## Abstract

Construction of relationships that transform hyperbolic functions into trigonometric functions.

The Pythagorean formula for a right triangle with hypotenuse "h" and side "a" adjacent to angle $\alpha$ and side "b" opposite angle $\alpha$ is:
$h^{2}=a^{2}+b^{2}$
For this triangle we have the trigonometric relations:
$a=h \cdot \cos \alpha \quad b=h . \operatorname{sen} \alpha$
Reshaping the Pythagorean formula gives:
$h^{2}=a^{2}+b^{2} \rightarrow b^{2}=h^{2}-a^{2}=(h+a)(h-a) \rightarrow\left(\frac{h+a}{b}\right)\left(\frac{h-a}{b}\right)=e^{\varnothing} e^{-\varnothing}=1$
This is divided into the following hyperbolic functions:
$e^{\varnothing}=\frac{h+a}{b}$
$e^{-\varnothing}=\frac{h-a}{b}$
Where applying the trigonometric relations we obtain:
$e^{\varnothing}=\frac{h+a}{b}=\frac{h+h \cdot \cos \alpha}{h \cdot \operatorname{sen} \alpha}=\frac{1+\cos }{\operatorname{sen} \alpha}$
$e^{-\emptyset}=\frac{h-a}{b}=\frac{h-h \cdot \cos \alpha}{h \cdot \operatorname{sen} \alpha}=\frac{1-\cos \alpha}{\operatorname{sen} \alpha}$
From trigonometry we have:
$\operatorname{tg}\left(\frac{\alpha}{2}\right)=\frac{1-\cos \alpha}{\operatorname{sen} \alpha}=\frac{\operatorname{sen} \alpha}{1+\cos \alpha}=\sqrt{\frac{1-\cos }{1+\cos }}$
Applying
$e^{\varnothing}=\frac{1+\cos }{\operatorname{sen} \alpha}=\frac{1}{\operatorname{tg}\left(\frac{\alpha}{2}\right)}=\frac{1}{\sqrt{\frac{1-\cos }{1+\cos \alpha}}}=\sqrt{\frac{1+\cos }{1-\cos }}$
$e^{-\emptyset}=\frac{1-\cos }{\operatorname{sen} \alpha}=\operatorname{tg}\left(\frac{\alpha}{2}\right)=\sqrt{\frac{1-\cos \alpha}{1+\cos }}$
From these we get:
$\ln \left(e^{\varnothing}\right)=\ln \left[\frac{1}{\operatorname{tg}\left(\frac{\alpha}{2}\right)}\right]$
$\ln \left(e^{-\varnothing}\right)=\ln \left[\operatorname{tg}\left(\frac{\alpha}{2}\right)\right]$

From these we obtain the hyperbolic angle $\varnothing$ :
$\emptyset=\ln \left[\frac{1}{\operatorname{tg}\left(\frac{\alpha}{2}\right)}\right]$
33.32
$-\varnothing=\ln \left[\operatorname{tg}\left(\frac{\alpha}{2}\right)\right]$
Denominating the hyperbolic cosine ch $\varnothing$ as:
$x=\operatorname{ch} \varnothing=\frac{e^{\varnothing}+e^{-\emptyset}}{2}=\frac{1}{2}\left(\frac{h+a}{b}+\frac{h-a}{b}\right)=\frac{h}{b}=\frac{h}{h \cdot \operatorname{sen} \alpha}=\frac{1}{\operatorname{sen} \alpha}=\operatorname{cosec} \alpha$
And calling the hyperbolic sine shø as:
$y=\operatorname{sh} \varnothing=\frac{e^{\varnothing}-e^{-} \varnothing}{2}=\frac{1}{2}\left(\frac{h+a}{b}-\frac{h-a}{b}\right)=\frac{a}{b}=\frac{h \cdot \cos \alpha}{h \cdot \operatorname{sen} \alpha}=\frac{\cos \alpha}{\operatorname{sen} \alpha}=\operatorname{cotg} \alpha$
Applying the hyperbolic cosine ch $\varnothing$ and the hyperbolic sine sh $\varnothing$ to the unitary hyperbola equation $x^{2}-y^{2}=1$ we get:
$x^{2}-y^{2}=\operatorname{ch}^{2} \emptyset-\operatorname{sh}^{2} \emptyset=\operatorname{cosec}^{2} \alpha-\operatorname{cotg}^{2} \alpha=1$
Which is a result of trigonometry.
With the relations of the hyperbolic cosine ch $\varnothing$ and the hyperbolic sine sh $\varnothing$ we can define the other relations between the trigonometric functions and the hyperbolic functions:

$$
\begin{aligned}
& \operatorname{tgh} \varnothing=\frac{\operatorname{sh} \varnothing}{\operatorname{ch} \phi}=\frac{\frac{\cos \alpha}{\operatorname{sen} \alpha}}{\frac{\operatorname{sen} \alpha}{1}}=\cos \alpha \\
& \operatorname{cotgh} \varnothing=\frac{\operatorname{ch} \phi}{\operatorname{sh} \phi}=\frac{\frac{1}{\operatorname{sen} \alpha}}{\frac{\cos \alpha}{\operatorname{sen} \alpha}}=\frac{1}{\cos \alpha}=\sec \alpha
\end{aligned}
$$

$$
\operatorname{sech} \varnothing=\frac{1}{\operatorname{ch} \phi}=\frac{1}{\frac{1}{\operatorname{sen} \alpha}}=\operatorname{sen} \alpha
$$

$\operatorname{cosech} \varnothing=\frac{1}{\operatorname{sh} \varnothing}=\frac{1}{\frac{\cos \alpha}{\operatorname{sen} \alpha}}=\frac{\operatorname{sen} \alpha}{\cos \alpha}=\operatorname{tg} \alpha$
$\operatorname{sech}^{2} \emptyset+\operatorname{tgh}^{2} \emptyset=\operatorname{sen}^{2} \alpha+\cos ^{2} \alpha=1$
$\operatorname{cotgh}^{2} \emptyset-\operatorname{cosech}^{2} \emptyset=\sec ^{2} \alpha-\operatorname{tg}^{2} \alpha=1$

Construction of the already known relationships that transform the hyperbolic functions into the exponential form of a complex number.

Next, we will use Euler's formulas:
$e^{i \alpha}=\cos \alpha+i \operatorname{sen} \alpha \quad e^{-i \alpha}=\cos \alpha-i \operatorname{sen} \alpha$
Reshaping the Pythagorean formula, we get:
$h^{2}=a^{2}+b^{2}=a^{2}-(i b)^{2}=(a+i b)(a-i b) \rightarrow \frac{(a+i b)}{h} \frac{(a-i b)}{h}=e^{\varnothing} e^{-\emptyset}=1$
This breaks down into the following complex hyperbolic functions:
$e^{\varnothing}=\frac{a+i b}{h}$
$e^{-\emptyset}=\frac{a-i b}{h}$
For this triangle we have the trigonometric relations:
$\frac{a}{h}=\cos \alpha \quad \frac{b}{h}=\operatorname{sen} \alpha$
Applying trigonometric relations, we get:
$e^{\varnothing}=\frac{a+i b}{h}=\frac{a}{h}+i \frac{b}{h}=\cos \alpha+i \operatorname{sen} \alpha$
$e^{-\emptyset}=\frac{a-i b}{h}=\frac{a}{h}-i \frac{b}{h}=\cos \alpha-i \operatorname{sen} \alpha$
To conform to Euler's formulas we must change the hyperbolic arguments to $\varnothing=\mathrm{i} \alpha$ and thus we obtain the hyperbolic functions written as the exponential form of a complex number:
$e^{\varnothing}=e^{i \alpha}=\cos \alpha+i \operatorname{sen} \alpha$
$e^{-\emptyset}=e^{-i \alpha}=\cos \alpha-i \operatorname{sen} \alpha$
Calling the cosseno chia hyperbolic complex as
$x=$ chi $\alpha=\frac{e^{i \alpha}+e^{-i \alpha}}{2}=\frac{1}{2}[(\cos \alpha+i \operatorname{sen} \alpha)+(\cos \alpha-i \operatorname{sen} \alpha)]=\cos \alpha$
And naming the sine shia hyperbolic complex as:
$y=\operatorname{shi} \alpha=\frac{e^{i \alpha}-e^{-i \alpha}}{2}=\frac{1}{2}[(\cos \alpha+i \operatorname{sen} \alpha)-(\cos \alpha-i \operatorname{sen} \alpha)]=i \operatorname{sen} \alpha$
Applying the cosine $x=$ chi $\alpha=\cos \alpha$ hyperbolic complex and the sine $y=\operatorname{shi} \alpha=i$ sen $\alpha$ hyperbolic complex in the equation of the unit hyperbola $x^{2}-y^{2}=1$ results:
$x^{2}-y^{2}=\operatorname{ch}^{2} i \alpha-\operatorname{sh}^{2} i \alpha=\cos ^{2} \alpha-i^{2} \operatorname{sen}^{2} \alpha=\cos ^{2} \alpha+\operatorname{sen}^{2} \alpha=1$
Which is a result of trigonometry.
With the relationships of the hyperbolic cosine chia $=\cos \alpha$ and the hyperbolic sine shi $\alpha=$ isen $\alpha$ we can define the other relationships between complex trigonometric functions and complex hyperbolic functions.

