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Abstract Complex numbers are basic to exact science. When a flaw exists in6

complex numbers conceptual difficulties will arise for many subfields concerning7

wave mechanics. Kirchoff’s scalar diffraction theory of optics is already considered8

inconsistent. Nevertheless it is successfull in experiment. In our study we add the9

complex number inconsistency to Kirchoff diffraction and see what that does to10

the experimental value of the Kirchhoff diffraction theory. There are no a priori11

reasons to include or exclude the obtained inconsistent phase angle. Assuming that12

the inconsistent phase angle is excluded in nature, we were able to establish the13

theoretical possibility to observe a substantial diffraction despite a weak intensity14

point source and small wavelength.15
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1 Introduction20

Here a simple proof of a contradiction in complex numbers is delivered. Then its consequences21

for scalar Kirchhoff’s diffraction theory are researched more deeply. As far as the author knows,22

there is no existing literature for this kind of exercise. We consulted a few excellent textbooks23

about Kirchhoff’s diffraction. This is sufficient for our purpose.24

1.1 Motivation & preliminaries25

It is an interesting aspect of the presented mathematics that Kirchhoff’s diffraction theory is26

inconsistent [1, pg. 45-46]. At the same time, Kirchhoff’s scalar diffraction is experimentally27

successful [1, pg 46] and [2]. In [2, pg 482] a partial explanation, concerning geometry &28

dimensions of the experimental situation, is provided for this success. The presently studied29

smallness of the wavelength related to the aperture might provide the conditions where the30

diffraction according to Kirchhoff is correct [3] for a black screen. However, in [3] according31

to [4], there are boundary conditions that are unequal to Kirchhoff’s boundary conditions [2,32

pg 480]. Note btw that Kirchhoff’s theory cannot be seen as a first approximation [3] and [4].33

Because of small wavelength, the approximation in equation (3-25) of [1, chap 3] is not made.34

It is asked what an additional & new contradiction in complex numbers will possibly35

do to the success of Kirchhoff’s diffraction. First the contradiction in complex numbers is36

demonstrated. Secondly, the ambiguity in phase angle is incorporated in Kirchhoff’s diffraction.37

In the discussion we draw the consequences of the mathematical result.38

2 Contradiction & Kirchhoff diffraction39

2.1 Contradiction briefly40

Here the contradiction in the complex numbers is presente. A paper with more details based41

on viz. [7], is already under review. Let us look in a λ → 0+ limit at42

fλ(y) = eiy
{
eiλ− (1 + sin(λ))

}
(1)43
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Here y =
(
x+π
2

)
∈ R, x ∈ R. We may rewrite (1) as fλ(y) = |fλ(y)| exp(iφλ). Here λ is a wave44

length. With |fλ(y)|2 = f∗
λ (y)fλ(y) and f∗ the complex conjugate of f . Applying a number of45

times the rule of lHopital, the reader can check that46

lim
λ↓0

sin2(λ)

|fλ(y)|2
=

1

2
(2)47

viz. [7]. Similarly, because sin(λ) ∝ λ for small λ,48

lim
λ↓0

|fλ(y)|2

λ2
= 2 (3)49

Further, with the use of Euler’s identity [6], eiθ = cos(θ) + i sin(θ), and θ ∈ R, it is possible to50

rewrite (1)51

cos(y + λ)− (1 + sin(λ)) cos(y) = |fλ(y)| cos(φλ) (4)52

sin(y + λ)− (1 + sin(λ)) sin(y) = |fλ(y)| sin(φλ)53

Then the first equation is54

cos(φλ) = − sin
(x

2

) cos(λ) − 1

sin(λ)

(
sin(λ)

|fλ(y)|

)
+

sin(λ)

|fλ(y)|

(
sin

(x

2

)
− cos

(x

2

) )
(5)55

Now, with cos
(
x+π
2

)
= − sin(x

2
), the first term on the right hand side of (5) vanishes because,56

lim
λ↓0

cos(λ) − 1

sin(λ)
= 0 (6)57

From (2) and the existence of φ = limλ↓0 φλ it follows58

cos(φ) =
1
√
2

(
sin

(x

2

)
− cos

(x

2

) )
(7)59

This is our first equation of concern. The second equation is derived similarly. We have60

sin(φλ) = sin

(
x+ π

2

)
cos(λ)

|fλ(y)|
+ cos

(
x+ π

2

)
sin(λ)

|fλ(y)|
−

(1 + sin(λ))

