
1

A New Permittivity of the Rotational Electric Field
Krishna Srinivasan

Abstract—The electric field in Maxwell’s equations can be
written as a sum of the rotational and the irrotational electric
fields. In this paper, it will be shown that Maxwell’s equations
is formulated such that the permittivity of the rotational electric
field is set to 1.0, and the permittivity of the irrotational
electric field is commonly denoted as εr . Faraday’s law can be
reformulated in a little more general equation, so that a non-unity
permittivity of the rotational electric field is possible. Although
only a theoretical formulation is proposed, a way by which the
permittivity of the rotational electric field can be measured is
discussed.

Index Terms—Maxwell’s equations, electric field, Faraday’s
law, permittivity, rotational electric field, irrotational electric field

I. INTRODUCTION

JAMES Clerk Maxwell published 3 famous papers on
electromagnetism [1] – [3]. He translated Faraday’s

experiment results into a mathematical equation, known as
Faraday’s law today, and introduced the displacement current.
In his famous 1864 paper [3], he presented a comprehensive
theory of the electromagnetic field, including his hypothesis of
the existence of electromagnetic waves, which was confirmed
by Heinrich Hertz in 1893 [4].

The motivation of this research work is to answer these
questions: (1) Why is Faraday’s law formulated using the
electric field ~E, instead of the electric displacement (electric-
flux density) ~D? (2) What effect does a dielectric material
have on the electric field generated from Faraday’s law? How
is this taken into account in Maxwell’s equations? (3) What
is the meaning of ~D = εoεr ~E in the context of Faraday’s law?

An outcome of this research work has been to formulate
a more general equation of Faraday’s law, of which, the
present formulation is a special case. A new permittivity of
the rotational electric field κ is introduced, in addition to and
different from the permittivity of the irrotational electric field,
commonly written as εr. Additional details in this paper can
be found in Ref. [5] - [6].

To enable this, the existing Maxwell’s equations need
to be cast in a different form in Sec. II, where the electric
fields are written as a superposition of the rotational and the
irrotational components. In Sec. III, the reason for introducing
the permittivity εr will be presented, as well as the reason
that this permittivity is associated with the irrotational
electric field. A similar argument is made to introduce a
new permittivity κ, associated with the rotational electric
field in Sec. IV, followed by an experimental technique to
measure the permittivity of the rotational and the irrotational
permittivity values κ and εr.

II. REWRITING ELECTRIC FIELD AS A SUPERPOSITION OF
ROTATIONAL AND IRROTATIONAL COMPONENTS

The two sources of electric field are electric charges and
a time-varying magnetic field. The electric field of electric
charges is captured in Gauss’s law, and the electric field
generated by a time-varying magnetic field is captured in
Faraday’s law. In this section, the electric field will be written
as a superposition of these two field components. These
components are also called as rotational and irrotational
fields, for reasons, which will become clear shortly.

The magnetic vector potential ~A is defined as

~B = ∇× ~A. (1)

Substituting the above equation in the present formulation of
Faraday’s law,

∇× ~E = − ∂

∂t

(
∇× ~A

)
. (2)

Rearranging the above equation,

∇×

(
~E +

∂ ~A

∂t

)
= 0. (3)

From calculus, if the curl of a vector field is 0, the vector field
can be written as the gradient of a scalar field,

~E +
∂ ~A

∂t
= −∇Φ. (4)

Rearranging the above equation,

~E = −∇Φ− ∂ ~A

∂t
(5)

= ~EC + ~EF . (6)

From the above equation, ~E can be written as the sum of
Coulomb field,

~EC = −∇Φ, (7)

and the electric field generated from Faraday’s law,

~EF = −∂
~A

∂t
. (8)

Applying the∇× operator on both sides of the above equation,
and substituting Eq. 1,

∇× ~EF = −∂
~B

∂t
, (9)

which is the same as Faraday’s law. Intuitively, it can be
observed that ~EC is the electric field generated by electric
charges. Since ~EF is the electric field generated by Faraday’s
law, the other source of electric field ~EC , must be the
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electric field generated by electric charges. This can be proven
mathematically, using Coulomb gauge,

∇ · ~A = 0, (10)

to show that ~EC is the instantaneous Coulomb field [7] [8].
Since ~EC is the gradient of a scalar potential in Eq. 7, from
calculus,

