in this situation, at least one of Z^{K} and Z^{K} as equal to Z^{K} as the center of symmetry, and

If you change the above-mentioned constraints, even a little, then, it will inevitably lead to $A^{X}+B^{Y}\neq 2^{K+1}$. Vice versa, there are surely $A^{X}+B^{Y}=2^{K+1}$ under the known constraints except for Y, and Y=1 or 2.

Now that there are $A^{X}+B^{Y}=2^{K+1}$, then, there are also $A^{X}+(A^{X}+2B^{Y})=2^{K+2}$ under the known constraints except for Y, and Y=1 or 2, so A^{X} and $A^{X}+2B^{Y}$ are two bilateral symmetric odd numbers with 2^{K+1} as the center of symmetry,

according to the preceding Conclusion 3.

But then, since there are $A^{X}+B^{Y}\neq 2^{K+1}$ under the known constraints, thus there are $A^{X}+(A^{X}+2B^{Y})\neq 2^{K+2}$ under the known constraints, then, A^{X} and $A^{X}+2B^{Y}$ can only be two asymmetric odd numbers with 2^{K+1} as the center of symmetry, according to the preceding Conclusion 4.

In any case, the sum of $A^{X+}2B^{Y}$ are an odd number, so let $A^{X+}2B^{Y}$ are equal to O^{E} , where O is still an odd number; E is its exponent, and $E \ge 1$.

After the substitution, on the one hand, there are $A^X+(A^X+2B^Y)=A^X+O^E=2^{K+2}$ under the known constraints except for Y, and Y=1 or 2, then A^X and O^E are two bilateral symmetric odd numbers with 2^{K+1} as the center of symmetry, according to the preceding Conclusion 3.

On the other hand, there are $A^{X}+(A^{X}+2B^{Y})=A^{X}+O^{E}\neq 2^{K+2}$ under the known constraints, yet A^{X} and O^{E} are not two symmetric odd numbers with 2^{K+1} as the center of symmetry, according to the preceding Conclusion 4. In this case, whichever positive integer that E is equal to, it can all satisfy $A^{X}+O^{E}\neq 2^{K+2}$, according to the preceding Conclusion 2.

Since there are Y≥3 in $A^{X}+(A^{X}+2B^{Y})=A^{X}+O^{E}\neq 2^{K+2}$ and Y=1 or 2 in $A^{X}+(A^{X}+2B^{Y})=A^{X}+O^{E}=2^{K+2}$, as a consequence, $A^{X}+2B^{Y}$ within $A^{X}+(A^{X}+2B^{Y})=A^{X}+O^{E}\neq 2^{K+2}$ are greater than $A^{X}+2B^{Y}$ within $A^{X}+(A^{X}+2B^{Y})=A^{X}+O^{E}=2^{K+2}$. That is to say, O^{E} within $A^{X}+O^{E}\neq 2^{K+2}$ is greater than O^{E} within $A^{X}+O^{E}=2^{K+2}$. Since A^{X} within $A^{X}+O^{E}\neq 2^{K+2}$ and A^{X} within $A^{X}+O^{E}=2^{K+2}$ are identical one; in addition, O in $A^{X}+O^{E}\neq 2^{K+2}$ is equal to O in $A^{X}+O^{E}=2^{K+2}$, therefore, E in

 $A^{X}+O^{E}\neq 2^{K+2}$ is greater than E in $A^{X}+O^{E}=2^{K+2}$.

In $A^{X}+B^{Y}=2^{K+1}$ and $A^{X}+O^{E}=2^{K+2}$, except that the same symbol represents integers in the same range, both B and O represent all odd numbers ≥ 1 too.

Now that there are $A^{X}+B^{Y}=2^{K+1}$ under the known constraints except for Y, and Y=1 or 2, so, in the same way there are $A^{X}+O^{E}=2^{K+2}$ under the known constraints except for E, and E=1 or 2.

In general, in such an equality that consists of three terms, at least one of the three terms must have an exponent that is equal to 1 or 2. If the exponent of every term is greater than or equal to 3, then, this becomes an inequality.