|fλ(y)|
sin

(
x+ π

2

)
(8)61

And so, with (6), (2), sin
(
x+π
2

)
= cos(x

2
) and along a similar path as previously we may62

derive the second equation of concern63

sin(φ) = −
1
√
2

(
sin

(x

2

)
+ cos

(x

2

) )
(9)64
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The example case x/2 = π/3: Let us assume that x = 2π/3. Moreover, let us restrict the65

interval of the limit phase angle φ, with, −π ≤ φ ≤ π. Then, sin(x/2) =
√
3

2
≈ 0.866 and66

cos(x/2) = 1/2 = 0.500. From equations (7) and (9) we then obtain cos(φ) = 1√
2

(√
3

2
− 1

2

)
≈67

0.259 and sin(φ) = − 1√
2

(√
3
2

+ 1
2

)
≈ −0.966 . Following the path of the angular analysis68

this gives cos(φ) + sin(φ) = − 1√
2

and cos(φ) − sin(φ) =
√
3√
2
. In addition, we also have69

cos(φ) sin(φ) ==
(
− 1

2

)
× 1

2
= − 1

4
And so sin(2φ) = 2 cos(φ) sin(φ) = − 1

2
and cos(2φ) =70

cos2(φ)− sin2(φ) = −
√
3
2
. Therefore, with −2π ≤ 2φ ≤ 2π and both cos and sin negative, we71

are allowed to set 2φ = π + π
6

= 7π
6
, with both sin(2φ) = − 1

2
and cos(2φ) = −

√
3

2
. Hence,72

φ = 7π
12

and the φ is in the interval −π ≤ φ ≤ π. But φ = 7π
12

gives cos(φ) = cos
(
7π
12

)
≈73

−0.259 and sin(φ) = sin
(
7π
12

)
≈ 0.966 . This is a contradiction. Moreover, when we select74

2φ = −π + π
6
= − 5π

6
it is −2π ≤ 2φ ≤ 2π. Then, for φ = − 5π

12
in the required interval of φ,75

there is no contradiction. There are two different φ in the studied range [−π, π].76

It must be noted that criticism where x = −1 is computed and then x2 = 1 and then have77

two different solutions is not an equivalent of what is presented. The big difference is that78

with x = −1 a correct soltion is primed. In our analysis no correct solution is primed before79

computation.80

The function φλ: More details can be found in [7]. In the table below, for the interval81

0 ≤ x ≤ 3π/2, a number of points φλ has been computed for particular x. The result presented82

in Table-1 below extends what has been written in the preprints [7].83
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Table 1 Table representing a sample of the function φλ(x), with λ ↓ 0. We have, yj1 = sin(φλj)

and yj2 = cos(φλj) with j = 1, 2 and φλ2 = φλ1 + π. Only sin of 2φλ1 and 2φλ2 are presented.

For later purposes: φλ1 = φok
λ & φλ2 = φan

λ .

x φλ1 φλ2 sin(2φλ1) sin(2φλ2) y11 y12 y21 y22

0.063 -2.325 0.817 0.998 0.998 -0.729 -0.685 0.729 0.685

1.068 -1.822 1.319 0.482 0.482 -0.969 -0.249 0.969 0.249

2.094 -1.309 1.833 -0.500 -0.500 -0.966 0.259 0.966 -0.259

2.136 -1.288 1.854 -0.536 -0.536 -0.960 0.279 0.960 -0.279

3.204 -0.754 2.388 -0.998 -0.998 -0.685 0.729 0.685 -0.729

4.021 -0.346 2.796 -0.637 -0.637 -0.339 0.941 0.339 -0.941

4.398 -0.157 2.985 -0.309 -0.309 -0.156 0.988 0.156 -0.988

2.2 Scalar diffraction84

In this section we will employ Kirchhoff’s scalar diffraction [1] in the case of small wave-85

length λ. In the first place let us recapitulate the computation of the complex amplitude,86

U(P0), of the observed field in point P0 = (x01, x02, x03) = x⃗0. In scalar diffraction theory,87

the electric and magnetic field vector in P0 at time t are generally written like u(P0, t) =88

ℜe{U(P0) exp[−2iπtν]}, viz. [1, pg 38, eq 3-10]. The expression for U(P0) is in Kirchoff’s89

theory a surface integral over aperture Ap90

U(P0) =
1

4π

∫∫
Ap

{
G(P1)

∂

∂n
U(P1)− U(P1)

∂

∂n
G(P1)