∇× ~EC = 0. (11)

Since ~EC is “curl free”, visually, the field is “radial” and not
“swirling”. For this reason, ~EC is the irrotational electric-field
component. ∇× ~EF , however, may be non-zero, as written in
Faraday’s law in Equation 9, and is the rotational electric-field
component. Similar to Eq. 6, ~D at any point can be written as

~D = ~DC + ~DF . (12)

Using the above equation, Ampere’s law is written as

∇× ~H = ~J +
∂

∂t

(
~DC + ~DF

)
. (13)

Applying the ∇· operation on both the sides of the above
equation,

∇ ·
(
∇× ~H

)
= ∇ · ~J +

∂

∂t
∇ ·
(
~DC + ~DF

)
. (14)

From calculus, the left-hand side reduces to 0. If

∇ ·
(
~DC + ~DF

)
= ρ, (15)

Eq. 14 reduces to the current-continuity equation,

∇ · ~J = −∂ρ
∂t
. (16)

This shows that

∇ ·
(
~DC + ~DF

)
= ρ, (17)

or Gauss’s law, must be satisfied for time-varying fields. The
existing set of Maxwell’s equations can be written as

∇ ·
(
~DC + ~DF

)
= ρ (18)

∇ · ~B = 0 (19)

∇× ~EF = −∂
~B

∂t
(20)

∇× ~EC = ~0 (21)

∇× ~H = ~J +
∂

∂t

(
~DC + ~DF

)
, (22)

and the above equations are also valid for time-varying fields
[5]. In addition to the above equations,

~DF = εoεr ~EF (23)
~DC = εoεr ~EC (24)
~B = µoµr ~H (25)

capture the effect of a material on the fields. The electric
displacement and electric field at any point are

~D = ~DC + ~DF (26)
~E = ~EC + ~EF . (27)

III. THE PERMITTIVITY εr ASSOCIATED WITH THE
IRROTATIONAL ELECTRIC FIELD ~EC

The meaning of electric field and electric displacement
will be explained from Faraday’s experiment with spherical
capacitors in this section. The reader is referred to [5] for
more details.

Gauss’s law for electric charges in free space, can be
derived from Coulomb’s law as∮

S

εo ~EC · d ~A = qenc, (28)

where S is a closed 3D surface enclosing charge qenc. The
derivation of the above equation is presented in [5], and is
not repeated here.

Faraday’s experimental setup is shown in Fig. 1. Faraday used
two identical capacitors, A and B, with the two inner metal
spheres, p and p′, connected together by a wire, as well as the
two outer metal spheres q and q′. A metal is an equipotential
volume in electrostatics, and so are metal objects connected
together. Therefore, p and p′ are at the same potential, and
so are q and q′. Since the inner spheres are connected, as
well as the outer spheres, the potential difference between the
inner sphere and the outer sphere in A, Vpq , is equal to that
of B, Vp′q′ ,

Vpq = Vp′q′ . (29)

Since the capacitors are identical, and voltage is the path
integral of the electric field, the electric fields in the cavities
of A and B, ~EA and ~EB , are equal,

~EA = ~EB , (30)

at the same point relative to the respective centers of A and
B, in each of the cavities. This is true, independent of the
dielectric material that fills the cavities of A and B.

Fig. 1. The experimental setup to study the variation of the charge stored in
a capacitor with different dielectric materials.

In the cavity of A, the material is always kept as air, but the
material in B is varied. Capacitor A with the unfilled cavity
acts as a reference for the experiment. The capacitors are
charged simultaneously by connecting the inner and the outer
spheres to the terminals of a Wimshurst machine. A detailed
explanation of how a Wimshurst machine works is presented
in [5].

Faraday studied the ratio of the charge stored in A,
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QA, and B, QB . The quantity of charge stored in a capacitor
can be measured using a ballistic galvanometer. The detailed
methodology is presented in [5]. If the dielectric material in
both A and B is air, by symmetry, the charge stored in the
two identical capacitors are equal. The ratio of the charge
stored QB : QA is 1. However, in the case when B is filled
with a dielectric material other than air, Faraday observed that
the ratio is greater than 1. This ratio has a special name and
is called the relative permittivity of the dielectric material,
denoted by the symbol εr, where r stands for relative, and
it means the permittivity of a material relative to air. To be
precise, the cavity in Capacitor A must be vacuum, which
is the absence of any material, including air. The reference
dielectric material of air will be assumed for simplicity.