In addition, it has been stated that E in $A^{X}+O^{E}\neq 2^{K+2}$ is greater than E in $A^{X}+O^{E}=2^{K+2}$, so we get that E in $A^{X}+O^{E}\neq 2^{K+2}$ is greater than or equal to 3, therefore, there are $A^{X}+O^{E}\neq 2^{K+2}$ under the known constraints.

Or rather, E in $A^{X+OE=2K+2}$ can only be equal to 1 or 2, since we have supposed $X\geq 3$ and $K\geq 6$ before this. Yet, for O^E within $A^{X+OE\neq 2K+2}$ under the known constraints, after you consider 2^{K+1} as the center of symmetry, if A^X and O^E lie not on two symmetric positions, then O^E can be any odd number out of the symmetry with A^X ; if A^X and O^E lie on two symmetric positions, then, it allows only $E\geq 3$ under the prerequisites of $X\geq 3$ and $K\geq 6$. If not, it can lead up to $A^{X+OE=2K+2}$.

For the inequality $A^{X}+O^{E}\neq 2^{K+2}$, substitute B for O, since both B and O can be every positive odd number; in addition, substitute Y for E, where E \geq 3, also Y \geq 3, then, we get $A^{X}+B^{Y}\neq 2^{K+2}$ under the known constraints.

In this proof, if B^Y is one of O^V with $V \ge 3$, then A^X is surely one of $O^{1\sim 2}$. Or A^X and B^Y are two of $O^{1\sim 2}$. And yet, conclusions concluded finally from these two cases are only one and the same with $A^{X}+B^{Y}\ne 2^{K+2}$ under the known constraints.

So much for, the author has proven that when Z-1=K+1 with K \geq 6, there are $A^{X}+B^{Y}\neq 2^{K+2}$ under the known constraints.

By the preceding way, we can continue to prove that when Z-1=K+2, K+3...up to each of integers more than and equal to K+2, there are $A^X+B^Y \neq 2^{K+3}$, $A^X+B^Y\neq 2^{K+4}$... up to general $A^X+B^Y\neq 2^Z$ under the known constraints.

7. Proving $A^X+B^Y\neq 2^ZO^Z$ Under the Known Constraints

Consider $2^{Z-1}O^Z$ as the center of symmetry about related odd numbers to prove successively $A^{X}+B^{Y}\neq 2^{Z}O^{Z}$ under the known constraints by the mathematical induction, and we emphasize $O \ge 3$.

- (1) When O=1, $2^{Z-1}O^Z$ i.e. 2^{Z-1} . As has been proved, there are $A^X+B^Y\neq 2^Z$ under the known constraints, in chapter 6 above.
- (2) When O=J and J is an odd number ≥ 1 , $2^{Z-1}O^Z$ i.e. $2^{Z-1}J^Z$, we suppose that there are $A^X+B^Y\neq 2^ZJ^Z$ under the known constraints.
- (3) When O=K and K=J+2, $2^{Z-1}O^Z$ i.e. $2^{Z-1}K^Z$, we need to prove that there are $A^{X}+B^{Y}\neq 2^{Z}K^{Z}$ under the known constraints.

Proof· Under the prerequisite of $X \ge 3$, suppose that A^X and B^Y are two bilateral symmetric odd numbers with $2^{Z-1}J^Z$ as the center of symmetry, then, there are $A^X + B^Y = 2^Z J^Z$ according to the preceding Conclusion 1.

And yet, there are $A^X+B^Y\neq 2^ZJ^Z$ under the known constraints in line with second step of the mathematical induction.

It is obvious that there are $A^X+B^Y=2^ZJ^Z$ under the known constraints except for Y, and Y=1 or 2. So, there are $A^X+[B^Y+2^Z(K^Z-J^Z)]=(A^X+B^Y)+2^ZK^Z-2^ZJ^Z=2^ZK^Z$ under the known constraints except for Y, and Y=1 or 2, and that A^X and $B^Y+2^Z(K^Z-J^Z)$ are two bilateral symmetric odd numbers with $2^{Z-1}K^Z$ as the center of symmetry, according to the preceding Conclusion 3.