}
dS (10)91

The geometry of the screen plus aperture corresponds with the standard situation presented92

in [1, pg 45, fig 3.7]. The U(P1) is a single spherical wave that from P2, illuminates the93

screen plus aperture [1, pg 45, fig 3.7]. The sperical wave U(P1) solves the Helmholtz equation94 (
∇2

1 + k2
)
U(P1) = 0, with k the wave number k = 2π/λ and ∇1 is the gradient vector95

operator
(

∂
∂x11

, ∂
∂x12

, ∂
∂x13

)
. The Green function, G(P1), also solves the Helmholtz equation96

(in x⃗1). We define97

U(P1) = Aλ
exp[ikr21]

r21
(11)98

Here, A = Aλ =
(
eiλ − (1 + sin(λ))

)
is a constant in x⃗1 and x⃗2, viz. [1, pg 45]. The r21 is the99

Euclidean distance between point P2 and P1 in the aperture, or r21 = ||x⃗1 − x⃗2|| > 0. Let us100
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subsequently define the Green function in (10) as in Kirchhoff’s theory [1, pg43]101

G(P1) =
exp[ikr01]

r01
(12)102

P2 and P0 are at opposite sides of the screen. They are not necessarily ”mirror” images.103

Furthermore, r01 = ||x⃗1 − x⃗0|| and let us define104

gλ(P1) = exp[ikr01]
(
eiλ − (1 + sin(λ))

)
(13)105

Noting that ∂
∂n

= n̂.∇1 where n̂ is the outward directed (towards P2) normal, || n̂ || = 1, of106

the aperture Ap , the dot represent the inner product and ∇1 is the gradient defined previously.107

The y in (1) is here kr01. Then,108

∂

∂n
U(P1) = cos( n̂ , x⃗21)

(
ik −

1

r21

)
U(P1) = (14)109

cos( n̂ , x⃗21)

√(
1

r221
+ k2

)
exp [−i arctan (kr21)]U(P1)110

From the inner product of n̂ and x⃗21 we can obtain the cosine cos( n̂ , x⃗21) = ( n̂ · x⃗21)/r21,111

etc. The cos( n̂ , x⃗21) is a shorthand for cos[∡( n̂ , x⃗21)] and ∡( n̂ , x⃗21) the angle between n̂112

and x⃗21. Similar to (14)113

∂

∂n
G(P1) = cos( n̂ , x⃗01)

√(
1

r201
+ k2

)
exp [−i arctan (kr01)]G(P1) (15)114

Under the restriction that λ ≈ 0+ it follows that

√(
1
r2

+ k2
)

≈ k for both r = r01 as well115

as for r = r21, with 1/r finite. Then looking at equations (12) and (3) under λ ≈ 0+ while116

U(P1)
∂
∂n

G(P1) as well as in G(P1)
∂
∂n

U(P1) contains, referring to (13), the term k|gλ(P1)|.117

Therefore118

k|gλ(P1)| ≈ 2π
√
2 (16)119

in the evaluation of U(P0) in (10). If we subsequently have nonzero finite r21 then arctan (kr21) ≈120

π
2
, and also arctan (kr01) ≈ π

2
under λ ≈ 0+. Therefore121

U(P0) ≈
√
2

2

∫∫
Ap

cos( n̂ , x⃗21)− cos( n̂ , x⃗01)

r01r21
exp

[
i
(
φ−

π

2
+ kr21

)]
dS (17)122

The electric or magnetic vector components in scalar diffraction u(P0, t) = ℜe{U(P0) exp[−2iπtν]},123

with 2πtν = k tc
n

is, via Euler’s identity [6],124

u(P0, t) ≈
√
2

2
ℜe

{∫∫
Ap

cos( n̂ , x⃗21)− cos( n̂ , x⃗01)

r01r21
exp

[
i

(
φ−

π

2
+ k

(
r21 −

tc

n

))]
dS

}
125

=

√
2

2

∫∫
Ap

cos( n̂ , x⃗21)− cos( n̂ , x⃗01)

r01r21
cos

[
φ−

π

2
+ k

(
r21 −

tc

n

)]
dS126
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The author employed Euler’s identity. Now, from the previous section we have learned that,127

in the first place there are two different φ possible. One φ = φan
λ and one φ = φok