Faraday observed that Capacitor B, whose cavity is
filled with a dielectric material, stores εr times more charge
than Capacitor A, whose cavity is unfilled, or contains air. If
~EA is the electric field in capacitor A, applying Gauss’s law
in free space, in Eq. 28,∮

SA

εo ~EA · d ~A = QA, (31)

where ±QA is the charge stored in the spheres of A, which
reside on the outside of the inner sphere, and the inside of
the outer spherical shell [5], and SA is the spherical Gaussian
surface in the cavity, as shown by the dotted line. Solving the
above equation, the electric-field strength in the cavity is ∝ Q.

If this same equation is applied to Capacitor B, the
field strength in the cavity is εr times greater, since εr times
more charge is stored in Capacitor B. By definition, voltage is
the path integral of the electric field, and therefore, Vp′q′ is εr
times greater than Vpq . Since Vpq = Vp′q′ , this contradicts the
experiment results. This can be resolved with the explanation
presented next.

If the dielectric material in the cavity of Capacitor B
reduces the electric-field strength by εr, then the electric
fields in the cavities of A and B are equal. If the electric
fields are equal, this means that the voltage Vpq = Vp′q′ . This
explains the reason that more charge is present in Capacitor
B: the additional charge is present to overcome the reduction
in the electric field caused by the dielectric material, so that
the electric fields in the cavities of A and B are equal. This
explanation can be captured as

~Ematerial =
~Eair
εr

, (32)

where ~Ematerial is the electric field at any point in a material
with permittivity εr, and ~Eair is the electric field in air, or
the electric field that would have existed at that point, if
the material does not reduce the field. This observation will
be used to formulate Gauss’s law in the remainder of this
section, taking into account the reduction of electric-field
strength in a dielectric material.

The ratio of the charges stored in A and B is the relative
permittivity εr,

QA =
QB
εr
. (33)

Since the potential difference between the outer and the inner
conductors are the same in both the identical capacitors, as
noted in Eq. 29,∮

SB

εo ~EB · d ~A =

∮
SA

εo ~EA · d ~A, (34)

where SB is a spherical Gaussian surface lying in the cavity of
B, and of the same radius as SA, shown by the dotted circles
in Fig. 1. From the above equations,∮

SB

εo ~EB · d ~A =
QB
εr
. (35)

Rearranging the above equation,∮
SB

εoεr ~EB · d ~A = QB , (36)

is the general form of Gauss’s law.

In this example, the Gaussian surface is present in a
uniform dielectric material. εr is moved inside the integral,
which will account for the variation in the dielectric material
over S. Gauss’s law is also valid in this case. However, the
validity of Gauss’s law in any type of material medium,
uniform or non-uniform, isotropic or anisotropic, linear or
non-linear, or in the case of time-varying fields, can be proven
with the current-continuity equation, and is presented in [5]
(See also [9] - [10]). In other words, Gauss’s law is always
valid!

From the above equations, the general form of Gauss’s
law is written as ∮

S

~D · d ~A = qenc, (37)

where S is the Gaussian surface enclosing charge qenc.

The integrand in the above equation is assigned a new
vector-field quantity ~D, and is called electric displacement,

~D = εoεr ~E. (38)

~D and ~E are related at any point by the above equation.

~D is typically viewed as a vector field that satisfies
Eq. 37, or as a mathematical relation in Eq. 38. However, a
new meaning emerges, when Eq. 32 is substituted in Eq. 38,
resulting in

~D = εo ~Eair. (39)

The above equation states that electric displacement is the
same as the electric field in air (and scaled by the constant
εo), or in other words, electric displacement at any point is
the same as the electric field that is not “modified”, “altered”,
or reduced in strength by the dielectric material at that point.
The electric field, however, rotational or irrotational, is defined
from the equation

~F = q ~E, (40)
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is defined from the force experienced by an electric charge q
at any point, and is the net electric field, including the effect
of a dielectric material at any point. Note that Equation 39 is
more elegant in electrostatic units, which is written without
the constant εo [5].