But then, there are $A^X + B^Y \neq 2^Z J^Z$ under the known constraints. And from this, conclude $A^X + [B^Y + 2^Z (K^Z - J^Z)] = (A^X + B^Y) + 2^Z K^Z - 2^Z J^Z \neq 2^Z K^Z$ under the known constraints, so A^X and $B^Y + 2^Z (K^Z - J^Z)$ are not two symmetric odd numbers with $2^{Z-1}K^Z$ as the center of symmetry according to the preceding Conclusion 4.

In this case, let the odd number $B^{Y}+2^{Z}(K^{Z}-J^{Z})$ be equal to D^{E} , where D is a positive odd number; E is its exponent, and $E \ge 1$.

After the substitution, on the one hand, there are $A^{X+}[B^{Y+}2^{Z}(K^{Z-}J^{Z})]=$ $A^{X+}D^{E}=2^{Z}K^{Z}$ under the known constraints except for Y, and Y=1 or 2, and that A^{X} and D^{E} are two bilateral symmetric odd numbers with $2^{Z-1}K^{Z}$ as the center of symmetry, according to the preceding Conclusion 3.

On the other hand, there are $A^{X+}[B^{Y}+2^{Z}(K^{Z}-J^{Z})]=A^{X}+D^{E}\neq 2^{Z}K^{Z}$ under the known constraints, yet A^{X} and D^{E} are not two symmetric odd numbers with $2^{Z-1}K^{Z}$ as the center of symmetry, according to the preceding Conclusion 4. In that case, whichever positive integer that E is equal to, it can all satisfy $A^{X+}D^{E}\neq 2^{Z}K^{Z}$, according to the preceding Conclusion 2.

Since there are Y≥3 in $A^X+[B^Y+2^Z(K^Z-J^Z)]=A^X+D^E\neq 2^HK^Z$ and Y=1 or 2 in $A^X+[B^Y+2^Z(K^Z-J^Z)]=A^X+D^E=2^ZK^Z$, as a consequence, $B^Y+2^Z(K^Z-J^Z)$ within $A^X+[B^Y+2^Z(K^Z-J^Z)]=A^X+D^E\neq 2^ZK^Z$ are greater than $B^Y+2^Z(K^Z-J^Z)$ within $A^X+[B^Y+2^Z(K^Z-J^Z)]=A^X+D^E=2^ZK^Z$. That is to say, D^E within $A^X+D^E\neq 2^ZK^Z$ is greater than D^E within $A^X+D^E=2^ZK^Z$.

Since A^X within $A^X+D^E\neq 2^ZK^Z$ and A^X within $A^X+D^E=2^ZK^Z$ are identical one; in addition, D in $A^X+D^E\neq 2^ZK^Z$ is equal to D in $A^X+D^E=2^ZK^Z$, therefore, E in $A^X+D^E\neq 2^ZK^Z$ is greater than E in $A^X+D^E=2^ZK^Z$.

In $A^{X}+B^{Y}=2^{Z}J^{Z}$ and $A^{X}+D^{E}=2^{Z}(J+2)^{Z}$, except that the same symbol represents integers in the same range, both B and D represent all odd numbers ≥ 1 too.

Since there are $A^{X}+B^{Y}=2^{Z}J^{Z}$ under the known constraints except for Y, and Y=1 or 2, so, in the same way there are $A^{X}+D^{E}=2^{Z}(J+2)^{Z}$ under the known constraints except for E, and E=1 or 2, and we know that $2^{Z}(J+2)^{Z}$ i.e. $2^{Z}K^{Z}$.

In general, in such an equality that consists of three terms, at least one of the three terms must have an exponent that is equal to 1 or 2. If the exponent of every term is greater than or equal to 3, then, this becomes an inequality.

In addition, it has been stated that E in $A^{X}+D^{E}\neq 2^{Z}K^{Z}$ is greater than E in $A^{X}+D^{E}=2^{Z}K^{Z}$, so we get that E in $A^{X}+D^{E}\neq 2^{Z}K^{Z}$ is greater than and equal to 3, therefore, there are $A^{X}+D^{E}\neq 2^{Z}K^{Z}$ under the known constraints.