λ . In the second128

place we may deduce from Table-1 that φan
λ = φok

λ +π. It then follows cos
[
φan
λ − π

2
+ k

(
r21 − tc

n

)]
=129

− cos
[
φok
λ − π

2
+ k

(
r21 − tc

n

)]
. This implies,130

u(P0, t) ≈
√
2

4

∫∫
Ap

cos( n̂ , x⃗21)− cos( n̂ , x⃗01)

r01r21
cos

[
φ−

π

2
+ k

(
r21 −

tc

n

)]
φ=φan

λ

dS (18)131

+

√
2

4

∫∫
Ap

cos( n̂ , x⃗21)− cos( n̂ , x⃗01)

r01r21
cos

[
φ−

π

2
+ k

(
r21 −

tc

n

)]
φ=φok

λ

dS132

Hence, when the anomalous value is included, u(P0, t) ≈ 0. Note that Aλ is not present in the133

two integrals of equation (18) because of the result in (3).134

3 Result & discussion135

In section-2.1 a contradiction of the complex numbers was demonstrated. Two different phase136

angles are associated; i.e. the φan
λ and φok

λ , viz. Table-1. The y = (x + π)/2 in section-2.1 is,137

as can be seen from equation (13), related to kr01. When, ℓ′ ∈ N then, y − 2πℓ′ is equivalent138

to y in the analysis. From 0 ≤ x ≤ 3π/2 as in our Table-1, it is possible to obtain: λ(ℓ′ + 1
4
) ≤139

r01 ≤ λ(ℓ′ + 5
8
). We can find a possible ℓ′ for a small λ such that a set of r01 embraces a140

realistic observer position P0. In the visible range λ = 4 × 10−7 meter. If, ℓ′ = 107 then:141

4 + 10−7 ≤ r01 ≤ 4 + ( 20
8

× 10−7) determines r01 within Table-1. Obviously, the research for142

Table-1 can be extended1.143

In section-2.2 the equation (18) was derived. There is no reason to disallow φ = φan
λ in the144

first and φ = φok
λ in the second integral of (18). The φ = φan

λ in section-2.1 is in all aspects,145

except for the anomaly when looking back to the formulae, equivalent to φ = φok
λ .146

Therefore, will a further inevitable inconsistency such as presented in section-2.1 play a147

role in experimental result. In other words: given Aλ is small in the point source (11) i.e. λ is148

small, then149

– if nature excludes the φan
λ then despite small Aλ in experiment, it is possible to have150

|u(P0, t)| > 0. The intensity [4, pg 8] equals I(P0) = |U(P0))|2. If φ = φan
λ is excluded151

1 x is not a coordinate like P0, P1 or P2 is.
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then from a faint source Aλ ≈ 0 for λ ≈ 0+, I(P0) is independent of the order of magnitude152

of Aλ.153

– if nature does ”select” φan
λ then |u(P0, t)| ≈ 0, predicted via (18), is found in experiment.154

Keller [5] argues that diffraction (coefficients) vanish at small wavelength and only geometrical155

terms remain [5, pg 116].156

Further, one can add 2ℓπ, with ℓ ∈ Z, in the cos argument. Therefore, we may look at157

distances r21 = (tc/n)− ℓλ. The diffraction will then, when φan
λ is excluded , in approximation158

at least contain the term:159

∆excl =

√
2

4

(
1

(tc/n)− λℓ

)∫∫
Ap

(
cos( n̂ , x⃗01)− cos( n̂ , x⃗21)

r01

)
sin(φok

λ )dS160

Use is made of cos(φok
λ −π/2) = − sin(φok

λ ) in (18), when 2ℓπ+k
(
r21 − tc

n

)
= 0. Moreover, in161

this particular example, the approximation is that the aperture P1 variation doesn’t influence162

the r21 much. Hence, the cos( n̂ , x⃗21) does not change much in P1.163

Because r21 > 0, it follows that ct
nλ

> ℓ. Hence, when φan
λ is not selected and νt > ℓ, & given164

∆Em = ℏνm, per ”photon”. Provided ∆E =
∑ℓ

m=1 ∆Em which means νm = ν, we can have165

∆E∆t > ℏℓ. Therefore, the faint point source U(P1) in (11), will possibly give |u(P0, t)| > 0166

when coherence νm = ν occurs for ℓ photons. This represents a nonzero diffraction from a167

quantum coherent bundle of photons originating from a faint source of light despite a small168

wavelength viz. [5]. There is no a priori rule to exclude or include the contradictory phase169

angle.170

In the paper fundamental mathematics is connected to physical optics. The question is,171

will the contradictory phase angle of section-2.1 be excluded in wave mechanics experiments172

yes or no.173
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