From this derivation, the permittivity εr is associated with
the electric field due to electric charges, or the irrotational
electric field. In the next section, a new permittivity κ will
be introduced, which is associated with the rotational electric
field of Faraday’s law.

IV. INTRODUCING A NEW TYPE OF PERMITTIVITY κ,
ASSOCIATED WITH THE ROTATIONAL ELECTRIC FIELD ~EF

Similar to how Gauss’s law was used to introduce εr in
Section III, Faraday’s law will be used to introduce a new
type of permittivity κ, associated with the rotational electric
field. Repeating Faraday’s law in Eq. 9,

∇× ~EF = −∂
~B

∂t
. (41)

Lets assume for simplicity that ~B is linearly time varying,
so that ~EF is a constant, and there is no coupling between
Faraday’s law and Ampere’s law. Lets also assume that a
dielectric material has an effect on modifying the electric
field generated by a time-varying ~B, maybe a minor, but not
a NULL effect.

Two cases are analyzed in Figure 2, where Case 1 and
Case 2 are two different materials. The time-varying
magnetic-flux density ~B is equal in both the cases. Since ~B

Fig. 2. Two materials with different electrical properties.

is equal in both the cases, by Faraday’s law, the electric field
~EF generated in each of the cases must be equal as well. In
the existing formulation of Faraday’s law, the effect of the
material on the rotational electric field ~EF is not accounted for.

This is the motivation to reformulate Faraday’s law as

∇×
(
κ ~EF

)
= −∂

~B

∂t
, (42)

where κ is a new type of permittivity associated with the
rotational electric field. The naming convention followed is
that the fields in the reformulated equations will be written
using scripted variables, as written in the above equation.
The fields and equations in the existing formulation will be
written using non-scripted variables.

From the above equation, a new type of electric-displacement
field,

~D∗F = κ ~EF , (43)

generated in both the cases are equal, since the time-varying
~B is the same in both the cases. The material modifies ~D∗F

differently, resulting in

~E 1
F =

~D∗F
κ1

(44)

~E 2
F =

~D∗F
κ2
6= ~E 1

F , (45)

and the results are now consistent with the assumptions made.

Note that a static EF , generated by a linearly time varying ~B,
has been assumed only for simplicity. In general, however,
Equation 42 will be assumed to be valid also for any type of
a time-varying field. A way by which the formulation can be
verified by experiments, and measurement of the value of κ,
will be discussed in Sec. VIII.

V. THE REFORMULATED MAXWELL’S EQUATIONS

The new set of equations are the same as the existing
Maxwell’s equations, with the exception of the modified
Faraday’s law,

∇ ·
(
~DC + ~DF

)
= ρ (46)

∇ · ~B = 0 (47)

∇×
(
~κE F

)
= −∂

~B

∂t
(48)

∇× ~EC = ~0 (49)

∇× ~H = ~J +
∂

∂t

(
~DC + ~DF

)
, (50)

and repeating Eq. 23 – Eq. 25,

~DF = εoεr ~EF (51)
~DC = εoεr ~EC (52)
~B = µoµr ~H (53)

These equations are also valid for time-varying fields and
time-varying sources. Note that if κ is exactly equal to 1.0,
then the formulation reduces to the existing set of Maxwell’s
equations. If κ is exactly equal to 1.0, this implies that a
dielectric material has no effect on the rotational electric
field. This, however, is too ideal, and a special case of the
formulation presented in this paper, which is a more general
formulation.

Similar to the existing formulation, in general, permittivity
and permeability are written as tensors to represent any type
of material, such as an anisotropic material [5]. The above
equations are valid for any material type.



5

VI. κ 6= εr

Clearly, εr is different from κ. Why is this the case? A
parallel-plate capacitor is used to illustrate the electric-field
pattern due to electric charges. Two parallel plates, charged
positive and negative, sandwiched between a dielectric
material, is shown in Figure 3. The electric field between the
charged plates is shown by the arrows. A simplistic view of

Fig. 3. The polarization of the atoms in a dielectric material due to the
irrotational electric field from electric charges.