Or rather, E in $A^{X+}D^{E=}2^{Z}K^{Z}$ can only be equal to 1 or 2, since we have supposed $X\geq 3$ and $K\geq 6$ before this. Yet, for D^{E} within $A^{X+}D^{E}\neq 2^{Z}K^{Z}$ under the known constraints, after you consider $2^{Z-1}K^{Z}$ as the center of symmetry, if

 A^{X} and D^{E} lie not on two symmetric positions, then D^{E} can be any odd number out of the symmetry with A^{X} ; if A^{X} and D^{E} lie on two symmetric positions, then, it allows only $E \ge 3$ under the prerequisites of $X \ge 3$ and $K \ge 6$. If not, it can lead to $A^{X}+D^{E}=2^{Z}K^{Z}$.

For the inequality $A^{X}+D^{E}\neq 2^{Z}K^{Z}$, substitute B for D, since both B and D can be every positive odd numbers; in addition, substitute Y for E, where E \geq 3, also Y \geq 3, then, we get $A^{X}+B^{Y}\neq 2^{Z}K^{Z}$ under the known constraints.

In this proof, if B^Y is one of O^V with $V{\ge}3$, then, A^X is surely one of $O^{1{\sim}2}$. Or A^X and B^Y are two of $O^{1{\sim}2}$. And yet, conclusions concluded finally from there two cases are only one and the same with $A^X+B^Y\neq 2^ZK^Z$ under the known constraints.

To sum up, the author has proven $A^X+B^Y\neq 2^ZK^Z$ with K=J+2 under the known constraints.

By the preceding way, we can continue to prove that when O=J+4, J+6... up to each of odd numbers more than and equal J+4, there are $A^X+B^Y\neq 2^Z(J+4)^Z$, $A^X+B^Y\neq 2^Z(J+6)^Z...$ up to general $A^X+B^Y\neq 2^ZO^Z$ under the known constraints.

8. Proving $A^X+2^Y\neq C^Z$ Under the Known Constraints

In this chapter, the author will prove $A^{X+}2^{Y}\neq C^{Z}$ under the known constraints by reduction to absurdity, as listed below.

Proof Assume that $A^{X}+2^{Y}=C^{Z}$. Since it has $2^{Y}=2^{Y-1}+2^{Y-1}$, then $A^{X}+2^{Y}=C^{Z}$ is identically changed into $A^{X}+2^{Y-1}=C^{Z}-2^{Y-1}$.

Now that there are $A^{X}+2^{Y-1}=C^{Z}-2^{Y-1}$, this shows that A^{X} and C^{Z} lie on two

positions of symmetry with 2^{Y-1} as the center of symmetry. From this, conclude $A^{X}+C^{Z}=2^{Y}$ according to the preceding Conclusion 1.

Since get the equality $A^{X}+C^{Z}=2^{Y}$ from the assumption, then, for exponents X and Z in which case $Y\geq 3$, at least one of them is equal 1 or 2, to be able to ensure the equality to be true, according to the previous analysis in chapter 6. But, let one or two of X and Z be equal 1 or 2, this is impossible, because they are already determined to become $X\geq 3$, $Z\geq 3$ with $Y\geq 3$, as thus, it just means the assumption is wrong, and $A^{X}+2^{Y-1}=C^{Z}-2^{Y-1}$ is also wrong from the assumption, therefore, there can only are $A^{X}+2^{Y-1}\neq C^{Z}-2^{Y-1}$.

In reality, in which case of $X \ge 3$, $Z \ge 3$ and $Y \ge 3$, A^X and C^Z can only lie on two asymmetrical positions with 2^{Y-1} as the center of symmetry, because of this, there are $A^X + 2^{Y-1} \ne C^Z - 2^{Y-1}$.

After just rearrange $A^{X+2^{Y-1}} \neq C^{Z-2^{Y-1}}$, you get $A^{X+2^{Y}} \neq C^{Z}$. In other words, there are only $A^{X+2^{Y}} \neq C^{Z}$ under the known constraints.

9. Proving $A^X+2^YO^Y\neq C^Z$ Under the Known Constraints

The method of proof in this chapter is broadly similar to that in chapter 8. Namely prove $A^{X}+2^{Y}O^{Y}\neq C^{Z}$ under the known constraints by reduction to absurdity, *ut infra*.