Fig. 4. The polarization of the atoms in a dielectric material due to the
rotational electric field, generated by a time-varying magnetic-flux density ~B
in Faraday’s law.

the atoms in the dielectric is shown in the figure. The electric
field in the dielectric due to the electric charges in the parallel
plates, exerts a force on the positive/negative charges in the
atoms, distorting them to resemble electric dipoles. This
polarization of the atoms in the dielectric material, results in
a reduced electric field by a factor of εr.

Lets compare the electric-field pattern in the parallel-plate
capacitor, to the electric-field pattern generated in Faraday’s
law. Such a “swirling” electric-field pattern can be expected
to be generated by a time-varying magnetic-flux density ~B
in Faraday’s law, since ∇× ~EF 6= 0. Similar electric dipoles
can be expected in the case of the electric field generated
in Faraday’s law, shown in the figure. These dipoles are a
consequence of the force on the positive and the negative
charges making up the atoms of the dielectric material.
The orientation of the dipoles, however, are very different
compared to Figure 3. In the simplified representation, there
is a net “row” of positive charges shown by the dotted box
in Figure 3, and a periodic arrangement of dipoles in the
case of ~EC . This is not the case, however, with ~EF in Figure 4.

This difference in the orientation of the electric dipoles,
can be used to explain the difference in the effect of the
dielectric material on an electric field in modifying the field,

and the possibly large difference in the permittivity values
between εr and κ.

VII. THE WAVE EQUATION IN THE REFORMULATED
MAXWELL’S EQUATIONS

In a lossless, source-free region, and a uniform medium with
permittivity εr and permeability µr, sufficiently far away that
~DC has decayed to 0, the wave equation can be derived from
the reformulated equations, by following the standard proce-
dure of the derivation from the existing equations, outlined in
electromagnetics books,

∇2 ~EF =
1
κ c2

µrεr

∂2 ~EF
∂t2

. (54)

Similarly, the wave equation of the magnetic field ~H can also
be derived. This equation can be used to derive the value of
κ, explained next.

VIII. MEASUREMENT OF εr AND κ

A measurement technique to determine the permittivity
values εr and κ, will be presented in this chapter. The
focus of this paper is only on the theoretical formulation.
Help is needed from the research community to verify this
formulation.

The different techniques to measure permittivity εr have been
discussed in Ref. [11]. By sweeping the frequency and the
temperature of the dielectric, the effect of these parameters
on permittivity can be characterized.

In the existing formulation of Maxwell’s equations, two
ways to measure permittivity εr are the following: (1)
Measurement of εr from the ratio of capacitances, (2)
Measurement of εr from electromagnetic waves. These will
be referred to as Method 1 and Method 2. In the existing
formulation, both these results are assumed to be identical,

εr,Method 1 = εr,Method 2 = εr. (55)

In the reformulated equations, however, successive application
of the above two methods, can be used to calculate εr and κ.
The capacitance of a parallel-plate capacitor in Figure 3 is

Cd = εrεo
A

d
, (56)

where εr is the permittivity of the dielectric material
sandwiched between the plates, A is the surface area of the
plate, and d is the distance separating the plates [5].

The capacitances of two capacitors, one filled with the
dielectric material whose εr is to be characterized, and
the second capacitor with air as the dielectric material, are
accurately measured. In the case of air as the dielectric
material, Equation 56 simplifies to

Ca = εo
A

d
. (57)
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Strictly speaking εr = 1.0 for vacuum, but air is used for
simplicity. The ratio of the capacitances,

εr =
Cd
Ca

, (58)

is the permittivity εr of the material to be characterized.

Method 2 can be used to determine κ, after εr has
been determined using Method 1. The wavelengths in a
dielectric material λd, and in air λa, can be measured, similar
to Ref. [12].

When the dielectric material is air,

λa =
c

f
, (59)

since εr, κ, and µr are equal to 1.0. In the case of a non-
magnetic material,

λd =
c

f
√

εr
κ

. (60)

From the above equations,

εr
κ

=

[
λa
λd

]2
. (61)

Since εr is known from Method 1, this value can be used to
calculate κ from the above equation,

κ = εr

[
λd
λa

]2
. (62)

The above equations are valid for the lossless medium [13].
However, the methodology is also applicable to the lossy
medium case. The experimental technique in this section, can
be used to validate the new formulation, and determine the
value of the permittivity associated with the rotational electric
field κ, in a material.
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