Proof Assume that $A^{X}+2^{Y}O^{Y}=C^{Z}$. Since it has $2^{Y}O^{Y}=2^{Y-1}O^{Y}+2^{Y-1}O^{Y}$, then, $A^{X}+2^{Y}O^{Y}=C^{Z}$ is identically changed into $A^{X}+2^{Y-1}O^{Y}=C^{Z}-2^{Y-1}O^{Y}$.

Now that there are $A^{X}+2^{Y-1}O^{Y}=C^{Z}-2^{Y-1}O^{Y}$, this shows that A^{X} and C^{Z} lie on two positions of symmetry with $2^{Y-1}O^{Y}$ as the center of symmetry. From this,

conclude A^X+C^Z=2^YO^Y according to the preceding Conclusion 1.

Since get the equality $A^{X}+C^{Z}=2^{Y}O^{Y}$ from the assumption, then, for exponents X and Z in which case $Y\geq 3$, at least one of them is equal 1 or 2, to be able to ensure the equality to be true, according to the previous analysis in chapter 7. But, let one or two of X and Z be equal 1 or 2, this is impossible, because they are already determined to become $X\geq 3$, $Z\geq 3$ with $Y\geq 3$, as thus, it just means the assumption is wrong, and $A^{X}+2^{Y-1}O^{Y}=C^{Z}-2^{Y-1}O^{Y}$ is also wrong from the assumption, therefore, there can only are $A^{X}+2^{Y-1}O^{Y}\neq C^{Z}-2^{Y-1}O^{Y}$. In reality, in which case of $X\geq 3$, $Z\geq 3$ and $Y\geq 3$, A^{X} and C^{Z} can only lie on two asymmetrical positions with $2^{Y-1}O^{Y}$ as the center of symmetry, because of this,

After just rearrange $A^{X}+2^{Y-1}O^{Y}\neq C^{Z}-2^{Y-1}O^{Y}$, you get $A^{X}+2^{Y}O^{Y}\neq C^{Z}$. In other words, there are only $A^{X}+2^{Y}O^{Y}\neq C^{Z}$ under the known constraints.

there are $A^{X+2Y-1}O^{Y} \neq C^{Z-2Y-1}O^{Y}$.

10. Make A Summary and Reach the Conclusion

To sum up, the author has proven every kind of $A^{X+}B^{Y}\neq C^{Z}$ under the necessary constraints in chapters 6, 7, 8 and 9, where A, B and C are two odd numbers and one even number without common prime factor.

In addition, the author has given examples to have proven $A^{X}+B^{Y}=C^{Z}$ under the necessary constraints in chapter 3, where A, B and C have at least one common prime factor.

By this token, By making a comparison between $A^X+B^Y=C^Z$ and $A^X+B^Y\neq C^Z$ under the necessary constraints, we can reach the conclusion that an

indispensable prerequisite of the existence of $A^{X+}B^{Y}=C^{Z}$ under the necessary constraints is the very which A, B and C must have a common prime factor. The proof was thus brought to a close. As a consequence, Beal's conjecture is tenable.

P.S. Proving Fermat's Last Theorem from Proven Beal's Conjecture

Fermat's last theorem is a special case of Beal's conjecture, [3]. If Beal's conjecture turns out to be true, then let X=Y=Z, so $A^X+B^Y=C^Z$ are going to be changed to $A^X+B^X=C^X$.

Furthermore, you divide three terms of $A^{X}+B^{X}=C^{X}$ by greatest common divisor of these three terms, then you will get a set of solution of positive integers without common prime factor.

It is obvious that the conclusion is in contradiction with proven Beal's conjecture. As thus, we have proved Fermat's last theorem by reduction to absurdity as easy as pie.

References

[1] AMERICAN MATHEMATICAL SOCIETY- Beal prize

URL:https://www.ams.org/prizes-awards/paview.cgi?parent_id=41

[2] Symmetry in mathematics

URL:https://en.wikipedia.org/wiki/Symmetry_in_mathematics

[3] R. Daniel Mauldin, Fermat's Last Theorem: The Beal Conjecture and Prize Problem, NOTICES OF THE AMS in DECEMBER 1997, VOLUME 44, NMBER 11. URL: https://www.ams.org/notices/199711/beal.pdf